JEE (Advanced) | JEE (Main) | NEET (UG) 2020
Give Final Touch To Your Preparation with
ALLEN's MAJOR TEST SERIES
Test Starting From: 22nd Dec. 2019

Pen Paper Mode Test Computer Based Test Online Test Series

For more details
visit: dlp.allen.ac.in
Helpline: 0744-2750275

Corporate Office: “Sankalp”, CP-6, Indra Vihar, Kota (Raj.) | Website: allen.ac.in | Helpline: 0744-2757575
AMRITA VISHWA Vidyapeetham
School of Engineering
A Grooming Ground for Future Engineering Professionals

Inspired by Love, Guided by Knowledge

B.Tech. 2020 admissions open

APPLY NOW
Scan QR Code
www.amrita.edu/btech

Selection is based on the rank secured in

JEE Mains 2020
(Joint Entrance Examination)
[January or April Session]

OR

AEEE 2020
(Amrita Entrance Examination – Engineering)

Computer Based Test
23-27 APRIL 2020
All India

Pen & Paper Test
2 MAY 2020
Tamil Nadu only

EXCELLENT PLACEMENT RECORD

Record numbers of offers -
100+
in Digital Domain
by Leading MNCs

TCS, Nissan, GE, Infosys

Highest Salary
₹ 43.33 LPA
by MICROSOFT

In a short span of 3 months
75%+
students placed

25%+
placed in
dream / super dream
companies and
the process is on....

Our recruiters include

ABB, Alstom, Amazon, AstraZeneca, Blue Star, Bosch, Caterpillar, Cerner, Cisco, Cognizant, Dassault
Systemes, Dell, Directi, Ericsson, E&Y, FireEye, Ford, GE Digital, Google, Honeywell, HSBC, Hyundai,
IBM, Infosys, Ingersoll Rand, Intel, Intuit, J.P. Morgan, Juniper, KLA Tencor, Larsen & Toubro, Mahindra
& Mahindra, MicroFocus, Microsoft, National Instruments, Nissan Digital, Oracle, Philips, Quess Corp,
Reliance Power, Renault Nissan, Rockwell Collins, Samsung, SAP, Seagate, TCS, Texas Instruments,
Thermo Fisher, Toyota, United Technologies, Verizon, Volvo, Wipro, Xome, Zoho to name a few....

Up-to-date and comprehensive syllabus
based on industry requirements

160+ international collaborations for
student exchange programmes

200+ students avail study abroad
programme every semester

Entrepreneurship
Development

Opportunities

20+ centers of
excellence
in research

SCHOLARSHIPS
OVER 300
BENEFICIARIES

Scholarship 90%, 75%, 50%
based on the rank scored in
AEEE / JEE Mains 2020

AMRITA is RANKED
within 401-500
in TH E WORLD
UNIVERSITY
RANKINGS
2020

AMRITA is RANKED
168 in Asia, 2018

QS WORLD UNIVERSITY
RANKINGS
ASIA

RANKED 8 in University category
INDIA RANKINGS
2019

All details available in respective websites

Scholarships recommended by UGC

INSTITUTIONS OF Eminence

For more information, please contact
Amrita Vishwa Vidyapeetham, Amrita Nagar P.O.,
Ettimadai, Coimbatore - 641 112. Tamil Nadu

✉ btech@amrita.edu
☎ 1800 425 90009 | 1800 425 9909
CRACKING JEE IS THIS SIMPLE

ALL THE HELP YOU NEED TO CRACK JEE:
- Based on latest pattern of JEE Main
- Covers the entire syllabus
- Full of graphic illustration for deep understanding of concepts
- Level wise MCQs with detailed solutions
- NCERT Drill MCQs framed from NCERT Books
- Previous 10 Years’ MCQs (2018-2009) of JEE Main/AIEEE
- JEE Main January & April 2019 Solved Papers Included

Available at all leading book shops throughout India. To buy online visit www.mtg.in
For more information or for help in placing your order, call 0124-6601200 or email info@mtg.in
Reach the peak of readiness for JEE Main 2020

MTG NTA JEE Main 2020

The Wait is Over! MTG Presents you all the 8 Fully Solved Question Papers each of JEE Main (I) January 2019 & JEE Main (II) April 2019 conducted by NTA with Chapterwise graphical analysis showing the weightage of chapters and Mock Test Papers as per latest pattern of JEE Main. Get the maximum benefit from the book through personalised course on Pedagogy app. The best preparation for tomorrow is doing your best today so, go and get your copy.

Highlights

- Fully Solved Authentic Papers
- 16 Online Papers
- 1875 MCQs for Practice
- Chapterwise Tabular and Graphical Analysis Showing the Weightage of Chapters
- Vital Statistics of NTA Conducted JEE Main I & II 2019
- 5 MTPs as per the latest JEE Main pattern

Practice Online Tests to Predict Your Rank

Available at all leading book shops throughout the country. To buy online visit www.mtg.in.
For more information or for help in placing your order, call 0124-6601200 or email: info@mtg.in
EARLY TO RESONANCE, EARLY TO SUCCESS.

ADMISSION OPEN
For Classes: V to XII & XII+ (XII Passed)
JEE ADVANCED | JEE MAIN | PRE-MEDICAL
COMMERCE & LAW | PCCP (V to X)
OLYMPIADS | NTSE | IJSO | KVPY

Enroll Now for Academic Session 2020-21
@ Coaching Fee of 2019-20

Call Now: 1800 258 5555

Academic Benefits*
• More than 800 Academic Hours
• More than 500 Classes
• More than 100 Testing Hours

Financial Benefits*
• Upto Rs.35000+ Saving on 1 Year Course Fee
• 50% Concession on Admission Form Fee
• Up to 90% Scholarship on Course Fee

ResoFAST Test Dates: 8th, 22nd & 29th December 2019

Resonance Eduventures Limited: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005
Tel. No.: 0744-2777777, 2777700 | CIN: U80302RJ2007PLC024029

website: www.resonance.ac.in | e-mail: contact@resonance.ac.in
Contents

8 Maths Musing Problem Set - 204
10 Brush Up for JEE 2020 (Unit 6)
25 Mock Drill for JEE Main 2020
31 Mock Test Paper JEE Main 2020
36 Challenging Problems
42 Olympiad Corner
45 You Ask We Answer
48 Maths Musing Solutions
66 12 Study Hacks You Must Know
69 Focus JEE Main Practice Paper 2020
46 Concept Map
49 Concept Booster
67 Monthly Test Drive (Series 7)
76 CBSE warm-up! (Series 8)
84 Monthly Test Drive (Series 7)
MATHS MUSING was started in January 2003 issue of Mathematics Today. The aim of Maths Musing is to augment the chances of bright students seeking admission into IITs with additional study material. During the last 10 years there have been several changes in JEE pattern. To suit these changes Maths Musing also adopted the new pattern by changing the style of problems. Some of the Maths Musing problems have been adopted in JEE benefitting thousand of our readers. It is heartening that we receive solutions of Maths Musing problems from all over India. Maths Musing has been receiving tremendous response from candidates preparing for JEE and teachers coaching them. We do hope that students will continue to use Maths Musing to boost up their ranks in JEE Main and Advanced.

JEE MAIN

1. The greatest and the least value of $|z_1 + z_2|$ if $z_1 = 24 + 7i$ and $|z_2| = 6$ are respectively
 (a) 31, 19 (b) 25, 19
 (c) 31, 25 (d) None of these

2. If $I = \int_0^1 (1 - x^2)^9 x^9 \, dx$, then the sum of the digits of $\frac{1}{I}$ is
 (a) 2 (b) 4 (c) 8 (d) 9

3. Let p, q be roots of the equation $x^2 - 4x + A = 0$ and r and s be the roots of the equation $x^2 - 20x + B = 0$. If $p < q < r < s$ are in A.P. then (A, B) is
 (a) $(0, -96)$ (b) $(96, 0)$
 (c) $(0, 96)$ (d) $(-96, 0)$

4. From a point P tangents are drawn to the circle $x^2 + y^2 = a^2$. If the chord of contact touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then the locus of P is
 (a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{a^2}{b^2}$ (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{b^2}{a^2}$
 (c) $\frac{x^2}{b^2} + \frac{y^2}{a^2} = \frac{a^2}{b^2}$ (d) $\frac{x^2}{b^2} + \frac{y^2}{a^2} = \frac{b^2}{a^2}$

5. If events A and B are such that $P(\overline{A}) = 0.3$, $P(B) = 0.4$ and $P(A \cap \overline{B}) = 0.5$, then $P(B / (A \cup \overline{B})) =$
 (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{2}{5}$ (d) $\frac{1}{4}$

JEE ADVANCED

6. The sides of an acute angled triangle are 10, 24, x. The integral values of x are
 (a) 22 (b) 23 (c) 24 (d) 25

COMPREHENSION

The vertices of a tetrahedron are $O(0, 0, 0)$, $A(1, 2, 3)$, $B(2, 3, 1)$, $C(3, 1, 2)$.

7. The distance of the vertex A from the edge BC is
 (a) $\frac{5\sqrt{3}}{6}$ (b) $\frac{6\sqrt{3}}{5}$ (c) $\frac{3}{\sqrt{2}}$
 (d) $\frac{\sqrt{3}}{2}$

8. The distance of the vertex A from the face OBC is
 (a) $\frac{5\sqrt{3}}{6}$ (b) $\frac{6\sqrt{3}}{5}$ (c) $3\sqrt{2}$
 (d) $2\sqrt{3}$

NUMERICAL VALUE TYPE

9. Let $C_r = \binom{10}{r}$ and $S = \frac{C_0}{5} - \frac{C_1}{6} + \frac{C_2}{7} - \frac{C_3}{8} + \ldots + \frac{C_{10}}{15}$.
 The number of prime factors of $\frac{1}{S}$ is

MATRIX MATCH

10. The letters of the word CALCULUS are used to form 3, 4, 5, 6-letter words.

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. The sum of the digits of the number of 3-letter words is</td>
<td>1. 3</td>
</tr>
<tr>
<td>Q. The sum of the digits of the number of 4-letter words is</td>
<td>2. 12</td>
</tr>
<tr>
<td>R. The sum of the digits of the number of 5-letter words is</td>
<td>3. 15</td>
</tr>
<tr>
<td>S. The sum of the digits of the number of 6-letter words is</td>
<td>4. 18</td>
</tr>
</tbody>
</table>

(a) 3 (b) 4 (c) 2 (d) 3

See Solution Set of Maths Musing 203 on page no. 48
Knowledge Series
(for JEE / Olympiad Aspirants)

Myth
Performance is not good in test series, means no chance of selection in JEE.

Reality
Test series of various institutes is more difficult than JEE, test paper is always far away from reality. Institutes make test paper to compete with each other.

Suggestion: Join test series which is near to reality & in the last days of preparation, practice old JEE papers.

Please visit youtube to watch more myth and reality discussions on KCS EDUCATE channel.

Knowledge Quiz - 25

Find integers m, n with
m^2 + (m + 1)^2 = n^3 + (n + 1)^3

Winner Knowledge Quiz - 24
- Tejas Singh Arora, (Class - XI), Kendriya Vidyalaya, R.K. Puram, Delhi.
- Ratul Roy, (Class - XII), Julien Day School, Kalyani, West Bengal.
- Priyanka Karmakar, (Class - XII), Adamas International School, Peerless Nagar, West Bengal.

Leader of Chhattisgarh in IIT-JEE & NTSE now in Raipur

1st
2019
Thomas Jacob
JEE Adv. & CBSE

1st
2019
Rishabh Bhatnagar
JEE Main

1st
2018
Suyash Singh
JEE Main

1st
2017
Keshav Gupta
MIT (Cambridge-USA)

1st
2017
Tushar Agrawal
JEE Main

1st
2016
Shubhanan Shriniket
JEE Advanced

1st
2016
Rishabh Kumar
JEE Main & CBSE

KCS Educate
reviving internal teacher
Knowledge Centre for Success Educate Pvt. Ltd.
for JEE | Aptitude Test | NTSE | Olympiad

- www.kcseducate.in
- info@kcseducate.in
- facebook.com/kcseducate

Raipur Centre:
Shri Ram Heights, Bhagat Singh Chowk, Gaurav Path, Raipur.
0771 - 4091500

Bhilai Centre:
136, New Civic Centre, Bhilai.
0788 - 4901500

CIN No U74140CT2011PTC009050
STRAIGHT LINE

Straight line is a curve such that every point on the line segment joining any two points on it entirely lies on it.

Slope/Gradient of a Line

If a line makes an angle \(\alpha \) with the positive direction of \(x \)-axis then \(\tan \alpha \) is said to be the slope or gradient of the line. We generally denote it by \(m \).

\[m = \tan \alpha = \frac{dy}{dx} \]

- The slope of a line parallel to \(x \)-axis is \(m = \tan 0^\circ = 0 \).
- The slope of a line parallel to \(y \)-axis is not defined.
- If a line is equally inclined with the axes then its slope is \(\pm 1 \).
- If \(A(x_1, y_1) \) and \(B(x_2, y_2) \) be any two points, then
 \[\frac{y_2 - y_1}{x_2 - x_1} = \tan \alpha = \frac{dy}{dx} \]
- Slope of a line \(ax + by + c = 0, b \neq 0 \) is
 \[\frac{-a}{b} = -\frac{\text{coefficient of } x}{\text{coefficient of } y} \]

Equation of Straight Line in Different Forms

- Equation of line parallel to \(x \)-axis is \(y = \pm a \) (\(a \in \mathbb{R} \))
- Equation of line parallel to \(y \)-axis is \(x = \pm b \) (\(b \in \mathbb{R} \))
- **Point slope form** : Equation of line \(L \) having slope \(m \) and passing through a point \((x_1, y_1) \) is
 \[y - y_1 = m(x - x_1) \]
- **Two point form** : Equation of line \(L \) passing through \(P(x_1, y_1), Q(x_2, y_2) \) is
 \[y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) \]

- **Slope intercept form** : If a line \(L \) has a slope \(m \) and its intercept on \(y \)-axis is \(c \), then equation of line \(L \) is given by \(y = mx + c \).
- ** Intercept form** : Let a line \(L \) makes intercept \(a \) on \(x \)-axis and \(b \) on \(y \)-axis, then its equation is given by
 \[\frac{x}{a} + \frac{y}{b} = 1. \]

- **Normal form** : Let length of perpendicular from \(O(0, 0) \) to the line \(L \) is \(OP = p \) and \(\alpha \) be the angle made by \(OP \) with the +ve direction of \(x \)-axis then equation of line \(L \) is given by \(x \cos \alpha + y \sin \alpha = p \)

- **Parametric form** : Equation of line in parametric form is
 \[\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha} = \pm r \]

where \(r \) is the distance between the point \(P(x, y) \) and \(A(x_1, y_1) \). The general point on the line is \(x = x_1 + r \cos \alpha, y = y_1 + r \sin \alpha \).
Some of the best lessons are learnt from history!
Introducing Chapterwise Solutions to JEE. Crack the past to see if you will last.

Tune. Fine tune. Reach the peak of your readiness for JEE with MTG’s 42+18 Years Chapterwise Solutions. It is undoubtedly the most comprehensive ‘real’ question bank, complete with detailed solutions by experts.

Studies have shown that successful JEE aspirants begin by familiarising themselves with the problems that have appeared in past JEEs as early as 2 years in advance.

Making it one of the key ingredients for their success. How about you then? Get 42+18 Years Chapterwise Solutions to start your rehearsals early.

Available at all leading book shops throughout the country. For more information or for help in placing your order:
Visit www.mtg.in to buy online!
Call 0124-6601200 or e-mail: info@mtg.in

Attempt all questions from this book on the Web + Mobile for free
(Free details are inside the book)
Equation of Line Parallel and Perpendicular to a Given Line
Let \(ax + by + c = 0 \) be a given line then the equation of parallel line to the given line is
\(ax + by + \lambda = 0 \), where \(\lambda \neq c \) is any arbitrary constant.
The equation of a line perpendicular to \(ax + by + c = 0 \) is given by \(bx - ay + \lambda = 0 \), where \(\lambda \neq c \) is any arbitrary constant.

General Equation of Family of Lines Through the Intersection of Two Given Lines
Let the two lines are \(L_1 : a_1x + b_1y + c_1 = 0 \) and \(L_2 : a_2x + b_2y + c_2 = 0 \), then the equation of family of lines passing through the intersection of \(L_1 \) and \(L_2 \) is given by \(L_1 + \lambda L_2 = 0 \) or \(L_2 + \lambda L_1 = 0 \)
i.e., \((a_1x + b_1y + c_1) + \lambda(a_2x + b_2y + c_2) = 0\)
or \((a_2x + b_2y + c_2) + \lambda(a_1x + b_1y + c_1) = 0\), where \(\lambda \) is a parameter.

Angle between Two Lines
Let \(\alpha \) be the angle between the lines \(L_1 = 0 \) and \(L_2 = 0 \) where \(L_1 : y = m_1x + c_1 \) and \(L_2 : y = m_2x + c_2 \), then
\[\tan \alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \]

Note: If \(m_1 \) and \(m_2 \) are slope of two
- parallel lines, then \(m_1 = m_2 \).
- perpendicular lines, then \(m_1 m_2 = -1 \).

Equation of Straight Lines Through a Given Point Which Makes the Given Angle with a Given Line
Let \(P(x_1, y_1) \) be a given point and \(y = mx + c \) be a given straight line. Let \(\alpha \) be the angle made by the line whose equation is to be determine with the given line \(y = mx + c \), then required equation of line is
\[y - y_1 = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1) \]

Distance of a Point from a Straight Line
Let \(P(x_1, y_1) \) be any point at a distance \(d \) from the line
\[L : ax + by + c = 0 \text{, then } d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \]

Distance between the Parallel Lines
\(L_1 : ax + by + c_1 = 0 \text{ and } L_2 : ax + by + c_2 = 0 \), then distance between \(L_1 \) and \(L_2 \) is
\[d = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}} \text{, where} \]
(i) \(\alpha = |c_1 - c_2| \) if they are on the same side of the origin.
(ii) \(\alpha = |c_1| + |c_2| \), if origin lies between \(L_1 \) and \(L_2 \).

Concurrency of Lines
Three or more lines are said to be concurrent if they meet/intersect at the same point. Let the three lines be
\[L_1 : a_1x + b_1y + c_1 = 0 \text{, } L_2 : a_2x + b_2y + c_2 = 0 \text{ and } L_3 : a_3x + b_3y + c_3 = 0 \]
These lines will be concurrent if
\[\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0. \]

- The condition for the lines \(L = 0, M = 0 \) and \(N = 0 \) to be concurrent is that three constants \(a, b, c \) (not all zero at the same time) can be obtained such that \(aL + bM + cN = 0 \).

Position of a Point with respect to a Given Line
Let \(L : ax + by + c = 0 \) be given line and \(P(x_1, y_1) \) be the point whose position is to be determined.
- If the same sign is obtained by putting \(x = x_1 \) and \(y = y_1 \) and \(x = 0 = y \) in the given equation, then the point \(P(x_1, y_1) \) lies on the side of the origin.
- If the opposite sign is obtained by putting \(x = x_1 \), \(y = y_1 \) and \(x = 0 = y \) in the equation of the line, then, the point \(P(x_1, y_1) \) lies on the opposite side of the origin.

Position of Two Points with respect to a Given Line
Let \(P(x_1, y_1) \) and \(Q(x_2, y_2) \) be two points and \(L = ax + by + c = 0 \) be equation of line. Then
(a) two points lie on the same side of the line if
\[\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c} > 0 \]
(b) two points lie on the opposite sides of the line if
\[\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c} < 0 \]

Mirror Image of a Point with respect to a Given Line
Let \(L : ax + by + c = 0 \) be the equation of line. Let \((x_2, y_2) \) be the mirror image of \((x_1, y_1)\), then
\[\frac{x_2 - x_1}{a} = \frac{y_2 - y_1}{b} = -2 \left(\frac{ax_1 + by_1 + c}{a^2 + b^2} \right) \]

Note: If \((x_2, y_2) \) be the foot of the perpendicular from \((x_1, y_1)\) to the line \(ax + by + c = 0 \), then
\[\frac{x_2 - x_1}{a} = \frac{y_2 - y_1}{b} = -\left(\frac{ax_1 + by_1 + c}{a^2 + b^2} \right) \]

PAIR OF STRAIGHT LINES
Let \(a_1x + b_1y + c_1 = 0 \) and \(a_2x + b_2y + c_2 = 0 \) be two lines then their joint equation is
\[(a_1x + b_1y + c_1)(a_2x + b_2y + c_2) = 0 \]
...(i)
Now, (i) can be written in the form
\[ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \] ...(ii)
It is known as general equation of second degree.

Note: (1) If \(\theta \) is the angle between the lines then
\[\tan \theta = \pm \frac{2\sqrt{h^2 - ab}}{a + b} = \pm \frac{|m_1 - m_2|}{1 + m_1 m_2} \]
- If \(a + b = \) coefficient of \(x^2 + \) coefficient of \(y^2 = 0 \), then lines are perpendicular.

(2) Let us consider the equation given in (ii) and say
\[a \quad h \quad g \]
\[b \quad f \quad c \]
\[\Delta = \begin{vmatrix} h & f & g \\ a & b & c \\ g & f & c \end{vmatrix} \]
If \(\Delta = 0 \) i.e. \(abc + 2fgh - af^2 - bg^2 - ch^2 = 0 \) and \(h^2 > ab \) then (ii) represent intersecting lines and their point of intersection is given by
\[\left(\frac{hf - bg}{ab - h^2}, \frac{bg - af}{ab - h^2} \right) \]

CONIC SECTION
- A conic is the locus of a point \((P) \) which moves in such a way that its distance from a fixed point \((S) \) always bears a constant ratio to its distance from a fixed straight line \((L) \). The fixed point \((S) \) is called focus and the fixed straight line is called directrix \((L) \) of the conic. The constant ratio is called eccentricity which is denoted by \(e \).
\[e = \frac{PS}{PM} \] ...(i)
- If \(0 < e < 1 \), the conic is an ellipse.
- If \(e = 1 \), the conic is a parabola.
- If \(e > 1 \), the conic is a hyperbola.
- Let \(ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \) ...(ii)
is a general equation of second degree.
\[\begin{vmatrix} a & h & g \\ g & f & c \end{vmatrix} \]
(i) If \(\Delta \neq 0 \) and \(h^2 = ab \), then (ii) represents a parabola.
(ii) If \(\Delta \neq 0 \) and \(h^2 < ab \), then (ii) represents an ellipse.
(iii) If \(\Delta \neq 0 \) and \(h^2 > ab \), then (ii) represents a hyperbola and in addition to if \(a + b = 0 \), then hyperbola is called rectangular hyperbola.

PARABOLA

Let \(S \) be the focus (fixed point) and \(MN \) be the directrix (fixed straight line). Let \(SM \) be perpendicular to \(MN \) and \(A \) be the mid point of \(SM \). Assuming \(A \) as origin, \(AS \) as \(x \)-axis. \(MA = AS = a \) and equation of directrix is \(x = -a \) and co-ordinates of focus \(S \) are \((a, 0)\). So, \(y^2 = 4ax \) is the standard equation of parabola.

- **Axis of parabola**: A straight line passing through the focus and perpendicular to the directrix is called axis of parabola.
- **Vertex of parabola**: The point of intersection of parabola and its axis is called its vertex.
- **Latus rectum or double ordinate**: A chord passing through the focus and perpendicular to the axis is called latus rectum. The length of latus rectum is \(4a \).

The coordinates of extremities of latus rectum of \(y^2 = 4ax \) are \((a, 2a)\) and \((a, -2a)\).

Parametric Equations of Parabola
For any parameter \(t \), \(x = at^2 \) and \(y = 2at \) are called parametric equations of parabola \(y^2 = 4ax \).

Tangents and Normals to the Parabola
- **Different forms of tangent lines to parabola** \(y^2 = 4ax \) at a given point

<table>
<thead>
<tr>
<th>Point</th>
<th>Equation of tangent</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1, y_1))</td>
<td>(yy_1 = 2a(x + x_1)) (point form)</td>
</tr>
<tr>
<td>((at^2, 2at))</td>
<td>(ty = x + at^2) (parametric form)</td>
</tr>
<tr>
<td>(\left(\frac{a}{m^2}, \frac{2a}{m}\right))</td>
<td>(y = mx + \frac{a}{m}) (slope form)</td>
</tr>
</tbody>
</table>

- **Condition of tangency**: Let equation of parabola is \(y^2 = 4ax \). Then,

<table>
<thead>
<tr>
<th>Line</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xcos\alpha + ysin\alpha = p)</td>
<td>(p = -a \tan\alpha \sin\alpha)</td>
</tr>
<tr>
<td>(lx + my + n = 0)</td>
<td>(ln = am^2)</td>
</tr>
</tbody>
</table>

- **Pair of tangents from a point to parabola**: Let \(y^2 = 4ax \) be the equation of parabola and \(A(x_1, y_1) \) be a point lying outside the parabola.
Let \(S = y^2 - 4ax, S_1 = y_1^2 - 4ax_1 \) and \(T = yy_1 - 2a(x + x_1) \)
Then equation of pair of tangents is given by \(SS_1 = T^2 \).

- **Point of intersection of tangents at \(t_1 \) and \(t_2 \):** Let \(y^2 = 4ax \) be the equation of parabola and \(A(at_1^2, 2at_1), B(at_2^2, 2at_2) \) are any two points on it. Then the coordinates of point of intersection of tangents at \(t_1 \) and \(t_2 \) is given by \((at_1t_2, a(t_1 + t_2)) \).

 Note: If tangents at \(t_1 \) and \(t_2 \) are perpendicular, then \(t_1t_2 = -1 \).

- **Different forms of equation of normal to the parabola \(y^2 = 4ax \) at a given point**

<table>
<thead>
<tr>
<th>Point</th>
<th>Equation of normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1, y_1))</td>
<td>(y - y_1 = -\frac{y_1}{a} (x - x_1)) (one point form)</td>
</tr>
<tr>
<td>((at^2, 2at))</td>
<td>(y + tx = at^3 + 2at) (parametric form)</td>
</tr>
<tr>
<td>((am^2, -2am))</td>
<td>(y = mx - 2am - am^3) (point slope form)</td>
</tr>
</tbody>
</table>

- **Co-normal points:** The points on the curve at which the normal passes through a common point are called co-normal points. Sometimes co-normal points are said to be feet of the normals.

Equation of Chord of Contact of Tangents to a Parabola

Equation of chord of contact \(QR \) is given by \(yy_1 = 2a(x + x_1) \).

Equation of Chord Joining Two Points on a Parabola

- Let \(P(x_1, y_1), Q(x_2, y_2) \) be any two points on the parabola \(y^2 = 4ax \). Then equation of the chord \(PQ \) is \(y - y_1 = \frac{4a}{y_2 + y_1} (x - x_1) \).
- If the point be \(P(t_1) \) and \(Q(t_2) \) then the equation of the chord \(PQ \) is \(y(t_1 + t_2) = 2(x + at_1t_2) \).

Note: If \(PQ \) passes through the focus of the parabola, then \(t_1t_2 = -1 \).

Diameter of a Parabola

The locus of the midpoints of a system of parallel chords of a parabola is called its diameter.

Director Circle of Parabola

The locus of the point of intersection of perpendicular tangents to the parabola is called its director circle. The director circle of parabola \(y^2 = 4ax \) is its directrix \(i.e., x = -a \).

ELLIPSE

Let the focus of an ellipse be \(S(h, k) \) and equation of its directrix line is \(ax + by + c = 0 \). Let \(e \) be the eccentricity and \(P(x_1, y_1) \) be any point on the ellipse then by definition of the ellipse

\[
SP = ePM \\
\Rightarrow (x_1 - h)^2 + (y_1 - k)^2 = \frac{e^2(ax_1 + by_1 + c)^2}{a^2 + b^2}
\]

Standard Equation of an Ellipse

Let \(P(x, y) \) be any point then the standard equation of ellipse is

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \text{ where } b^2 = a^2(1 - e^2).
\]

Various Terms of the Ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b) \)

- Vertices are \(A(a, 0), A'(-a, 0) \). Line joining the foci \(S \) and \(S' \) is called axis of the ellipse.
- The distance \(AA' = 2a \) = length of major axis.
- The distance \(BB' = 2b \) = length of minor axis.
- The points \(S(ae, 0), S'(-ae, 0) \) are foci of ellipse.
- \(ZK \) and \(Z'K' \) are two directrices of the ellipse and \(x = \pm \frac{a}{e} \) are the equations of directrices.
The point which bisect the every chord passing through it, is called centre. The centre of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is origin. So, the mid-point of \(AA' \) is the centre of the ellipse.

- Eccentricity, \((e) \) is given by \(e^2 = \left(1 - \frac{b^2}{a^2}\right) \).

- Latus rectum: A chord through either focus and perpendicular to the major axis is said to be latus rectum. Length of latus rectum is \(\frac{2b^2}{a} \).

- Focal chord: Any chord through either focus is said to be focal chord.

Auxiliary Circle, Eccentric Angle and Parametric Equations of an Ellipse

- The circle described on the major axis of an ellipse as diameter is called auxiliary circle of the ellipse. The equation of auxiliary circle of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b) \) is \(x^2 + y^2 = a^2 \).

- If \(P \) be any point on the ellipse, \(Q \) be any point on the auxiliary circle such that \(QPN \) is perpendicular to major axis, i.e., \(Q \) lies on the ordinate produced of the point \(P \).

Then \(\angle ACQ = \theta \) is called eccentric angle. If \(\theta \) is the eccentric angle of any point \(P(\theta) \) then \(x = a \cos \theta \) and \(y = b \sin \theta \) are known as parametric equations of ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \).

Equation of Chord of the Ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)

- The equation of chord joining \(P(\phi) \) and \(Q(\phi) \) is \(\frac{x}{a} \cos \phi + \frac{y}{b} \sin \phi = \frac{\cos \phi - \phi}{2} \).

- Equation of chord of the ellipse bisected at \(P(x_1, y_1) \) is given by \(\frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 1 = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \).

Equation of Tangent to the Ellipse

Let the equation of ellipse is \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \).

- **Point form**: Equation of tangent at \(P(x_1, y_1) \) is \(\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1 \).

- **Parametric form**: Equation of tangent at \(P(0) \) is given by \(\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1 \).

- **Slope form**: Equation of tangent to the ellipse is given by \(y = mx \pm \sqrt{a^2m^2 + b^2} \).

Equation of pair of tangents from \(P(x_1, y_1) \) to the ellipse is \(\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right) \left(\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 \right) = \left(\frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 1 \right)^2 \).

Equation of Normal to the Ellipse

Let the equation of the ellipse is \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \).

- **Point form**: \(\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2 \)

- **Parametric form**: \(ax \sec \theta - by \csc \theta = a^2 - b^2 \)

- **Slope form**: \(y = mx - \frac{m(a^2 - b^2)}{\sqrt{a^2 + m^2b^2}} \)

Point of Contact and Condition of Tangency of Lines to the Ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)

<table>
<thead>
<tr>
<th>Equation of line</th>
<th>Point of contact</th>
<th>Condition of tangency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = mx + c)</td>
<td>(\left(\pm \frac{a^2m}{\sqrt{a^2m^2 + b^2}}, \frac{b^2}{\sqrt{a^2m^2 + b^2}} \right))</td>
<td>(c^2 = a^2m^2 + b^2)</td>
</tr>
<tr>
<td>(lx + my + n = 0)</td>
<td>(\left(\frac{a^2l}{n}, \frac{b^2m}{n} \right))</td>
<td>(n^2 = a^2l^2 + b^2m^2)</td>
</tr>
<tr>
<td>(x \cos \alpha + y \sin \alpha = p)</td>
<td>(\left(\frac{p^2 - b^2 \sin^2 \alpha}{p \cos \alpha}, \frac{b^2 \sin \alpha}{p} \right))</td>
<td>(p^2 = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha)</td>
</tr>
</tbody>
</table>
Director Circle of an Ellipse

The equation of director circle of an ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is \(x^2 + y^2 = a^2 + b^2 \).

HYPERBOLA

Let \(P(x, y) \) be any point, then standard equation of the hyperbola is given by \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \), where \(b^2 = a^2 \cdot (e^2 - 1) \).

Various Terms of Hyperbola

- The straight line \(AA' \) is called **transverse axis**. The points \(A(a, 0), A'(-a, 0) \) are called **vertices** and \(AA' = 2a \) is the length of the transverse axis.
- The straight line \(BB' \) is called conjugate axis and \(BB' = 2b \) is the length of conjugate axis with \(B(b, 0) \) and \(B'(-b, 0) \).
- \(C \) is the midpoint of \(AA' \) and \(BB' \), the co-ordinates of \(C \) are \((0, 0)\) and \(C \) is called centre of hyperbola.
- \(S(af, 0) \) and \(S'(af, 0) \) are the foci of the hyperbola.
- If \(P(x, y) \) lies on the hyperbola then \(PS \) and \(PS' \) are called focal distances.
- The chord \(LL' \) through either focus and perpendicular to the transverse axis is called latus rectum of hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) \((a > b)\). The co-ordinates of \(L \) and \(L' \) are \(\left(ae, \frac{b^2}{a} \right) \) and \(\left(ae, -\frac{b^2}{a} \right) \) respectively.
- Length of latus rectum is equal to \(\frac{2b^2}{a} \).

Asymptotes of Hyperbola

- If the length of \(\perp r \) drawn from a point on the hyperbola to a straight line tends to zero as the point moves to infinity, then the straight line is called asymptote. The equations of asymptotes to the hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is given by \(\frac{x}{a} \pm \frac{y}{b} = 0 \).

Conjugate Hyperbola

The hyperbola whose transverse and conjugate axes are respectively the conjugate and transverse axes of the given hyperbola is called conjugate hyperbola of the given hyperbola.

- If \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) be given hyperbola then its conjugate hyperbola is given by \(\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \).
- If \(e \) and \(e' \) be respective eccentricities of a hyperbola and its conjugate then \(\frac{1}{e^2} + \frac{1}{e'^2} = 1 \).
- The equation of asymptotes of a hyperbola and its conjugate are same.

Rectangular Hyperbola

A hyperbola whose asymptotes are at right angles to each other is called a rectangular hyperbola and its eccentricity is \(\sqrt{2} \).

- The equation of rectangular hyperbola is \(x^2 - y^2 = a^2 \).
- If the axes of hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) are rotated through an angle \(\pi/4 \) about the same origin, then equation of rectangular hyperbola reduces to \(xy = \frac{a^2}{2} \) or \(xy = c^2 \), where \(c^2 = \frac{a^2}{2} \).
- For rectangular hyperbola \(xy = c^2 \), the asymptotes are coordinates axis and joint equation of asymptotes in this case is \(xy = 0 \).
- The conjugate hyperbola of \(xy = c^2 \) is \(xy = -c^2 \).
- The parametric equation of rectangular hyperbola \(xy = c^2 \) is given by \(x = ct \) and \(y = c/t \).

Equation of Tangent at a Point to the Hyperbola

- Equation of tangent to the hyperbola, \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)
 at \((x_1, y_1)\) is \(\frac{x_1 x}{a^2} - \frac{y_1 y}{b^2} = 1 \).
- Equation of tangent to the hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)
 at \((a \sec \theta, b \tan \theta)\) is \(\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1 \).
• For rectangular hyperbola, \(xy = c^2 \), equation of tangent at \((x_1, y_1)\) is \(\frac{x}{x_1} + \frac{y}{y_1} = 1 \).

Pair of Tangents Drawn from a Point Outside the Hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)

From a point outside the hyperbola, pair of tangents can be drawn and their joint equation is given by \(SS_1 = T^2 \), where

\[
S = \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \quad S_1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1, \quad T = \frac{xx_1 - yy_1}{a^2 - b^2} = 1.
\]

Equation of Normal to the Hyperbola

- Equation of normal to \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) at a point \((x_1, y_1)\) is \(a^2(x - x_1) + b^2(y - y_1) = 0 \).

- At a point \(P(\sec \theta, b\tan \theta) \), the equation of normal to \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is \(ax \cos \theta + by \cot \theta = a^2 + b^2 \).

- Equation of normal to \(xy = c^2 \) at \((ct, c/t)\) is given by \(xt^3 - yt = c(t^4 - 1) \).

Director Circle of Hyperbola

The locus of the point of intersection of two perpendicular tangents to the hyperbola is called director circle of hyperbola. The equation of director circle of hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is given by \(x^2 + y^2 = a^2 + b^2 \).

PROBLEMS

Single Option Correct Type

1. A point \((12, 2)\) assumes the following three transformations successively:

 (1) Reflection about the line \(y = x \).
 (2) Translation through a distance 3 units along the positive direction of \(x \)-axis.
 (3) Rotation through an angle 45° about the origin in the anticlockwise direction.

 Then the final position of the point is

 (a) \(\left(\frac{7}{\sqrt{2}}, \frac{17}{\sqrt{2}} \right) \) \hspace{1cm} (b) \(\left(-\frac{7}{\sqrt{2}}, -\frac{17}{\sqrt{2}} \right) \)

 (c) \(-7\sqrt{2}, 17\sqrt{2} \) \hspace{1cm} (d) \(\left(-\frac{7}{\sqrt{2}}, \frac{17}{\sqrt{2}} \right) \)

2. If \(P_1, P_2, P_3 \) be lengths of perpendiculars from the points \((m^2, 2m), (m'n', m + m')\) and \((m^2, 2m')\) on the line \(x\cos \theta + y\sin \theta + \sin \theta \tan \theta = 0 \), then \(P_1, P_2, P_3 \) are in

 (a) G.P. \hspace{1cm} (b) A.P.
 (c) H.P. \hspace{1cm} (d) none of these

3. The angle of intersection of the curve \(y = (3 + x)^\cos x - \frac{2}{3} \sin x \) and the straight line \(x + 12y - 36 = 0 \) at a point \((\alpha, \beta)\), where \(\alpha \) and \(\beta \) are integers is 0, then the value of \(\tan \theta \) equals to

 (a) \(35/36 \) \hspace{1cm} (b) \(5/7 \) \hspace{1cm} (c) \(3/7 \) \hspace{1cm} (d) \(15/36 \)

4. The mirror image of the line \(2x - 3y - 5 = 0 \) in the line \(x + 2y + 3 = 0 \) is

 (a) \(x + 18y + 1 = 0 \) \hspace{1cm} (b) \(18x + y - 1 = 0 \)
 (c) \(18x - y - 1 = 0 \) \hspace{1cm} (d) none of these

5. When the origin is shifted to \((2, -3)\) the equation \(y^2 + 8x + 6y - 7 = 0 \) reduces to \(y^2 = 4ax \). The value of ‘a’ is equal to

 (a) \(4 \) \hspace{1cm} (b) \(2 \) \hspace{1cm} (c) \(-2 \) \hspace{1cm} (d) \(-4 \)

6. If the lines joining the origin to the common points of the curve \((x - 4)^2 + (y - 5)^2 = m^2 \) and the straight line \(5x + 4y - 40 = 0 \) are at right angle, then the value of \(m^2 \) equals

 (a) \(20 \) \hspace{1cm} (b) \(25 \) \hspace{1cm} (c) \(36 \) \hspace{1cm} (d) \(41 \)

7. The equation of the chord joining the points \((x_1, y_1)\) and \((x_2, y_2)\) on the rectangular hyperbola \(xy = c^2 \) is

 (a) \(\frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 1 \) \hspace{1cm} (b) \(\frac{x}{x_1^2 + x_2^2} + \frac{y}{y_1^2 + y_2^2} = 1 \)
 (c) \(\frac{x}{y_1 + y_2} + \frac{y}{x_1 + x_2} = 1 \) \hspace{1cm} (d) \(\frac{x}{y_1^2 + y_2^2} + \frac{y}{x_1^2 + x_2^2} = 1 \)

8. The length of latus rectum of the conic whose differential equation is \(xdy + ydx = 0 \) and passing through the point \((4, 9)\) is

 (a) \(6\sqrt{2} \) \hspace{1cm} (b) \(12\sqrt{2} \) \hspace{1cm} (c) \(12 \) \hspace{1cm} (d) \(72 \)

EXAM ALERT 2020

<table>
<thead>
<tr>
<th>Exam</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEE Main I</td>
<td>6th to 11th January</td>
</tr>
<tr>
<td>WB JEE</td>
<td>2nd February</td>
</tr>
<tr>
<td>JEE Main II</td>
<td>3rd to 9th April</td>
</tr>
<tr>
<td>JEE Advanced</td>
<td>17th May</td>
</tr>
</tbody>
</table>
9. The equation of hyperbola whose asymptotes are
$3x - 4y + 7 = 0$ and $4x + 3y + 1 = 0$ which passes through
the point $(0, 1)$ is $12x^2 - 7xy - 12y^2 + 31x + 17y + A = 0$
and the equation of conjugate hyperbola is $12x^2 - 7xy - 12y^2 + ax + by + c = 0$, then the sum of the digits of
$a + b + c$ is
(a) 15 (b) 12 (c) 67 (d) 13

10. If the angle between the asymptotes of hyperbola
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\pi/6$, then the eccentricity of conjugate
hyperbola is
(a) $4(2 + \sqrt{3})$ (b) $\sqrt{2} + \sqrt{6}$
(c) $4(2 - \sqrt{3})$ (d) $\sqrt{6} - \sqrt{2}$

More Than One Option(s) Correct Type

11. The equation $f(x, y) = 3x^2 + 10xy + 8y^2 + 14x + 22y + 7 = 0$ represent a hyperbola with/whose
(a) centre at $(1, -2)$
(b) one of the asymptote is $x + 2y + 3 = 0$
(c) angle between the asymptotes is $\tan^{-1}(2/11)$
(d) equation of conjugate hyperbola is
$3x^2 + 10xy + 8y^2 + 14x + 22y + 23 = 0$

12. If the circle $x^2 + y^2 = a^2$ intersect the hyperbola
$xy = c^4$ in four points $(x_i, y_i), i = 1, 2, 3, 4$, then
(a) $\sum_{i=1}^{4} x_i = 0$ (b) $\sum_{i=1}^{4} y_i = 0$
(c) $\prod_{i=1}^{4} x_i = c^4$ (d) $\prod_{i=1}^{4} y_i = c^4$

13. If the tangent to the ellipse $9x^2 + 16y^2 = 144$ at a
point $P(0)$ is normal to circle $x^2 + y^2 - 8x - 6y = 0$, then
0 equals
(a) $\pi/6$ (b) $\pi/2$
(c) 0 (d) $-\pi/6$

14. The chord of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, whose
middle point is $\left(\frac{1}{2}, \frac{2}{5}\right)$ meet the ellipse at $A(x', y')$ and
$B(x'', y'')$, then
(a) the equation of the chord is $4x + 5y = 4$
(b) $A(x', y') = \left(4, -\frac{12}{5}\right)$
(c) $B(x'', y'') = \left(-3, \frac{16}{5}\right)$
(d) length of chord AB is $\frac{7\sqrt{41}}{5}$

15. If the equation of directrix of the parabola
$x^2 - 8x + 4y + \lambda = 0$ is $y + 2 = 0$, then
(a) $\lambda = 28$
(b) equation of axis of parabola is $x = 4$
(c) focus of parabola is $(4, -4)$
(d) vertex of parabola is $(4, -3)$ and equation of tangent
at vertex is $y = 3 = 0$

16. Equations $(a - b)x + (b - c)y + (c - a) = 0$ and
$(a^3 - b^3)x + (b^3 - c^3)y + (c^3 - a^3) = 0$ will represent the
identical lines if
(a) $a + b + c = 0$ (b) $a = b$
(c) $b = c$ (d) $c = a$

SOLUTION SENDERS

Mathdoku (October)
- Mukul Pratap (Rajasthan)
- Manvith M (Karnataka)
- Arkaprava Dutta (West Bengal)
- Hirak Choudhury
- Debasis Das

Mathdoku (November)
- Aman Bandopadhyay (Madhya Pradesh)
- Devjit Chakravarty (West Bengal)
- Priyanka Karmakar (West Bengal)

Maths Musing (Set - 2011)
- Ritika

Maths Musing (Set - 202)
- Gouri Sankar Adhikary (West Bengal)

Samurai Sudoku (October)
- Subhranil Pal (West Bengal)
- Manvith M (Karnataka)
- Tanisha Kapoor (Himachal Pradesh)
- Varun Chaturvedi (Gujarat)
- Naman Mahajan (Himachal Pradesh)
- Praveen Bajrangi Thite (Maharashtra)

Samurai Sudoku (November)
- G.Dilip Raj (Hyderabad)
- Nikhil Raj (Dhanbad)
- Naman Mahajan (Himachal Pradesh)
Comprehension Type

Paragraph for Q. No. 17 to 20
The vertices of ΔABC lies on a rectangular hyperbola such that the orthocentre of triangle is $(3, 2)$ and the asymptotes of rectangular hyperbola are parallel to coordinate axis. The two perpendicular tangents of the hyperbola intersect at the point $(1, 1)$.

17. Equation of asymptotes of the hyperbola is
(a) $(x - 1)(y - 1) + \lambda = 0$
(b) $(x - 1)(y - 1) = 0$
(c) $xy + 1 = x - y$
(d) $(x + 1)(y + 1) = 0$

18. The equation of hyperbola is
(a) $(x - 1)(y - 1) = 2$ (b) $y(x - 1) = x + 1$
(c) $x(y - 1) = y + 1$ (d) all of these

19. The number of real tangent that can be drawn from point of intersection of at which they are at right angle.
(a) 0 (b) 2 (c) 3 (d) 4

20. The equation of conjugate hyperbola is
(a) $(x - 1)(y - 1) = 4$ (b) $(x - 1)(y - 1) + 1 = 0$
(c) $(x - 1)(y - 1) = -2$ (d) none of these

Numerical Value Type

21. The sum of distances of any point on the ellipse $5x^2 + 9y^2 = 45$ from its directrix is d, then sum of the divisors of d is

22. Let the normals are drawn from (a, b) to the hyperbola $xy = 4$ and (x_i, y_i), $i = 1, 2, 3, 4$ be the feet of the co-normal points. If the algebraic sum of the perpendicular distances drawn from (x_i, y_i), $i = 1, 2, 3, 4$ onto a variable line vanishes then the variable line passing through the point $\left(\frac{a}{\lambda}, \frac{b}{\lambda}\right)$, then number of even prime factors of λ is

23. Tangents are drawn to the ellipse $\frac{x^2}{9} + \frac{y^2}{8} = 1$ at the ends of latus rectum. If the area of quadrilateral be α sq. units, then the value of α must be

24. The equation of the parabola whose focus is origin and tangent at the vertex is $x - y + 2 = 0$ is of the form $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$, then the value of $|a| + |f| + |c|$ must be

25. The equation of a line which is parallel to the line common to the pair of lines given by $6x^2 - xy - 12y^2 = 0$ and $15x^2 + 14xy - 8y^2 = 0$ and at a distance of 7 units from it is $ax + by + c = 0$, then $|c|$ must be

26. If e_1 and e_2 are the eccentricities of hyperbolas $xy = c^2$ and $x^2 - y^2 = b^2$, then $e_1 \times e_2$ must be

SOLUTIONS

1. (b) : Given point say, $A(12, 2)$ and let the final position is (x', y').

 Image of point A about the line $y = x$ is $B(2, 12)$.
 Due to translation through 3 units along the positive direction of x-axis, the new point is $C(5, 12)$.

\[OC = OC' = \sqrt{5^2 + 12^2} = 13\]

\[
\begin{align*}
\sin \alpha &= \frac{12}{13}, \\
\cos \alpha &= \frac{5}{13}
\end{align*}
\]

\[
\begin{align*}
\alpha' &= OC' \cos(45^\circ + \alpha), \\
y' &= OC' \sin(45^\circ + \alpha)
\end{align*}
\]

\[
\begin{align*}
(x', y') &= (13(\cos 45^\circ \cos \alpha - \sin 45^\circ \sin \alpha), \\
&\hspace{1cm}13(\sin 45^\circ \cos \alpha + \cos 45^\circ \sin \alpha))
\end{align*}
\]

\[
\begin{align*}
&= (13\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \\
&\hspace{1cm}13\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right))
\end{align*}
\]

\[
\begin{align*}
&= \left(\frac{7}{\sqrt{2}}, \frac{17}{\sqrt{2}}\right)
\end{align*}
\]

2. (a) : Given, $x \cos \theta + y \sin \theta + \sin \theta \tan \theta = 0$ and the points are $(m^2, 2m)$, $(mm', m + m')$ and $(m'^2, 2m')$.

\[
P_1 = \left|\frac{m^2 \cos^2 \theta + 2m \sin \theta \cos \theta + \sin^2 \theta}{\cos \theta}\right|
\]

\[
= \left|m^2 \cos^2 \theta + 2m \sin \theta \cos \theta + \sin^2 \theta \right| = \left(m \cos \theta + \sin \theta \right)^2
\]

\[
P_2 = \left|\frac{mm' \cos \theta + (m + m') \sin \theta + \sin^2 \theta}{\cos \theta}\right|
\]

\[
= \left|m m' \cos \theta + (m + m') \sin \theta \cos \theta + \sin^2 \theta \right| = \left|m \cos \theta + \sin \theta \right| \left|m' \cos \theta + \sin \theta \right|
\]

\[
= \left|m \cos \theta + \sin \theta \right| \left|m' \cos \theta + \sin \theta \right|
\]
\[P_3 = \left| m^2 \cos \theta + 2m' \sin \theta + \frac{\sin^2 \theta}{\cos \theta} \right| \]
\[= \frac{|m^2 \cos^2 \theta + 2m' \sin \theta \cos \theta + \sin^2 \theta|}{|\cos \theta|} \]
\[= \frac{(m' \cos \theta + \sin \theta)^2}{|\cos \theta|} \]
\[\therefore P_1P_3 = P_2 \Rightarrow P_1, P_2, P_3 \text{ are in G.P.} \]

3. (c) : As \(y = (3+x)^{\cos x} \), \(\frac{2}{3} \sin x \) \(\text{...(i)} \)
and \(12y + x - 36 = 0 \) \(\text{...(ii)} \)
The point of intersection of curve and line is \((0, 3) \)
= \((\alpha, \beta)\).

Now, \(y = (3+x)^{\cos x} \), \(\frac{2}{3} \sin x \)
\[\Rightarrow y' = (3+x)^{\cos x} \left\{ \frac{\cos x}{3+x} - \sin x \log(3+x) \right\} \cdot \frac{2}{3} \cos x \]
\[\therefore y'(0) = 3 \left(\frac{1}{3} \right) - \frac{2}{3} = \frac{1}{3} \text{ (say } m_1) \]
and \(x + 12y - 36 = 0 \) gives \(y'(0) = \frac{1}{12} \text{ (say } m_2) \)

Now, \(\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} \)
\[= \frac{\frac{1}{3} - \frac{1}{12}}{1 + \frac{1}{3}} \quad \frac{1}{3} \quad \frac{3}{36} = \frac{15}{36} \quad \frac{5}{7} \]

4. (b) : Let \(x = t \) be any point on \(2x - 3y - 5 = 0 \).
Then, \(y = \frac{2t - 5}{3} \)
Let \((x, y)\) be the image of the point \(\left(t, \frac{2t - 5}{3} \right) \) in the line \(x + 2y + 3 = 0 \).
\[\frac{x - t}{1} = \frac{y - \frac{2t - 5}{3}}{2} = \frac{-2 \left(t + 2 \left(\frac{2t - 5}{3} \right) + 3 \right)}{5} \]
\[\Rightarrow \frac{x - t}{1} = \frac{3y - (2t - 5)}{6} = \frac{-2 \left(t + \frac{5y + 7}{6} \right)}{15} \]
\[\Rightarrow 15(x - t) = -14t + 2 \text{ and } 5(3y + 5 - 2t) = -4(7t - 1) \]
\[\Rightarrow 15x - 2 = t \text{ and } \frac{(5y + 7)}{6} = t \]
\[\Rightarrow 15x - 2 = \frac{5y + 7}{6} \Rightarrow 18x + y - 1 = 0 \]

5. (c) : As origin is shifted to \((2, -3)\)
\(x \rightarrow x + 2, y \rightarrow y - 3 \) and the equation is transformed to \((y - 3)^2 + 8(x + 2) + 6(y - 3) - 7 = 0 \)
\(\Rightarrow y^2 + 8x + 9 - 6y + 16 + 6y - 18 - 7 = 0 \)
\(\Rightarrow y^2 = -8x = 4(-2)x = 4(a)x \)
\(\therefore a = -2 \)

6. (d) : We have, \((x - 4)^2 + (y - 5)^2 = m^2 \) \(\text{...(i)} \)
and \(5x + 4y - 40 = 0 \) or \(\frac{5x + 4y}{40} = 1 \) \(\text{...(ii)} \)
From (i), we have
\(x^2 + y^2 - 8x - 10y + (41 - m^2) = 0 \) \(\text{...(iii)} \)
Homogenizing (i) by the line (ii), we have
\[x^2 + y^2 - (8x + 10y) \left(\frac{5x + 4y}{40} \right) + (41 - m^2) \left(\frac{5x + 4y}{40} \right)^2 = 0 \]
The above equation will represent the pair of perpendicular lines if coefficient of \(x^2 + \) coefficient of \(y^2 = 0 \)
\[\Rightarrow \left(1 - \frac{41 - m^2}{64} \right) + \left(1 - \frac{41 - m^2}{100} \right) = 0 \]
\[\Rightarrow 100(41 - m^2) + 64(41 - m^2) = 0 \]
\[\Rightarrow 164(41 - m^2) = 0 \Rightarrow m^2 = 41 \]

7. (a) : We know that the chord of \(xy = c^2 \) whose midpoint is \((h, k) \) is \(\frac{x}{h} + \frac{y}{k} = 2 \) \(\text{...(i)} \)
Also, \((h, k) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \)
Now, by (i), we have
\[\frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 2 \Rightarrow \frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 1 \]
\[\therefore \text{Conic is a rectangular hyperbola.} \]
\(\therefore \) Eccentricity \((e) = \sqrt{2} \) and length of latus rectum \(= (2b^2/a) = 2a \) \(\therefore a = b \)
Now, the transverse axis is along the line \(y = x \) \(\text{...(ii)} \)
Solving (i) and (ii), we have
\(x^2 = 36 \)
\(\Rightarrow x = \pm 6 \)
Then, \(y = \pm 6 \)
\(\therefore \text{Vertices are } A(6, 6) \text{ and } A'(-6, -6) \)
\(\therefore \text{Length of latus rectum} \)
\[= AA' = 2a = \sqrt{144 \times 2} = 12\sqrt{2} \]
9. (d) The equations of asymptotes are
\[3x - 4y + 7 = 0 \text{ and } 4x + 3y + 1 = 0 \]
The combined equation of asymptotes is
\[(3x - 4y + 7)(4x + 3y + 1) = 0 \]
\[12x^2 - 7xy - 12y^2 + 31x + 17y + 7 = 0 \] ... (i)
Let the equation of hyperbola be
\[12x^2 - 7xy - 12y^2 + 31x + 17y + \lambda = 0 \] ... (ii)
Since, (i) passes through \((0, 1)\) \[\therefore \lambda = -5 \]
\[\text{Equation of hyperbola is} \]
\[12x^2 - 7xy - 12y^2 + 31x + 17y - 5 = 0 \]
The equation of conjugate hyperbola = 2(combined equation of asymptotes) - equation of hyperbola
\[\Rightarrow \text{Equation of conjugate hyperbola} \]
\[= 2(12x^2 - 7xy - 12y^2 + 31x + 17y + 7) \]
\[- (12x^2 - 7xy - 12y^2 + 31x + 17y - 5) = 0 \]
\[\Rightarrow 12x^2 - 7xy - 12y^2 + 31x + 17y + 19 = 0 \] ... (iii)
Comparing (iii) with \[12x^2 - 7xy - 12y^2 + ax + by + c = 0, \]
we have \(a = 31, b = 17, c = 19\)
10. (b) Let \(e\) and \(e'\) be the eccentricities of hyperbola and its conjugate.
Then \[\frac{1}{e^2} + \frac{1}{e'^2} = 1 \]
\[\Rightarrow \frac{1}{e^2} = 1 - \frac{1}{e'^2} \] ... (i)
Since, we know that the angle between the asymptotes
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] is given by \[2\tan^{-1}(b/a) \]
\[\therefore 2\tan^{-1}(b/a) = \pi/6 \]
\[\Rightarrow \frac{b}{a} = \tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3} \]
\[\Rightarrow \frac{b^2}{a^2} = \frac{(2 - \sqrt{3})^2}{1} = 7 - 4\sqrt{3} \]
\[\Rightarrow \frac{b^2 + a^2}{a^2} = \frac{8 - 4\sqrt{3}}{1} = e^2 \]
\[\Rightarrow \frac{1}{e^2} = \frac{8 + 4\sqrt{3}}{16} \]
\[\therefore \frac{1}{e'^2} = \frac{8 + 4\sqrt{3}}{16} \]
\[\Rightarrow e'^2 = \frac{2(4 + 2\sqrt{3})}{1} = (\sqrt{2})^2(1 + \sqrt{3})^2 \]
\[\Rightarrow e' = \sqrt{2 + \sqrt{6}} \]
11. (a, b, c, d) Let equation of asymptotes of hyperbola
\[3x^2 + 10xy + 8y^2 + 14x + 22y + 7 = 0 \]
is given by
\[3x^2 + 10xy + 8y^2 + 14x + 22y + \lambda = 0 \] ... (i)
Now, (i) is combined equation of asymptotes i.e., (i)
represents pair of straight line.
Then, \(\Delta = 0\) i.e., \(abc + 2fgh - af^2 - bg^2 - ch^2 = 0\)
\[\Rightarrow 3 \cdot 8 \cdot \lambda + 2(7)(11)(5) - 3(121) - 8(49) - 25\lambda = 0 \]
\[\Rightarrow \lambda = 15 \]
\[\therefore \text{Combined equation of asymptotes is} \]
\[3x^2 + (10y + 14)x + (8y^2 + 22y + 15) = 0 \]
\[\Rightarrow x = \frac{-(10y + 14) \pm \sqrt{4y^2 + 16y + 16}}{6} \]
\[\Rightarrow 3x = -(5y + 7) \pm (y + 2) \]
\[\therefore \text{Equation of asymptotes are } 3x + 4y + 5 = 0 \]
\[\text{and } x + 2y + 3 = 0 \] (option (b))
Now, the point of intersection of these asymptotes is the center of hyperbola i.e., \(x = 1, y = -2\) (option (a))
\[\therefore \text{Centre is } (1, -2) \]
Also, equation of conjugate hyperbola = 2(combined equation of asymptotes) - (equation of given hyperbola)
\[\therefore \text{Conjugate hyperbola is} \]
\[2(3x^2 + 10xy + 8y^2 + 14x + 22y + 15) - (3x^2 + 10xy + 8y^2 + 14x + 22y + 7) = 0 \]
\[\Rightarrow 3x^2 + 10xy + 8y^2 + 14x + 22y + 23 = 0 \]
Again, angle between the asymptotes \((0, 0)\), is given by
\[\theta = \tan^{-1}\left(\frac{2\sqrt{h^2 - ab}}{a + b}\right) = \tan^{-1}\left(\frac{2}{11}\right) \]
12. (a, b, c, d)
13. (b, c) Here, equation of ellipse is
\[\frac{x^2}{16} + \frac{y^2}{9} = 1 \]
Now, equation of tangent at \(P(0) = P(4\cos\theta, 3\sin\theta)\) is given by
\[3x\cos\theta + 4y\sin\theta = 12 \] ... (i)
Now, (i) passes through the centre \((4, 3)\).

“\text{I found this in the hall. Call Accounting and find out if they’ve misplaced a decimal point again.}”
14. (a, b, c, d): Equation of chord of ellipse with \(\left(\frac{1}{2}, \frac{2}{5} \right) \)

as its mid-point is \(\frac{1}{2} + \frac{4}{16} = \frac{1}{2} + \frac{2}{5} \) \(\Rightarrow \) 4x + 5y = 4

Now, solving (i) and ellipse, we get

\[16x^2 + 16(1-x)^2 = 400 \]

\(\Rightarrow \) \(x^2 - x - 12 = 0 \) \(\therefore \) \(x' \) and \(x'' = 4, -3 \)

When, \(x' = 4 \), then \(y' = \frac{-12}{5} \)

and when \(x'' = -3 \), then \(y'' = \frac{16}{5} \)

Again, length of chord \(AB = \sqrt{7^2 + \left(\frac{28}{5} \right)^2} = \frac{7\sqrt{41}}{5} \)

15. (a, b, c, d): We have, \(x^2 - 8x + 4y + \lambda = 0 \)

\(\Rightarrow \) \((x-4)^2 = -4 \left(y + \frac{\lambda - 16}{4} \right) \) \(\therefore \) \((x - 4)^2 = -4(y + 3) \)

\(\therefore \) Equation of directrix is \(Y = 1 \)

\(i.e., \) \(y + \frac{\lambda - 16}{4} = 1 \) \(\Rightarrow \) \(y + 2 = 3 + \frac{\lambda - 16}{4} \) \(\Rightarrow \) \(\lambda = 28 \)

\(\therefore \) Equation (i) reduces to \((x - 4)^2 = -4(y + 3) \)

Thus, vertex \((4, -3) \) and focus, \(X = 0 \) and \(Y = -1 \) i.e., \((4, -4) \).

16. (a, b, c, d): The given two lines will be identical if there exist a real value \(k \) such that

\(a^2 - b^2 = k(a - b) \), \(b^2 - c^2 = k(b - c) \) and \(c^2 - a^2 = k(c - a) \)

\(\Rightarrow \) \(a = b \) or \(b = c \) or \(c = a \)

Again, \(a^2 + ab + b^2 = c^2 \) \(\Rightarrow \) \((a + c)(a - c) = -b(a - c) \)

\(\Rightarrow \) \(a + b = 0 \) or \(a + c = 0 \) or \(a = c \)

17. (b): Since, the point of intersection of perpendicular tangents is \((1, 1) \).

\(\therefore \) \((x - 1) \) is centre of the rectangular hyperbola.

\(\therefore \) Equation of asymptotes are \((x - 1) = 0 \) and \((y - 1) = 0 \).

So the joint equation of asymptotes is \((x - 1)(y - 1) = 0 \).

18. (d): We know that joint equation of asymptotes and hyperbola differ by a constant only.

Let equation of hyperbola is \((x - 1)(y - 1) + \lambda = 0 \)

Since it passes through the orthocentre \((3, 2) \)

\(\therefore \) \(\lambda + 2 = 0 \)

\(\therefore \) Equation of hyperbola is \((x - 1)(y - 1) = 2 \).

19. (b): \(\therefore \) We know that hyperbola conjugate to \(xy = c^2 \) is \(xy = -c^2 \).

\(\therefore \) Equation of hyperbola conjugate to \((x - 1)(y - 1) = 2 \) is \((x - 1)(y - 1) = -2 \).

21. (13): The given equation of ellipse is \(5x^2 + 9y^2 = 45 \)

\(\Rightarrow \) \(x^2 + \frac{y^2}{5} = 1 \) \(\Rightarrow a = 3, b = \sqrt{5}, e = \frac{\sqrt{5}}{3} \)

\(\therefore \) Sum of distances of \(P(x, y) \) from its directrices

\(= PM + PM' = MM' \)

\(= ZZ' = 2CZ \)

\(\Rightarrow \) \(2a = 9 = d \)

\(\therefore \) Sum of divisors of \(d \) is \(\frac{3^3 - 1}{3 - 1} = 13 \)

22. (1): \(\therefore \) Given, \(xy = 4 = 2^2 \)

On comparing with \(xy = c^2 \), we get \(c = 2 \)

Let \(\left(2t, \frac{2}{t} \right) \) be any point on the hyperbola \(xy = 4 \)

Now equation of normal to the hyperbola \(xy = c^2 \) at

\(\left(ct, \frac{c}{t} \right) \) is \(xt^3 - yt = 2(t^4 - 1) \)

\(\Rightarrow \) \(xt^3 - yt = 2t^4 - 2 \)

\(\Rightarrow \) \(2t^4 - xt^3 + yt - 2 = 0 \)

\(\therefore \) \(2t^4 - at^3 + bt - 2 = 0 \)

If foot of the co-normal points are \((t_1, t_2), (t_3, t_4) \), then \((t_1 + t_2 + t_3 + t_4) = \frac{a}{2} \)

\(\Rightarrow \) \(x_1 + x_2 + x_3 + x_4 = \frac{a}{2} \)

and \(\left(\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + \frac{1}{t_4} \right) = \frac{b}{2} \) or \(y_1 + y_2 + y_3 + y_4 = \frac{b}{2} \)

Let the variable line be \(lx + my + n = 0 \) \(\therefore \) \((x_1, y_1), (x_2, y_2), (x_3, y_3) \) and \((x_4, y_4) \) to equation (ii) is vanishes.

\(\Rightarrow \) \(l(x_1 + x_2 + x_3 + x_4) + m(y_1 + y_2 + y_3 + y_4) + 4n = 0 \)
Precision Revision for JEE is Here!

Now, create your own pre-JEE. Just like pre-boards. With previous years' papers and model test papers for JEE Advanced, complete with detailed solutions, identify your areas of weakness and work on addressing them in time. Multiple test papers ensure you do your dry runs again and again, till such time you feel confident of taking on the best. For it will indeed be the best you compete with in JEE Advanced. So what are you waiting for? Order MTG’s JEE Advanced Explorer today.

Available at all leading book shops throughout India. To buy online visit www.mtg.in.

For more information or for help in placing your order, call 0124-6601200 or email: info@mtg.in.

FEATURES:
- 19 years solved papers with detailed solutions
- 10 Model Test Papers
- Chapter-wise indexing of questions

₹625
\[
\Rightarrow \left(\frac{x_1 + x_2 + x_3 + x_4}{4} \right) + m \left(\frac{y_1 + y_2 + y_3 + y_4}{4} \right) + n = 0
\]
\[
\Rightarrow \left(\frac{a}{8} \right) + m \left(\frac{b}{8} \right) + n = 0
\]

\[\Rightarrow \text{Equation (ii) passing through } \left(\frac{a}{8}, \frac{b}{8} \right)\]

\[\therefore \lambda = 8 = 2^3 \Rightarrow 2 \text{ is only the even prime factor of } \lambda \text{ which repeated thrice.}\]

\[\therefore \text{Number of prime factor of } \lambda \text{ which are even is only } 1.\]

\[23. (54): \]

The given equation of ellipse is \(\frac{x^2}{9} + \frac{y^2}{8} = 1\)

\[\Rightarrow a^2 = 9, \quad b^2 = 8 \quad \Rightarrow e = \frac{1}{3} \quad \text{(eccentricity)}\]

Now, \(L \left(\frac{b^2}{a} \right) = \left(\frac{1}{3}, \frac{8}{3} \right)\)

\[\because \text{Equation of tangent at } \left(\frac{x}{9}, \frac{y}{3} \right) \text{ is } \frac{x}{9} + \frac{y}{3} = 1 \text{ which meets } x \text{ axis and } y \text{ axis at } R(9, 0) \text{ and } R'(0, 3).\]

\[\therefore CR = 9 \quad \text{and} \quad CR' = 3\]

Now, area of \(\Delta CRR' = \frac{1}{2} \cdot CR \times CR' = \frac{1}{2} \times 9 \times 3 = \frac{27}{2}\)

Area of quadrilateral \(PP''RR' = 4 \times \text{Area of } \Delta CRR'\)

\[= 4 \times \frac{27}{2} = 54 \text{ sq.units} \quad \therefore \alpha = 54\]

\[24. (24): \text{Given, focus of parabola is } (0, 0) \text{ and equation of tangent at vertex is } x - y + 2 = 0. \quad \ldots(i)\]

Now, axis of parabola is the line through focus and perpendicular to the directrix but focus and vertex lies on the same line.

\[\therefore \text{Equation of axis of parabola is } x + y = 0 \quad \ldots(ii)\]

The point of intersection of axis and tangent line is obtained by solving (i) and (ii), which is the vertex = (-1, 1)

Let equation of directrix is \(x - y + \lambda = 0 \quad \ldots(iii)\)

Since, (iii) passes through (-2, 2) so \(\lambda = 4.\)

\[\therefore \text{(iii) becomes } x - y + 4 = 0\]

Now, using the definition of parabola, we have

\[x^2 + y^2 = \left(\frac{x - y + 4}{\sqrt{2}} \right)^2 \quad \Rightarrow \quad 2(x^2 + y^2) = (x - y + 4)^2\]

\[\Rightarrow \quad x^2 + y^2 + 2xy - 8x + 8y - 16 = 0\]

\[= ax^2 + by^2 + 2hxy + 2gx + 2fy + c\]

\[\Rightarrow \quad |a| + |f| + |c| = |a| + |f| + |c| = 1 + |4| + |16| = 24\]

25. (35): Given, \(6x^2 - xy - 12y^2 = 0\)

\[\Rightarrow \quad (3x + 4y)(2x - 3y) = 0 \quad \ldots(i)\]

Also, \(15x^2 + 14xy - 2y^2 = 0\)

\[\Rightarrow \quad (3x + 4y)(5x - 2y) = 0 \quad \ldots(ii)\]

\[\therefore \text{Line common to (i) and (ii) is } 3x + 4y = 0 \quad \ldots(iii)\]

Now, any line parallel to (iii) is \(3x + 4y + \lambda = 0\) which is at a distance of 7 units from (iii). \(\therefore \lambda = \pm 35\)

Hence, \(|c| = 35\)

26. (2): Since, both \(xy = c^2\) and \(x^2 - y^2 = b^2\) are rectangular hyperbola.

\[\therefore \quad e_1 = \sqrt{2} = e_2 \quad \Rightarrow \quad e_1 \times e_2 = 2\]

Your favourite MTG Books/Magazines available in PUNJAB at

Sunder Book Depository - Amritsar Ph: 0165-2244491, 2224884, 5059033, 9814074241
Maitreya Book Depository - Amritsar Ph: 08003000886, 9646537157, 9888733846
Navchayan Book Depository - Barnala Ph: 9770220992, 9417906850, 9770901358, 9887472683, 9770096092
Meha Book Centre - Bathinda Ph: 9876472804, 9864519047
Adarsh Book Depository - Bathinda Ph: 9797621232, 9417924691, 9814485520
Aggarwal Book Depository - Bathinda Ph: 9188-2336014, 9417818439
S M Enterprises - Bathinda Ph: 9188-2234050, 75088622891, 9417363662
Hans Raj Dogra & Sons - Gujranwala Ph: 9876232357
Gupta Technical & Computer Book Shop - Jalandhar Ph: 0181-2200097, 9951500196, 9798910981
Chopra Book Store - Jalandhar Ph: 9872222345
City Book Shop - Jalandhar Ph: 0181-2674800, 9417476573
Deepak Book Distributors - Jalandhar Ph: 0181-2222131, 8520389113, 9872383181
Kiran Book Shop - Jalandhar Ph: 9876231526, 9797222385, 9797377680
Anil Book Depository - Ludhiana Ph: 0161-6022900, 5022260, 9816532426, 9816507071
Bharat Book - Ludhiana Ph: 0161-2747714, 9812577121

Chand Book Depository - Ludhiana Ph: 0161-6900900, 2495427, 9651608070
Gupta Book World - Ludhiana Ph: 0161-2446870, 2480097, 3429526, 9463075685
Khranna Book Depository - Bathinda Ph: 01765-220095, 9814309193, 9814309320
Goyal & Sons Book Depository - Bathinda Ph: 01765-2223643, 2205045, 9814096999
Adarsh Book Depository - Bathinda Ph: 0175-2311430, 9814347613, 9816561737
Peploe Book Depository - Bathinda Ph: 0175-2214693, 9814041623, 9914003505

Visit “MTG IN YOUR CITY” on www.mtg.in to locate nearest book seller OR write to info@mtg.in OR call 0124-6601200 for further assistance.
1. In a triangle ABC, with $A = \frac{\pi}{7}, B = \frac{2\pi}{7}, C = \frac{4\pi}{7}$, then $a^2 + b^2 + c^2$ is (R = circumradius of $\triangle ABC$)
(a) $4R^2$
(b) $6R^2$
(c) $7R^2$
(d) $8R^2$

2. Range of $f(x) = \sin^6x + \cos^6x$ is
(a) $[0, 1]$
(b) $\left[0, \sqrt{2}\right]$
(c) $\left[\frac{1}{2}, \frac{3}{4}\right]$
(d) $\left[\frac{1}{4}, 1\right]$

3. Let $f(x) = x^2 + 5x + 6$, then the number of real roots of $(f(x))^2 + 5f(x) + 6 = 0$ is
(a) 1
(b) 2
(c) 3
(d) 0

4. Let $f(x)$ be a function such that $f(x) = x - \lfloor x \rfloor$, where $\lfloor x \rfloor$ is the greatest integer less than or equal to x. Then the number of solutions of the equation $f(x) + f\left(\frac{1}{x}\right) = 1$ is
(a) 0
(b) 1
(c) 2
(d) infinite

5. If z_1, z_2, z_3 and z_4 be the consecutive vertices of a square, then $z_1^2 + z_2^2 + z_3^2 + z_4^2$ equals
(a) $z_1z_2 + z_2z_3 + z_3z_4 + z_4z_1$
(b) $z_1z_2 + z_2z_3 + z_3z_4 + z_2z_4 + z_4z_3 + z_3z_4$
(c) 0
(d) none of these

6. If $|z - 3i| = 3$, (where $i = \sqrt{-1}$) and arg $z \in (0, \pi/2)$, then cot (arg (z)) - 6/z is equal to
(a) 0
(b) -i
(c) i
(d) none of these

7. If the arithmetic mean of two positive numbers a and $b (a > b)$ is twice their G.M., then $a : b$ is
(a) $6 + \sqrt{7} : 6 - \sqrt{7}$
(b) $2 + \sqrt{3} : 2 - \sqrt{3}$
(c) $5 + \sqrt{5} : 5 - \sqrt{6}$
(d) none of these

8. For each positive integer n, let
\[s_n = \frac{3}{1 \cdot 2 \cdot 4} + \frac{4}{2 \cdot 3 \cdot 5} + \frac{5}{3 \cdot 4 \cdot 6} + \ldots + \frac{n+2}{n(n+1)(n+3)} \]
Then $\lim_{n \to \infty} s_n$ equals
(a) $\frac{29}{6}$
(b) $\frac{29}{36}$
(c) 0
(d) $\frac{29}{18}$

9. $\lim_{x \to \infty} \sqrt{x\left(\sqrt{(x+1)^2} - \sqrt{(x-1)^2}\right)} =
(a) \frac{1}{3}$
(b) $\frac{1}{3}$
(c) 1
(d) $\frac{4}{3}$

10. The value of $\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}\right)$ is
(a) 0
(b) 1/2
(c) 1/4
(d) 1

11. The range of $\sin^{-1}x - \cos^{-1}x$ is
(a) $\left[\frac{-3\pi}{2}, \frac{\pi}{2}\right]$
(b) $\left[\frac{-5\pi}{2}, \frac{\pi}{3}\right]$
(c) $\left[\frac{-3\pi}{2}, \pi\right]$
(d) $\left[\frac{0}{2}, \frac{\pi}{2}\right]$

12. A real valued function f satisfies $f(10 + x) = f(10 - x)$ and $f(20 - x) = -f(20 + x)$, for all $x \in R$. Which of the following statements is true?
(a) f is an even function
(b) f is an odd function
(c) f is a constant function
(d) f is a non-periodic function

13. Number of pairs of positive integers (p, q) whose L.C.M. (Least common multiple) is 8100, is "K". Find the number of ways of expressing K as a product of two coprime numbers.
(a) 2
(b) 6
(c) 4
(d) 8

* Alok Kumar, a B.Tech from IIT Kanpur and INMO 4th ranker of his time, has been training IIT and Olympiad aspirants for close to two decades now. His students have bagged AIR 1 in IIT JEE and also won medals for the country at IMO. He has also taught at Maths Olympiad programme at Cornell University, USA and UT, Dallas. He has been regularly proposing problems in international Mathematics journals.
14. If \(A = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \), then \(A^8 \) equals
(a) \(4B \)
(b) \(128B \)
(c) \(-128B \)
(d) \(-64B \)

15. In \(\Delta ABC \), if \(A - B = 120^\circ \) and \(R = 8r \), then the value of \(\frac{1 + \cos C}{1 - \cos C} \) equals (All symbols used have their usual meaning in a triangle)
(a) 12
(b) 15
(c) 21
(d) 31

16. The domain of the derivative of the function
\[f(x) = \begin{cases} \tan^{-1} x, & \text{if } |x| \leq 1 \\ \frac{1}{2}(|x| - 1), & \text{if } |x| > 1 \end{cases} \]
is
(a) \(R - \{0\} \)
(b) \(R - \{1\} \)
(c) \(R - \{-1\} \)
(d) \(R - \{-1, 1\} \)

17. In \(\Delta ABC \) orthocentre is \((6,10)\) circumcentre is \((2,3)\) and equation of side \(BC \) is \(2x + y = 17\). Then the radius of the circumcircle of \(\Delta ABC \) is
(a) 4
(b) 5
(c) 2
(d) 3

18. An equilateral triangle has its centroid at origin and one side is \(x + y = 1 \). The equations of the other sides are
(a) \(y + 1 = (2 \pm \sqrt{3})x + 1 \)
(b) \(y + 1 = (2 \pm \sqrt{3})x + 1 \)
(c) \(y + 1 = (3 \pm \sqrt{3})x - 1 \)
(d) \(y + 1 = (3 \pm \sqrt{3})x - 1 \)

19. From origin, chords are drawn to the circle \(x^2 + y^2 = 2y = 0 \). The locus of the middle points of these chords is
(a) \(x^2 + y^2 - y = 0 \)
(b) \(x^2 + y^2 - x = 0 \)
(c) \(x^2 + y^2 - 2x - 2y = 0 \)
(d) \(x^2 + y^2 - 2x - 2y = 0 \)

20. The locus of the mid point of the chord of the circle \(x^2 + y^2 - 2x - 2y = 2 \) which makes an angle of \(120^\circ \) at the centre is
(a) \(x^2 + y^2 = 2x + 2y + 1 = 0 \)
(b) \(x^2 + y^2 = 2x + 2y + 1 = 0 \)
(c) \(x^2 + y^2 = 2x - 2y + 1 = 0 \)
(d) \(x^2 + y^2 = 2x - 2y + 1 = 0 \)

Numerical Value Type

21. For non negative integers \(m, n \) define a function as follows
\[f(m,n) = \begin{cases} n+1, & \text{if } m = 0 \\ f(m-1,1), & \text{if } m \neq 0, n = 0 \\ f(m-1, f(m,n-1)), & \text{if } m \neq 0, n \neq 0 \end{cases} \]
Then the value of \(f(1, 1) \) is

22. If \(\log_{0.5} \sin x = 1 - \log_{0.5} \cos x \), then the number of values of \(x \in [-2\pi, 2\pi] \) is

23. If the function \(f(x) = \frac{x-1}{c-x^2+1} \) does not take any value in the interval \([-1, -\frac{1}{3}] \), then number of positive integral values of \(c \) is

24. Let \(\alpha \) and \(\beta \) be two roots of the equation \(x^2 + 2x + 2 = 0 \), then absolute value of \(\alpha^{15} + \beta^{15} \) equals

25. The number of solutions of the equation \(\sin^5 x - \cos^5 x = \frac{1}{\cos x} - \frac{1}{\sin x} \) is

SOLUTIONS

1. (c) \(: a^2 + b^2 + c^2 = 4R^2(\sin^2 A + \sin^2 B + \sin^2 C) = 2R^2(1 - \cos 2A + 1 - \cos 2B + 1 - \cos 2C) = 2R^2\left[3 - \left(\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{8\pi}{7}\right)\right] = 2R^2\left[3 - \left(\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}\right)\right] = 2R^2\left[3 - \left(\sin \frac{\pi}{7} - \sin \frac{2\pi}{7} + \sin \frac{5\pi}{7} - \sin \frac{3\pi}{7}\right)\right] = 2R^2\left[3 - \frac{1}{2}\right] = 7R^2

2. (d) \(: f(x) = (\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cos^2 x (\sin^2 x + \cos^2 x) = 1 - \frac{3}{4}\sin^2 2x \)
Range of \(\sin^2 2x \) is \([0, 1]\).
\[\therefore \text{ Range of } f(x) = \left[\frac{1}{4}, 1\right]. \]

3. (d) \(: \text{Use } f(x) = x \text{ has non real roots } \implies f(f(x)) = x \text{ also has non-real roots} \)

4. (d) \(: \text{Given, } f(x) = x - [x], x \in R - \{0\} \)
Now, \(f(x) + f\left(\frac{1}{x}\right) = 1 \)
\[\therefore x - [x] + \frac{1}{x} - \left[\frac{1}{x}\right] = 1 \Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1 \]
BEST TOOLS FOR SUCCESS IN JEE Main

READ
JEE MAIN EXPLORER
OFFLINE & ONLINE PAPERS

10 Very Similar Practice Test Papers with Detailed Solutions
18 Years

MTG Learning Media

Available at all leading book shops throughout India.
For more information or for help in placing your order:
Call 0124-6601200 or email: info@mtg.in

Visit www.mtg.in for latest offers and to buy online!
\[(x + \frac{1}{x}) = [x] + \frac{1}{[x]} + 1 \] \tag{i}

Clearly, R.H.S. is an integer L.H.S. is also an integer
Let \(x + \frac{1}{x} = k \) (an integer) \(\Rightarrow \) \(x^2 - kx + 1 = 0 \)
\[\therefore x = \frac{k \pm \sqrt{k^2 - 4}}{2} \]
For real values of \(x \), \(k^2 - 4 \geq 0 \) \(\Rightarrow \) \(k \geq 2 \) or \(k \leq -2 \)
We also observe that \(k = 2 \) and \(-2 \) does not satisfy equation (i).
\[\therefore \] The equation (i) will have solutions if \(k > 2 \) or \(k < -2 \), where \(k \in \mathbb{Z} \).
Hence, equation (i) has infinite number of solutions.

5. (a) \(z_2 - z_1 = i z_4 - z_3 = |z_2 - z_1| e^{i \pi/2} = i \)
\[\Rightarrow (z_4 - z_3)^2 + (z_2 - z_1)^2 = 0 \]
\[\therefore \] \(z_4 - z_3 = i z_2 - z_1 \)
\[\Rightarrow (z_4 - z_3)^2 = (z_2 - z_1)^2 \]
\[\therefore \] Similarly \(z_4 - z_3 = i z_2 - z_1 \)
\[\Rightarrow (z_4 - z_3)^2 + (z_2 - z_1)^2 = 0 \]
On adding (i) and (ii), we get
\(2 \left[z_1^2 + z_2^2 + z_3^2 + z_4^2 \right] = 0 \)
\(\Rightarrow z_1^2 + z_2^2 + z_3^2 + z_4^2 = 0 \)
6. (c)

7. (b) \(\frac{a + b}{2} = 2ab \) \(\Rightarrow \) \(a + b - 4\sqrt{ab} = 0 \)
\[\Rightarrow \frac{a}{b} + 1 - 4 \sqrt{\frac{a}{b}} = 0 \] (Dividing by \(b \))
\[\Rightarrow \left(\sqrt{\frac{a}{b}} \right)^2 - 4 \sqrt{\frac{a}{b}} + 1 = 0 \]
\[\therefore \] \(\sqrt{\frac{a}{b}} = \frac{2 \pm \sqrt{3}}{2} \)
\[\Rightarrow \frac{a}{b} = \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \]
\[= \frac{2k + 2k^2 + 4k + 4}{k(k + 1)(k + 2)(k + 3)} \]
\[= \frac{4}{(k + 1)(k + 2)(k + 3)} \]
\[\Rightarrow \frac{1}{k + 2} - \frac{1}{k + 3} - \frac{3}{2} \left[\frac{1}{k(k + 1)(k + 2)} - \frac{1}{k(k + 1)(k + 2)} \right] \]
\[= \frac{1}{3} \left[\frac{1}{k(k + 1)(k + 2)} - \frac{1}{k(k + 1)(k + 2)} \right] \]

Now, put \(k = 1, 2, 3, \ldots, n \) and add. Thus
\[s_n = u_1 + u_2 + \ldots + u_n \]
\[= \frac{1}{3} \left[\frac{1}{3} + \frac{1}{12} + \frac{1}{18} + \frac{1}{36} \right] \]
\[= \frac{4}{3} \left[\frac{1}{(n + 1)(n + 2)(n + 3)} + \frac{1}{1 - 2 - 3} \right] \]
\[\therefore \lim_{n \to \infty} s_n = \frac{3}{12} + \frac{4}{18} + \frac{1}{36} = \frac{29}{36} \]

9. (d) \(\lim_{x \to 1} \frac{(x + 1)^{1/3} + (x - 1)^{1/3}}{2} \)
\[= \lim_{x \to \infty} \frac{(x + 1)^{1/3} + (x - 1)^{1/3}}{2} \]
\[= \lim_{x \to \infty} \left[\frac{(x + 1)^{1/3} + (x - 1)^{1/3}}{2} \right] \]
\[= \lim_{x \to \infty} \left[\left(\frac{1 + x}{x^2} \right) + \left(\frac{1 - x}{x^2} \right) \right] \]
\[= \lim_{x \to \infty} \left[\frac{1}{x^2} \left(\frac{1}{x} + \frac{1}{x} \right) \right] \]
\[= \lim_{x \to \infty} \left[\frac{1}{x^2} \left(\frac{1}{x} + \frac{1}{x} \right) \right] \]
\[= \frac{2 \times 2}{3} = \frac{4}{3} \]

10. (b) \(\lim_{x \to \infty} \sqrt[3]{x + \sqrt{x + \sqrt{x}}} \)
\[= \lim_{x \to \infty} \sqrt[3]{x + \sqrt{x + \sqrt{x}}} \]
\[= \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}}} \]
\[= \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}}} \]
\[= \frac{1 + 0}{1 + 0 + 1} = \frac{1}{2} \]

11. (a) \(\sin^{-1} x - \cos^{-1} x = \frac{\pi}{2} - \cos^{-1} x \)
\[= \frac{\pi}{2} - 2\cos^{-1} x \]
Now, \(0 \leq \cos^{-1} x \leq \pi \) \(\Rightarrow \) \(0 \leq 2\cos^{-1} x \leq 2\pi \)
\[\Rightarrow -2\pi \leq -2\cos^{-1} x \leq 0 \]
\[\Rightarrow -3\pi \leq -2\cos^{-1} x \leq -\pi \]
12. (b): Change x to $10 - x$ to obtain
\[f(20 - x) = -f(x) \]
\[\Rightarrow f(x) = -f(20 + x) \]
\[\text{Using (i)} \]
\[f(20 + x) = -f(40 + x) \]
\[\Rightarrow f(40 + x) = f(40 + x) \]
\[\text{Using (ii)} \]
\[f(x) = f(40 + x) \text{, so f is periodic} \]
\[\text{Again, f(20 - x) = f(x)} \]
\[\text{Using (i)} \]
Thus, f is odd.

13. (a): Given, L.C.M. $(p, q) = 2^2 \cdot 3^4 \cdot 5^2$
\[p = 2^{a_1} \cdot 3^{b_1} \cdot 5^{c_1}, \quad q = 2^{a_2} \cdot 3^{b_2} \cdot 5^{c_2} \]
\[\Rightarrow \text{max} \{a_1, a_2\} = 2 \Rightarrow 5 \text{ ways} \]
\[\Rightarrow \text{max} \{b_1, b_2\} = 4 \Rightarrow 9 \text{ ways} \]
\[\Rightarrow \text{max} \{c_1, c_2\} = 2 \Rightarrow 5 \text{ ways} \]
\[\therefore K = 2^3 \cdot 5^2, \text{which can be expressed as in two ways.} \]

14. (b): We have $A = iB$
\[A^2 = (iB)^2 = i^2B^2 = -B^2 = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \]
\[\Rightarrow A^4 = (-2B)^2 = 4B^2 = 8B \]
\[(A^4)^2 = 64B^2 = 128B \]

15. (b): \[\frac{R}{R} = \cos A + \cos B + \cos C \]
\[\Rightarrow \left(\frac{1}{2} \right) = \cos A + \cos B \]
\[\Rightarrow \left(\frac{1}{2} \right) = \cos A + \cos B \]
\[\Rightarrow \left(\frac{1}{2} \right) = \cos C \]
\[\therefore \cos C = 1 \]

16. (d): The given function is
\[f(x) = \begin{cases} \tan^{-1} x, & \text{if } |x| \leq 1 \\ \frac{1}{2} (|x| - 1), & \text{if } |x| > 1 \end{cases} \]
\[\Rightarrow f(x) = \begin{cases} \tan^{-1} x, & \text{if } -1 \leq x \leq 1 \\ \frac{1}{2} (x - 1), & \text{if } x < -1 \end{cases} \]
\[\text{or} \]
\[\frac{1}{2} (x - 1), & \text{if } x > 1 \]
\[\text{Clearly L.H.L. (at } x = -1) \]
\[\lim_{h \to 0} f(-1 - h) = \lim_{h \to 0} \frac{1}{2} (1(-1 - h) = 0 \]
\[\text{R.H.L. (at } x = -1) \]
\[\lim_{h \to 0} f(-1 + h) = \frac{1}{2} (1 - 1) = 0 \]
\[\text{Clearly L.H.L. (at } x = -1) \]
\[\lim_{h \to 0} \tan^{-1} (-1 + h) = \frac{-\pi}{4} \]
\[\therefore \text{L.H.L. ≠ R.H.L. at } x = -1 \]
\[\therefore (x) \text{ is discontinuous at } x = -1 \]
Also we can prove in the same way, that $f(x)$ is discontinuous at $x = 1$.
\[\therefore f(x) \text{ can not be found for } x = \pm 1 \text{ or domain of} \]
\[f'(x) = R-\{ -1, 1 \}. \]

17. (b): Image of orthocenter of ΔABC w.r.t. BC lies on the circle.

18. (a): Third vertex A lies on $x-y=0$ and in IIIrd quadrant.
Perpendicular distance from $(0, 0)$ to $x+y=1$ is $\frac{1}{\sqrt{2}}$.
\[\therefore AO = \sqrt{2} \Rightarrow A(-1, -1) \]
If m is the slope of other side, then
\[\tan 90^\circ = \frac{m+1}{1-m} \Rightarrow m = 2 \pm \sqrt{3} \]

19. (a): $T = S_1$
\[i.e., xx_1 + yy_1 - (y + y_1) = x_1^2 + y_1^2 - 2y_1 \]
\[\text{Passes through } (0, 0) \]
\[\therefore x^2 + y^2 - y = 0 \]

Drop in JEE Main 2020 registrations; EWS and women applicants on the rise

National Testing Agency (NTA) has ended the registration process for JEE Main 2020 on October 10, 2019. With each year witnessing a huge number of registrations for the national level engineering entrance examination, JEE Main 2020 has experienced a small drop in the numbers. While the previous year had 9.41 lakh registered candidates, NTA has reportedly received around 8.34 lakh registrations for JEE Main 2020. According to reports, Economically Weaker Section (EWS) category, which was introduced this year, has over 81,413 registrations. The huge number of registrations for the newly created category has caused a decline in the open category registrations by almost 90,000 candidates. Along with EWS, the number of women applicants for JEE Main 2020 has also increased. As compared to the previous year, 15,247 more women have applied for the entrance examination. In total, around 2.90 lakh women candidates are expected to attempt JEE Main 2020 January session. For B.Arch/Planning, NTA has reportedly received 1.38 lakh registrations for the January session. While the drop in the registration numbers is not severe, there has been a constant decline in the number of applicants since the introduction of two JEE Main attempts. While the authorities are trying their best to attract women students into the institutes, the total number of registrations is still on decline.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Number of Registrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>9.34 lakh</td>
</tr>
<tr>
<td>2019</td>
<td>9.41 lakh</td>
</tr>
<tr>
<td>2018</td>
<td>11.40 lakh</td>
</tr>
<tr>
<td>2017</td>
<td>11.86 lakh</td>
</tr>
<tr>
<td>2016</td>
<td>12.07 lakh</td>
</tr>
<tr>
<td>2015</td>
<td>13.04 lakh</td>
</tr>
<tr>
<td>2014</td>
<td>13.56 lakh</td>
</tr>
</tbody>
</table>
20. (a) Centre (1, 1) and radius = 2 = OB
 \[\therefore \sin 30^\circ = \frac{OB}{2} \Rightarrow OP = 1 \]
 Since, \(OP = 1 \)
 \[\therefore x^2 + y^2 - 2x - 2y + 1 = 0 \]
21. (3) \(f(1, 1) = f(0, f(1, 0)) = f(0, f(0, 1)) = f(0, 2) = 3 \)
22. (4) \(\log_{0.5} \sin x = 1 - \log_{0.5} \cos x \) \hspace{1cm} \text{(i)}
 Now, \(\sin x > 0 \) and \(\cos x > 0 \)
 \[\therefore \text{From (i), } \sin x \cos x = \frac{1}{2} \Rightarrow \sin 2x = 1 \]
 \[\Rightarrow 4 \text{ solutions} \quad [\therefore 2x \in [-4\pi, 4\pi]] \]
23. (0) \: \text{Let } y = f(x) = \frac{x-1}{c-x^2+1}
 \[\text{Take } y = -t, \text{ where } t \in \left[\frac{1}{3}, 1 \right] \Rightarrow t = \frac{x-1}{c-x^2+1} \]
 \[\Rightarrow x^2 - c - 1 = \frac{x-1}{t} \Rightarrow x^2 - \frac{1}{t} x + \frac{1}{t} c - 1 = 0 \]
 As \(t \in \left[-1, -\frac{1}{3} \right] \), hence the above must not possess real solution.
 \[\therefore \left(\frac{1}{t} \right)^2 - 4 \left(\frac{1}{t} - c - 1 \right) < 0 \Rightarrow \frac{1}{t^2} - \frac{4}{t} + 4 < -4c \]
 \[\Rightarrow c < -\frac{1}{4} \left(\frac{1}{t} - 2 \right)^2 \]
 Now, \(\frac{1}{3} \leq t \leq 1 \Rightarrow -1 \leq \frac{1}{t} - 2 \leq 1 \Rightarrow 0 \leq \frac{1}{4} \left(\frac{1}{t} - 2 \right)^2 \leq \frac{1}{4} \]
 Hence, \(c \in \left(-\infty, -\frac{1}{4} \right] \)
24. (256)
25. (0) \: \text{Given that } \sin^5 x - \cos^5 x = \frac{\sin x - \cos x}{\sin x \cos x}
 \[\Rightarrow \sin x \cos x \left[\frac{\sin^5 x - \cos^5 x}{\sin x - \cos x} \right] = 1 \]
 \[\Rightarrow \sin x \cos x \left(\sin^2 x + \cos^2 x \right) - \sin^2 x \cos^2 x + \sin x \cos x \right) = 1 \]
 \[\Rightarrow \frac{1}{2} \sin 2x \left[1 - \frac{1}{4} \sin^2 2x + \frac{1}{2} \sin 2x \right] = 1 \]
 \[\Rightarrow \sin 2x \left(\sin^2 2x - 2 \sin 2x - 4 \right) = -8 \]
 \[\Rightarrow \sin^2 2x - 2 \sin 2x + 8 = 0 \]
 \[\Rightarrow (\sin 2x - 2)^2 (\sin 2x + 2) = 0 \]
 \[\Rightarrow \sin 2x = \pm 2, \text{ which is impossible.} \]
MOCK TEST PAPER 2020

Exam Date: Between 6th to 11th January

Time: 1 hr 15 min.

1. A letter is taken out at random from 'ASSISTANT' and another letter taken out from the letters of the word 'STATISTICS'. The probability that they are identical letters, is

(a) \(\frac{13}{90}\)
(b) \(\frac{1}{45}\)
(c) \(\frac{19}{90}\)
(d) none of these

2. If \(A = \{\theta : 2\cos^2\theta + \sin \theta \leq 2\}\) and \(B = \{\theta : \pi \leq \theta \leq \frac{3\pi}{2}\}\), then \(A \cap B =\)

(a) \(\{\theta : \frac{\pi}{2} \leq \theta \leq \frac{5\pi}{6}\}\)
(b) \(\{\theta : \pi \leq \theta \leq \frac{3\pi}{2}\}\)
(c) none of these

3. If \(\int \frac{dx}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x}\) then \(A \tan^{-1} (B \tan x + C) + D\)

(a) \(A = \frac{1}{4}, B = \frac{1}{2}, C = 1\)
(b) \(A = \frac{1}{4}, B = \frac{1}{2}, C = 1\)
(c) none of these

4. If \(A = \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}\), then \((A(adj)A)A^{-1})A =\)

(a) \(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}\)
(b) \(\begin{bmatrix} -6 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -6 \end{bmatrix}\)
(c) none of these

5. If \(X\) and \(Y\) be two events such that \(P(X|Y) = \frac{1}{2}\), \(P(Y|X) = \frac{1}{3}\) and \(P(X \cap Y) = \frac{1}{6}\) then which of the following is incorrect?

(a) \(P(X \cup Y) = \frac{2}{3}\)
(b) \(X\) and \(Y\) are independent
(c) \(P(X^c \cap Y) = \frac{1}{6}\)
(d) \(X\) and \(Y\) are not independent

6. Let \(\vec{a} = \alpha_1 \hat{i} + \alpha_2 \hat{j} + \alpha_3 \hat{k}, \ \vec{b} = \beta_1 \hat{i} + \beta_2 \hat{j} + \beta_3 \hat{k}\) and \(\vec{c} = \gamma_1 \hat{i} + \gamma_2 \hat{j} + \gamma_3 \hat{k}\), \(|\vec{a}| = 2\sqrt{3}, \vec{a}\) makes angle \(\frac{\pi}{3}\) with plane of \(\vec{b}\) and \(\vec{c}\) and angle between \(\vec{b}\) and \(\vec{c}\) is \(\frac{\pi}{6}\), then \(\alpha_1 \alpha_2 \alpha_3\) is equal to \((n\text{ is even natural number})\)

(a) \(\left(\frac{||\vec{a}||}{6} \right)^n\)
(b) \(\left(\frac{\sqrt{3}||\vec{b}||}{\sqrt{2}} \right)^n\)
(c) none of these

7. If \(\alpha, \beta\) are roots of the equation \(p(x^2 - x) + x + 5 = 0\) and \(p_1, p_2\) are two values of \(p\) for which the roots \(\alpha, \beta\) are connected by the relation \(\alpha + \beta = \frac{4}{5}\) then the value of \(\frac{p_1 + p_2}{p_1 - p_2}\)

(a) 254
(b) 0
(c) 245
(d) \(-254\)

8. If \(f(x) = \begin{cases} \frac{ax^3 - x - 2}{bx + x^2 - 2} & x < 2 \\ \frac{x - [x]}{x - 2} & x > 2 \end{cases}\)
is continuous at \(x = 2\), then

By: Sankar Ghosh, S.G.M.C, Mob. 09831244397.

MATHEMATICS TODAY \ DEC 2019 \ 31
(a) \(a = 1, b = 2 \) \hspace{1cm} (b) \(a = b = 1 \) \\
(c) \(a = 2, b = 1 \) \hspace{1cm} (d) \(a = b = 2 \)

9. If \(f(x) = [x]^{[\tan x]} \), then \(f'(\frac{-\pi}{6}) = \)

(a) \(\left(\frac{\pi}{6} \right)^{\frac{1}{3}} \left(\frac{2\sqrt{3}}{\pi} - \frac{4}{3} \log \frac{6}{\pi} \right) \) \\
(b) \(\left(\frac{\pi}{6} \right)^{\frac{1}{3}} \left(\frac{2\sqrt{3}}{\pi} + \frac{4}{3} \log \frac{6}{\pi} \right) \) \\
(c) \(\left(\frac{\pi}{6} \right)^{\frac{1}{3}} \left(\frac{2\sqrt{3}}{\pi} + \frac{4}{3} \log \frac{6}{\pi} \right) \) \\
(d) none of these

10. If the sum of the coefficients in the expansion of \((b + c)^{20} (1 + (a - 2)x)^{20}\) is equal to square of the sum of the coefficients in the expansion of \([2bc x - (b + c)y]^10\), where \(a, b, c\) are positive constants, then

(a) \(a \geq \sqrt{bc} \) \hspace{1cm} (b) \(\frac{b + c}{2} \geq a \) \\
(c) \(a^2 = cb \) \hspace{1cm} (d) \(\frac{1}{a}, \frac{1}{b}, \frac{1}{c} \) are in G.P.

11. The tangent at a point \(P(\cos \theta, b \sin \theta)\) on the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) meets the auxiliary circle in two points. The chord joining them subtends a right angle at the centre. Then, the eccentricity of the ellipse is given by

(a) \((1 + \sin^2 \theta)^{-1/2} \) \hspace{1cm} (b) \((1 + \cos^2 \theta)^{-1/2} \) \\
(c) \((1 + \sin^2 \theta) \) \hspace{1cm} (d) \((1 + \cos^2 \theta)^{1/2} \)

12. If \([x] \) stands for the greatest integer function, then the value of \(\int_{-10}^{0} \frac{[x^2] \, dx}{\sqrt{x^2 - 28x + 196} + [x]} \) is

(a) 0 \hspace{1cm} (b) \(\frac{1}{2} \) \hspace{1cm} (c) 3 \hspace{1cm} (d) none of these

13. If \((2x + y)^2 \, dy = xy \, dx \), \(y(1) = 1 \), and \(y(x_0) = c \) then \(x_0 = \)

(a) \(\sqrt{2(e^3 - 1)} \) \hspace{1cm} (b) \(\sqrt{2(e^3 + 1)} \) \hspace{1cm} (c) \(\sqrt{3e} \) \hspace{1cm} (d) \(\sqrt{\frac{e^3 + 1}{2}} \)

14. A coffee connoisseur claims that he can distinguish between a cup of instant coffee and a cup of percolator coffee 75% of the time. It is agreed that his claim will be accepted if he correctly identifies at least 5 of the 6 cups. His chances of having the claim accepted is

(a) 0.533 \hspace{1cm} (b) 0.466 \hspace{1cm} (c) 0.763 \hspace{1cm} (d) none of these

15. Square root(s) of \(-i\) is/are

(a) \(\frac{1}{\sqrt{2}} (1 - i) \) \hspace{1cm} (b) \(\frac{1}{\sqrt{3}} (i - 1) \) \hspace{1cm} (c) \(\frac{1}{\sqrt{2}} (1 - i) \) \hspace{1cm} (d) \(-\frac{1}{\sqrt{2}} (1 + i) \)

16. If \(\tan \alpha = \frac{x^2 - x}{x^2 - x + 1} \) and \(\tan \beta = \frac{1}{2x^2 - 2x + 1} \), \(0 < \alpha, \beta < \frac{\pi}{2} \), then \(\alpha + \beta = \)

(a) \(\frac{\pi}{4} \) \hspace{1cm} (b) \(\frac{\pi}{2} \) \hspace{1cm} (c) \(\frac{\pi}{3} \) \hspace{1cm} (d) \(\frac{3\pi}{4} \)

17. Let \(R \) be a relation defined on the set \(Z \) of all integers such that \(x R y \Leftrightarrow x + 2y \) is divisible by 3. Then

(a) \(R \) is transitive only \hspace{1cm} (b) \(R \) is symmetric only \hspace{1cm} (c) \(R \) is an equivalence relation \hspace{1cm} (d) \(R \) is not an equivalence relation

18. Let \(A = \{ x \in R : -1 \leq x \leq 1 \} = B \). Then the mapping \(f : A \rightarrow B \) given by \(f(x) = x|x| \) is

(a) injective but not surjective \hspace{1cm} (b) surjective but not injective \hspace{1cm} (c) bijective \hspace{1cm} (d) none of these

19. The lines \(\frac{x - 2}{5} = \frac{y - 1}{-k} = \frac{z - 4}{-k} \) and \(\frac{x - 1}{k} = \frac{y - 4}{2} = \frac{z - 5}{1} \) are coplanar, if

(a) \(k = 3 \) or \(-3 \) \hspace{1cm} (b) \(k = 0 \) or \(-1 \) \hspace{1cm} (c) \(k = 1 \) or \(-1 \) \hspace{1cm} (d) \(k = 0 \) or \(-3 \)

20. If a variable straight line passes through the intersection of the lines \(x + 2y = 1 \) and \(2x - y = 1 \) and meet the co-ordinate axes at \(A \) and \(B \), then the locus of mid point of \(AB \) is

(a) \(x - 3y = 10xy \) \hspace{1cm} (b) \(x + 3y = 10xy \) \hspace{1cm} (c) \(3x + y = 10xy \) \hspace{1cm} (d) none of these

NUMERICAL VALUE TYPE

21. If \(y = \sin(2\sin^{-1}x) \), then the value of \((1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 4y \) is

22. The area (in sq. units) of the quadrilateral formed by the tangents at the end-points of latus rectum of the ellipse \(\frac{x^2}{9} + \frac{y^2}{5} = 1 \) is

23. A spherical balloon is being inflated at the rate of 35cm³/min. Then, the rate of increase of surface area (in cm²/min) of the balloon when its diameter is 14 cm is equal to
24. The first of the two samples has 100 items with mean 15 and standard deviation 3. If the whole group has 250 items with mean 15.6 and standard deviation \(\sqrt{13.44} \), then the standard deviation of the second group is equal to \(25. \) The number of integral values of \(k \) for which the equation \(3 \cos x + 4 \sin x = 2k + 1 \) has a solution is

SOLUTIONS

1. (c) : In the word ‘ASSISTANT’ there are SSS AA TT I N and in ‘STATISTICS’ there are A C I I SSSTTT. The non-common letters are N, C. The identical letters are A, I, S, T.

 The probability of getting \(A = \frac{2 \text{C}_1}{9 \text{C}_1} \times \frac{1 \text{C}_1}{10 \text{C}_1} = \frac{1}{45} \),

 probability of getting \(I = \frac{2 \text{C}_1}{9 \text{C}_1} \times \frac{1 \text{C}_1}{10 \text{C}_1} = \frac{1}{45} \),

 probability of getting \(S = \frac{3 \text{C}_1}{9 \text{C}_1} \times \frac{3 \text{C}_1}{10 \text{C}_1} = \frac{1}{10} \), and

 probability of getting \(T = \frac{3 \text{C}_1}{9 \text{C}_1} \times \frac{3 \text{C}_1}{10 \text{C}_1} = \frac{1}{15} \).

 \(\therefore \) Required probability = \(\frac{1}{45} \times \frac{1}{45} \times \frac{1}{10} + \frac{1}{15} = \frac{19}{90} \)

2. (c) : We have, \(2 \cos^2 \theta + \sin \theta \leq 2 \)

 \(\Rightarrow 2(1 - \sin^2 \theta) + \sin \theta \leq 2 \Rightarrow 2 - 2\sin^2 \theta - \sin \theta \geq 0 \)

 \(\Rightarrow \sin \theta (2 \sin \theta - 1) \geq 0 \Rightarrow \sin \theta \geq 0 \) and \((2 \sin \theta - 1) \geq 0 \) or \(\sin \theta \leq 0 \) and \((2 \sin \theta - 1) \leq 0 \)

 \(\Rightarrow \sin \theta \geq 0 \) and \((2 \sin \theta - 1) \geq 0 \)

 \(\therefore \) \(A \cap B = \left\{ \theta : \frac{5\pi}{6} \leq \theta \leq \frac{3\pi}{2} \right\} \):

 \(\therefore \) \(B = \left\{ \theta : \frac{3\pi}{2} \leq \theta \leq 3\pi \right\} \)

 \(\therefore \) \(A \cap B = \left\{ \theta : \frac{5\pi}{6} \leq \theta \leq \frac{3\pi}{2} \right\} \)

 \(\therefore \) \(A \cap B = \left\{ \theta : \frac{5\pi}{6} \leq \theta \leq \frac{3\pi}{2} \right\} \)

 \(\therefore \) \(A \cap B = \left\{ \theta : \frac{5\pi}{6} \leq \theta \leq \frac{3\pi}{2} \right\} \)

 \(\therefore \) \(A \cap B = \left\{ \theta : \frac{5\pi}{6} \leq \theta \leq \frac{3\pi}{2} \right\} \)

3. (d) : Here, \(\int \frac{\sec^2 x \cdot dx}{4 \tan^2 x + 4 \tan x + 5} = \int \frac{dz}{(2z + 1)^2 + 2^2} \),

 where \(z = \tan x \)

 \(= \frac{1}{4} \tan^{-1} \left(\frac{2z + 1}{2} \right) + C \)

 \(= A \tan^{-1} \left(B \tan x + C \right) + C \)

 Therefore, \(A = \frac{1}{4}, B = 1 \) and \(C = \frac{1}{2} \)

4. (a) : We have, \(|A| = \begin{vmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ -1 & 1 & 0 \end{vmatrix} = 0+7-1 = 6 \)

 \(\therefore \) \(|A| = \begin{vmatrix} 6 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{vmatrix} \)

5. (d) : We have, \(P(X \mid Y) = \frac{1}{2}, P(Y \mid X) = \frac{1}{3} \)

 and \(P(X \cap Y) = \frac{1}{6} \)

 \(\therefore \) \(P(X) = \frac{P(X \cap Y)}{P(Y \mid X)} = \frac{1/6}{1/3} = \frac{1}{2} \)

 \(\therefore \) \(P(Y) = \frac{P(X \cap Y)}{P(X \mid Y)} = \frac{1/6}{1/2} = \frac{1}{3} \)

 Clearly, \(X \) and \(Y \) are independent events.

6. (b) : Given determinant shows the volume of parallelepiped made by vectors \(\vec{a}, \vec{b}, \vec{c} \).

 \(\left| \begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array} \right| = \frac{|a_1| |b_2| |c_3|}{3} = \frac{|a_1| |b_2| |c_3|}{3} \sin \frac{\pi}{3} \sin \frac{\pi}{6} \)

 \(= \frac{\sqrt{3} |b_2| |c_3|}{2} \cdot |\vec{a}| = 2 \sqrt{2} \)

7. (a) : Here, \(px^2 - (p - 1)x + 5 = 0 \)

 \(\therefore \) \(px^2 - (p - 1)x + 5 = 0 \)

 \(\therefore \) \(\alpha + \beta = \frac{-1}{p} \) and \(\alpha \beta = \frac{5}{p} \)

 \(\therefore \) \(\frac{(\alpha + \beta)^2 - 2\alpha \beta}{\alpha \beta} = \frac{4}{5} \) \(\therefore \) \((p - 1)^2 - 10p = \frac{4}{5} \)

 \(\therefore \) \(p^2 - 16p + 1 = 0 \) \(\therefore \) \(p_1 + p_2 = 16 \) and \(p_1 p_2 = 1 \)

 \(\therefore \) \(\frac{P_1 + P_2}{p_1 p_2} = \frac{(P_1 + P_2)^2 - 2P_1 P_2}{p_1 p_2} = \frac{256 - 2}{1} = 254 \)
8. (b): Since in the neighbourhood of 2 on left side \(|x^2 - x - 2| = (x^2 - x - 2) \) and \(x - [x] = x - 2 \) if \(x \in (2, 3) \)

Thus, the function can be redefined as \(f(x) = \begin{cases} a & \text{if } x < 2 \\ b & \text{if } x = 2 \\ 1 & \text{if } x > 2 \end{cases} \)

\[\therefore \ f(x) \text{ is continuous at } x = 2 \Rightarrow a = b = 1 \]

9. (b): We have, \(f(x) = |x|\tan x \)
\[\Rightarrow f(x) = (-x)^{-\tan x} \text{ if } x < 0 \quad \text{and} \quad |\tan x| = -\tan x \]
\[\Rightarrow \log f(x) = -\tan x \log(-x) \]

Differentiating w.r.t. \(x \), we get
\[f'(x) = \left[-\sec^2 x \cdot \log(-x) - \frac{\tan x}{x} \right] \]
\[\Rightarrow f'(x) = (\pi)^{\frac{1}{6}} \left[-\pi^\frac{3}{2} \cdot \log \left(\frac{2\sqrt{3}}{\pi} \right) \right] \]
\[\Rightarrow f'(x) = \left[-\pi^\frac{3}{2} \cdot \log \left(\frac{2\sqrt{3}}{\pi} \right) \right] \]

10. (b): The sum of the coefficients in the expansion of \((b + c)^{20} \cdot (a - 1)^{20}\) is given by \(S_1 = \binom{20}{0} \binom{20}{0} \)

The sum of the coefficients in the expansion of \((b + c + d)^{20}\) is given by \(S_2 = \binom{20}{0} \binom{20}{0} \)

It is given that \(S_1 = S_2 \)
\[\Rightarrow (b + c)^{20} \cdot (a - 1)^{20} = \frac{2bc - (b + c)}{2} \]
\[\Rightarrow (b + c)(a - 1) = \frac{2bc - (b + c)}{2} \]
\[\Rightarrow (a - 1) = \frac{2bc}{b + c} - 1 \Rightarrow a = \frac{2bc}{b + c} \]
\[\Rightarrow a \text{ is the H.M. of } b \text{ and } c. \]

Therefore, A.M. \(\geq H. M. \Rightarrow \frac{b + c}{2} \geq a. \)

11. (a)

12. (c): Let \(I = \int_{1}^{10} \frac{[x^2]}{[x^2 - 28x + 196] + [x^2]} \]
\[= \int_{1}^{10} \frac{[x^2]}{[x^2]} \cdot \frac{d}{dx} \left[\frac{1}{2} \cdot \frac{(x^2)}{[(14 - x)^2] + [x^2]} \right] \]
\[\Rightarrow \int_{1}^{10} f(x) dx = \int_{a}^{b} f(a + b - x) dx \]
\[\Rightarrow \int_{1}^{10} dx = 6 \Rightarrow I = 3 \]

13. (c): We have, \(\frac{dy}{dx} = \frac{xy}{x^2 + y^2} \)

Putting \(y = vx \), we get \(\frac{dy}{dx} = \frac{v}{1 + v^2} \)

\[\Rightarrow x \frac{dv}{dx} = \frac{v}{1 + v^2} - v = \frac{-v^3}{1 + v^2} \]
\[\Rightarrow \int \frac{1 + v^2}{v^3} dv = -\int \frac{dx}{x} \]
\[\Rightarrow \ln x + \ln v - \frac{1}{2v^2} = c \Rightarrow \ln y = -\frac{x^2}{2y^2} + c \]

Now, \(x = 1, \ y = 1 \Rightarrow c = -\frac{1}{2} \)

Again, \(y = e \Rightarrow 1 = \frac{x_0}{2e^2} - \frac{1}{2} \Rightarrow x_0^2 = 3e^2 \Rightarrow x_0 = \sqrt{3}e \)

14. (a)

15. (a): We have, \(-i = \frac{1}{2}(-2i) = -i \)
\[\Rightarrow \frac{1}{2} - i \]
\[\Rightarrow \sqrt{-i} = \frac{1}{2} (1 - i) \]

16. (a): \(\tan \alpha = \frac{x^2 - x}{x^2 - x + 1} \quad \text{and} \quad \tan \beta = \frac{1}{2x^2 - 2x + 1} \quad \text{if} \quad 0 < \alpha, \beta < \frac{\pi}{2} \)

Let \(x^2 - x = m \).

\[\Rightarrow \frac{1}{2} (- \tan \alpha - \tan \beta) = \frac{m + \frac{1}{m}}{m + 1} \]

Now, \(\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{1}{2} + \frac{1}{m}}{1 - \frac{1}{2m + 1}} \]
\[= \frac{1}{m + 1} = \frac{1}{2m + 1} \]

Hence, \(\alpha + \beta = \frac{\pi}{4} \) (As \(0 < \alpha, \beta < \frac{\pi}{2} \))

17. (c): Let \((x, y) \in Z \), then \(x + 2y = 3x \) is divisible by 3.

\(\therefore R \) is Reflexive.

If \(x + 2y \) is divisible by 3 then \(y + 2x \) is also divisible by 3.

\(\therefore R \) is symmetric.

Let \(xRy \) and \(yRz \) for some \(x, y, z \in Z \).

Let \(x + 2y = 3k_1 \) and \(y + 2z = 3k_2 \).

\(\Rightarrow x + 2z = 3(k_1 + k_2) \).

\(\therefore R \) is transitive. So, \(R \) is an equivalence relation.

18. (c): Let \(x_1, x_2 \in R \).

\(\therefore f(x_1) = f(x_2) \Rightarrow x_1|x_1 = x_2|x_2 \)

\(\therefore R \) is one-to-one.

Again, let \(y \in R \) such that \(y = f(x) \Rightarrow y = x|x |\)

Now, when \(-1 < x < 1 \) then \(1 < y < 1 \)

\(\therefore \) Range and co-domain are both equal.

Thus, \(f \) is onto. Therefore \(f \) is one-to-one and onto, hence \(f \) is bijective.
19. (d) : So, the given lines will be coplanar iff
\[
\begin{vmatrix}
1 & 2 & -3 \\
1 & 1 & -k \\
2 & 1 & 0
\end{vmatrix} = 0 \Rightarrow k^2 + 3k = 0 \Rightarrow k = 0, -3
\]

20. (b) : The equation of the straight line passing through the point of intersection of the lines \(x + 2y = 1\) and \(2x - y = 1\) is
\[
(x + 2y - 1) + \lambda(2x - y - 1) = 0
\]
\[
(1 + 2\lambda)x + (2 - \lambda)y = (1 + \lambda)
\]
\[
\Rightarrow \frac{x}{1 + \lambda} + \frac{y}{2 - \lambda} = 1
\]
\[
A = \left(\frac{1 + \lambda}{1 + 2\lambda}, \frac{1}{2 - \lambda} \right)
\]
\[
B = \left(0, \frac{1 + \lambda}{2 - \lambda} \right)
\]
Let the midpoint of \(AB\) be \((h, k)\).
\[
h = \frac{1}{2} \left(\frac{1 + \lambda}{1 + 2\lambda} + 0 \right) \quad \text{and} \quad k = \frac{1}{2} \left(\frac{1}{2 - \lambda} + \frac{1 + \lambda}{2 - \lambda} \right)
\]
Eliminating \(\lambda\) from \(h\) and \(k\) we get \(h + 3k = 10hk\).
Then the required locus is \(x + 3y = 10xy\).

21. (0) : We have, \(y = \sin(2\sin^{-1}x)\)
Differentiating w.r.t. \(x\), we get
\[
\frac{dy}{dx} = \frac{2}{\sqrt{1 - x^2}} \cos(2\sin^{-1}x)
\]
\[
\Rightarrow \sqrt{1 - x^2} \frac{dy}{dx} = 2 \cos(2\sin^{-1}x)
\]
\[
\Rightarrow (1 - x^2) \left(\frac{dy}{dx} \right)^2 = 4\{1 - \sin^2(2\sin^{-1}x)\} = 4 - 4\sin^2(2\sin^{-1}x)
\]
\[
\Rightarrow (1 - x^2) \frac{d}{dx} \left(\frac{dy}{dx} \right)^2 - 2x \frac{d}{dx} \left(\frac{dy}{dx} \right)^2 = -8y \frac{dy}{dx}
\]
\[
\Rightarrow (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 4y = 0
\]
\[
\text{(27)} : \quad \text{The equation of the ellipse is} \quad \frac{x^2}{9} + \frac{y^2}{5} = 1
\]
\[
:\quad \text{The eccentricity}, e = \sqrt{1 - \frac{5}{9}} = \frac{2}{3}
\]
The coordinates of the end-points of latusrecta are
\[
\left(\frac{2}{3}, \frac{5}{3} \right), \left(-2, -\frac{5}{3} \right), \left(-\frac{2}{3}, \frac{5}{3} \right), \left(\frac{2}{3}, -\frac{5}{3} \right)
\]
The equations of tangents at these points are
\[
2x + 3y - 9 = 0 \quad \text{(i)}
\]
\[
-2x + 3y + 9 = 0 \quad \text{(ii)}
\]
\[
-2x - 3y - 9 = 0 \quad \text{(iii)}
\]
\[
2x + 3y + 9 = 0 \quad \text{(iv)}
\]
Clearly the above tangents form a parallelogram whose area is given by
\[
A = \frac{\begin{vmatrix}
2 & 3 \\
2 & 3
\end{vmatrix}}{12} = 27 \text{ sq. units}
\]

23. (10) : Let the volume, surface area and radius of the spherical balloon be \(v, s\) and \(r\) respectively.
\[
\therefore \quad v = \frac{4}{3}\pi r^3 \Rightarrow \frac{dv}{dt} = 4\pi r^2 \frac{dr}{dt}
\]
Again,
\[
\therefore \quad s = 4\pi r^2 \Rightarrow \frac{ds}{dt} = 8\pi r \frac{dr}{dt}
\]
Now,
\[
\frac{dr}{dt} = \frac{2}{r} \Rightarrow \frac{ds}{dt} = \frac{2}{r} \cdot \frac{2}{7} \cdot 35 = 10 \Rightarrow \frac{dv}{dt} = 35 \text{ cm}^3/\text{min}
\]
Thus, the rate of increase of the surface area is \(10 \text{ cm}^2/\text{min}\),
when diameter of the balloon is 14 cm.

24. (4) : We have, \(n_1 = 100, \bar{x}_1 = 15, \sigma_1 = 3, n_1 + n_2 = 250, \bar{x}_2 = 15.6\) and \(\sigma = \sqrt{13.44}\).
Now, \(n_2 = 250 - 100 = 150\).
We know,
\[
\bar{x} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2}
\]
\[
\Rightarrow 15.6 = \frac{100 \times 15 + 150 \times 16}{250} \Rightarrow \bar{x}_2 = 16
\]
Hence,
\[
\bar{d}_1 = \bar{x}_1 - \bar{x} = 15 - 15.6 = -0.6 \quad \text{and} \quad \bar{d}_2 = \bar{x}_2 - \bar{x} = 16 - 15.6 = 0.4
\]
The variance \(\sigma^2\) of the combined group is given by
\[
\sigma^2 = \frac{2400}{150} = 16 \Rightarrow \sigma = \sqrt{16} = 4
\]

25. (6) : The given equation is \(3\cos x + 4\sin x = 2k + 1\)
\[
\Rightarrow \left(\frac{3}{\sqrt{3^2 + 4^2}} \cos x + \frac{4}{\sqrt{3^2 + 4^2}} \sin x \right) = \frac{2k + 1}{\sqrt{3^2 + 4^2}}
\]
\[
\Rightarrow \frac{3}{5} \cos x + \frac{4}{5} \sin x = \frac{2k + 1}{5}
\]
\[
\Rightarrow \cos(x - \alpha) = \frac{2k + 1}{5} \quad \text{(where} \cos \alpha = \frac{3}{5})
\]
\[
\Rightarrow -1 \leq \frac{2k + 1}{5} \leq 1 \quad \text{[} \because -1 \leq \cos(x - \alpha) \leq 1\}
\]
\[
\Rightarrow -5 \leq 2k + 1 \leq 5 \Rightarrow -6 \leq 2k \leq 4 \Rightarrow -3 \leq k \leq 2
\]
Therefore integral values of \(k\) are \(-3, -2, -1, 0, 1, 2\).
1. The length of the perpendicular from the origin to the plane passing through the point \(\vec{a} \) and containing the line \(\vec{r} = \vec{b} + \lambda \vec{c} \) is
\[
\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|} = \frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c}|} \\
\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{b} \times \vec{c} + \vec{c} \times \vec{a}|} = \frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{c} \times \vec{a} + \vec{a} \times \vec{b}|}
\]

2. If \(\vec{a} \) and \(\vec{b} \) are unit vectors and \(\vec{c} \) is a vector such that \(\vec{c} = \vec{a} \times \vec{b} + \vec{b} \), then

(a) \(\vec{a} \cdot \vec{b} \vec{c} = \vec{b} \cdot \vec{c} - (\vec{a} \cdot \vec{b})^2 \)

(b) \([\vec{a} \vec{b} \vec{c}] = 0 \)

(c) Maximum value of \([\vec{a} \vec{b} \vec{c}] \) is 1

(d) Minimum value of \([\vec{a} \vec{b} \vec{c}] \) is \(\frac{1}{2} \)

3. If \(((\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})) \cdot (\vec{a} \times \vec{d}) = 0 \), then which of the following is always true?

(a) \(\vec{a}, \vec{b}, \vec{c}, \vec{d} \) are necessarily coplanar

(b) either \(\vec{a} \) or \(\vec{d} \) must lie in the plane of \(\vec{b} \) or \(\vec{c} \)

(c) either \(\vec{b} \) or \(\vec{c} \) must lie in plane of \(\vec{a} \) and \(\vec{d} \)

(d) either \(\vec{a} \) or \(\vec{d} \) must lie in plane of \(\vec{c} \) and \(\vec{d} \)

4. The lengths of two opposite edges of a tetrahedron are \(a, b \). Their shortest distance is \(d \) and the angle between them is \(\theta \). Then its volume, \(V \) is

(a) \(\frac{1}{2} \) \(abd \) \(\sin \theta \) \hspace{1cm} (b) \(\frac{1}{3} \) \(abd \) \(\cos \theta \)

(c) \(\frac{1}{6} \) \(abd \) \(\sin \theta \) \hspace{1cm} (d) \(\frac{1}{6} \) \(abd \) \(\cos \theta \)

5. The position vectors of the vertices \(A, B, C \) of a tetrahedron \(ABCD \) are \(\hat{i} + \hat{j} + \hat{k}, \hat{k} \) and \(3\hat{i} \) respectively and the altitude from the vertex \(D \) to the opposite face \(ABC \) meets the face at \(E \). If the length of the edge \(AD \) is 4 and the volume of the tetrahedron is \(\frac{2\sqrt{2}}{3} \), then the length of \(DE \) is

(a) 1 \hspace{1cm} (b) 2 \hspace{1cm} (c) 3 \hspace{1cm} (d) 4

6. If \(\vec{a}, \vec{b}, \vec{c} \) are unit vectors such that \(\vec{a} \cdot \vec{b} = 0 \), \((\vec{a} + \vec{b}) \cdot (\vec{b} + \vec{c}) = 0 \) and \(\vec{c} = \lambda \vec{a} + \mu \vec{b} + \omega (\vec{a} \times \vec{b}) \), where \(\lambda, \mu, \omega \) are scalars, then

(a) \(\mu^2 + \omega^2 = 1 \)

(b) \(\mu + \mu = 1 \)

(c) \((\mu + 1)^2 + \mu^2 + \omega^2 = 1 \)

(d) \(\lambda^2 + \mu^2 = 1 \)

7. If \(\vec{u}, \vec{m}, \vec{r} \) are three mutually perpendicular vectors with same magnitude. If \(\vec{c} \) satisfies the relation \(\vec{u} \times (\vec{c} \times \vec{m}) + \vec{m} \times (\vec{c} \times \vec{r}) + \vec{r} \times (\vec{c} \times \vec{u}) = 0 \)

then \(\vec{c} \) is

(a) \(\frac{1}{3} (\vec{u} + \vec{m} + \vec{r}) \)

(b) \(\frac{1}{2} (\vec{u} + \vec{m} + \vec{r}) \)

(c) \(\frac{1}{4} (\vec{u} + \vec{m} + \vec{r}) \)

(d) \(\vec{0} \)

8. If \(\vec{a}, \vec{b}, \vec{c} \) are three non coplanar unit vectors each inclined with other at an angle of \(30^\circ \), then the volume of tetrahedron whose edges are \(\vec{a}, \vec{b}, \vec{c} \) is

(a) \(\frac{\sqrt{3}\sqrt{3} - 5}{12} \)

(b) \(\frac{3\sqrt{3} + 5}{12} \)

(c) \(\frac{5\sqrt{2} + 3}{12} \)

(d) \(\frac{3\sqrt{3}}{8} \)

9. If \(\theta \) is the angle between any edge and a face not containing the edge of a regular tetrahedron, then the value of \(\cos \theta \) is

(a) \(\frac{1}{\sqrt{3}} \)

(b) \(\frac{1}{3} \)

(c) \(\sqrt{3} \)

(d) \(\frac{\sqrt{2}}{3} \)
10. In a triangle ABC, $\angle A = 30^\circ$, H is the orthocenter and D is the midpoint of BC. If the segment HD is produced to T such that $HD = DT$. Then $\frac{AT}{BC} = \frac{1}{2}$ (b) $\frac{3}{2}$ (c) 2 (d) $\frac{2}{3}$

11. Let position vectors of points A, B and C of triangle ABC respectively be $\hat{i} + \hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$. Let l_1, l_2, l_3 be the lengths of perpendiculars drawn from the orthocentre ‘O’ on the sides AB, BC and CA, then $l_1 + l_2 + l_3$ equals
(a) $\frac{\sqrt{6}}{3}$ (b) $\frac{1}{\sqrt{6}}$ (c) $\frac{2}{\sqrt{6}}$ (d) $\frac{\sqrt{6}}{2}$

12. Three vectors of magnitude $a, 2a, 3a$ meet in a point and their directions are along the diagonals of three adjacent faces of a cube. Then the magnitude of their resultant is
(a) $6a$ (b) $4a$ (c) $3a$ (d) $5a$

13. Let \vec{a} and \vec{b} be two non collinear unit vectors. If $\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v} = \vec{a} \times \vec{b}$ then $|\vec{v}| = \sqrt{3}$
(a) $|\vec{u}|$ (b) $|\vec{u} + \vec{a}|$ (c) $2|\vec{u}|$ (d) $|\vec{u}| + \vec{a}

14. In a four-dimensional space where unit vectors along axes are $\hat{i}, \hat{j}, \hat{k}$ and \hat{t} and $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$ are four non zero vectors such that no vector can be expressed as linear combination of others and $(\lambda - 1)(\vec{a}_1 - \vec{a}_2)$

15. Let $OABC$ be a tetrahedron whose four faces are equilateral triangles of unit side. Let $OA = \vec{a}, OB = \vec{b}$ and $OC = \vec{c}$, then
(a) $\vec{a} = \frac{1}{3}(\vec{a} + \vec{b} + 2\sqrt{2}(\vec{a} \times \vec{b}))$
(b) $\vec{c} = \frac{1}{2}(\vec{a} + \vec{b} + 2\sqrt{3}(\vec{a} \times \vec{b}))$
(c) volume of the tetrahedron is $\frac{1}{2\sqrt{3}}$
(d) $2|\vec{a} \times \vec{b} \times \vec{c}| = \frac{1}{\sqrt{2}}$

16. $OABC$ is regular tetrahedron of unit edge length with volume V then $12\sqrt{2}V = \sqrt{2}$ (b) $\frac{1}{2}$ (c) $1/2$ (d) $1/3$

17. ABC is any triangle and O is any point in the plane of ΔABC. If O, A, B and O, C, A and AB in D, E, F respectively, then $\frac{OD}{AE} + \frac{OE}{BF} + \frac{OF}{CF} = \frac{1}{3}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $\frac{1}{3}$

18. Let ABC be a given triangle. If $BC \geq AC$ for all $t \in R$. Then ΔABC is
(a) equilateral (b) right angled (c) isosceles (d) none of these

19. Let $a = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $b = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $c = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such that c is a unit vector perpendicular to both a and b. If the angle between a and b is $\pi/6$, then the value of

20. In ΔABC, perpendiculars are drawn from A, B, C to meet BC, CA, AB at D, E, F respectively. If $\angle A = 75^\circ$, $\angle B = 60^\circ$ and $BC = 4\sqrt{3} + 1$, then value of $\frac{DF : DE}{DE : DF} = \frac{1}{4}$ (a) $\frac{1}{6}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (d) $\frac{1}{4}$

21. Let O be the origin, P be a given point and M, N are projections of P on ZX and XY planes respectively. If OP makes angles $\theta, \alpha, \beta, \gamma$ with the plane OMN and the coordinate planes YZ, ZX, XY respectively, then $\cot^2 \theta = (a) \cot^2 \theta - \cot^2 \gamma = 2$ (b) $-\cot^2 \alpha + \cot^3 \beta + \cot^2 \gamma = 1$ (c) $\cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma = 2$ (d) $\cot^2 \alpha - \cot^2 \beta - \cot^2 \gamma = 1$

22. Let P be a point equidistant from the lines OA, OB and OC where, $\overline{OA} = 3\hat{i} + 4\hat{j} + 5\hat{k}, \overline{OB} = 7\hat{i} - \hat{k}, \overline{OC} = 5\hat{i} + 5\hat{j}$. Then a vector along \overline{OP} is
(a) $4\hat{i} + 7\hat{j} + 9\hat{k}$ (b) $13\hat{i} + 4\hat{j} + 6\hat{k}$ (c) $9\hat{i} + 4\hat{j} + 7\hat{k}$ (d) $7\hat{i} + 9\hat{j} + 4\hat{k}$
1. (c) : The plane passing through \vec{a} and \vec{b} and containing the line $\vec{r} = \vec{b} + \lambda \vec{c}$ is

$$(\vec{r} - \vec{a}) \cdot ((\vec{b} - \vec{a}) \times \vec{c}) = 0$$

$\Rightarrow \quad \vec{r} \cdot (\vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = [\vec{a} \vec{b} \vec{c}]$

Length of $\perp r$ from the origin $= \frac{|[\vec{a} \vec{b} \vec{c}]|}{|\vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}$

2. (a) : $\vec{c} \cdot \vec{a} = ((\vec{a} \times \vec{c}) + \vec{b}) \cdot \vec{a} + \vec{b} \cdot \vec{a}$

$\vec{b} \times \vec{c} = (\vec{b} \cdot \vec{c}) \vec{a} - (\vec{b} \cdot \vec{a}) \vec{c}$

$\vdash [\vec{a} \vec{b} \vec{c}] = \vec{b} \cdot \vec{c} - (\vec{a} \cdot \vec{b}) (\vec{a} \cdot \vec{c}) = \vec{b} \cdot \vec{c} - (\vec{a} \cdot \vec{b})^2$

Also, $\vec{c} \cdot \vec{b} = 1 - [\vec{a} \vec{b} \vec{c}]$

$\vdash 2[\vec{a} \vec{b} \vec{c}] = 1 - (\vec{a} \cdot \vec{b})^2 \leq 1$

$\vdash [\vec{a} \vec{b} \vec{c}] \leq \frac{1}{2}$

3. (c) : $((\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})) \cdot (\vec{a} \times \vec{d}) = 0$

$\Rightarrow ([\vec{a} \vec{c} \vec{d}]) [\vec{b} \vec{a} \vec{d}] = 0$

$\Rightarrow [\vec{a} \vec{c} \vec{d}][\vec{b} \vec{a} \vec{d}] = 0$

\Rightarrow either \vec{c} or \vec{b} must lie in the plane of \vec{a} and \vec{d}.

4. (c) : Consider OABC, $\overline{OA} = \vec{a}$, $\overline{OB} = \vec{b}$, $\overline{OC} = \vec{c}$

And OA, BC as a pair of opposite edges.

Given, $|\overline{OA}| = a$, $|\overline{BC}| = b$

Equation of OA is $\vec{r} = \vec{0} + t \vec{a}$

Equation of BC is $\vec{r} = \vec{b} + s(\vec{b} - \vec{c})$

Now, $d = \frac{|(\vec{a} \vec{b} \vec{c})|}{|\vec{a}||\vec{b} - \vec{c}| \sin \theta}$, where θ is angle between \vec{a} and $\vec{b} - \vec{c}$.

$\Rightarrow V = \frac{abd \sin \theta}{6}$

5. (b) : \overline{BC} is the x-axis and $\overline{AB} \perp \overline{BC}$.

Area of $\triangle ABC = \frac{1}{2} \times 2 \times 2 = \sqrt{2}$

Volume $= \frac{1}{3} \times \sqrt{2} \times DE = \frac{2 \sqrt{2}}{3} \Rightarrow DE = 2$

6. (c) : $(\vec{a} - \vec{c}) \cdot (\vec{b} + \vec{c}) = 0$

$\Rightarrow \vec{a} \cdot \vec{b} + \vec{c} \cdot (\vec{a} - \vec{b}) - |\vec{c}|^2 = 0$

$\Rightarrow (\vec{a} - \vec{b}) \cdot \vec{c} = 1 \Rightarrow (\vec{a} - \vec{b}) \cdot (\lambda \vec{a} + \mu \vec{b} + \omega (\vec{a} \times \vec{b})) = 1$

$\Rightarrow \lambda - \mu = 1 \Rightarrow \lambda = \mu + 1$

$\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a}, \vec{b}, \vec{a} \times \vec{b}$ are mutually perpendicular.

$|\vec{c}| = 1 \Rightarrow \lambda^2 + \mu^2 + \omega^2 = 1 \Rightarrow (\mu + 1)^2 + \mu^2 + \omega^2 = 1$

7. (b) : Since $\hat{u}, \hat{m}, \hat{r}$ are mutually perpendicular vectors of same magnitude, we can resolve \vec{c} along the directions $\hat{u}, \hat{m}, \hat{r}$. Let $|\hat{u}| = |\hat{m}| = |\hat{r}| = K$

Also, let $\vec{c} = a\hat{u} + b\hat{m} + c\hat{r}$

Now, $\vec{u} \times (\vec{c} \times \vec{m}) = (\vec{u} \cdot \vec{c})(\vec{e} - \vec{m}) - (\vec{u} \cdot \vec{c})(\vec{c} - \vec{m}) \hat{u}$

$= K^2 (\vec{c} - \vec{m}) - (\vec{u} \cdot \vec{c}) \hat{u} \quad (\vdash: \vec{u} \cdot \vec{m} = 0)$

Similarly, $\vec{m} \times (\vec{c} \times \vec{r}) = (\vec{m} \cdot \vec{c})(\vec{e} - \vec{r}) - (\vec{m} \cdot \vec{c})(\vec{c} - \vec{r}) \hat{m}$

$= K^2 (\vec{c} - \vec{r}) - (\vec{m} \cdot \vec{c}) \hat{m} \quad (\vdash: \vec{m} \cdot \vec{r} = 0)$

And $\vec{r} \times (\vec{c} \times \vec{u}) = (\vec{r} \cdot \vec{c})(\vec{e} - \vec{u}) - (\vec{r} \cdot \vec{c})(\vec{c} - \vec{u}) \hat{r}$

$= K^2 (\vec{c} - \vec{u}) - (\vec{r} \cdot \vec{c}) \hat{r} \quad (\vdash: \vec{r} \cdot \vec{u} = 0)$

Substituting above all, in the given relation, we get

$\vec{c} = \frac{1}{2}(\vec{u} + \vec{m} + \vec{r})$

8. (a) : Volume $= \frac{1}{6}[\vec{a} \vec{b} \vec{c}] = V$ (say)

$\Rightarrow V^2 = \frac{1}{36} |[\vec{a} \vec{b} \vec{c}]|^2 = \frac{1}{36} |\vec{a} \cdot \vec{b} \cdot \vec{c}|$ $\vec{a} \cdot \vec{b} \cdot \vec{c} = \frac{1}{36} |\vec{a} \vec{b} \vec{c}|$

$= \frac{1}{36} \left(\frac{3 \sqrt{3} - 5}{4} \right)$

9. (a) : Let the corner meeting the edge and the face be at origin.

Here, $|\vec{a}| = |\vec{b}| = |\vec{c}| = k$ (say)

and $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = k^2 \cos 60^\circ = \frac{k^2}{2}$

$(90^\circ - 0)$ would be the angle between the edge (say \vec{a}) and the normal ($\vec{b} \times \vec{c}$) to the face

Then, $\sin(90^\circ - \theta) = \frac{|\vec{a} \times (\vec{b} \times \vec{c})|}{|\vec{a}||\vec{b} \times \vec{c}|} = \frac{|(\vec{a} \times \vec{b}) \vec{c} - (\vec{a} \cdot \vec{b}) \vec{c}|}{k^2 \cdot k^2 \sin 60^\circ}$

$\Rightarrow \cos \theta = \frac{\frac{k^2}{2} |\vec{b} \cdot \vec{c}|}{k^2 \cdot \sqrt{3} / 2} = \frac{1}{\sqrt{3}}$

10. (c) : Let the circumcentre of $\triangle ABC$ be origin O.

Let $\overline{OA} = \vec{a}$, $\overline{OB} = \vec{b}$, $\overline{OC} = \vec{c}$; and $\overline{OT} = \hat{r}$

Now, $\overline{OA} + \overline{OB} + \overline{OC} = \overline{OH} \Rightarrow \overline{OH} = \vec{a} + \vec{b} + \vec{c}$
Also, D is the mid-point of HT.
\[\therefore \quad \overrightarrow{AT} = -2\overrightarrow{a} \]
\[\Rightarrow \quad AT = 2R. \text{ But } BC = 2R \sin A = R \quad [\because \angle A = 30^\circ] \]
\[\therefore \quad AT/BC = 2 \]

11. (d): Clearly, triangle ABC is an equilateral triangle.
\[\Rightarrow \quad l_1 = l_2 = l_3 = \text{in-radius} = \frac{1}{\sqrt{6}} \]
\[\therefore \quad l_1 + l_2 + l_3 = \frac{3}{\sqrt{6}} = \frac{\sqrt{6}}{2} \]

12. (d): Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three vectors such that $|\overrightarrow{a}| = a$
$|\overrightarrow{b}| = 2a$ and $|\overrightarrow{c}| = 3a$.
\[\overrightarrow{\tilde{a}} = a \left(\frac{j + k}{\sqrt{2}} \right) \overrightarrow{\tilde{b}} = 2a \left(\frac{k + i}{\sqrt{2}} \right) \overrightarrow{\tilde{c}} = 3a \left(\frac{i + j}{\sqrt{2}} \right) \]
\[\therefore \quad \overrightarrow{\tilde{a}} + \overrightarrow{\tilde{b}} + \overrightarrow{\tilde{c}} = \frac{a}{\sqrt{2}} (5i + 4j + 3k) \]
\[\Rightarrow \quad |\overrightarrow{\tilde{a}} + \overrightarrow{\tilde{b}} + \overrightarrow{\tilde{c}}| = \frac{a}{\sqrt{2}} |5i + 4j + 3k| = 5a \]

13. (a): Given, $\overrightarrow{v} = \overrightarrow{\tilde{a}} \times \overrightarrow{\tilde{b}} \Rightarrow |\overrightarrow{v}| = |\overrightarrow{\tilde{a}}| |\overrightarrow{\tilde{b}}| \sin \theta = \sin \theta \overrightarrow{\tilde{a}} = \overrightarrow{\tilde{a}} - (\overrightarrow{\tilde{a}} \cdot \overrightarrow{\tilde{b}}) \overrightarrow{\tilde{b}} = \overrightarrow{\tilde{a}} - \overrightarrow{\tilde{b}} \cos \theta \]
\[= |\overrightarrow{\tilde{a}}|^2 = (\overrightarrow{\tilde{a}} - \overrightarrow{\tilde{b}} \cos \theta)^2 = |\overrightarrow{\tilde{a}}|^2 + |\overrightarrow{\tilde{b}}|^2 - 2\overrightarrow{\tilde{a}} \cdot \overrightarrow{\tilde{b}} \cos \theta \]
\[= 1 + \cos^2 \theta - 2 \cos \theta \]
\[\Rightarrow \quad |\overrightarrow{\tilde{a}}| = |\overrightarrow{v}| \]
Again $\overrightarrow{\tilde{a}} \cdot \overrightarrow{\tilde{b}} = \overrightarrow{\tilde{a}} \cdot (\overrightarrow{\tilde{a}} - \overrightarrow{\tilde{a}} \cdot \overrightarrow{\tilde{b}}) = 0$
\[\Rightarrow \quad \overrightarrow{\tilde{a}} \cdot \overrightarrow{\tilde{b}} = 0 \]

14. (a):
\[(\lambda - 1)(\overrightarrow{\tilde{a}}_1 + \overrightarrow{\tilde{a}}_2) + \mu (\overrightarrow{\tilde{a}}_2 + \overrightarrow{\tilde{a}}_3)^2 + \gamma (\overrightarrow{\tilde{a}}_3 + \overrightarrow{\tilde{a}}_4 - 2\overrightarrow{\tilde{a}}_2) + \delta (\overrightarrow{\tilde{a}}_4) = \overrightarrow{0} \]
\[\Rightarrow \quad (\lambda - 1)\overrightarrow{\tilde{a}}_1 + (1 - \lambda + \mu - 2 \gamma)\overrightarrow{\tilde{a}}_2 + (\mu + \gamma + 1)\overrightarrow{\tilde{a}}_3 + (\gamma + \delta)\overrightarrow{\tilde{a}}_4 = \overrightarrow{0} \]
Since $\overrightarrow{\tilde{a}}_1, \overrightarrow{\tilde{a}}_2, \overrightarrow{\tilde{a}}_3, \overrightarrow{\tilde{a}}_4$ are linearly independent.
\[\therefore \quad \lambda - 1 = 0, 1 - \lambda + \mu - 2 \gamma = 0, \mu + \gamma + 1 = 0, \gamma + \delta = 0 \]
\[\text{i.e.,} \quad \lambda = 1, \mu = 2 \gamma, \mu + \gamma + 1 = 0, \gamma + \delta = 0 \]
\[\text{i.e.,} \quad \lambda = 1, \mu = -\frac{2}{3}, \gamma = -\frac{1}{3}, \delta = \frac{1}{3} \]

15. (a): Let $\overrightarrow{\tilde{c}} = x\overrightarrow{\tilde{a}} + y\overrightarrow{\tilde{b}} + z(\overrightarrow{\tilde{a}} \times \overrightarrow{\tilde{b}})$
Taking successive dot product with $\overrightarrow{\tilde{a}}, \overrightarrow{\tilde{b}}, \overrightarrow{\tilde{c}}$ and $\overrightarrow{\tilde{a}} \times \overrightarrow{\tilde{b}}$, we get
\[x = y = \frac{1}{3} \text{ and } z = \frac{2\sqrt{2}}{3} \]

Also, volume of tetrahedron $OABC = \frac{1}{6\sqrt{2}}$.
\[\Rightarrow \quad \left[\overrightarrow{\tilde{a}} \cdot (\overrightarrow{\tilde{b}} \times \overrightarrow{\tilde{c}}) \right] = \frac{1}{\sqrt{2}} \]

Now, volume,
\[V = \frac{1}{6} \left[\overrightarrow{\tilde{a}} \cdot (\overrightarrow{\tilde{b}} \times \overrightarrow{\tilde{c}}) \right] = \frac{1}{6\sqrt{2}} \]
\[\therefore \quad 12\sqrt{2}V = 2 \]

17. (a): $\overrightarrow{OD} = -x \overrightarrow{OA} \Rightarrow \overrightarrow{r} = -x \overrightarrow{\tilde{a}}$
\[\therefore \quad A, B, C \text{ are coplanar} \quad 1 \overrightarrow{\tilde{a}} + m \overrightarrow{\tilde{b}} + n \overrightarrow{\tilde{c}} = \overrightarrow{0} \]
\[\Rightarrow \quad (\frac{\overrightarrow{r}}{x}) + m \overrightarrow{\tilde{b}} + n \overrightarrow{\tilde{c}} = \overrightarrow{0} \Rightarrow \left(\frac{1}{x} \right) \overrightarrow{r} + m \overrightarrow{\tilde{b}} + n \overrightarrow{\tilde{c}} = \overrightarrow{0} \]
\[\therefore \quad A, B, C, D \text{ are collinear}. \]
\[\Rightarrow \quad -\frac{l}{x} + m + n = 0 \Rightarrow x = \frac{l}{m + n} \]

$\overrightarrow{AD} = -x\overrightarrow{\tilde{a}} - \overrightarrow{\tilde{a}} = -(x + 1)\overrightarrow{\tilde{a}}$
\[\therefore \quad \frac{OD}{AD} = \frac{x}{x + 1} = \frac{l}{l + m + n} \]

Similarly, $\overrightarrow{OE} = \frac{m}{l + m + n}, \overrightarrow{OF} = \frac{n}{l + m + n}$
\[\therefore \quad \frac{OD}{AD} + \frac{OE}{BE} + \frac{OF}{CF} = 1 \]
18. (b): \[|BC|^2 = r^2 - 2(\overrightarrow{BA} \cdot \overrightarrow{BC}) + |BA|^2 = 1 \geq 0 \]

In standard notations, we have
\[r^2 a^2 - 2la \cos B + c^2 - b^2 \geq 0 \]
\[\therefore \text{Discriminant of (i) } \leq 0 \]
\[\Rightarrow 4a^2 c^2 \cos^2 B - 4a^2 c^2 \left(b^2 - b^2 \right) \leq 0 \]
\[\Rightarrow -c^2 \sin^2 B + b^2 \leq 0 \Rightarrow (b - c \sin B) (b + c \sin B) \leq 0 \]
\[\Rightarrow b - c \sin B \leq 0 \text{ or } b + c \sin B > 0 \]
\[\Rightarrow b \leq c \sin B \Rightarrow b \leq b \sin C \Rightarrow \sin C = 1 \Rightarrow \angle C = \pi/2 \]

19. (c): \[
\begin{vmatrix}
 c_1 & a_1 & b_1 \\
 c_2 & a_2 & b_2 \\
 c_3 & a_3 & b_3
\end{vmatrix}
\begin{vmatrix}
 c_1 & c_2 & c_3 \\
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3
\end{vmatrix} = \left[\begin{array}{c}
 \tilde{a} \\
 \tilde{b} \\
 \tilde{c}
\end{array} \right] \begin{bmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}
\]
\[
= |\tilde{a} \times \tilde{b}| + |\tilde{c}| \cos^2 \theta \]
\[= |\tilde{a} \times \tilde{b}| \left(\frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{a_1^2 + a_2^2 + a_3^2} \right)^2 \cos^2 \theta \]
\[= \frac{1}{4} |\tilde{a}|^2 |\tilde{b}|^2 \cos^2 \theta \]

20. (b): Note that the orthocentre of \(\triangle ABC \) is incentre of \(\triangle DEF \).
Hence, position vector of \(H \)
\[\vec{h} = \frac{x \vec{d} + y \vec{e} + z \vec{f}}{x + y + z} \]
\[\Rightarrow \vec{h} = \frac{x \vec{d} + y \vec{e} + z \vec{f}}{x + y + z} \quad \text{[From (i)]} \]
\[= \frac{4(\sqrt{3} + 1)(2\sqrt{2})}{x + y + z} \]
\[= 4 \]

21. (c): Let \(P(x, y, z) \), then \(M = (x, 0, z) \), \(N = (x, y, 0) \)
\[\overrightarrow{OM} \times \overrightarrow{ON} = (yz, 0, -y) \]
\[\cos(90^\circ - \theta) = \frac{x(\overrightarrow{y}z + y(\overrightarrow{z}) + z(\overrightarrow{x}))}{\sqrt{x^2 + y^2 + z^2} \sqrt{(yz)^2 + (zx)^2 + (xy)^2}} \]
\[\Rightarrow \csc^2 \theta = \left(x^2 + y^2 + z^2 \right) \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} \right) \]
\[\Rightarrow \csc^2 \alpha = \frac{x^2 + y^2 + z^2}{x^2} = \frac{y^2 + z^2}{y^2} \]
and \(\csc^2 \gamma = \frac{x^2 + y^2 + z^2}{z^2} \)
\[\csc^2 \gamma = \csc^2 \alpha + \csc^2 \beta + \csc^2 \gamma \]
\[\therefore \csc^2 \theta = \csc^2 \alpha + \csc^2 \beta + \csc^2 \gamma \]

22. (b): Let \(\angle AOP = \alpha \), \(\angle BOP = \beta \), \(\angle COP = \gamma \)
Given, \(PQ = PR = PS \)
\[\Rightarrow OP \sin \alpha = OP \sin \beta \]
\[= OP \sin \gamma \]
\[\Rightarrow \alpha = \beta = \gamma \]
Also, \(|OA| = |OB| = |OC| \)
\[\Rightarrow OP \perp (OA - OB) \text{ and } OP \perp (OA - OC) \]
\[\Rightarrow OP \perp ((OA - OB) \times (OA - OC)) \]
\[\Rightarrow \text{Required vector along } OP = 2(3\hat{i} + 4\hat{j} + 6\hat{k}) \]

PUZZLE CORNER

Introducing MATHDOKU, a mixture of ken-ken, sudoku and Mathematics.
In this puzzle 6 x 6 grid is given, your objective is to fill the digits 1-6 so that each appear exactly once in each row and each column. Notice that most boxes are part of a cluster. In the upper-left corner of each multibox cluster is a value that is combined using a specified operation on its numbers. For example, if that value is 3 for a two-box cluster and operation is multiply, you know that only 1 and 3 can go in there. But it is your job to determine which number goes where! A few cluster may have just one box and that is the number that fills that box.

18 x 7 + 40 x 18 x 2 x 12 x 8 x 3 x 6 x 1 x 3 x 1

Readers can send their responses at editor@mtg.in or post us with complete address. Winners' name with their valuable feedback will be published in next issue.
JEE MAIN
Revision Cum Crash Course
TEST YOURSELF • PUSH YOUR LIMITS
REACH FOR YOUR PEAK POTENTIAL

Key Features
- Syllabus systematically divided into 30 days
- Crisp theory based on JEE Main latest syllabus
- Problems for practice and Previous years’ questions for each day with detailed solutions
- OMR sheets at the end of each exercise to improve the skills to attempt actual question paper
- Unit Tests and Mock Test Papers to check your readiness
- JEE Main January & April 2019 solved papers included
- Model Test Papers included with Numerical Value Type questions

Available at all leading book shops throughout India. To buy online visit www.mtg.in.
For more information or for help in placing your order,
call 0124-6601200, 1800-10-38673 (Toll Free) or e-mail info@mtg.in

Visit www.mtg.in for latest offers and to buy online!
1. The vertices of an equilateral triangle lie on three parallel lines which are 3 units and 1 unit apart as shown. Find the area of this triangle.

2. Draw a tangent line to parabola \(y = x^2 \) at the point \(A(1, 1) \). Suppose the line intersects the \(x \)-axis and \(y \)-axis at \(D \) and \(B \) respectively. Let point \(C \) be on the parabola and point \(E \) on \(AC \) such that \(\frac{AE}{EC} = \lambda_1 \).

Let point \(F \) be on \(BC \) such that \(\frac{BF}{FC} = \lambda_2 \) and \(\lambda_1 + \lambda_2 = 1 \). Assume that \(CD \) intersects \(EF \) at point \(P \). When point \(C \) moves along the parabola, find the equation of the trail of \(P \).

3. Find the largest constant \(k \) such that \(\frac{kabc}{a+b+c} \leq (a+b)^2 + (a+b+4c)^2 \) for all \(a, b, c > 0 \).

4. Let \(n \) be a positive integer and \(a \) a positive real number. Determine the maximum value of \(a^{k(1)} + a^{k(2)} + \ldots + a^{k(s)} \), where \(k \) is an integer such that \(1 \leq k \leq n \) and \(k(1), k(2), \ldots, k(s) \) are positive integers with sum \(n \).

5. Let \(a_0 \) and \(a_1 \) be integers. The sequence \(a_n \) is defined by \(a_2 = 2a_1 - a_0 + 2 \) and \(a_{n+1} = 3a_n - 3a_{n-1} + a_{n-2} \) for \(n \geq 2 \). If for any positive integer \(m \), the sequence contains \(m \) consecutive terms all of which are perfect squares, prove that every term of the sequence is a perfect square.

6. Find the value of the continued root: \[\sqrt{4 + 27\sqrt{4 + 29\sqrt{4 + 31\sqrt{4 + 33\sqrt{\ldots}}}}} \]

7. Prove that the average of the numbers \(n \sin n^\circ \), \(n = 2, 4, 6, \ldots, 180 \) is \(\cot 1^\circ \).

SOLUTIONS

1. Using Pythagoras' Theorem on the triangle marked \(PQR \), we have
\[
4^2 + \left(\sqrt{x^2 - 1} - \sqrt{x^2 - 9} \right)^2 = x^2
\]
\[\Rightarrow \quad 16 + x^2 - 1 + x^2 - 9 - 2\sqrt{x^2 - 1}\left(x^2 - 9\right) = x^2\]
On rearrangement, we get
\[x^2 + 6 = 2\sqrt{(x^2 - 1)(x^2 - 9)}\]... (i)

Squaring (i) both sides, we get
\[x^4 + 12x^2 + 36 = 4(x^4 - 10x^2 + 9) = 4x^4 - 40x^2 + 36\]
This simplifies to \(3x^4 - 52x^2 = 0\) or \(x^2 = \frac{52}{3}\). The area of an equilateral triangle of side length \(x \) is \(\frac{\sqrt{3}}{4}x^2\) or \(x^2 \times \sqrt{3}/4\).
The area of the given triangle is thus \(\frac{\sqrt{3}}{4} \times \frac{52}{3} = 13\sqrt{3}/3\).

2. The slope of the tangent line passing through \(A \) is \(y' = 2x\). So the equation of the tangent line \(AB \) is \(y = 2x - 1\).

Hence, the coordinates of \(B \) and \(D \) are \(B(0, -1)\), \(D\left(\frac{1}{2}, 0\right)\).

Thus, \(D \) is the midpoint of line segment \(AB \).

Consider \(P(x, y) \), \(C(x_0, y_0) \), \(E(x_1, y_1) \), \(F(x_2, y_2) \).

Then by \(\frac{AE}{EC} = \frac{BF}{FC} = \lambda_1 \), we get
\[
y_1 = \frac{1 + \lambda_1 - \lambda_1 x_0^2}{1 + \lambda_1}, \quad y_2 = \frac{1 + \lambda_2 - \lambda_2 x_0^2}{1 + \lambda_2}.
\]

Therefore the equation of line \(EF \) is
\[
y - \frac{1 + \lambda_1 x_0^2}{1 + \lambda_1} = \frac{x - 1 + \lambda_1 x_0}{1 + \lambda_1}, \quad x - \frac{1 + \lambda_2 x_0^2}{1 + \lambda_2} = \frac{y - 1 + \lambda_2 x_0}{1 + \lambda_2}.
\]
Simplifying it, we get
\[
[(\lambda_2 - \lambda_1)x_0 - (1 + \lambda_2)]y
= [(\lambda_2 - \lambda_1) x_0^2 - 3] x + 1 + x_0 - \lambda_2 x_0^2.
\] ...

When \(x_0 \neq \frac{1}{2}\), the equation of line \(CD\) is
\[
y = \frac{2x_0^2 - x_0^2}{2x_0 - 1} \quad \text{...ii)}
\]
From (i) and (ii), we get
\[
x = \frac{x_0 + 1}{3},
\]
y = \(\frac{x_0}{3}\).

Eliminating \(x_0\), we get the equation of the trail of point
\(P\) as \(y = \frac{1}{3}(3x - 1)^2\).

When \(x_0 = \frac{1}{2}\), the equation of \(EF\) is
\[
\frac{3}{2} y = \left(\frac{1}{4} \lambda_2 - \frac{\lambda_1}{4} - 3\right)x + \frac{3}{2} \frac{-\lambda_2}{4},
\]
the equation of \(CD\) is \(x = \frac{1}{2}\). Combining them, we conclude that
\[(x, y) = \left(\frac{1}{2}, \frac{1}{12}\right)\] is on the trail of \(P\). Since \(C\) and \(A\)
cannot be congruent, \(x_0 \neq 1, x \neq \frac{2}{3}\).

Therefore the equation of the trail is
\(y = \frac{1}{3}(3x - 1)^2, x \neq \frac{2}{3}\).

3. By the A.M.-G.M. inequality,
\[
(a + b)^2 + (a + b + 4c)^2 = (a + b)^2 + (a + 2c + b + 2c)^2
\]
\[
\geq (2\sqrt{ab})^2 + (2\sqrt{2ac + 2b^2})^2
\]
\[
= 4ab + 8ac + 8bc + 16c^2ab.
\]
Therefore,
\[
\frac{(a+b)^2 + (a + b + 4c)^2}{abc} \geq \frac{4ab + 8ac + 8bc + 16c^2ab}{(a+b+c)}
\]
\[
= \left(\frac{4}{c} + \frac{8}{b} + \frac{8}{a} + \frac{16}{\sqrt{ab}}\right)(a+b+c)
\]
\[
= 8\left(\frac{1}{2c} + \frac{1}{b} + \frac{1}{a} + \frac{1}{\sqrt{ab}}\right)(\frac{a}{2} + \frac{a}{2} + \frac{b}{2} + \frac{b}{2} + c)
\]
\[
\geq 8 \left(\frac{1}{\sqrt{2a^2b^2c^2}}\right) \left(\frac{a^2 b^2 c^2}{2^4}\right) = 100,
\]
again by the A.M.-G.M. Inequality. Hence the largest constant \(k\) is 100. For \(k = 100\), equality holds if and only if \(a = b = 2c > 0\).

4. If \(0 < a \leq 1\), \(a^l\) is non-increasing as the positive integer \(l\) increases. Hence we should take \(s = n\) and \(k(i) = 1\) for \(1 \leq i \leq s\). The maximum value of \(a^{k(1)} + a^{k(2)} + \ldots + a^{k(s)}\) \(\ldots (i)\)
is \(na\). Now let \(a > 1\). For all positive integers \(u\) and \(v\),
\[
a^{u+1} - 1)/(a^{u+1} - 1) \geq 0,
\]
or \(a^u + a^v \leq a^{u+v}\).
Hence we should take \(k(i) = 1\) for \(1 \leq i \leq s - 1\). The maximum value of (i) is then at most
\[
(s - 1) a + a^{n-(s-1)} \quad \cdots (ii)
\]
Note that \(a + a^m = a^{m+1}\) if
\[
m = \log_a \frac{a}{a-1}\quad \cdots (iii)
\]
It follows that if
\[
s \leq (n + 1) - \log_a \frac{a}{a-1}, \quad \cdots (iv)
\]
The value of (ii) decreases as \(s \) decreases, so that we should take \(s = n \) and obtain \(na \). On the other hand, if
\[
s > (n + 1) - \log_a \frac{a}{a - 1},
\]
the value of (ii) decreases as \(s \) increases, so that we should take \(s = 1 \) and obtain \(a^n \). Hence, the maximum value of (ii), and of (v), is \(\max(na, a^n) \). For \(n = 1 \),
\[
na = a^n.
\]
Suppose \(n \geq 2 \). Then \(na = a^n \) when \(a = n^{\frac{1}{n - 1}} \).

Hence, if \(a \leq n^{\frac{1}{n - 1}} \), the maximum value of (i) is \(na \). If \(a > n^{\frac{1}{n - 1}} \), the maximum value of (i) is \(a^n \).

5. Let \(d_n = a_n - a_{n-1} \) for \(n \geq 1 \).
Then, \(0 = a_{n+1} - 3a_n + 3a_{n-1} - a_{n-2} = d_{n+1} - 2d_n + d_{n-1} \) for \(n \geq 2 \). Hence
\[
d_n - d_{n-1} - d_{n-2} - \ldots - d_2 - d_1 - a_2 - 2a_1 = 0
\]
For \(n \geq 1 \), so that
\[
a_n = a_0 + \sum_{k=1}^{n} d_k = a_0 + nd_1 + n(n-1)
\]
By the hypothesis, there exists a positive integer \(t \) such that \(a_t \) and \(a_{t+1} \) are both squares. Hence \(a_{t+2} = a_t + 1 \) is not 2 (mod 4).
Since, \(a_{t+2} = a_t + 1 = 2\lambda \) for some integer \(\lambda \) and \(a_n = (n + \lambda)^2 + a_0 - \lambda^2 \).
For \(n \geq 0 \), if \(a_0 - \lambda^2 \neq 0 \), let it have \(m \) divisors. Since the coefficient of the quadratic term in \(a_n \) is positive, there exists a positive integer \(n_0 \) such that \((a_n) \) is strictly increasing for \(n > n_0 \). By the hypothesis, there exists a positive integer \(k > n_0 \) such that for \(1 \leq i \leq m \), \(a_{k+i} = b_i^2 \) for some positive integer \(b_i \).
Then, \(a_0 - \lambda^2 = b_1^2 - (k + i + 1)^2 = (b_1 - k - i - 1)(b_1 + k + i + 1) \) for \(1 \leq i \leq m \). The integers \(b_1 + k + i \) are distinct, since \(b_1 + i \) is a divisor of \(a_n - \lambda^2 \) has at least \(m + 1 \) divisors, which is a contradiction. It follows that \(a_0 - \lambda^2 = 0 \) and \(a_n = (n + \lambda)^2 \) for \(n \geq 0 \).

6. The answer is 29. More generally, for any positive integer \(n \), we claim that
\[
\sqrt{4 + n\sqrt{4 + (n+2)\sqrt{4 + (n+4)\sqrt{4 + \cdots}}} = n + 2,
\]
where the left side is defined as the limit of
\[
F(n, m) = \sqrt{4 + n\sqrt{4 + (n+2)\sqrt{4 + (n+4)\sqrt{4 + \cdots + n\sqrt{4 + (n+2)\sqrt{4 + (n+4)\sqrt{4 + \cdots}}}}} = n + 2.
\]
as \(m \to \infty \) (where \(m \) is an integer and \(m - n \) is even)
If \(g(n, m) = F(n, m) - (n + 2) \), we have
\[
F(n, m)^2 - (n + 2)^2 = (4 + nF(n+2, m)) - (4 + n(n+4)) = nF(n+2, m) - (n + 4)
\]
so \(g(n, m) = -\frac{n}{F(n, m) + n + 2} g(n+2, m) \).
Clearly \(F(n, m) > 2 \), so
\[
|g(n, m)| < \frac{n}{n + 4} |g(n+2, m)|.
\]
By iterating this, we obtain
\[
|g(n, m)| < \frac{n(n+2)}{(m(m+2))} |g(m+2, m)| < \frac{n(n+2)}{m}
\]
Therefore \(g(n, m) \to 0 \) as \(m \to \infty \).

7. Let \(x = 2 \sin 2^\circ + 4 \sin 4^\circ + \cdots + 90 \sin 90^\circ + \cdots + 178 \sin 178^\circ \)
\[
= (2 + 178)\sin 2^\circ + (4 + 176)\sin 4^\circ + \cdots + 180(\sin 2^\circ + \sin 4^\circ + \cdots + \sin 88^\circ) + 90 \sin 90^\circ
\]
Then, \(x = \frac{x}{90} = 2 \sin 2^\circ + 2 \sin 4^\circ + \cdots + 2 \sin 88^\circ + 1 \)
\[
\Rightarrow x \sin 1^\circ = 2 \sin 2^\circ \sin 1^\circ + 2 \sin 4^\circ \sin 1^\circ + \cdots + 2 \sin 88^\circ \sin 1^\circ + 1^\circ
\]
Now, \(2 \sin 2^\circ \sin 1^\circ = \cos 1^\circ - \cos 3^\circ, \)
\[
2 \sin 4^\circ \sin 1^\circ = \cos 3^\circ - \cos 5^\circ,
\]
\[
2 \sin 88^\circ \sin 1^\circ = \cos 87^\circ - \cos 89^\circ
\]
Hence, \(x \sin 1^\circ = \cos 1^\circ - \cos 89^\circ + \sin 1^\circ = \cos 1^\circ \).
Thus, \(x = \cot 1^\circ \), as required.

PUZZLE CORNER

ANSWER - NOVEMBER 2019

<table>
<thead>
<tr>
<th>3</th>
<th>6</th>
<th>3</th>
<th>1</th>
<th>3</th>
<th>11</th>
<th>5</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>15</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>15</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>15</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
1. Prove that the sum of infinite natural numbers is \(\frac{1}{12}\).

\(\text{Ans.}\) Let \(S = 1 + 2 + 3 + 4 + \ldots \infty\) \(\ldots (i)\)
and \(S_1 = 1 - 1 + 1 - 1 + \ldots \infty\) \(\ldots (ii)\)

Now, this sum should be 0 or 1 based on number of natural numbers taken. If infinite numbers are even, \(S_1 = 0\), if odd, \(S_1 = 1\). But Riemann zeta function gives it a value of \(\frac{1}{2}\).

\[\therefore S_1 = 1 - 1 + 1 - 1 + \ldots \infty \]
\[\therefore 1 - S_1 = 1 - (1 - 1 + 1 - 1 + \ldots \infty) \]
\[\therefore 1 - S_1 = S_1 \Rightarrow S_1 = \frac{1}{2} \ldots (iii) \]

Adding (iv) and (v), we get
\[2S_2 = 1 - 1 + 1 - 1 + 1 - 1 + \ldots \infty \]
\[\Rightarrow 2S_2 = S_1 \Rightarrow 2S_2 = \frac{1}{2} \ldots (vi) \]

Again from (i) and (iv),
\[S - S_2 = (1 + 2 + 3 + 4 + \ldots \infty) - (1 - 2 + 3 - 4 + 5 - 6 + \ldots \infty) \]
\[\Rightarrow S - S_2 = 4 + 8 + 12 + 16 + \ldots \infty \]
\[\Rightarrow S - S_2 = 4 (1 + 2 + 3 + 4 + \ldots \infty) \]
\[\Rightarrow S - S_2 = 4S \ldots (v) \]
\[\Rightarrow 3S = S_2 \Rightarrow S = \frac{1}{3} S_2 = \frac{1}{12} \ldots (vi) \]

It is interesting to know \(S = -\frac{1}{12}\) has been used to derive the equations in string theory, quantum field theory and in some complex analytics.

2. If \(u = \sqrt{z_1 z_2}\), prove that
\[|z_1| + |z_2| = \frac{|z_1 + z_2 + u| + |z_1 + z_2 - u|}{2} \]

\(\text{(Anchal Srivastava, M.P.)}\)

\[\text{Ans.} \]
\[\text{R.H.S.} = \frac{|z_1 + z_2 + u| + |z_1 + z_2 - u|}{2} = \frac{1}{2} |z_1 + z_2| + \frac{1}{2} |z_1 + z_2 - 2 \sqrt{z_1 z_2}| \]
\[\frac{1}{2} (|\sqrt{z_1} + \sqrt{z_2}|^2 + |\sqrt{z_1} - \sqrt{z_2}|^2) \]
\[\frac{1}{2} (\sqrt{z_1} + \sqrt{z_2})^2 + \frac{1}{2} (\sqrt{z_1} - \sqrt{z_2})^2 \]
\[= \frac{1}{2} (z_1 + z_2) + \frac{1}{2} (z_1 - z_2) = z_1 \pm z_2 \]
\[\therefore \ z^2 = |z - z| = |z| \ |z| = |z|^2 \]

Now, for any two complex numbers \(\alpha, \beta\), we get
\[|\alpha + \beta|^2 + |\alpha - \beta|^2 \]
\[= (\alpha + \beta)(\alpha + \beta) + (\alpha - \beta)(\alpha - \beta) \]
\[= (\alpha + \beta)(\alpha + \beta) + (\alpha - \beta)(\alpha - \beta) \]
\[= |\alpha|^2 + 2 |\beta|^2 \]
\[\therefore \ 2 |\alpha|^2 + 2 |\beta|^2 = |\alpha|^2 + |\beta|^2 \]

So, \(\text{R.H.S.} = |\sqrt{z_1}|^2 + |\sqrt{z_2}|^2 = |(\sqrt{z_1})^2 + |(\sqrt{z_2})^2| \]
\[= |z_1| + |z_2| = \text{L.H.S.} \]

3. A person has to go through three successive tests. The probability of passing first test is \(p\). If he fails in one of the tests, then the probability of passing next test is \(p/2\), otherwise it remains the same. For selection, the person must pass at least two tests. Find the probability that the person has to be selected.

\(\text{(Abhijit Pal, W.B.)}\)

\(\text{Ans.}\) Let \(E_i (i = 1, 2, 3)\) be the event of the person passing the \(i^{th}\) test and \(E\) be the event that he is selected.

Then \(E = (E_1 \cap E_2) \cup (E_1 \cap \bar{E_2} \cap E_3) \cup (\bar{E_1} \cap E_2 \cap E_3)\)

Therefore
\[P(E) = P(E_1)P(E_2 | E_1) + P(E_1)P(\bar{E_2} | E_1)P(E_3 | \bar{E_2}) + P(E_1)P(\bar{E_2} | E_1)P(E_3 | \bar{E_2}) \]
\[= p \cdot p + p(1 - p) \frac{p}{2} + (1 - p) \frac{p}{2} \cdot p \]
\[= 2p^2 - p^3 \]
CIRCLES

A circle is defined as the locus of a point, which moves in a plane such that its distance from a fixed point in the plane is always constant. The fixed point is called the centre and the constant distance is called the radius of the circle.

- General equation of circle is given by $x^2 + y^2 + 2gx + 2fy + c = 0$ with centre $(C) = (-g, -f)$ and radius $(r) = \sqrt{g^2 + f^2 - c}$.
- Standard equation of circle is given by $(x - h)^2 + (y - k)^2 = r^2$ with centre $(C) = (h, k)$ and radius $(r) = a$.
- The second degree equation given by $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$, represents a circle if $a = b, h = 0, \Delta = (ab - h^2)^2 - 4ac > 0$.

Orthogonal Circles

Two circles are orthogonal if $2g_1g_2 + 2f_1f_2 = c_1 + c_2$.

Direction Cosines and Direction Ratios

- Direction cosines: If a line L makes an angle α, β, γ $(0 \leq \alpha, \beta, \gamma \leq \pi)$ with the positive direction of x, y, z axes respectively then (l, m, n) is $(\cos \alpha, \cos \beta, \cos \gamma)$ are the direction cosines of the line L and $l^2 + m^2 + n^2 = 1$.
- Direction ratios: Any three numbers proportional to (l, m, n) are called direction ratios. We denote them by (a, b, c).

Equation of a line in different forms

- Vector form: $\vec{r} = \vec{a} + \lambda \vec{b}$, $\lambda \in \mathbb{R}$, where $A(\vec{a})$ is passing point and B is the parallel vector.
- Cartesian form: $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$, where (x_1, y_1, z_1) is passing point and (a_1, b_1, c_1) are direction ratios of the line.
- Line passing through two points:
 - Vector form: $\vec{r} = \vec{a} + \lambda (\vec{b} - \vec{a})$, $\lambda \in \mathbb{R}$, where $A(\vec{a})$ and $B(\vec{b})$ are the passing points.
 - Cartesian form: $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ where $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ are the passing points.

Shortest Distance between Two Lines

- Vector form: Let l_1 and l_2 be two skew lines whose equations are $\vec{r} = \vec{a} + \lambda \vec{b}_1$ and $\vec{r} = \vec{a} + \mu \vec{b}_2$ respectively.
 - Let PQ be the shortest distance vector between l_1 and l_2. Then, $PQ = \frac{\vec{b}_1 \times \vec{b}_2}{|\vec{b}_1 \times \vec{b}_2|}$
 - If lines are parallel, then $\vec{b}_1 = \vec{b}_2 = \vec{b}$ and $d = \frac{|\vec{a} - \vec{a}|}{|\vec{b}|}$.
- Cartesian form: Let two skew lines be $l_1: \frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ and $l_2: \frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$.
 - The shortest distance between l_1 and l_2 is given by $d = \frac{|(a_2 - a_1)b_1c_2 - a_1b_2c_2 + b_1c_2y_1 - a_1c_2y_2 + c_1z_2 - c_2z_1|}{\sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2 + (c_2 - c_1)^2}}$

Coplanarity of Two Lines

- Vector form: Two lines $l_1: \vec{a}_1 + \lambda \vec{b}_1, l_2: \vec{a}_2 + \lambda \vec{b}_2, l_3: \vec{a}_3 + \lambda \vec{b}_3$ are coplanar if $(\vec{b}_2 - \vec{b}_1) \times (\vec{b}_3 - \vec{a}_1) = 0$.
- Cartesian form: Two lines $x_1 + \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ and $x_2 + \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$ are coplanar if $\frac{x_2 - x_1}{b_2} \frac{y_2 - y_1}{c_2} = \frac{z_2 - z_1}{c_2}$.

Concept Map

- Class XI: Definition, Equations, Some Important Results about Circles
- Class XII: Parametric Form, Diametric Form, General Form, Orthogonal Circles
1. \((d) \): 1 to 9 \(\Rightarrow \) 9 digits, 10 to 99 \(\Rightarrow \) 180 digits
100 to 699 \(\Rightarrow \) 1800 digits \(\Rightarrow \) 1 to 699 \(\Rightarrow \) 1989 digits
Now, 700, 701, 702, 703, 704, 705, 706, 707, 708
2014th digit = (1989 + 8 \times 3 + 1)th digit = 7, the first digit of 708.

2. \((a) \): \(7^{2014} = -(1 - 50)^{1007} \)
\(= [1 - 50350 + 1007\cdot 503\cdot 2500 + \ldots] \)
\(= 1 + 350 - 2500 + 5000 = 2849, \) digit sum = 23.

3. \((c) \): \(\left(\frac{a+b+c+d}{4} \right)^2 \leq \frac{a^2 + b^2 + c^2 + d^2}{4} \)
\(\Rightarrow (8 - p)^2 \leq 4(16 - p^2) \Rightarrow p \leq \frac{16}{5} \)

4. \((d) \): \(I = \int_0^1 1 \cdot dx + \int_2^{\ln(1+x^2)} dx \)
\(= \sqrt{e-1} + x\ln(1+x^2) \left| _0^2 \right. - 2 \int_0^1 \left(1 - \frac{1}{1+x^2} \right) dx \)
\(= \sqrt{e-1} + 2\ln 5 - \sqrt{e-1} - 2\ln 3 + 2\ln 2 - 2\ln 2 - \sqrt{e-1} \)
\(\Rightarrow \) Required answer = -4

5. \((b) \): Required probability
\(= \frac{7\cdot 4!}{\frac{1}{2} - \frac{1}{3} + \frac{1}{4!} + 7!} = \frac{1}{16} \)

6. \((a, d) \): Bisector of \(\angle BAC \) is
\(\frac{AB}{AC} \pm \frac{AC}{AB} \)
\(\Rightarrow \) Direction ratios are -1, 2, 1 and 2, -1, 4

7. \((c) \): \(f - x^2 = g - xg' \Rightarrow f - g = cx \)
\(x + f' = x + gg' \Rightarrow f^2 - g^2 = d \)
\(\Rightarrow f + g = \frac{d}{cx}, \ f = \frac{1}{2} \left(\frac{d}{cx} \right) \)
\(\Rightarrow f(1) = 1, \ g(2) = 3 \)
\(\Rightarrow f(x) = \frac{-1}{x}, \ g(x) = \frac{2}{x} + x \)
So, \(f(2) + g(1) = 2 \)

8. \((b) \): \(\int_1^1 f(x) \ g(x) \ dx = \int_1^1 \left(\frac{4}{x^2} - x^2 \right) dx = \frac{1}{3} \)

9. \((6) \): \(C_1 \) : centre (0, 0), radius 1
\(C_2 \) : centre (3, 0), radius 2
\(C_3 \) : centre (0, 4), radius 3
\(C_4 \) : centre (\(\alpha, \beta \)), radius \(r \)
\(\alpha^2 + \beta^2 = (r - 1)^2 \)
\((\alpha - 3)^2 + \beta^2 = (r - 2)^2, \)
\(\alpha^2 + (\beta - 4)^2 = (r - 3)^2, \)
On solving, we get \(\alpha = 3, \ \beta = 4, \ r = 6 \)

10. \((a) \): \(P \rightarrow 2; \ Q \rightarrow 1; \ R \rightarrow 4; \ S \rightarrow 3 \)
\((P) \) Digits 1 to 9, \(N = \left(\frac{9}{4} \right) = 210, \ S = 3 \)
\((Q) \) Digits 0 to 9, \(N = \left(\frac{10}{4} \right) = 210, \ S = 3 \)
\((R) \) Digits 1 to 9, \(N = \left(\frac{9 + 4 - 1}{4} \right) = \left(\frac{12}{4} \right) = 495, \ S = 18 \)
\((S) \) Digits 0 to 9,
\(N = \left(\frac{10 + 4 - 1}{4} \right) - 1 = \left(\frac{13}{4} \right) - 1 = 714, \ S = 12 \)
Omitting 0000.
TRIGONOMETRIC RATIOS

- In a right angled triangle ABC, $\angle CAB = A$ and $\angle BCA = 90^\circ = \pi/2$. AC is the base, BC is the altitude and AB is the hypotenuse. We refer to the base as the adjacent side and to the altitude as the opposite side. There are six trigonometric ratios, also called trigonometric functions or circular functions. With reference to angle A, the six ratios are:

$$\frac{BC}{AB} = \frac{\text{opposite side}}{\text{hypotenuse}}$$

is called the sine of A, and written as $\sin A$.

$$\frac{AC}{AB} = \frac{\text{adjacent side}}{\text{hypotenuse}}$$

is called the cosine of A, and written as $\cos A$.

$$\frac{BC}{AC} = \frac{\text{opposite side}}{\text{adjacent side}}$$

is called the tangent of A, and written as $\tan A$.

- Obviously, $\tan A = \frac{\sin A}{\cos A}$. The reciprocals of sine, cosine and tangent are called the cosecant, secant and cotangent of A respectively. We write these as $\csc A$, $\sec A$ and $\cot A$ respectively.

Note:

- Since the hypotenuse is the greatest side in a right angle triangle so, $\sin A$ and $\cos A$ can never be greater than unity and $\csc A$ and $\sec A$ can never be less than unity. Hence $|\sin A| \leq 1$, $|\cos A| \leq 1$, $|\csc A| \geq 1$, $|\sec A| \geq 1$, while $\tan A$ and $\cot A$ may have any numerical value lying between $-\infty$ to $+\infty$.

- All the six trigonometric functions have got a very important property in common that is periodicity. Remember that the trigonometrical ratios are real numbers and remain same so long as the angle remains same.

Trigonometric identities

- $\sin^2 A + \cos^2 A = 1$
- $\sec^2 A - \tan^2 A = 1$
- $\csc^2 A - \cot^2 A = 1$

Fundamental inequality

- For $0 < A < \frac{\pi}{2}$, $0 < \cos A < \frac{\sin A}{A} < \frac{1}{\cos A}$

TRIGONOMETRIC RATIOS OF ANY ANGLE

- Consider the system of rectangular co-ordinate axes dividing the plane into four quadrants. An angle θ lies in one and only one of these quadrants. Signs of the trigonometric ratios in the various quadrants are shown in the figure. Note that $\angle XOY = \pi/2$, $\angle XO'Y = \pi$, $\angle XOY' = 3\pi/2$.

Alok Kumar, a B.Tech from IIT Kanpur and IMMO 4th ranker of his time, has been training IIT and Olympiad aspirants for close to two decades now. His students have bagged AIR 1 in IIT JEE and also won medals for the country at IMO. He has also taught at Maths Olympiad programme at Cornell University, USA and UT, Dallas. He has been regularly proposing problems in international Mathematics journals.
P_iQ_i is positive if above the x-axis, negative if below the x-axis, OP_i is always taken positive. OQ_i is positive if along positive x-axis, negative if in opposite direction.

$$\sin \angle Q_iOP_i = \frac{P_iQ_i}{OP_i}, \quad \cos \angle Q_iOP_i = \frac{OQ_i}{OP_i}, \quad \tan \angle Q_iOP_i = \frac{P_iQ_i}{OQ_i}$$

Thus, depending on signs of OQ_i and P_iQ_i, the various trigonometrical ratios will have different signs.

<table>
<thead>
<tr>
<th>α</th>
<th>$\sin \alpha$</th>
<th>$\cos \alpha$</th>
<th>$\tan \alpha$</th>
<th>$\cot \alpha$</th>
<th>$\sec \alpha$</th>
<th>$\csc \alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\theta$</td>
<td>$-\sin \theta$</td>
<td>$\cos \theta$</td>
<td>$-\tan \theta$</td>
<td>$-\cot \theta$</td>
<td>$\sec \theta$</td>
<td>$-\csc \theta$</td>
</tr>
<tr>
<td>$90^\circ - \theta$</td>
<td>$\cos \theta$</td>
<td>$\sin \theta$</td>
<td>$\cot \theta$</td>
<td>$\tan \theta$</td>
<td>$\sec \theta$</td>
<td>$\csc \theta$</td>
</tr>
<tr>
<td>$90^\circ + \theta$</td>
<td>$\sin \theta$</td>
<td>$-\cos \theta$</td>
<td>$-\cot \theta$</td>
<td>$-\tan \theta$</td>
<td>$-\sec \theta$</td>
<td>$-\csc \theta$</td>
</tr>
<tr>
<td>$180^\circ - \theta$</td>
<td>$-\sin \theta$</td>
<td>$\cos \theta$</td>
<td>$-\tan \theta$</td>
<td>$-\cot \theta$</td>
<td>$\sec \theta$</td>
<td>$-\csc \theta$</td>
</tr>
<tr>
<td>$180^\circ + \theta$</td>
<td>$\sin \theta$</td>
<td>$-\cos \theta$</td>
<td>$-\tan \theta$</td>
<td>$\cot \theta$</td>
<td>$-\sec \theta$</td>
<td>$-\csc \theta$</td>
</tr>
<tr>
<td>$360^\circ - \theta$</td>
<td>$-\sin \theta$</td>
<td>$\cos \theta$</td>
<td>$-\cot \theta$</td>
<td>$\cot \theta$</td>
<td>$\sec \theta$</td>
<td>$\csc \theta$</td>
</tr>
<tr>
<td>$360^\circ + \theta$</td>
<td>$\sin \theta$</td>
<td>$\cos \theta$</td>
<td>$\tan \theta$</td>
<td>$\cot \theta$</td>
<td>$\sec \theta$</td>
<td>$\csc \theta$</td>
</tr>
</tbody>
</table>

- Angle 0° and $90^\circ - 0^\circ$ are complementary angles, θ and $180^\circ - \theta$ are supplementary angles.
- $\sin(n\pi + (-1)^n0) = \sin0^\circ, n \in I$.
- $\cos(2n\pi + 0) = \cos0, n \in I$.
- $\tan(n\pi + \theta) = \tan\theta, n \in I$.
- Sine of general angle of the form $n\pi + (-1)^n\theta$ will have the same sign as that of sine of angle θ and so on. The same is true for the respective reciprocal functions also.

BASIC FORMULAE

- $\sin (A + B) = \sin A \cos B + \cos A \sin B$
- $\sin (A - B) = \sin A \cos B - \cos A \sin B$
- $\cos (A + B) = \cos A \cos B - \sin A \sin B$
- $\cos (A - B) = \cos A \cos B + \sin A \sin B$
- $\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$
- $\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$
- $\sin (A + B) \sin (A - B) = \sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A$.
- $\cos (A + B) \cos (A - B) = \cos^2 A - \sin^2 B = \cos^2 B - \sin^2 A$.
- $\sin 2A = 2 \sin A \cos A = \frac{2 \tan A}{1 + \tan^2 A}$
- $\cos 2A = \cos^2 A - \sin^2 A = 1 - 2 \sin^2 A = 2 \cos^2 A - 1$
- $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$
- $\sin 3A = 3 \sin A - 4 \sin^3 A = 4 \sin (60^\circ - A) \sin (60^\circ + A)$
- $\cos 3A = 4 \cos^3 A - 3 \cos A = 4 \cos (60^\circ - A) \cos (60^\circ + A)$
- $\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$
 $= \tan (60^\circ - A) \tan (60^\circ + A) \tan (60^\circ + A)$
- $\sin A + \sin B = 2 \sin \left(\frac{A + B}{2} \right) \cos \left(\frac{A - B}{2} \right)$
- $\sin A - \sin B = 2 \sin \left(\frac{A - B}{2} \right) \cos \left(\frac{A + B}{2} \right)$
- $\cos A + \cos B = 2 \cos \left(\frac{A + B}{2} \right) \cos \left(\frac{A - B}{2} \right)$
- $\cos A - \cos B = 2 \sin \left(\frac{A - B}{2} \right) \sin \left(\frac{A + B}{2} \right)$
- $\tan A + \tan B = \frac{\sin (A + B)}{\cos A \cdot \cos B}$
- $2 \sin A \cos B = \sin (A + B) + \sin (A - B)$
- $2 \cos A \sin B = \sin (A + B) - \sin (A - B)$
- $2 \cos A \sin B = \cos (A + B) + \cos (A - B)$
- $2 \sin A \sin B = \cos (A - B) - \cos (A + B)$

CONDITIONAL IDENTITIES

- For any angles A, B, C
 - $\sin (A + B + C) = \sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C - \sin A \sin B \sin C$
cos (A + B + C) = cosA cosB cosC - cosA sinB sinC
- sinA cosB sinC - sinA sinB cosC

\[\tan(A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan A \tan C} \]

\[\cot(A + B + C) = \frac{\cot A \cot B \cot C - \cot A - \cot B - \cot C}{\cot A \cot B + \cot B \cot C + \cot A \cot C - 1} \]

- If A, B, C are angles of a triangle (or A + B + C = \pi)
 \[\sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C = \sin A \sin B \sin C \]
 \[\cos A \sin B \sin C + \sin A \cos B \sin C + \sin A \sin B \cos C = 1 + \cos A \cos B \cos C \]
 \[\tan A + \tan B + \tan C = \tan A \tan B \tan C \]
 \[\cot A \cot B \cot C + \cot A + \cot B + \cot C = 1 \]

\[\frac{B}{2} + \frac{C}{2} + \frac{A}{2} + \frac{\tan B}{\tan A} + 1 \]

\[\cot A \cot B + \cot B \cot C + \cot C \cot A = 1 \]

\[\sin 2A + \sin 2B + \sin 2C = 4\sin A \sin B \sin C \]

\[\cos 2A + \cos 2B + \cos 2C = -1 - 4\cos A \cos B \cos C \]

\[\cos^2 A + \cos^2 B + \cos^2 C = 1 - 2\cos A \cos B \cos C \]

\[\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \]

\[\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \]

TRIGONOMETRIC SERIES
- If we have a cosine series in its product form where the angles are in G.P. with common ratio 2, then multiply both numerator and denominator by 2

\[\sum_{r=0}^{n-1} \sin(\alpha + r\beta) = \frac{\sin\left(\frac{\alpha + (n-1)\beta}{2}\right) \cdot \sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} \]

\[\sum_{r=0}^{n-1} \cos(\alpha + r\beta) = \frac{\cos\left(\frac{\alpha + (n-1)\beta}{2}\right) \cdot \sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} \]

TRIGONOMETRIC EQUATIONS
- An equation involving one or more trigonometrical ratios of unknown angle is called a trigonometric equation e.g., \[\cos^2 x - 4 \sin x = 1 \]
- It is to be noted that a trigonometrical identity is satisfied for every value of the unknown angle where as trigonometric equation is satisfied only for some values (finite or infinite) of unknown angle. For example, \[\sec^2 x - \tan^2 x = 1 \] is a trigonometrical identity as it is satisfied for every value of \(x \in \mathbb{R} \).

SOLUTION OF A TRIGONOMETRIC EQUATION
- A value of the unknown angle which satisfies the given equation is called a solution of the equation e.g., \[\sin \theta = \frac{1}{2} \Rightarrow \theta = \pi/6 \]

General Solution
- Since trigonometrical functions are periodic functions, solutions of trigonometric equations can be generalized with the help of the periodicity of the trigonometrical functions. The solution consisting of all possible solutions of a trigonometric equation is called its general solution.

\[\sin \theta = 0 \Rightarrow \theta = n\pi, n \in \mathbb{Z} \]

\[\cos \theta = 0 \Rightarrow \theta = (2n + 1) \frac{\pi}{2}, n \in \mathbb{Z} \]

\[\sin \theta = \sin \alpha \Rightarrow \theta = n\pi + (-1)^n \alpha, n \in \mathbb{Z} \]

where \(\alpha \in [-\pi/2, \pi/2] \)

\[\cos \theta = \cos \alpha \Rightarrow \theta = 2n\pi \pm \alpha, n \in \mathbb{Z} \]

where \(\alpha \in [0, \pi] \)

\[\tan \theta = \tan \alpha \Rightarrow \theta = n\pi + \alpha, n \in \mathbb{Z} \]

where \(\alpha \in (-\pi/2, \pi/2) \)

\[\sin^2 \theta = \sin^2 \alpha, \cos^2 \theta = \cos^2 \alpha, \tan^2 \theta = \tan^2 \alpha \]

\[\Rightarrow \theta = n\pi \pm \alpha, n \in \mathbb{Z} \]

\[\sin \theta = 1 \Rightarrow \theta = (2n + 1) \frac{\pi}{2}, n \in \mathbb{Z} \]

\[\cos \theta = 1 \Rightarrow \theta = 2n\pi, n \in \mathbb{Z} \]

\[\cos \theta = -1 \Rightarrow \theta = (2n + 1)\pi, n \in \mathbb{Z} \]

The general solution should be given unless the solution is required in a specified interval.

\(\alpha \) is taken as the principal value of the angle. Numerically least angle is called the principal value.
13. If \(\tan 2\theta \cdot \tan \theta = 1 \), then \(\theta \) is equal to
(a) \(n\pi + \frac{\pi}{6} \)
(b) \(n\pi \pm \frac{\pi}{6} \)
(c) \(2n\pi \pm \frac{\pi}{6} \)
(d) none of these

14. If \(\alpha \) is the root of \(25\cos^2 \theta + 5\cos \theta - 12 = 0 \), \(\pi/2 < \alpha < \pi \), then \(\sin 2\alpha \) is equal to
(a) \(\frac{24}{25} \)
(b) \(-\frac{24}{25} \)
(c) \(\frac{13}{18} \)
(d) \(-\frac{13}{18} \)

15. The equation \(k\sin x + \cos 2x = 2k - 7 \) possesses a solution if
(a) \(k > 6 \)
(b) \(2 \leq k \leq 6 \)
(c) \(k > 2 \)
(d) none of these

16. The equation \(\sin^4 x - 2\cos^2 x + a^2 = 0 \) is solvable if
(a) \(-\sqrt{3} \leq a \leq \sqrt{3} \)
(b) \(-\sqrt{2} \leq a \leq \sqrt{2} \)
(c) \(-1 \leq a \leq 1 \)
(d) none of these

17. The set of values of \(x \) for which \(\frac{\tan 3x - \tan 2x}{1 + \tan 3x \tan 2x} = 1 \) is
(a) \(\pi/4 \)
(b) \(\pi/4 \)
(c) \(n\pi + \frac{\pi}{4} \); \(n = 1, 2, 3 \) ...
(d) \(2n\pi + \frac{\pi}{4} \); \(n = 1, 2, 3 \) ...

18. The value of the expression \(\frac{1 - 4\sin 10^\circ \sin 70^\circ}{2\sin 10^\circ} \) is
(a) \(1/2 \)
(b) \(1 \)
(c) \(2 \)
(d) none of these

19. Number of solutions of \(5\cos^2 \theta - 3\sin^2 \theta + 6\sin \theta \cos \theta = 7 \) in the interval \([0, 2\pi]\) is
(a) \(2 \)
(b) \(4 \)
(c) \(0 \)
(d) none of these

20. If \(\sqrt{3}\sin \pi x + \cos \pi x = x^2 - \frac{2}{3}x + \frac{19}{9} \), then \(x \) is equal to
(a) \(-\frac{1}{3} \)
(b) \(\frac{1}{3} \)
(c) \(\frac{2}{3} \)
(d) none of these

21. General solution for \(\theta \) if
\[\sin \left(\theta + \frac{\pi}{6} \right) + \cos \left(\theta + \frac{5\pi}{6} \right) = 2 \]
(a) \(2n\pi + \frac{7\pi}{6} \)
(b) \(2n\pi + \frac{\pi}{6} \)
(c) \(2n\pi - \frac{7\pi}{6} \)
(d) none of these
22. The general solution of the equation \(\tan x + \sec x = 2\cos x\) lying in the interval \([0, 2\pi]\) is
(a) 0 (b) 1 (c) 2 (d) 3

23. The general solution of the equation \((\sqrt{5}-1)\sin \theta + (\sqrt{5}+1)\cos \theta = 2\) is
(a) \(n\pi + (-1)^n \frac{\pi}{4} \frac{\pi}{12}\) (b) \(2n\pi + \frac{\pi}{4} \frac{\pi}{12}\) (c) \(n\pi + (-1)^n \frac{\pi}{4} \frac{\pi}{12}\) (d) \(2n\pi + \frac{\pi}{4} \frac{\pi}{12}\)

24. One solution of the equation \(4\cos^2 \theta \sin \theta - 2\sin^2 \theta = 3\sin \theta\) is
(a) \(x = n\pi + (-1)^n \frac{-3\pi}{10}\) (b) \(x = n\pi + (-1)^n \frac{3\pi}{10}\)
(c) \(x = 2n\pi \pm \frac{\pi}{6}\) (d) none of these

25. The solutions of the following equations are
\(\cos y = 3x \cos y = 14\) \(\cos y = 3x \cos y = 13\)
(a) \(y = \tan^{-1} \frac{1}{2} x = 5\sqrt{5}\) where \(2n\pi < y < 2n\pi + \frac{\pi}{2}\)
(b) \(y = \tan^{-1} \frac{1}{2} x = -5\sqrt{5}\) where \(2n\pi + \pi < y < 2n\pi + \frac{3\pi}{2}\)
(c) both (a) and (b) (d) none of these

26. The solution of \(\sin x + \sqrt{2} \cos x = \sqrt{2}\) is
(a) \(2n\pi + \frac{5\pi}{12}\) (b) \(2n\pi - \frac{5\pi}{12}\) (c) \(2n\pi + \frac{\pi}{4}\) (d) none of these

27. Which of the following quantities are rational?
(a) \(\sin \left(\frac{11\pi}{12}\right)\) \(\sin \left(\frac{5\pi}{12}\right)\) (b) \(\cos \left(\frac{9\pi}{10}\right)\) \(\sec \left(\frac{4\pi}{5}\right)\)
(c) \(\sin^4 \left(\frac{\pi}{8}\right) + \cos^4 \left(\frac{\pi}{8}\right)\)
(d) \(1 + \cos \left(\frac{2\pi}{9}\right) + 1 + \cos \left(-\frac{4\pi}{9}\right) + 1 + \cos \left(\frac{8\pi}{9}\right)\)

28. If \(x \cos \alpha + y \sin \alpha = x \cos \beta + y \sin \beta = 2a\) and \(2\sin \left(\frac{\alpha}{2}\right) \sin \left(\frac{\beta}{2}\right) = 1\), then
(a) \(y^2 = 4a(a - x)\) (b) \(\cos \alpha + \cos \beta = \cos \alpha \cos \beta\)
(c) \(\cos \alpha \cos \beta = \frac{4a^2 + y^2}{x^2 + y^2}\) (d) \(\cos \alpha + \cos \beta = \frac{-4ax}{x^2 + y^2}\)

29. Let \(f_n(\theta) = \tan \left(\frac{\theta}{2}\right) (1 + \sec \theta)(1 + \sec 2\theta)(1 + \sec 4\theta) \cdots (1 + \sec 2^n\theta)\), then
(a) \(f_2 \left(\frac{\pi}{16}\right) = 1\) (b) \(f_3 \left(\frac{\pi}{32}\right) = 1\)
(c) \(f_4 \left(\frac{\pi}{64}\right) = 1\) (d) \(f_5 \left(\frac{\pi}{128}\right) = 1\)

30. Let \(ABC\) be a triangle inscribed in a circle of radius \(r\) and \(AB = AC\) and \(h\) is the altitude from \(A\) to \(BC\), then \((P = \text{perimeter of } \Delta ABC, \Delta = \text{area})\)
(a) \(P = 2 \left(\sqrt{2hr - h^2}\right)\) (b) \(\Delta = h\sqrt{2hr - h^2}\)
(c) \(\lim_{h \to 0} \frac{\Delta}{P^3} = \frac{1}{128r}\) (d) \(\lim_{h \to 0} \frac{\Delta}{p^3} = \frac{1}{64r}\)

31. Three straight lines are drawn through a point \(P\) lying in the interior of the triangle \(ABC\) and parallel to its sides. The area of the three resulting triangles with \(P\) as the vertex are \(\Delta_1, \Delta_2,\) and \(\Delta_3\), then area of triangle \(ABC\) is
(a) \(\left(\sqrt{\Delta_1} + \sqrt{\Delta_2} + \sqrt{\Delta_3}\right)^2\)
(b) \((\Delta_1 + \Delta_2 + \Delta_3)\)
(c) \(\left(\sqrt{\Delta_1 \Delta_2} + \Delta_3 \Delta_3 + \Delta_3 \Delta_1\right)\)
(d) \(\Delta_1 + \Delta_2 + \Delta_3 + 2\left(\sqrt{\Delta_1 \Delta_2} + \sqrt{\Delta_2 \Delta_3} + \sqrt{\Delta_3 \Delta_1}\right)\)

32. A solution \((x, y)\) of the system of equations \(x - y = \frac{1}{3}\) and \(\cos^2 (\pi x) - \sin^2 (\pi y) = \frac{1}{2}\)
(a) \(\left(\frac{7}{6}, \frac{5}{6}\right)\) (b) \(\left(\frac{2}{3}, \frac{1}{3}\right)\)
(c) \(\left(-\frac{5}{6}, \frac{7}{6}\right)\) (d) \(\left(-\frac{13}{6}, \frac{11}{6}\right)\)

33. For \(0 \leq x \leq 2\pi, 2\cos^2 x \sqrt{\frac{y^2}{2} - y + 1} \leq \sqrt{2}\) is
(a) satisfied by exactly one value of \(y\) (b) satisfied by exactly two values of \(x\)
(c) satisfied by \(x\) for which \(\cos x = 0\) (d) satisfied by \(x\) for which \(\sin x = 0\)
34. If \(\frac{\tan 3A}{\tan A} = k \) \((k \neq 1)\) then
- (a) \(\frac{\cos A}{\cos 3A} = \frac{k - 1}{2} \)
- (b) \(\frac{\sin 3A}{\sin A} = \frac{2k}{k - 1} \)
- (c) \(k < \frac{1}{3} \)
- (d) \(k > 3 \)

Assertion & Reason Type

Direction: In the following questions, Statement-1 is followed by Statement-2. Mark the correct choice as:
(a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.
(b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1.
(c) Statement-1 is true, Statement-2 is false.
(d) Statement-1 is false, Statement-2 is true.

35. **Statement-1**: If \(\theta \in \left(\frac{\pi}{3}, \frac{\pi}{2} \right) \), then \(\tan \theta \cot \theta > \cot \theta \tan \theta \).

Statement-2: The function \(x^{1/3} \) decreases for all \(x > 3 \).

36. **Statement-1**: The inequality \(\log_{\sin x} 2^{\tan x} > 0 \) has no real roots in the interval \(\left(0, \frac{\pi}{2} \right) \).

Statement-2: The domain of the function \(f(x) = \log_{\sin x} 2^{\tan x} \) is \(\bigcup_{n \in \mathbb{N}} (2n\pi, 2m\pi + \frac{\pi}{2}) \).

37. **Statement-1**: The maximum value of \(\sin \sqrt{2x} + \sin x \) cannot be 2 (\(a \) is a positive rational number).

Statement-2: \(\frac{\sqrt{2}}{a} \) is irrational.

38. **Matrix-Match Type**

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. If (\tan \theta) is the G.M. between (\sin \theta) and (\cos \theta), then (2 - 4\sin^2 \theta + 3\sin^4 \theta - \sin^6 \theta =)</td>
<td>p. 1</td>
</tr>
<tr>
<td>B. (\sqrt{3} \cot 20^\circ - 4 \cos 20^\circ =)</td>
<td>q. 0</td>
</tr>
<tr>
<td>C. (\cot 16^\circ \cot 44^\circ + \cot 44^\circ \cot 76^\circ - \cot 76^\circ \cot 16^\circ =)</td>
<td>r. 3</td>
</tr>
<tr>
<td>D. (\sum_{r=1}^{9} \sin^2 \left(\frac{r\pi}{18} \right) =)</td>
<td>s. 5</td>
</tr>
</tbody>
</table>

39. **Numerical Value Type**

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. If (\sin \theta = 3 \sin (\theta + \alpha)), then the value of (\tan (\theta + \alpha) + 2 \tan \alpha) is</td>
<td>p. 0</td>
</tr>
<tr>
<td>B. If (p \sin \theta + q \cos \theta = a) and (p \cos \theta - q \sin \theta = b), then (\frac{p + a}{q + b} + \frac{q - b}{p - a} + 1) is equal to</td>
<td>q. 1</td>
</tr>
<tr>
<td>C. The value of the expression (\frac{\pi}{7} + \frac{2\pi}{7} - \frac{10\pi}{7} - \frac{\sin \pi}{14} + \frac{3\pi}{14} - \frac{5\pi}{14}) is</td>
<td>r. \sec \theta</td>
</tr>
<tr>
<td>D. If (\sec \theta + \tan \theta = 1), then one root of the equation ((a - 2b + c)x^2 + (b - 2c + a)x + (c - 2a + b) = 0) is</td>
<td>s. (-1/4)</td>
</tr>
<tr>
<td>t. (-1/2)</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTIONS

1. (d): Given, \(\frac{\sqrt{3}}{\sin 20^\circ} - \frac{1}{\cos 20^\circ} = \frac{\sqrt{3} \cos 20^\circ - \sin 20^\circ}{\sin 20^\circ \cos 20^\circ} \)

\[
= \frac{\frac{3}{2} \cos 20^\circ - \frac{1}{2} \sin 20^\circ}{\sin 40^\circ}
\]

\[
= 4 \cdot \frac{\sin 60^\circ \cos 20^\circ - \cos 60^\circ \sin 20^\circ}{\sin 40^\circ}
= 4 \cdot \frac{\sin 40^\circ}{\sin 40^\circ}
= 4
\]

2. (a): \(\tan A + 2 \tan 2A + 4 \tan 4A + 8 \cot 8A = \)

\[
= \tan A + 2 \tan 2A + 4 \tan 4A + 8 \left(\frac{1 - \tan^2 2A}{2 \tan 2A} \right)
= \tan A + 2 \tan 2A + 4 \frac{1 - \tan^2 2A}{2 \tan 2A}
= \tan A + 2 \cot 2A + 4 \left(\frac{1 - \tan^2 2A}{2 \tan 2A} \right)
= \tan A + 2 \cot 2A + 4 \left(\frac{1 - \tan^2 2A}{2 \tan 2A} \right)
= \tan A + 2 \cot 2A = \tan A + 2 \cot 2A = \tan A + 2 \cot 2A = \tan A + \frac{2(1 - \tan^2 2A)}{2 \tan 2A} = \cot A
\]
3. \(\sin 12^\circ \cdot \sin 48^\circ \cdot \sin 54^\circ \)
\[= \frac{1}{2} \left[\cos 36^\circ - \cos 60^\circ \right] \sin 54^\circ \]
\[= \frac{1}{4} \left[\cos 36^\circ \sin 54^\circ - \frac{1}{2} \sin 54^\circ \right] \]
\[= \frac{1}{4} \left[2 \cos 36^\circ \sin 54^\circ - \sin 54^\circ \right] \]
\[= \frac{1}{4} \left[\sin 90^\circ + \sin 18^\circ - \sin 54^\circ \right] \]
\[= \frac{1}{4} \left[1 - \sin 54^\circ - \sin 18^\circ \right] = \frac{1}{4} \left[1 - 2 \sin 18^\circ \cos 36^\circ \right] \]
\[= \frac{1}{4} \left[1 - 2 \sin 18^\circ \cos 18^\circ \cos 36^\circ \right] = \frac{1}{4} \left[1 - \sin 36^\circ \cos 36^\circ \right] \]
\[= \frac{1}{4} \left[1 - 2 \sin 36^\circ \cos 36^\circ \cos 18^\circ \right] = \frac{1}{4} \left[1 - 2 \sin 72^\circ \cos 72^\circ \right] = \frac{1}{8} \]

4. (a) : The given relation may be written as
\[\frac{\tan (x + 100^\circ)}{\tan x} = \frac{\tan (x + 50^\circ)}{\tan (x + 100^\circ)} \]
\[\Rightarrow \frac{\sin (x + 100^\circ) \cos (x - 50^\circ)}{\sin (x + 50^\circ) \cos x} = \frac{\sin (x + 50^\circ) \cos (x + 100^\circ)}{\cos (x + 50^\circ) \cos (x + 100^\circ)} \]
\[\Rightarrow \frac{\sin (2x + 50^\circ) + \sin (150^\circ)}{\cos (2x + 50^\circ) - \cos (150^\circ)} = -\cos (2x + 50^\circ) \]
\[\Rightarrow \frac{\sin (2x + 50^\circ)}{\cos (2x + 50^\circ)} = -\cos 50^\circ \]
\[\Rightarrow \sin 150^\circ = \frac{\cos (2x + 50^\circ)}{\sin (2x + 50^\circ)} \]
\[\Rightarrow \cos 50^\circ + 2 \sin (2x + 50^\circ) \cos (2x + 50^\circ) = 0 \]
\[\Rightarrow \cos 50^\circ + (4x + 100^\circ) = 0 \]
\[\Rightarrow \cos 50^\circ + (4x + 100^\circ) = 0 \]
\[\Rightarrow \cos (2x + 30^\circ) \cos (2x - 20^\circ) = 0 \Rightarrow x = 30^\circ, 55^\circ \]
\[\Rightarrow \text{The smallest value of } x = 30^\circ \]

5. (c)
6. (a) : \(a \cos^3 \theta + 3a \cos \theta \sin^2 \theta = x \)
\[a \sin^3 \theta + 3a \cos^3 \theta \sin \theta = y \]
\[x + y = a[\sin^3 \theta + \cos^3 \theta + 3 \sin \theta \cos \theta (\sin \theta + \cos \theta)] = a(\sin \theta + \cos \theta)^3 \]
\[\Rightarrow \left(\frac{x + y}{a} \right)^{\frac{1}{3}} = \sin \theta + \cos \theta \ldots (i) \]
\[x - y = a[\cos^3 \theta - \sin^3 \theta + 3 \cos \theta \sin^2 \theta - 3 \cos^2 \theta \sin \theta] = a(\cos \theta - \sin \theta)^3 \]
\[\Rightarrow \left(\frac{x - y}{a} \right)^{\frac{1}{3}} = \cos \theta - \sin \theta \ldots (ii) \]

From (i) and (ii), we have
\[(\sin \theta + \cos \theta)^2 + (\cos \theta - \sin \theta)^2 = \frac{(x + y)^{2/3} + (x - y)^{2/3}}{a^{2/3}} \]
\[\Rightarrow 2(\sin^2 \theta + \cos^2 \theta) = \frac{(x + y)^{2/3} + (x - y)^{2/3}}{a^{2/3}} \]
\[\Rightarrow (x + y)^{2/3} + (x - y)^{2/3} = 2a^{2/3} \]

7. (b) : Given, \(\cos^2 \theta = \frac{a^2 - 1}{3} \), \(\tan^2 (\theta/2) = \tan^{2/3} \alpha \)

Now, \(\tan \frac{\theta}{2} = \tan \alpha \Rightarrow \frac{\sin^3 \theta}{\cos^3 \theta} = \frac{\sin \alpha}{\cos \alpha} \)
Let \(\frac{\sin^3 \theta}{\sin \alpha} = \frac{\cos^3 \theta}{\cos \alpha} = k \)
\[\Rightarrow \sin^3 \theta = k \sin \alpha \ldots (i) \text{ and } \cos^3 \theta = k \cos \alpha \ldots (ii) \]
From (i) and (ii), \(k^{2/3} \sin \frac{1}{2} \sin \theta + k^{2/3} \cos \frac{1}{2} \cos \alpha = 1 \)
\[\Rightarrow \sin^{2/3} \alpha + \cos^{2/3} \alpha = \frac{1}{k^{2/3}} \ldots (iii) \]
Squaring (i) and (ii) and then adding, we get
\[k^2 (\sin^2 \theta + \cos^2 \theta) = \left(\frac{\sin^2 \theta}{2} + \cos^2 \theta \right)^3 - 3 \sin^2 \theta \cos^2 \theta \left(\frac{\sin^2 \theta}{2} + \cos^2 \theta \right) \]
\[\Rightarrow \frac{k^2}{4} = 1 - \frac{3}{4} \sin^2 \theta = 1 - \frac{3}{4} + \frac{3}{4} \cos^2 \theta \]
\[\Rightarrow k^2 = \frac{a^2}{4} \Rightarrow k = \frac{a}{2} \]
\[\therefore \text{ From (iii), we have } \sin^{2/3} \alpha + \cos^{2/3} \alpha = \left(\frac{2}{a} \right)^{2/3} \]

8. (d) : \(\sin x \cos x \left[\sin^2 x + \sin x \cos x + \cos^2 x \right] = 1 \)
\[\Rightarrow \sin x \cos x + (\sin x \cos x)^2 = 1 \]
\[\Rightarrow \sin^2 x + 2 \sin x - 4 = 0 \]
\[\Rightarrow \sin 2x = -2 \pm \sqrt{4 + 16} = -1 \pm \sqrt{5} \]
\[\therefore \text{ Which is not possible.} \]

9. (a) : Let \(f(x) = x^3 + 2x^2 + 2x + 2 \sin x \)
\[f'(x) = 3x^2 + 4x + 5 - 2 \sin x \]
\[= 3 \left(x + \frac{2}{3} \right)^2 + \frac{11}{3} - 2 \sin x \]
Now, \(\frac{11}{3} - 2 \sin x > 0 \forall x \text{ (as } -1 \leq \sin x \leq 1\)
10. (d) Given, \(\tan x = ntan y \)
Now, \(\cos(x - y) = \cos x \cos y + \sin x \sin y \)
\[
\Rightarrow \cos(x - y) = \cos x \cos y (1 + \tan x \tan y) \]
\[
= \cos x \cos y (1 + ntan^2 y) \]
\[
\Rightarrow \sec^2 (x - y) = \frac{\sec^2 x \sec^2 y}{(1 + ntan^2 y)^2} \]
\[
= \frac{(1 + \tan^2 x)(1 + \tan^2 y)}{(1 + ntan^2 y)^2} = \frac{(1 + 2\tan^2 y)(1 + \tan^2 y)}{(1 + ntan^2 y)^2} \]
\[
= 1 + \frac{(n-1)^2 \tan^2 y}{(1 + ntan^2 y)^2} \]
\[
\Rightarrow \sec^2 (x - y) \leq 1 + \frac{(n-1)^2 \tan^2 y}{(1 + ntan^2 y)^2} \]
\[
\text{Now,} \quad \frac{\tan^2 y}{(1 + ntan^2 y)^2} \leq \frac{1}{4n} \]
\[
\Rightarrow \frac{\tan^2 y}{(1 + ntan^2 y)^2} \leq \frac{(n-1)^2}{4n} \]
\[
\therefore \sec^2 (x - y) \leq 1 + \frac{(n-1)^2}{4n} = \frac{(n+1)^2}{4n} \]

11. (c) \(S = \cos^2 \frac{\pi}{n} + \cos^2 \frac{2\pi}{n} + \ldots + \cos^2 \frac{(n-1)\pi}{n} \)
\[
= \frac{1}{2} \left[1 + \cos \frac{2\pi}{n} + \cos \frac{4\pi}{n} + \ldots + \cos \frac{2(n-1)\pi}{n} \right] \]
\[
= \frac{1}{2} \left[1 + \cos \frac{2\pi}{n} + \cos \frac{4\pi}{n} + \ldots + \cos (n-1)\pi \right] \]
\[
\Rightarrow \tan^2 \theta = \tan^2 \frac{\pi}{6} \quad \Rightarrow \quad \theta = n\pi \pm \frac{\pi}{6} \]

14. (b) Since, \(\alpha \) is the root of \(25\cos^2 \theta + 5\cos \theta - 12 = 0 \).
\[
25\cos^2 \alpha + 5\cos \alpha - 12 = 0 \]
\[
\Rightarrow \cos \alpha = \frac{-5 \pm \sqrt{25 + 1200}}{50} \]
\[
\Rightarrow \cos \alpha = -\frac{5 \pm 35}{50} \]
\[
\Rightarrow \cos \alpha = \frac{-4}{5} \quad \because \quad \pi/2 < \alpha < \pi \]
\[
\therefore \sin 2\alpha = 2\sin \alpha \cos \alpha = \frac{-24}{25} \]

15. (b) We have, \(k\sin x + (1 - 2\sin^2 x) = 2k - 7 \)
\[
\Rightarrow 2\sin^2 x - k\sin x + 2(k - 4) = 0 \]
\[
\Rightarrow \sin x = \frac{k \pm \sqrt{k^2 - 16k + 64}}{4} \]
\[
= \frac{k \pm |k - 8|}{4} \quad = \frac{1}{2} (k - 4), 2 \]

But \sin x \neq 2, \text{ therefore, } \sin x = \frac{1}{2} (k - 4) \]

Now, \(-1 \leq \sin x \leq 1 \quad \Rightarrow \quad -1 \leq \frac{k - 4}{2} \leq 1 \quad \Rightarrow \quad 2 \leq k \leq 6 \)

16. (b) We have \(\sin^4 x - 2\cos^2 x + a^2 = 0 \)
\[
\Rightarrow y^2 - 2(1 - y) + a^2 = 0, \text{ where } \sin^2 x = y \]
\[
\Rightarrow y^2 + 2y + a^2 - 2 = 0 \Rightarrow y = -1 \pm \sqrt{3 - a^2} \]
For \(y \) to be real, \(a^2 \leq 3 \)
\[
\Rightarrow 0 \leq 1 - 1 + \sqrt{3 - a^2} \leq 1 \quad \Rightarrow \quad 1 \leq 1 - a^2 \leq 2 \]
\[
\Rightarrow 1 \leq 1 - a^2 \leq 2 \quad \Rightarrow \quad 2 - a^2 \geq 0 \quad \Rightarrow \quad a^2 \leq 2 \quad \ldots (ii) \]
\[
\text{From (i) and (ii), } a^2 \leq 2 \quad \Rightarrow \quad -\sqrt{2} \leq a \leq \sqrt{2} \]

17. (a) \(\tan(3x - 2x) = \tan x = 1 \)
\[
\Rightarrow x = n\pi + (\pi/4) \quad \text{but this value does not satisfy the given equation as } \tan 2x = \tan \left(\frac{\pi}{2} \right) = \infty \quad \text{and it reduces to indeterminate form.} \]

18. (b) Given expression is
\[
\frac{1 - 2[\cos 60^\circ - \cos 80^\circ]}{2 \sin 10^\circ} = \frac{1 - \frac{1 - \cos 80^\circ}{2}}{2 \sin 10^\circ} \]
\[
= \frac{2 \cos 80^\circ}{2 \sin 10^\circ} = \frac{\cos (90^\circ - 10^\circ)}{\sin 10^\circ} \]
\[
= \sin 80^\circ = \sin 10^\circ = 1 \]

19. (c) \(5\cos^2 \theta - 3\sin^2 \theta + 6 \sin \theta \cos \theta = 7 \)
\[
\Rightarrow 5 \left(\frac{1 + \cos 2\theta}{2} \right) - 3 \left(\frac{1 - \cos 2\theta}{2} \right) + 3 \sin 2\theta = 7 \]
\[
\Rightarrow 4 \cos 2\theta + 3 \sin 2\theta \leq \sqrt{4^2 + 3^2} = 5 \]
\[
\Rightarrow \quad \text{Solution does not exist.} \]

20. (b) \(\text{L.H.S.} = \sqrt{3} \sin \pi x + \cos \pi x = 2 \sin \left(\pi x + \frac{\pi}{6} \right) \leq 2 \)
and equality holds for \(x = 1/3 \)
and R.H.S. = \(x^2 - \frac{2}{3} x + \frac{19}{9} = \left(x - \frac{1}{3} \right)^2 + 2 \geq 2 \)

Equality holds if \(x = 1/3 \).
Thus, L.H.S. = R.H.S. for \(x = 1/3 \) only.

21. (a) : \(\sin \left(2\theta + \frac{\pi}{6} \right) + \cos \left(\theta + \frac{5\pi}{6} \right) = 2 \) \[\ldots (i)\]

\[\therefore \sin \left(2\theta + \frac{\pi}{6} \right) \leq 1 \quad \text{and} \quad \cos \left(\theta + \frac{5\pi}{6} \right) \leq 1 \]

\[\therefore \quad \text{(i) may holds true iff} \quad \sin \left(2\theta + \frac{\pi}{6} \right) \quad \text{and} \quad \cos \left(\theta + \frac{5\pi}{6} \right) \]

both equal to 1 simultaneously. First common value of \(\theta \) is \(7\pi/6 \) for which

\[\sin \left(2\theta + \frac{\pi}{6} \right) = \sin \left(\frac{14\pi}{6} + \frac{\pi}{6} \right) = \frac{5\pi}{2} = \sin \frac{\pi}{2} = 1 \]

and \(\cos \left(\theta + \frac{5\pi}{6} \right) = \cos \left(\frac{7\pi}{6} + \frac{5\pi}{6} \right) = \cos 2\pi = 1 \]

and since periodicity of \(\sin \left(2\theta + \frac{\pi}{6} \right) \) is \(\pi \)

and periodicity of \(\cos \left(\theta + \frac{5\pi}{6} \right) \) is \(2\pi \), therefore,

periodicity of \(\sin \left(2\theta + \frac{\pi}{6} \right) + \cos \left(\theta + \frac{5\pi}{6} \right) \) is \(2\pi \).

Therefore, general solution is \(\theta = 2n\pi + \frac{7\pi}{6} \).

22. (c) : The given equation can be written as

\[\sin x + 1 = 2\cos^2 x \Rightarrow \sin x + 1 = 2(1 - \sin^2 x) \]

\[\Rightarrow \quad 2\sin^2 x + \sin x - 1 = 0 \]

\[\therefore \quad \sin x = \frac{-1 \pm \sqrt{1+8}}{4} = \frac{-1 \pm 3}{4} = \frac{1}{2} \quad \text{or} \quad -1 \]

\[\Rightarrow \quad x = \frac{\pi}{6}, \frac{5\pi}{6} \quad \text{[\because \quad x=3\pi/2 \ does \ not \ satisfy \ given \ equation]} \]

Hence, the required number of solutions is 2.

23. (d) : Let \(\sqrt{3} + 1 = r \cos \alpha, \sqrt{3} - 1 = r \sin \alpha \)

\[\therefore \quad r^2 = (\sqrt{3} + 1)^2 + (\sqrt{3} - 1)^2 = 8 \Rightarrow r = 2\sqrt{2} \]

and \(\tan \alpha = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}} = \tan(45^\circ - 30^\circ) \]

\[\Rightarrow \quad \tan \alpha = \tan 15^\circ \quad \Rightarrow \quad \alpha = 15^\circ = \frac{\pi}{12} \]

Using these in the given equation, we get \(r \cos(\theta - \alpha) = 2 \)

\[\Rightarrow \quad \cos \left(\frac{\theta - \pi}{12} \right) = \frac{2}{r} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}} = \cos \left(\frac{\pi}{4} \right) \]

\[\therefore \quad \theta - \frac{\pi}{12} = \frac{n\pi}{4} \quad \Rightarrow \quad \theta = \frac{n\pi}{4} + \frac{\pi}{12}, n \in I \]

24. (a) : The given equation can be written as

\[\sin \theta [4(1 - \sin^2 \theta) - 2\sin \theta - 3] = 0 \]

\[\Rightarrow \quad \sin \theta [1 - 2\sin \theta - 4\sin^2 \theta] = 0 \]

\[\Rightarrow \quad \sin \theta [4\sin^2 \theta + 2\sin \theta - 1] = 0 \]

\[\Rightarrow \quad \text{Either} \quad \sin \theta = 0 \text{ which gives} \quad \theta = n\pi \]

or \(4\sin^2 \theta + 2\sin \theta - 1 = 0 \) which gives

\[\sin \theta = \frac{-2 \pm \sqrt{4+16}}{8} = \frac{-2 \pm 2\sqrt{5}}{4} = \frac{-1 \pm \sqrt{5}}{4} \]

\[= \frac{1 + \sqrt{5}}{4}, \frac{1 - \sqrt{5}}{4} \]

Now, \(\sin \theta = \frac{1}{4}(\sqrt{5} - 1) = \sin 18^\circ = \sin \left(\frac{\pi}{10} \right) \)

\[\therefore \quad \theta = n\pi + (-1)^n \left(\frac{\pi}{10} \right) \]

Again, \(\sin \theta = -\frac{1}{4}(\sqrt{5} + 1) = -\cos 36^\circ \)

\[= -\cos(90^\circ - 54^\circ) = -\sin 54^\circ = \sin(-54^\circ) = \sin \left(\frac{-3\pi}{10} \right) \]

\[\therefore \quad \theta = n\pi + (-1)^n \left(-\frac{3\pi}{10} \right) \]

25. (c) : Clearly, \(x \neq 0 \), so dividing the equations, we get

\[\frac{\cos^3 y + 3\cos y \sin^2 y}{\sin^3 y + 3\cos^2 y \sin y} = \frac{14}{13} \]

Applying componendo and dividendo, we get

\[\frac{\cos y + \sin y}{\cos y - \sin y} = \frac{14 + 13}{14 - 13} \quad \Rightarrow \quad \left(\frac{\cos y + \sin y}{\cos y - \sin y} \right)^3 = 27 = 3^3 \]

\[\Rightarrow \quad \frac{\cos y + \sin y}{\cos y - \sin y} = \frac{3}{1} \]

\[= \frac{1 + \tan y}{1 - \tan y} = \frac{3}{1} \quad \Rightarrow \quad 4\tan y = 2 \quad \Rightarrow \quad \tan y = \frac{1}{2} \]

\[\Rightarrow \quad \sin y = \frac{1}{\sqrt{5}}, \quad \cos y = \frac{2}{\sqrt{5}} \quad \text{(when} \quad y \text{is in 1}\text{st quadrant)} \]

and \(\sin y = -\frac{1}{\sqrt{5}}, \quad \cos y = -\frac{2}{\sqrt{5}} \quad \text{(when} \quad y \text{is in 3}\text{rd quadrant)} \)

When \(y \) is in first quadrant, we have

\[x = \frac{8}{5\sqrt{5} + 3\frac{2}{\sqrt{5}}} = 14 \quad \Rightarrow \quad x = 5\sqrt{5} \]
When y is in 3rd quadrant, we have
\[
x = \frac{-8}{5\sqrt{5}} + 3 \left(-\frac{2}{\sqrt{5}} \right) = 14 \Rightarrow x = -5\sqrt{5}
\]
Hence, $y = \tan^{-1} \left(-\frac{1}{2} \right), x = 5\sqrt{5}$, where $2n\pi < y < 2n\pi + \frac{\pi}{2}$
and $y = \tan^{-1} \left(-\frac{1}{2} \right), x = -5\sqrt{5}$,
where $2n\pi + \pi < y < 2n\pi + \frac{3\pi}{2}$

26. (a, b) : Given, $\sqrt{3}\cos x + \sin x = \sqrt{2}$
\[
\Rightarrow \frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x = \frac{\sqrt{2}}{2}
\Rightarrow \cos \left(x - \frac{\pi}{6} \right) = \cos \left(\frac{\pi}{4} \right) \Rightarrow x - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{4}
\Rightarrow x = 2n\pi + \frac{5\pi}{12}, 2n\pi - \frac{\pi}{12}, \text{ where } n \in \mathbb{Z}
\]

27. (a, b, c, d) : (a) $\sin \left(\frac{11\pi}{12} \right) = \frac{5\pi}{12}$
\[
\Rightarrow \frac{5\pi}{12} \sin \left(\frac{11\pi}{12} \right) = \frac{5\pi}{12} \sin \left(\frac{11\pi}{12} \right) = \frac{5\pi}{12} \sin \left(\frac{11\pi}{12} \right) \in Q
\]

(b) $\csc \left(\frac{9\pi}{10} \right) \sec \left(\frac{4\pi}{5} \right) = -\csc \left(\frac{9\pi}{10} \right) \sec \left(\frac{4\pi}{5} \right) = -4 \epsilon Q$

(c) $1 - 2\sin^2 \left(\frac{\pi}{8} \right) = \frac{1}{2} \cos^2 \left(\frac{\pi}{8} \right) = \frac{1}{4} \epsilon Q$

(d) $\frac{1}{2} \sin \left(\frac{\pi}{2} \right) \frac{1}{2} \cos \left(\frac{\pi}{2} \right) = \frac{1}{4} \epsilon Q$

28. (a, b, c, d) : α and β satisfy $x \cos \theta + y \sin \theta = 2a$
\[
\Rightarrow (x^2 + y^2) \cos^2 \theta - 4ax \cos \theta + (4a^2 - y^2) = 0
\]
\[
\cos \alpha + \cos \beta = \frac{4ax}{x^2 + y^2}, \cos \alpha \cdot \cos \beta = \frac{4a^2 - y^2}{x^2 + y^2}
\]
\[
2 \sin \left(\frac{\alpha}{2} \right) \sin \left(\frac{\beta}{2} \right) = 1 \Rightarrow 4 \sin^2 \left(\frac{\alpha}{2} \right) \sin^2 \left(\frac{\beta}{2} \right) = 1
\]
\[
\Rightarrow \cos \alpha + \cos \beta = \cos \alpha \cdot \cos \beta
\]

29. (a, b, c, d) : $f_n(\theta) = \tan \left(\frac{\theta}{2} \right) \prod_{r=0}^{n-1} \left(\cos^2 \left(\frac{2r\theta}{2} \right) \right)$
\[
= \tan \left(\frac{\theta}{2} \right) \prod_{r=0}^{n-1} \left(\cos^2 \left(\frac{2r\theta}{2} \right) \right) = \tan \left(\frac{\theta}{2} \right) \prod_{r=0}^{n-1} \left(\cos^2 \left(\frac{2r\theta}{2} \right) \right)
\]

30. (b, c) : $BC = 2BD = 2\sqrt{r^2 - (h - r)^2} = 2\sqrt{2hr - h^2}$
\[
\Rightarrow AB = 2hr \text{ so that } P = 2AB + BC
\]
\[
= 2 \left[\sqrt{2hr - h^2} + \frac{2hr}{2} \right]
\]
\[
\Delta = BD \times AD = h \sqrt{2hr - h^2}
\]
\[
\therefore \frac{\Delta}{P^3} = \frac{\Delta}{h \sqrt{2hr - h^2}}
\]
\[
\Rightarrow \lim_{h \to 0} \frac{\Delta}{P^3} = \frac{\sqrt{2r}}{8(2\pi r)^3} = 1
\]

31. (a, d) : We have, $\frac{\Delta_1}{\Delta} = \frac{x_1}{a}$

or $\sqrt{\frac{\Delta_1}{\Delta}} = \frac{x_1}{a}$

Similarly,$\sqrt{\frac{\Delta_2}{\Delta}} = \frac{x_2}{a}$ and $\sqrt{\frac{\Delta_3}{\Delta}} = \frac{x_3}{a}$

32. (a, c, d) : We have, $x - y = \frac{1}{3}$ and
\[
\cos(\pi(x + y)) \cos(\pi(x - y)) = \frac{1}{2} \Rightarrow x + y = 2n, n \in I
\]

33. (a, b, c) : $2\csc^2 x \sqrt{(y - 1)^2 + 1} \leq 2$
\[
\Rightarrow \csc^2 x = 1 \text{ and } y = 1 \Rightarrow x = \frac{\pi}{2}, y = 1
\]

34. (a, b, c, d) : We have, $\frac{k + 1}{k - 1} = 2 \cos 2A$
\[
\Rightarrow \frac{\sin 3A}{\sin A} = 1 + 2 \cos 2A = \frac{2k}{k - 1} \Rightarrow \cos A = \frac{k - 1}{2}
\]

Also, $k = \frac{3 - \tan^2 A}{1 - 3 \tan^2 A} \Rightarrow k < \frac{1}{3}, k > 3$

35. (b) : Clearly, $f(x) = x^{1/x}$ decreases when $x > e$
\[
\text{Now, } \left(\frac{\pi}{3}, \frac{\pi}{2} \right) \in (0, e) \Rightarrow \tan \theta > \cot \theta$

36. (c) : \(\log_{\sin x}^{2\tan x} > 0 \Rightarrow 2\tan x < 1 \)
 i.e., \(\tan x < 0 \). But \(\sin x > 0 \). Hence, no solution.

37. (a) : The value of \(\sin \sqrt{2}x + \sin ax \) can be equal to 2, if \(\sin \sqrt{2}x \) and \(\sin ax \) are both equal to one but are not equal to one for any common value of \(x \).

38. A \(\rightarrow \) p; B \(\rightarrow \) p; C \(\rightarrow \) r; D \(\rightarrow \) s
(A) \(\tan^2 \theta = \sin \theta \cos \theta \Rightarrow \sin \theta = \cos^3 \theta \)

 \(\therefore \quad (1 - \sin^2 \theta) + (1 - 3\sin^2 \theta) + 3\sin^4 \theta - \sin^6 \theta \)

 \(= \cos^2 \theta + (1 - \sin^2 \theta)^3 = \cos^2 \theta + \cos^6 \theta \)

 \(= \cos^2 \theta + \sin^2 \theta = 1 \)

(B) \(\sin 40^\circ = \sin(60^\circ - 20^\circ) \)

 \(\Rightarrow 2\sin 20^\circ \cos 20^\circ = \frac{\sqrt{3}}{2} \cos 20^\circ - \frac{1}{2} \sin 20^\circ \)

(C) \(\frac{3 + \cot 76^\circ \cot 16^\circ}{\cot 76^\circ + \cot 16^\circ} = \frac{3\sin 76^\circ \sin 16^\circ + \cos 76^\circ \cos 16^\circ}{\sin(76^\circ + 16^\circ)} \)

\(= \frac{2\sin 76^\circ \sin 16^\circ + \cos(76^\circ + 16^\circ)}{\sin(76^\circ + 16^\circ)} \)

\(= \frac{\cos 60^\circ - \cos 92^\circ + \cos 60^\circ}{\sin 92^\circ} = \frac{1 - \cos 92^\circ}{\sin 92^\circ} = \tan 46^\circ \)

(D) \(\sin^2 \left(\frac{\pi}{18} \right) + \sin^2 \left(\frac{2\pi}{18} \right) + \ldots + \sin^2 \left(\frac{\pi}{2} \right) = 5 \)

39. A \(\rightarrow \) p ; B \(\rightarrow \) q ; C \(\rightarrow \) s ; D \(\rightarrow \) q,r

(A) Given, \(\sin \theta = 3\sin(\theta + 2\alpha) \)

\(\Rightarrow \sin(\theta + \alpha + \alpha) = 3\sin(\theta + \alpha + \alpha) \)

\(\Rightarrow \sin(\theta + \alpha)\cos(\alpha + \alpha) - \cos(\theta + \alpha)\sin\alpha \)

\(= 3\sin(\theta + \alpha)\cos\alpha + 3\cos(\theta + \alpha)\sin\alpha \)

\(\Rightarrow -2\sin(\theta + \alpha)\cos\alpha = 4\cos(\theta + \alpha)\sin\alpha \)

\(\Rightarrow \frac{\sin(\theta + \alpha)}{\cos(\theta + \alpha)} = \frac{2\sin\alpha}{\cos\alpha} \)

\(\Rightarrow -\tan(\theta + \alpha) = 2\tan\alpha \Rightarrow \tan(\theta + \alpha) + 2\tan\alpha = 0 \)

(B) We have, \(p\cos \theta + q\sin \theta = a \) \(\ldots (i) \)

And, \(p\cos \theta - q\sin \theta = b \) \(\ldots (ii) \)

Squaring (i) and (ii), and then adding, we get

\((p\sin \theta + q\cos \theta)^2 + (p\cos \theta - q\sin \theta)^2 = a^2 + b^2 \)

\(\Rightarrow p^2 + q^2 - (p^2 - a^2 - b^2) = 0 \)

\(\Rightarrow (p^2 + q^2) + (q^2 - b^2) = 0 \)

\(\Rightarrow (p + a)(p - a) + (q - b)(q - b) = 0 \)

\(\Rightarrow \frac{p + a}{p - a} + \frac{q - b}{q + b} = 0 \)

(C) \(\sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \)

\(= \cos \left(\frac{3\pi}{7} \right) \cos \left(\frac{2\pi}{7} \right) \cos \left(\frac{\pi}{7} \right) \)

\(= -\cos \left(\frac{\pi}{7} \right) \cos \left(\frac{2\pi}{7} \right) \cos \left(\frac{4\pi}{7} \right) \)

Also, \(\cos \frac{10\pi}{7} = \cos \frac{4\pi}{7} \)

So, \(\cos \frac{\pi}{7} \cos \left(\frac{2\pi}{7} \right) \cos \left(\frac{4\pi}{7} \right) = \frac{1}{4} \)

(D) Clearly, \(\sec \theta = 1 \Rightarrow \sec \theta = 1 \)

Also, \(1 \) satisfy the given equation.

So, one root of the given equation is \(1 \) i.e., \(\sec \theta \).

40. (i) \(\sin \theta \cos \theta = \frac{2\sin 2\theta}{2\cos 3\theta \cos \theta} = \frac{\sin 2\theta}{2\cos 3\theta} \)

\(= \frac{\sin(3\theta - \theta)}{2\cos 3\theta} \)

\(\Rightarrow \sin \theta = \frac{1}{2}[\tan 3\theta - \tan \theta] \) \(\ldots (i) \)

Similarly, \(\frac{\sin 3\theta}{\cos 9\theta} = \frac{1}{2}[\tan 9\theta - \tan 3\theta] \) \(\ldots (ii) \)

And \(\frac{\sin 9\theta}{\cos 27\theta} = \frac{1}{2}[\tan 27\theta - \tan 9\theta] \) \(\ldots (iii) \)

Adding (i), (ii) and (iii), we get

\(\frac{\sin \theta + \sin 3\theta + \sin 9\theta}{\cos 3\theta + \cos 9\theta + \cos 27\theta} = \frac{1}{2}[\tan 27\theta - \tan \theta] \)

\(\Rightarrow A = 2, B = 27, C = 1 \) \(\therefore 2A - B - C = 0 \)

41. (iv) \(\tan \theta(1 + \tan^2 \theta) = 1 - \sin^2 \theta \)

\(\Rightarrow \tan(2 - \cos^2 \theta)^2 = \cos^2 \theta \)

\(\Rightarrow (1 - \cos^2 \theta)(4 - 4\cos^2 \theta + \cos^4 \theta) = \cos^2 \theta \)

\(\Rightarrow -\cos ^2 \theta + 5\cos ^4 \theta - 8\cos ^2 \theta + 4 = \cos^2 \theta \)

\(\therefore \cos^2 \theta - 4\cos^2 \theta + 8\cos^2 \theta = 4 \)

42. (1) \(\alpha + 2\alpha + 4\alpha = 7\alpha = \frac{\pi}{2} \)

\(\therefore \tan \frac{\pi}{2} = \tan(\alpha + 2\alpha + 4\alpha) \)

\(\Rightarrow \tan \alpha + \tan 2\alpha + \tan 4\alpha - \tan \alpha \cdot \tan 2\alpha \cdot \tan 4\alpha = \frac{1}{1 - \tan \alpha - \tan 2\alpha - \tan 2\alpha - \tan 4\alpha} \cdot \tan 2\alpha \cdot \tan 4\alpha \cdot \tan \alpha \cdot \tan 4\alpha \cdot \tan \alpha \cdot \tan 4\alpha = 1 \)
Chapterwise Practice questions for CBSE Exams as per the latest pattern and marking scheme issued by CBSE for the academic session 2019-20.

Series 8
Introduction to Three Dimensional Geometry / Limits and Derivatives/Mathematical Reasoning

Time Allowed : 3 hours
Maximum Marks : 80

GENERAL INSTRUCTIONS

(i) All the questions are compulsory.
(ii) This question paper contains 36 questions.
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION A

Q.1 - Q.10 are multiple choice type questions. Select the correct option.

1. Let A, B, C be the feet of the perpendicular segments drawn from a point P(3, 4, 5) on the xy, yz and zx-planes, respectively. What are the coordinates of A, B and C ?
 (a) (3, 4, 0), (0, 4, 4), (3, 0, 5)
 (b) (3, 0, 4), (4, 5, 0), (3, 5, 0)
 (c) (3, 5, 0), (0, 5, 4), (0, 3, 4)
 (d) (3, 4, 0), (0, 4, 5), (3, 0, 5)

2. \[\lim_{k \to \infty} \left(\frac{1^2 + 2^2 + 3^2 + \ldots + k^2}{k^4} \right) \] is equal to
 (a) 0 (b) 2 (c) \(\frac{1}{3} \) (d) \(\frac{1}{4} \)

3. Which of the following sentences is a statement?
 (a) 5 is less than 7.
 (b) Where are you going?
 (c) Close the door.
 (d) How funny he is!

4. The conditional statement of
 "You will get a sweet dish after the dinner" is
 (a) If you take the dinner, then you will get a sweet dish.
 (b) If you take the dinner, you will get a sweet dish.
 (c) You get a sweet dish if and only if you take the dinner.
 (d) None of these

5. \[\lim_{x \to \frac{\pi}{4}} \left(\frac{\cos x - \sin x}{x - \frac{\pi}{4}} \right) (\cos x + \sin x) \] is equal to
 (a) 0 (b) 1 (c) -1 (d) 2

6. If a parallelepiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7) parallel to the coordinate planes, then find the length of the diagonal.
 (a) 7 units (b) 5 units (c) 8 units (d) 3 units

7. For the statement "19 is a real number or a positive integer", "Or" is
8. If \(y = x^2 + \sin x + \frac{1}{x^2} \), then \(\frac{dy}{dx} \) is equal to
(a) \(2x + \cos x + 2 \) \hspace{1cm} (b) \(x - 2x^2 + \cos x \)
(c) \(2x + \cos x - (2/x^3) \) \hspace{1cm} (d) \((2/x^3) - \cos x \)

9. The point which divides the line joining the points \((1, 3, 4)\) and \((4, 3, 1)\) internally in the ratio 2:1, is
(a) \((2, 3, 5)\) \hspace{1cm} (b) \((2, 3, 3)\)
(c) \((\frac{5}{2}, 3, \frac{5}{2})\) \hspace{1cm} (d) \((3, 3, 2)\)

10. If \(f(x) = x \sin x \), then \(f'(\frac{\pi}{2}) \) is equal to
(a) 0 \hspace{1cm} (b) 1 \hspace{1cm} (c) -1 \hspace{1cm} (d) 2

(Q.11 - Q.15) Fill in the blanks.

11. The three planes determine a rectangular parallelepiped which has ________ of rectangular faces.

12. The positive integer \(n \) so that \(\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108 \) is ________.

13. Let \(f(x) = x - [x] \), \(x \in \mathbb{R} \), then \(f'(\frac{1}{2}) \) is ________.

14. The perpendicular distance of the point \((6, 5, 8)\) from \(z \)-axis is ________.

15. \(\lim_{x \to 0} x \sin \frac{1}{x} \) is equal to ________.

16. If the points \(A(2, 3, 4) \), \(B(-1, 2, -3) \) and \(C(-4, 1, -10) \) are collinear, then find the ratio in which \(C \) divides \(AB \).

17. Find \(\lim_{x \to 0} \frac{n!}{(n+1)! - n!} \).

18. Write the negation of the following statement:
All mathematicians are man.

19. What is the locus of a point for which \(x = 0, z = 0 \)?

20. Differentiate \(\frac{x^2 - 3x + 2}{x + 2} \) w.r.t. \(x \).

SECTION - B

21. Find \(\lim_{x \to 0} \frac{x(\cos x + \cos 2x)}{\sin x} \).

 OR

 Evaluate \(\lim_{x \to 0} \frac{a^x - b^x}{x} \).

22. Let \(c \) denote contradiction and \(p \) be any statement. Then prove that \(p \lor c \equiv p \).

23. Find the derivative of \(\frac{2x^4 + x}{3x - 5} \) w.r.t. \(x \).

24. Determine the point in \(xy \)-plane which is equidistant from the three points \((2, 0, 3)\), \((0, 3, 2)\) and \((0, 0, 1)\).

 OR

 Find the points of trisection of the line segment joining the points \((2, -2, 7)\) and \((5, 1, -5)\).

25. Write the component statements of the following compound statements and check whether the compound statement is true or false:
 (i) 125 is a multiple of 7 or 8.
 (ii) Mumbai is the capital of Gujarat or Maharashtra.

26. Find the ratio in which the line joining the points \((4, 4, -10)\) and \((-2, 2, 4)\) is divided by the \(xy\)-plane.

SECTION - C

27. Are the following statements negation of each other?
 (i) "\(x \) is not a rational number."
 "\(x \) is not a irrational number."
 (ii) "\(x \) is not a real number."
 "\(x \) is not an imaginary number."

28. Using the method of first principle find the derivative of \(f(x) = \frac{2x + 7}{x + 2} \).

29. Evaluate \(\lim_{x \to 2} \frac{x - \cos x}{x - \pi} \).

 OR

 Evaluate \(\lim_{x \to \pi} \frac{\cot x - \frac{a}{\cos x}}{\sqrt{2}} \).
30. Verify that:
\((-1, 2, 1), (1, -2, 5), (4, -7, 8)\) and \((2, -3, 4)\) are the vertices of a parallelogram.

OR

Determine the values of \(a\) and \(b\) so that the points \((a, b, 3), (2, 0, -1)\) and \((1, -1, 3)\) are collinear.

31. If the origin is the centroid of the triangle \(PQR\) with vertices \(P(2a, 2, 6), Q(-4, 3b, 10)\) and \(R(8, 14, 2c)\), then find the values of \(a, b\) and \(c\).

32. Check the validity of the following statements:
(i) Square of an integer is positive or negative.
(ii) If \(x\) and \(y\) are odd integers, then \(xy\) is an odd integer.

SECTION-D

33. For any three statements \(p, q, r\) prove that \(p \lor (q \land r) = (p \lor q) \land (p \lor r)\).

34. If \(\alpha\) and \(\beta\) be the roots of equation \(ax^2 + bx + c = 0\), then find \(\lim_{x \to \alpha} \frac{1 - \cos(\alpha x^2) + bx + a}{2(1 - \alpha x)^2}\).

OR

Evaluate: \(\lim_{x \to 0} \frac{e^x - 1 - x - x^2}{x^2}\).

35. If \(y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!}\), then show that \(\frac{dy}{dx} - y + \frac{x^n}{n!} = 0\).

36. The mid-points of the sides of a triangle are \((1, 5, -1), (0, 4, -2)\) and \((2, 3, 4)\). Find its vertices.

OR

Prove that the lines joining the vertices of a tetrahedron to the centroids of the opposite faces are concurrent.

SOLUTIONS

1. **(d):** Since \(A\) is the foot of perpendicular from \(P\) on \(xy\)-plane, so its \(z\)-coordinate is zero. Hence, coordinates of \(A\) is \((3, 4, 0)\). Similarly, we can find the coordinates of \(B(0, 4, 5)\) and \(C(3, 0, 5)\).

2. **(d):** We have, \(\lim_{k \to \infty} \frac{\left(\frac{1}{k} + 2^3 + \ldots + k^2\right)}{k^4} = \lim_{k \to \infty} \left(\frac{1}{4} \cdot \frac{1}{k^2}\right) = \frac{1}{4}\).

3. **(a):** 5 is less than 7. It is true and hence it is a statement.

4. **(a):** The conditional statement of given statement is "If you take the dinner, then you will get a sweet dish".

5. **(b):** Given limit can be written as,

\[\lim_{x \to 0} \frac{1}{4} \left(\frac{1 - \tan x}{1 + \tan x}\right) = \lim_{x \to 0} \frac{\tan \frac{\pi}{4} - x}{\pi - x} = 1\]

6. **(a):** Length of edges of the parallelepiped are \(5 - 2, 9 - 3, 7 - 5\) i.e., \(3, 6, 2\).

\[\therefore\] Length of diagonal is \(\sqrt{3^2 + 6^2 + 2^2} = 7\) units.

7. **(a):** 19 is a real number or a positive integer or both. So the statement is "inclusive or".

8. **(c):** We have, \(y = x^2 + \sin x + 1x^2\)

\[\frac{dy}{dx} = 2x + \cos x + (-2)x^3 = 2x + \cos x - \frac{2}{x^2}\]

9. **(d):** \(x = \frac{1 \times 1 + 4 \times 2}{1 + 2} = 3, y = \frac{1 \times 3 + 2 \times 3}{1 + 2} = 3\)

and \(z = \frac{1 \times 4 + 2 \times 2}{1 + 2} = 2. \therefore\) Point is \((3, 3, 2)\).

10. **(b):** As \(f'(x) = x \cos x + \sin x\)

So, \(f'(\frac{\pi}{2}) = \frac{\pi}{2} \cos \frac{\pi}{2} + \sin \frac{\pi}{2} = 1\)

11. The three planes determine a rectangular parallelepiped which has three pairs of rectangular faces.

12. We have, \(\lim_{x \to 3} x^2 - 3^2 = n(3)^{n-1}\)

Therefore, \(n(3)^{n-1} = 108 = 4(27) = 4(3)^{4-1}\)

On comparing, we get \(n = 4\)

OR

We have, \(f(x) = x - [x]\)

...\(i)\)

Differentiating \((i)\) w.r.t. \(x\), we get

\(f'(x) = 1 - 0 = 1\) \hspace{1cm} [\because \frac{d}{dx} [\cdot] \text{ is a constant function}]

\[\therefore\] \(f'(\frac{1}{2}) = 1\)

13. Perpendicular distance of the point \((6, 5, 8)\) from \(z\)-axis is \(\sqrt{6^2 + 5^2 + 0^2} = \sqrt{36 + 25} = \sqrt{61}\) units.

14. The given sentence is false, so it is a statement.

OR

The quantifier in the given statement is "For all".

15. Since \(\lim_{x \to 0} x = 0\) and \(-1 \leq \sin \frac{1}{x} \leq 1\)

\[\therefore\] By Sandwich theorem, we have \(\lim_{x \to 0} x \sin \frac{1}{x} = 0\)
16. Given, \(A = (2, 3, 4), B = (-1, 2, -3), C = (-4, 1, -10)\)
Let \(C\) divides \(AB\) in the ratio \(k : 1\), then
\[
C = \left(\frac{-k + 2}{k + 1}, \frac{2k + 3}{k + 1}, \frac{-3k + 4}{k + 1} \right)
\]
\[
\therefore \quad \frac{-k + 2}{k + 1} = -4 \Rightarrow 3k = -6 \Rightarrow k = -2
\]
Hence, \(C\) divides \(AB\) externally in the ratio 2 : 1.

17. \[
\lim_{{n \to \infty}} \frac{n!}{(n+1)! \cdot n!} = \lim_{{n \to \infty}} \frac{1}{n+1} = \lim_{{n \to \infty}} \frac{1}{1-n} = 0 \quad \text{or} \quad 0
\]
Here, \[
\lim_{{x \to 0}} \frac{\sqrt{1 + x} + \sqrt{1 - x}}{1 + x} = \frac{1 + 1}{1} = 2
\]
18. The negation of the given statement is:
Some mathematicians are not man.

19. Locus of the point for which \(x = 0, z = 0\) is y-axis.

20. Clearly, \[
\frac{d}{dx} (x^2 - 3x + 2)(x + 2) = (3x^2 - 2x - 4)
\]
\[
\lim_{{x \to 0}} \frac{x \cos x + \cos 2x}{\sin x} = \lim_{{x \to 0}} \frac{x \cos x + \cos 2x}{\sin x} = 1 + 1 = 2
\]
\[
\text{OR}
\]
\[
= \lim_{{x \to 0}} \frac{\cos x + \cos 2x}{1} = \lim_{{x \to 0}} \frac{a^x - b^x}{x} = \lim_{{x \to 0}} \frac{a^x - 1}{x} - \lim_{{x \to 0}} \frac{b^x - 1}{x}
\]
\[
= \log a - \log b = \log \left(\frac{a}{b} \right)
\]
22. Truth table for \(p \lor c\) is:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(c)</th>
<th>(p \lor c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Hence from truth table, \(p \lor c = p\).

23. Let \(y = \frac{2x^4 + x}{3x - 5}\)
\[
\therefore \quad \frac{dy}{dx} = \frac{(3x - 5)(8x^3 + 1) - (2x^4 + x)(3)}{(3x - 5)^2} = \frac{18x^4 - 40x^3 - 5}{(3x - 5)^2}
\]

24. Let \(P(x, y, 0)\) be the point in xy-plane which is equidistant from \(A(2, 0, 3), B(0, 3, 2)\) and \(C(0, 0, 1)\).
Then, \(AP = BP = CP \Rightarrow AP^2 = BP^2 = CP^2\).
Now, \(AP^2 = CP^2\)
\[
\Rightarrow (x - 2)^2 + (y - 0)^2 + (0 - 3)^2 = (0 - 0)^2 + (y - 0)^2 + (0 - 1)^2
\]
\[
\Rightarrow x^2 + 4 - 4x + y^2 + 9 = x^2 + y^2 + 1 \Rightarrow x = 3
\]
Again, \(BP^2 = CP^2\)
\[
\Rightarrow (x - 0)^2 + (y - 3)^2 + (0 - 2)^2 = (x - 0)^2 + (y - 0)^2 + (0 - 1)^2
\]
\[
\Rightarrow x^2 + y^2 + 9 - 6y + 4 = x^2 + y^2 + 1 \Rightarrow y = 2
\]
Hence, the required point is \(P(x, y, 0) = P(3, 2, 0)\).

OR

Let \(P\) and \(Q\) be the points of trisection.
Then, \(AP = PQ = QB\)
\[
\therefore \quad P = \left(\frac{1 \times 5 + 2 \times 2}{2 + 1}, \frac{1 \times 1 + 2 \times (-2)}{2 + 1}, \frac{1 \times (-5) + 2 \times 7}{2 + 1} \right)
\]
or \(P = (3, -1, 3)\). Now, \(Q\) is the mid-point of \(PB\)
\[
\therefore \quad Q = \left(\frac{3 + 5}{2}, \frac{-1 + 1}{2}, \frac{3 - 5}{2} \right) = (4, 0, -1)
\]

25. (i) The component statements of the given statement are
\(p: 125\) is a multiple of 7.
\(q: 125\) is a multiple of 8.
We observe that both \(p\) and \(q\) are false statements.
Therefore, the compound statement is also false.

(ii) The component statements of the given statement are
\(p: Mumbai\ is\ the\ capital\ of\ Gujarat\).
\(q: Mumbai\ is\ the\ capital\ of\ Maharashtra\).
We observe that \(p\ is\ false\ and\ \(q\ is\ true\). Therefore, the compound statement is true.

26. Let \(A = (4, 4, -10), B = (-2, 2, 4)\)
Let the line joining \(A\ and \(B\ be\ divided\ by\ the\ xy-plane\ at\ point\ \(P\ in\ the\ ratio\ \lambda: 1\).
Then, \(P = \left(\frac{-2\lambda + 4}{\lambda + 1}, \frac{2\lambda + 4}{\lambda + 1}, \frac{4\lambda - 10}{\lambda + 1} \right)\)
Since \(P\ lies\ on\ the\ xy-plane,\ therefore\ z-coordinate\ of\ \(P\ will\ be\ zero.\)
\[
\therefore \quad \frac{4\lambda - 10}{\lambda + 1} = 0 \Rightarrow \lambda = \frac{5}{2}
\]
\[
\therefore \quad \text{Required ratio is } 5 : 2 \text{ (internal).}
\]

27. (i) Let \(p: x\ is\ a\ rational\ number\).
and \(q: x\ is\ not\ an\ irrational\ number\).
Then \(p: x\ is\ a\ rational\ number\)
and \(q: x\ is\ an\ irrational\ number.\)
If \(x \) is a rational number, then \(x \) is not an irrational number. Therefore, \(\sim p = q \).

Again if \(x \) is an irrational number, then \(x \) is not a rational number. Therefore, \(\sim q = p \).

Thus, \(p \) and \(q \) are negation of each other.

(ii) Let \(p: x \) is not a real number.

and \(q: x \) is not an imaginary number.

Then \(\sim p: x \) is a real number.

and \(\sim q: x \) is an imaginary number.

If \(x \) is an imaginary number, then it is definitely not a real number. Therefore \(\sim q = p \).

Again if \(x \) is a real number, then \(x \) is definitely not an imaginary number. Therefore, \(\sim p = q \).

Thus \(p \) and \(q \) are negation of each other.

28. Refer to answer 101, page no. 296 of MTG CBSE

Champion Mathematics, Class-11

29. Put \(x = \frac{\pi}{2} + h \). As \(x \to \frac{\pi}{2} \), \(h \to 0 \)

Now, \[
\lim_{x \to \frac{\pi}{2}} \frac{2\cos x - 1}{x - \frac{\pi}{2}} = \lim_{h \to 0} \frac{2\cos(\frac{\pi}{2} + h) - 1}{\frac{\pi}{2} + h - \frac{\pi}{2}}
\]

\[
= \lim_{h \to 0} \frac{2\sin h - 1}{h} = \lim_{h \to 0} \frac{\sin h - 1}{\frac{\pi}{2} + h - \frac{\pi}{2}}
\]

\[
= \log_{e} 2 \times 1 \times \frac{1}{\frac{\pi}{2}} = \frac{2}{\pi} \log_{e} 2
\]

OR

\[
\lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{\cot x - \cos x} = \lim_{x \to \frac{\pi}{2}} \frac{2\cos x - 1}{\cot x - \cos x}
\]

Put \(\cot x - \cos x = t \)

Now, \(x \to \frac{\pi}{2} \Rightarrow \cot \frac{\pi}{2} - \cos \frac{\pi}{2} = t \Rightarrow t \to 0 \)

\(\therefore \) (i) becomes \(\lim_{t \to 0} \frac{a^t - 1}{t} = \log_{a} 2 \)

30. Refer to answer 39, page no. 271 of MTG CBSE

Champion Mathematics, Class-11

Suppose the given points are \(P(a, b, 3) \), \(Q(2, 0, -1) \) and \(R(1, -1, -3) \).

Let \(Q \) divides the line segment \(PR \) in the ratio \(k:1 \).

Then coordinates of \(Q \) are \(\left(\frac{k+a}{k+1}, \frac{-k+b}{k+1}, \frac{-3k+3}{k+1} \right) \)

But coordinates of \(Q \) are \((2, 0, -1) \)

\(\therefore \) \(\left(\frac{k+a}{k+1}, \frac{-k+b}{k+1}, \frac{-3k+3}{k+1} \right) = (2, 0, -1) \)

\(\Rightarrow \) \(\frac{k+a}{k+1} = 2, \frac{-k+b}{k+1} = 0, \frac{-3k+3}{k+1} = -1 \)

Now, \(\frac{-3k+3}{k+1} = 1 \Rightarrow -3k + 3 = k - 1 \Rightarrow k = 2 \)

\(\therefore \) \(\frac{k+a}{k+1} = 2 \Rightarrow \frac{2a}{3} = 2 \Rightarrow a = 6 - 2 = 4 \)

and \(\frac{-k+b}{k+1} = 0 \Rightarrow \frac{-2+b}{3} = 0 \Rightarrow b = 2 \).

31. Refer to answer 68, page no. 275 of MTG CBSE

Champion Mathematics, Class-11

32. (i) The given statement is a compound statement with “OR” whose component statements are:

\(p: \) Square of an integer is positive.

\(q: \) Square of an integer is negative.

Let us assume that \(p \) is false i.e., square of an integer is not positive. Then, for any integer \(x \), we have

\(x^2 \geq 0 \)

\(\Rightarrow x^2 < 0 \Rightarrow q \) is true.

Thus, if we assume that \(p \) is false, then \(q \) is true.

Hence, “\(p \) or \(q \)” is a valid statement. In other words, the given statement is true.

(ii) Let \(p \) and \(q \) be the statements given by

\(p: x \) and \(y \) are odd integers

\(q: xy \) is an odd integer.

Let us assume that \(q \) is false.

\(\Rightarrow xy \) is an even integer

\(\Rightarrow \) either \(x \) is even or \(y \) is even or both \(x \) and \(y \) are even

\(\Rightarrow p \) is not true.

Thus, \(q \) is false \(\Rightarrow p \) is false

Hence, “If \(p \), then \(q \)” is a true statement.

33. The truth table for \(p \lor (q \land r) \) and \((p \lor q) \land (p \lor r) \) is:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(q \land r)</th>
<th>(p \lor q)</th>
<th>(p \lor r)</th>
<th>(p \lor (q \land r))</th>
<th>((p \lor q) \land (p \lor r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

From the truth table it follows that

\(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \)
34. Since \(\alpha, \beta \) are the roots of equation \(ax^2 + bx + c = 0 \), therefore roots of equation \(cx^2 + bx + a = 0 \) will be \(1/\alpha \) and \(1/\beta \).

\[
\therefore \quad cx^2 + bx + a = c(x - 1/\alpha)(x - 1/\beta)
\]

Required limit = \(\lim_{x \to a} x^2 \sqrt{\frac{1 - \cos(c(x - 1/\alpha)(x - 1/\beta))}{2(1 - \alpha x)^2}} \)

\[
= \lim_{x \to a} \sqrt{\frac{2\sin^2\left(\frac{c}{2}(x - 1/\alpha)(x - 1/\beta)\right)}{2(1 - \alpha x)^2}}
\]

\[
= \lim_{x \to a} \frac{\sin \left[c \left(x - 1/\alpha \right) \left(x - 1/\beta \right) \right]}{1 - \alpha x} \quad \text{\because \(\sqrt{x^2} = |x| \)}
\]

\[
= \lim_{x \to a} \frac{c(\alpha x - 1)(\beta x - 1)}{2\alpha \beta(1 - \alpha x)}
\]

\[
= \frac{c}{2\alpha \beta} \left(\frac{\beta}{\alpha} - 1 \right) = \frac{c}{2\alpha \beta} \left(\frac{1}{\alpha} - 1 \right)
\]

OR

Refer to answer 68, page no. 293 of MTG CBSE Champion Mathematics, Class-11

35. We have, \(y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} \)

\[
\Rightarrow \quad \frac{dy}{dx} = \frac{d}{dx} \left(\frac{x}{1!} \right) + \frac{d}{dx} \left(\frac{x^2}{2!} \right) + \ldots + \frac{d}{dx} \left(\frac{x^n}{n!} \right)
\]

\[
= 0 + \frac{1}{1!} + \frac{2x}{2!} + \frac{1}{3!} (3x^2) + \ldots + \frac{1}{n!} (nx^{n-1})
\]

\[
\Rightarrow \quad \frac{dy}{dx} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^{n-1}}{(n-1)!}
\]

\[
\Rightarrow \quad \frac{dy}{dx} = \left(\frac{1 + x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^{n-1}}{(n-1)!} \right) - \frac{x^n}{n!}
\]

\[
\Rightarrow \quad \frac{dy}{dx} = y - \frac{x^n}{n!} \Rightarrow \frac{dy}{dx} - y + \frac{x^n}{n!} = 0
\]

36. Let \(A(x_1, y_1, z_1) \), \(B(x_2, y_2, z_2) \) and \(C(x_3, y_3, z_3) \) be the vertices of the given triangle, and let \(D(1,5,-1) \), \(E(0,4,-2) \) and \(F(2,3,4) \) be the mid-points of the sides \(BC, CA \) and \(AB \) respectively.

As, \(D \) is the mid-point of \(BC \).

\[
\Rightarrow \quad \frac{x_2 + x_3}{2} = 1, \quad \frac{y_2 + y_3}{2} = 5, \quad \frac{z_2 + z_3}{2} = -1
\]

\[
\Rightarrow \quad x_2 + x_3 = 2, \quad y_2 + y_3 = 10, \quad z_2 + z_3 = -2 \quad \text{\ldots (i)}
\]

Similarly, \(E \) and \(F \) are the mid-points of \(CA \) and \(AB \) respectively.

\[
\therefore \quad x_1 + x_3 = 0, \quad y_1 + y_3 = 8, \quad z_1 + z_3 = -4 \quad \text{\ldots (ii)}
\]

and \(x_1 + x_2 = 4, \quad y_1 + y_2 = 6, \quad z_1 + z_2 = 8 \quad \text{\ldots (iii)}
\]

Adding first three equations in (i), (ii) and (iii), we get

\[
2(x_1 + x_2 + x_3) = 6 \Rightarrow x_1 + x_2 + x_3 = 3 \quad \text{\ldots (iv)}
\]

Solving first equations in (i), (ii) and (iii) with (iv) we get, \(x_1 = 1, x_2 = 3, x_3 = -1 \)

Adding second equations in (i), (ii) and (iii), we get

\[
2(y_1 + y_2 + y_3) = 10 + 8 + 6 \Rightarrow y_1 + y_2 + y_3 = 12 \quad \text{\ldots (v)}
\]

Solving second equations in (i), (ii) and (iii) with (v) we get, \(y_1 = 2, y_2 = 4, y_3 = 6 \)

Adding last equations in (i), (ii) and (iii), we get

\[
2(z_1 + z_2 + z_3) = -2 + 6 + 8 \Rightarrow z_1 + z_2 + z_3 = 1 \quad \text{\ldots (vi)}
\]

Solving last equations in (i), (ii) and (iii) with (vi) we get, \(z_1 = 3, z_2 = 5, z_3 = -7 \)

Thus, the vertices of the triangle are \(A(1,2,3), B(3,4,5) \) and \(C(-1,6,-7) \)

OR

Refer to answer 73, page no. 277 of MTG CBSE Champion Mathematics, Class-11
India has an extremely competitive environment. Numerous competitive exams are conducted every year for admission to undergraduate and postgraduate professional courses as well as for securing services in the government. Every year lakhs of students appeared for these exams but only a handful of them have cleared it. As the competition is very tough, there is no space for mistakes and a candidate has to be thoroughly prepared for the exams. So, we've rounded up 12 tips that will help you to get the most out of your studying hours.

1. **Devising a Routine:** Before you start preparing for any competitive exam, you must design a timetable and set yourself with the clear daily, weekly, and monthly targets. Ensure your plan is not aggressive that you feel overburdened. Make short study sessions, they are most effective.

2. **Create a Good Study Environment:** Make sure your study place is pleasant. It is the key element for effective study. A good study environment allows you to maintain your concentration and maximize your learning efficiency.

3. **Avoid Rote Learning and Focus on Basic Concepts:** Focus on understanding the concepts throughout your preparation. Do not adopt rote learning techniques. Because exams like JEE Main, JEE Advanced and other PETs are extremely complex and check your analytical skills. You need to understand them and know how they are interlinked.

4. **Get Creative and Colourful:** Draw a clear diagram or layout of what you need to learn as per your understanding. Make it visually creative and colourful by highlighting or underlining with different colours. List the dates, formulas, mnemonics and tit-bits of important information that you find difficult to learn. Stick them somewhere on the wall. Seeing them in front of your eyes all the time will help to feed them into the memory very easily.

5. **Past Papers – Do a lot!** Previous years papers really make a lot of difference in your preparation. If you are preparing for exams like JEE Main, solving previous years’ question papers definitely helps you.

6. **Rest, Eat, Exercise:** As we mentioned above, regular breaks are very necessary throughout your study session. You need to take proper rest and have a healthy diet and don’t feel guilty about spending time for some recreational activities. This will help you to boost back with full energy.

7. **Boost your Short-Term Memory:** When your exam date is too close then learning new theories from the start is absolutely not preferable. Rather strengthen your short-term memory by solving previous years papers.

8. **Start with Easiest:** Get the exam rhythm, read all the questions carefully. Divide your time for each question. Then start with the easiest question. Easy questions won’t take much time and you will get enough time to solve complex questions.

9. **Don’t go out of the Box while Answering:** Don’t mark an answer if you are not sure about it. This will result as negative marking.

10. **If Stuck, Move on:** Just calm down if you stuck on any question and leave it aside for last hour. Answer the next question and regain confidence. Once done with all known questions come back to the stuck ones with a different perspective and you will definitely solve it.

11. **Stay Hydrated Always:** Keep drinking plenty of water, to avoid drowsiness and headaches. And also, at times when you get nervous.

12. **Never Leave Early:** It feels great when you finish your answer sheets well before time. But don’t leave the hall till the final bell rings. Take the opportunity to recheck and revise the entire answer sheet again and again. At this point, some students make the mistake of leaving the exam room. Once you leave it, it’s too late – you can’t go back in for marking unmarked questions. So, even if you finish early, use that extra time to read your answer sheet and make sure that you’ve answered all the questions to the best of your abilities.

“Always keep in mind that a disturbed and a non-planned study can lead to loss of marks in the examination.” Therefore, by following these 12 tips listed above, we hope that your next exam will be an enjoyable experience with a successful outcome.

All the Best! 😊

Best Tips/Informations that help you to crack 2020 Exams

[Links to various resources for preparation]

Visit blog.pcmbtoday.com
Series 7: Limits and Derivatives

Total Marks: 80

Only One Option Correct Type

1. The value of \(\lim_{{x \to -\infty}} (\sqrt{x^2 - x + 1} + x) \) is
 (a) \(-\frac{1}{2}\) (b) \(\frac{1}{2}\) (c) 1 (d) \(-1\)

2. The value of \(\lim_{{x \to 0}} \frac{(1 - \cos 2x)(3 + \cos 2x)}{x \tan 4x} \) is equal to
 (a) \(-\frac{1}{4}\) (b) \(\frac{1}{2}\) (c) 1 (d) 2

3. The value of \(\lim_{{x \to 0}} \left(\frac{a^x + b^x + c^x}{3} \right)^{1/x} \) is
 (a) \(abc\) (b) \((abc)^{1/3}\) (c) \(\frac{1}{3}\) (d) none of these

4. If \(y = |\cos x| + |\sin x| \), then \(\frac{dy}{dx} \) at \(x = \frac{2\pi}{3} \) is
 (a) \(\frac{1-\sqrt{3}}{2}\) (b) 0 (c) \(\frac{\sqrt{3}-1}{2}\) (d) none of these

5. Let \(f(x) = \log_e (x^2 + e^x) \). If \(\lim_{{x \to \infty}} f(x) = 1 \) and \(\lim_{{x \to -\infty}} f(x) = m \), then
 (a) \(l = m \) (b) \(l = 2m \) (c) \(2l = m \) (d) \(l + m = 0 \)

6. If \(y = f\left(\frac{2x - 1}{x^2 + 1}\right) \) and \(f'(x) = \sin x^2 \), then \(\frac{dy}{dx} \) is equal to

One or More Than One Option(s) Correct Type

7. Let \(y = \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}} \), then \(\frac{dy}{dx} \) is equal to
 (a) \(\frac{1}{2y-1}\) (b) \(\frac{x}{x+2y}\) (c) \(\frac{1}{\sqrt{1+4x}}\) (d) \(\frac{y}{2x+y}\)

8. \(\lim_{{x \to 0}} \left(\sum_{r=1}^{n} r \cos^2e^x \right)^{\sin^3x} = \)
 (a) 0 (b) \(\infty\) (c) \(n\) (d) \(\frac{1}{n}\)

9. If \(f(x) = \frac{3x^2 + ax + a+1}{x^2 + x - 2} \), then which of the following can be correct?
 (a) \(\lim_{{x \to 1}} f(x) \) exists \(\Rightarrow a = -2 \)
 (b) \(\lim_{{x \to -2}} f(x) \) exists \(\Rightarrow a = 13 \)
 (c) \(\lim_{{x \to 1}} f(x) = \frac{4}{3} \) (d) \(\lim_{{x \to -2}} f(x) = \frac{-1}{3} \)
10. The value of \(a\) for which
\[
\lim_{x \to 0} \frac{(e^x - 1)^4}{\sin \left(\frac{x^2}{a^2}\right) \log_e \left(1 + \frac{x^2}{2}\right)} = 8,
\]
is,
(a) -2
(b) -1
(c) 1
(d) 2

11. If \(\lim_{x \to 0} (\cos x + a \sin bx)^{1/x} = e^2 \), then the values of \(a\) and \(b\) are
(a) \(a = 1, b = 2\)
(b) \(a = 2, b = \frac{1}{2}\)
(c) \(a = 2\sqrt{2}, b = \frac{1}{2}\)
(d) \(a = 4, b = 2\)

12. If \(m, n \in \mathbb{N}\), \(\lim_{x \to 0} \frac{\sin nx}{(\sin x)^m} \) is equal to
(a) 1, if \(n = m\)
(b) 0, if \(n > m\)
(c) \(\infty\), if \(n < m\)
(d) \(n/m\), if \(n < m\)

13. Let \(f(x) = \frac{x^2 - 9x + 20}{x - [x]} \), (where \([\cdot]\) denotes the greatest integer function), then
(a) \(\lim_{x \to 5^-} f(x) = 0 \)
(b) \(\lim_{x \to 5^+} f(x) = 1 \)
(c) \(\lim_{x \to 5} f(x) \) does not exist
(d) none of these

14. \(\lim_{x \to 0^+} F(x) \) equals
(a) \(p_1 \ln a_1 + p_2 \ln a_2 + \ldots + p_n \ln a_n \)
(b) \(a_1^{p_1}a_2^{p_2} \cdots a_n^{p_n} \)
(c) \(a_1^{\lfloor p_1 \rfloor}a_2^{\lfloor p_2 \rfloor} \cdots a_n^{\lfloor p_n \rfloor} \)
(d) \(\sum_{r=1}^{n} a_r p_r \)

15. \(\lim_{x \to \infty} F(x) \) equals
(a) \(\ln a_1\)
(b) \(e^{a_n}\)
(c) \(a_1\)
(d) \(a_n\)

Matrix Match Type

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. If (f(x) = \left(\frac{</td>
<td>x</td>
</tr>
<tr>
<td>Q. If (f(x) = \left(\frac{1 + x}{x} \right)^{1/x} - e), then [\lim_{x \to 0} f(x) = e^2]</td>
<td>2. [\lim_{x \to 0} f(x) = e^2]</td>
</tr>
<tr>
<td>R. If (f(x) = \left(\frac{1 + 5x^2}{1 + 3x^2} \right)^{1/x^2}), then [\lim_{x \to -\infty} f(x) = e^{-2}]</td>
<td>3. [\lim_{x \to -\infty} f(x) = e^{-2}]</td>
</tr>
<tr>
<td>4. [\lim_{x \to 0} f(x) = -\frac{e}{2}]</td>
<td></td>
</tr>
<tr>
<td>5. [\lim_{x \to 0} f(x) < -1]</td>
<td></td>
</tr>
</tbody>
</table>

Numerical Value Type

17. The value of \(\lim_{x \to 0} 27e^{-2} \left(\tan \left(\frac{\pi}{4} + x\right)\right)^{1/x} \) must be

18. Let \(\lim_{x \to 1} \frac{x^a - ax + a - 1}{(x-1)^2} = f(a) \). Then the value of \(f(4) \) is

19. If \(L = \lim_{x \to 0} \frac{e^{-x^2/2} - \cos x}{x^3 \sin x} \), then the value of \(3L \) is

20. If \(y = \sqrt{\frac{1 + \cos 2\theta}{1 - \cos 2\theta}} \), then \(\frac{dy}{d\theta} \) at \(\theta = \frac{3\pi}{4} \) is

Check your score! If your score is

- **EXCELLENT WORK**! You are well prepared to take the challenge of final exam.
- **GOOD WORK**! You can score good in the final exam.
- **SATISFACTORY**! You need to score more next time.
- **NOT SATISFACTORY**! Revise thoroughly and strengthen your concepts.
1. The number of complex numbers \(z \) such that
\[|z - 1| = |z + 1| = |z - i| \]
equals
(a) 0 (b) 1 (c) 2 (d) \(\infty \)

2. \[\lim_{x \to \pi/2} \frac{1 - \tan(x/2)}{1 + \tan(x/2)} \frac{1 - \sin x}{\pi - 2x}^3 \]
(a) 0 (b) 1/32 (c) \(\infty \) (d) 1/8

3. The function \(f(x) = \tan^{-1}(\sin x + \cos x) \) is an increasing function in
(a) \((0, \frac{\pi}{2}) \) (b) \((-\frac{\pi}{2}, \frac{\pi}{2}) \)
(c) \((\pi, \frac{\pi}{2}) \) (d) \(\frac{\pi}{2}, \frac{\pi}{2} \)

4. The range of the function \(F(x) = 7 - x \sqrt{3} \) is
(a) \(\{1, 2, 3, 4\} \) (b) \(\{1, 2, 3, 4, 5, 6\} \)
(c) \(\{1, 2, 3\} \) (d) \(\{1, 2, 3, 4, 5\} \)

5. If \(0 < x < \pi \) and \(\cos x + \sin x = 1/2 \), then \(\tan x \) is
(a) \(\frac{1 - \sqrt{7}}{4} \) (b) \(\frac{4 - \sqrt{7}}{3} \)
(c) \(\frac{4 + \sqrt{7}}{3} \) (d) \(\frac{1 + \sqrt{7}}{4} \)

6. Let \(z_1 \) and \(z_2 \) be two roots of the equation \(z^2 + az + b = 0 \), \(a, b \) being complex further, assume that the origin, \(z_1 \) and \(z_2 \) form an equilateral triangle, then
(a) \(a^2 = 2b \) (b) \(a^2 = 3b \)
(c) \(a^2 = 4b \) (d) \(a^2 = b \)

7. The integral \(\int_0^\pi \frac{\sqrt{1 + 4 \sin^2 \frac{x}{2} - 4 \sin \frac{x}{2} \cdot x}}{2} \) equals
(a) \(\frac{2\pi}{3} - 4 - 4\sqrt{3} \) (b) \(4\sqrt{3} - 4 \)
(c) \(4\sqrt{3} - 4 - \frac{\pi}{3} \) (d) \(\pi - 4 \)

8. The differential equation of all circles passing through the origin and having their centres on the \(x \)-axis is
(a) \(y^2 = x^2 + 2xy \frac{dy}{dx} \) (b) \(y^2 = x^2 - 2xy \frac{dy}{dx} \)
(c) \(x^2 = y^2 + 2xy \frac{dy}{dx} \) (d) \(x^2 = y^2 + 3xy \frac{dy}{dx} \)

9. The value of \(2^{1/4} \cdot 4^{1/8} \cdot 8^{1/16} \ldots \infty \) is
(a) 1 (b) 2 (c) 3/2 (d) 4

10. If \(1, \omega, \omega^2 \) are the cube roots of unity,
then \(\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & 1 & \omega^2 \\ \omega^{2n} & \omega & 1 \end{vmatrix} \) is equal to
(a) 1 (b) \(\omega \) (c) \(\omega^2 \) (d) 0

11. If the sum of the coefficients in the expansion of \((a + b)^n \) is 4096, then the greatest coefficient in the expansion is
(a) 1594 (b) 792 (c) 924 (d) 2924

12. A straight line through the point \(M(3, 4) \) is such that its intercept between the axes is bisected at \(M \). Its equation is
(a) \(x + y = 7 \) (b) \(3x - 4y + 7 = 0 \)
(c) \(4x + 3y = 24 \) (d) \(3x + 4y = 25 \)
13. A plane containing the point (3, 2, 0) and the line
\[
\frac{x-1}{1} = \frac{y-2}{5} = \frac{z-3}{4}
\]
also contains the point
(a) (0, -3, 1)
(b) (0, 7, 10)
(c) (0, 7, -10)
(d) (0, 3, 1)

14. At an election, a voter may vote for any number of candidates, not greater than the number to be elected. There are 10 candidates and 4 are to be elected. If a voter votes for at least one candidate, then the number of ways in which he can vote is
(a) 5040
(b) 6210
(c) 385
(d) 1110

15. Let \(\vec{a}, \vec{b}, \) and \(\vec{c} \) be three non-zero vectors such that no two of these are collinear. If the vector \(\vec{a} + 2\vec{b} \) is collinear with \(\vec{c} \) and \(\vec{b} + 3\vec{c} \) is collinear with \(\vec{a} \) then \(\vec{a} + 2\vec{b} + 6\vec{c} \) equals (\(\lambda \) being some non-zero scalar)
(a) \(\lambda \vec{c} \)
(b) \(\lambda \vec{b} \)
(c) \(\lambda \vec{a} \)
(d) 0

16. The statement \(p \rightarrow (q \rightarrow p) \) is equivalent to
(a) \(p \rightarrow (p \leftrightarrow q) \)
(b) \(p \rightarrow (p \rightarrow q) \)
(c) \(p \rightarrow (p \lor q) \)
(d) \(p \rightarrow (p \land q) \)

17. The area of the region bounded by the curves \(y = |x - 1| \) and \(y = 3 - |x| \) is
(a) 3 sq. units
(b) 4 sq. units
(c) 6 sq. units
(d) 2 sq. units

18. The sum of first 9 terms of the series
\[
\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \ldots = \frac{1}{3} \sum x^2 = 2830, \sum x = 170
\]
One observation that was 20 was found to be wrong and was replaced by the correct value 30. Then the corrected variance is
(a) 188.66
(b) 177.33
(c) 8.33
(d) 78

19. In an experiment with 15 observations on \(x \), the following results were available.
\[\sum x^2 = 2830, \sum x = 170 \]

20. If the angle \(\theta \) between the line \(\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2} \) and the plane \(2x - y + \sqrt{3}z + 4 = 0 \) is such that \(\sin \theta = \frac{1}{3} \), the value of \(\lambda \) is
(a) \(-\frac{3}{5} \)
(b) \(\frac{5}{3} \)
(c) \(-\frac{4}{3} \)
(d) \(\frac{3}{4} \)

Numerical Value Type

21. Let \(A = \begin{bmatrix} 5 & 5\alpha \\ 0 & 5 \end{bmatrix} \). If \(|A^2| = 25 \), then \(|\alpha| \) equals
(a) \(0 \)
(b) \(1 \)
(c) \(3 \)
(d) \(5 \)

22. If \(f(x + y) = f(x) \cdot f(y) \) \(\forall x, y \) and \(f(5) = 2, f'(0) = 3 \), then the value of \(f'(5) \) is
(a) 2
(b) 6
(c) 12
(d) 15

23. Let \(ABC \) and \(ABC' \) be two non-congruent triangles with sides \(AB = 4, AC = AC' = 2\sqrt{2} \) and angle \(B = 30^\circ \). The absolute value of the difference between the areas of these triangles is
(a) 2
(b) 4
(c) 6
(d) 8

24. The line \(2x + y = 1 \) is tangent to the hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. \) If this line passes through the point of intersection of the nearest directrix and the \(x \)-axis, then the eccentricity of the hyperbola is
(a) \(\sqrt{2} \)
(b) \(2 \sqrt{2} \)
(c) \(4 \sqrt{2} \)
(d) \(8 \sqrt{2} \)

25. A random variable \(X \) has the probability distribution:
\[
\begin{array}{c|cccccccc}
X : & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
P(X) : & 0.15 & 0.23 & 0.12 & 0.10 & 0.20 & 0.08 & 0.07 & 0.05 \\
\end{array}
\]
For the events \(E = \{ X \text{ is a prime number} \} \) and \(F = \{ X = 4 \} \), \(P(E \cup F) \) is

SOLUTIONS

1. (b) : We have, \(|z - 1| = |z + 1| \)
\[|z - 1|^2 = |z + 1|^2 \]
\[(z - 1)(\overline{z} - 1) = (z + 1)(\overline{z} + 1) \]
\[z\overline{z} - z - \overline{z} + 1 = z\overline{z} + z + \overline{z} + 1 \]
\[z + \overline{z} = 0 \quad (z \text{ being purely imaginary}) \]
Thus, \(x = 0 \)

Again, \(|z - 1|^2 = |z - i|^2 \)
\[|(z - 1)^2 + y^2 = x^2 + (y - 1)^2 \]
\[1 + y^2 = (y - 1)^2 \]
\[1 + y^2 = y^2 - 2y + 1 \]
\[y = 0 \]
Thus, \((0, 0) \) is the desired point.
2. (b) \[\lim_{x \to \pi^2} \frac{\tan \left(\frac{\pi - x}{4} \right) (1 - \sin x)}{4 \left(\frac{\pi - 2x}{4} \right)^2} \]
\[= \lim_{x \to \pi^2} \frac{\tan \left(\frac{\pi - x}{4} \right)}{4 \left(\frac{\pi - 2x}{4} \right)^2} \left(1 - \cos \left(\frac{\pi - x}{2} \right) \right) \]
\[= \lim_{x \to \pi^2} \frac{\tan \left(\frac{\pi - x}{4} \right)}{4 \left(\frac{\pi - 2x}{4} \right)^2} \cdot \frac{1}{(\pi - 2x)^2} \]
\[= \frac{1}{4} \cdot \frac{1}{16} = \frac{1}{32} \]

3. (d) \[f'(x) = \frac{1}{1 + \sin x + \cos x} \cdot \frac{\cos x - \sin x}{2 + \sin 2x} \]
If \(f'(x) > 0 \) then \(f(x) \) is an increasing function.

For \(\frac{\pi}{2} < x < \frac{\pi}{2} \), \(\cos x > \sin x \)
Hence, \(y = f(x) \) is increasing in \(\left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \).

4. (c) \(F(x) \) to be defined for \(x \in N \).
(i) \(7 - x > 0 \) \(\Rightarrow \) \(x < 7 \)
(ii) \(x - 3 \geq 0 \) \(\Rightarrow \) \(x \geq 3 \)
(iii) \(x - 3 \leq 7 - x \) \(\Rightarrow \) \(x \leq 5 \)
\[\therefore \] From (i), (ii) and (iii), \(x = 3, 4, 5 \)
\[\therefore \] \(F(3) = 3P_0, F(4) = 3P_1, F(5) = 2P_2 \)
\(\{1, 2, 3\} \) is required range.

5. (c) \(\cos x + \sin x = \frac{1}{2} \)
\(\Rightarrow 1 + \sin 2x = \frac{1}{4} \)
\(\Rightarrow 2 \tan x = -\frac{3}{4} \)
\(\Rightarrow \tan x = -\frac{3}{4} \)
\(\Rightarrow 1 + \tan^2 x = 6 \)
\(\Rightarrow 3 \tan^2 x + 8 \tan x + 3 = 0 \)
\(\therefore \) \(x = \frac{-8 \pm \sqrt{64 - 36}}{6} = \frac{-4 \pm \sqrt{7}}{3} \)

6. (b) \(z_1, z_2 \) are roots of \(z^2 + a \cdot z + b = 0 \)
\(\therefore z_1 + z_2 = -a, z_1z_2 = b \)
Again, \(z_1, z_2 \) are vertices of an equilateral triangle
\(\therefore 0 = z_1^2 + z_2^2 = z_1z_2 + z_2^2 = 0 \)
\(\Rightarrow z_1^2 + z_2^2 = z_1z_2 \Rightarrow (z_1 + z_2)^2 = 3z_1z_2 \)
\(\Rightarrow a^2 = 3b \)

7. (c) \(I = \int_0^{\pi/3} \sqrt{\frac{1 - 2 \sin \frac{x}{2}}{2}} dx = \int_0^{\pi/3} \sqrt{\frac{2 \sin \frac{x}{2} - 1}{2}} dx \)
\(= \int_0^{\pi/3} \left(\frac{2 \sin \frac{x}{2}}{2} \right) dx + \int_{\pi/3}^{\pi/2} \left(2 \sin \frac{x}{2} - 1 \right) dx \)
\(= \left[\pi^3 \right] + \left[-4 \cos \frac{x}{2} \right] \left(\frac{\pi}{2} \right) \]
\(= \frac{\pi^3}{3} - 8 \cdot \frac{\sqrt{3}}{2} - 4 = 4 \cdot \frac{\sqrt{3}}{4} - \frac{\pi}{3} \)

8. (a) General equation of all such circles is \((x - h)^2 + (y - 0)^2 = h^2 \) \(\Rightarrow (x - h)^2 + y^2 = h^2 \)
Differentiating w.r.t. \(x \), we get
\(2(x - h) + 2y \frac{dy}{dx} = 0 \)
Putting the value of \(h \) in (i), we get
\(y^2 = x^2 + 2xy \frac{dy}{dx} \)

9. (b) \(\lambda = \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{4}{32} + \ldots = 2^6 \) (say),
\(\Rightarrow \lambda = \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{4}{32} + \ldots \)

10. (d) \(\omega \) is cube root of unity \(\therefore \) \(\omega^3 = \omega^3 \cdot 1 = 1 \)
\(\therefore \) \(\begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix} \)
\(= (\omega^{3n} - 1) - \omega^n (\omega^{3n} - \omega^{2n}) + \omega^{2n} (\omega^n - \omega^n) = 0 \)
11. (c) : Consider \((a + b)^n = C_0 a^n + C_1 a^{n-1} b + C_2 a^{n-2} b^2 + \ldots + C_n b^n\)
Putting \(a = b = 1\), we get
\[2^n = C_0 + C_1 + C_2 + \ldots + C_n\]
\[
\Rightarrow 2^n = 4096 = 2^{12} \Rightarrow n = 12 \text{ (even)}
\]
Now, \((a + b)^n = (a + b)^{12}\)
As \(n = 12\) is even so coefficient of greatest term is
\[nC_{n/2} = 12C_{12/2} = 12C_6 = 924\]

12. (c) : The equation of line which meets the \(x\)-axis and \(y\)-axis at \(A(\alpha, 0)\) \(B(0, \beta)\) is given by
\[
\frac{x}{\alpha} + \frac{y}{\beta} = 1,
\]
where \(\alpha = 2(3) = 6\)
and \(\beta = 2(4) = 8\).
\[
\therefore \text{ Required equation is } \frac{x}{6} + \frac{y}{8} = 1
\]
\[
\Rightarrow 4x + 3y = 24
\]
13. (b) : \(A(3, 2, 0)\) and \(B(1, 2, 3)\) lie in the plane.
\[
\Rightarrow \overline{AB} = 2\hat{i} + 0\hat{j} + (-3)\hat{k} \text{ also lie in the plane.}
\]
\[
\therefore \text{ Normal vector of plane } = (2\hat{i} - 3\hat{k}) \times (\hat{i} + 5\hat{j} + 4\hat{k})
\]
\[
= 15\hat{i} - 11\hat{j} + 10\hat{k}
\]
\[
\therefore \text{ Equation of plane is}
\]
\[
(5 - 3\hat{i} + 2\hat{j} + 0\hat{k}) \cdot (15\hat{i} - 11\hat{j} + 10\hat{k}) = 0
\]
\[
\Rightarrow 15x - 11y + 10z - 23 = 0
\]
14. (c) : A voter can vote for one candidate or two or three or four candidates.
\[
\therefore \text{ Required number of ways}
\]
\[
= 10C_1 + 10C_2 + 10C_3 + 10C_4 = 385
\]
15. (d) : \(\vec{a} + 2\vec{b}\) is collinear with \(\vec{c}\).
\[
\therefore \text{ (i) } \vec{a} + 2\vec{b} = P\vec{c}
\]
and \(\vec{b} + 3\vec{c}\) is collinear with \(\vec{a}\) : \(\vec{b} + 3\vec{c} = Q\vec{a}\) \(\therefore \) (ii)
Now by (i) and (ii), we have
\[
\vec{a} - 6\vec{c} = P\vec{c} - 2Q\vec{a}
\]
\[
\Rightarrow (1 + 2Q)\vec{c} + (-6 - P)\vec{a} = 0
\]
\[
\Rightarrow 1 + 2Q = 0 \text{ and } -P - 6 = 0
\]
\[
\therefore Q = -1/2, P = -6
\]
Putting these values either in (i) or in (ii), we get
\[
\vec{a} + 2\vec{b} + 6\vec{c} = 0
\]
16. (c) : Let’s simplify the statement
\[
p \rightarrow (q \rightarrow p) \equiv p \lor (q \rightarrow p) \equiv p \lor (-q \lor p)
\]
\[
\equiv -p \lor (p \lor -q) \equiv p \rightarrow (p \lor -q)
\]
17. (b) : Given, curves are \(y = 3 - |x|\) and \(y = |x - 1|\).

\[
\text{Required area}
\]
\[
= \int_{0}^{1} [(3 + x) - (-x + 1)] \, dx + \int_{1}^{2} [(-x + 1) - (3 - x)] \, dx
\]
\[
= \int_{0}^{1} (4 - 2x) \, dx + \int_{1}^{2} (2 - 2x) \, dx = 4 \text{ sq. units}
\]
18. (d) : The \(n^{th}\) term, \(t_n\) is
\[
\frac{1^3 + 2^3 + \ldots + n^3}{1 + 3 + \ldots + (2n - 1)} = \frac{n^2(n + 1)^2}{4} = \frac{(n + 1)^2}{4}
\]
\[
\therefore \sum_{n=1}^{9} t_n = \sum_{n=1}^{9} \frac{(n + 1)^2}{4} = \frac{1}{4} \left[\sum_{n=1}^{10} n^2 - 1 \right]
\]
\[
= \frac{1}{4} \left[\frac{10 \times 11 \times 21}{6} - 1 \right] = \frac{1}{4} \left[385 - 1 \right] = \frac{1}{4} \times 384 = 96
\]
19. (d) : We have, \(\Sigma x = 170\) and \(\Sigma x^2 = 2830\)
Increase in \(\Sigma x = 10 \Rightarrow \Sigma x' = 170 + 10 = 180\)
Increase in \(\Sigma x^2 = 900 - 400 = 500\) then
\(\Sigma x'^2 = 2830 + 500 = 3330\)
\[
\therefore \sigma^2 = \frac{1}{15} \times 3330 - \left(\frac{1}{15} \times 180 \right)^2 = 222 - (12)^2 = 78
\]
20. (b) : Angle between the line and plane is complement to the angle between the line and normal to the plane.
\[
\cos(90^\circ - \theta) = \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}
\]
\[
\Rightarrow 1 = \frac{(1 \times 2 + 2 \times (-1)) + 2\sqrt{\lambda}}{\sqrt{1^2 + 2^2 + 2^2} \sqrt{2^2 + 1^2 + \lambda}}
\]
\[
\Rightarrow \lambda = \frac{5}{3}
\]
21. (0.2) : \[A^2 = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix} \]
\[\Rightarrow A^2 = \begin{bmatrix} 25 & 25\alpha + 5\alpha^2 & 5\alpha + 5\alpha^2 + 25\alpha^2 \\ 0 & \alpha^2 & 25\alpha + 5\alpha^2 \\ 0 & 0 & 25 \end{bmatrix} \]

Given, \(|A^2| = 25 \Rightarrow 625\alpha^2 = 25 \Rightarrow |\alpha| = \frac{1}{5} = 0.2 \]

22. (6) : Given \(f(x + y) = f(x) f(y) \)
\[\therefore f(0 + 0) = (f(0))^2 \]
\[\Rightarrow f(0) = 0 \text{ or } f(0) = 1 \text{ but } f(0) \neq 0 \]

Now \[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]
\[\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)(f(h) - 1)}{h} = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h} \]
\[\therefore f'(0) = f(0) \lim_{h \to 0} \frac{f(h) - 1}{h} \]
\[\Rightarrow 3 = \lim_{h \to 0} \frac{f(h) - 1}{h} \]
\[\therefore f'(5) = f(5) \times 3 = 2 \times 3 = 6 \]

23. (4) :

Let the third side be \(a \). From cosine rule, we have
\[(2\sqrt{2})^2 = 4^2 + a^2 - 2 \cdot 4a \cdot \cos 30^\circ \]
\[\Rightarrow 8 = 16 + a^2 - 8a \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \Rightarrow a^2 - 4a\sqrt{3} + 8 = 0 \]

Giving \[a = \frac{4\sqrt{3} \pm \sqrt{48 - 32}}{2} = \frac{4\sqrt{3} \pm 4}{2} = 2(\sqrt{3} \pm 1) \]

Thus, \(BC = 2(\sqrt{3} + 1) \), \(BC' = 2(\sqrt{3} - 1) \)

Difference of areas
\[= \frac{1}{2} \cdot 2(\sqrt{3} + 1) \cdot 4 \cdot \sin 30^\circ - \frac{1}{2} \cdot 2(\sqrt{3} - 1) \cdot 4 \cdot \sin 30^\circ \]
\[= \frac{1}{2} \cdot 4 \times 1 \times 2[2] = 4 \]

24. (2) : \(y = -2x + 1 \) passes through nearest directrix
\[\Rightarrow 0 = \frac{2a}{e} + 1 \Rightarrow \frac{2a}{e} = 1 \Rightarrow \frac{a}{e} = \frac{1}{2} \Rightarrow e = 2a \]
Now, \[e^2 = 1 + \frac{b^2}{a^2} \Rightarrow e^2 = 5 - \frac{4}{e^2} \Rightarrow e^4 - 5e^2 + 4 = 0 \]
\[\Rightarrow (e^2 - 1)(e^2 - 4) = 0 \quad \therefore e^2 = 4 \Rightarrow e = 2 \]

25. (0.77) : From the given table prime numbers are 2, 3, 5 and 7.
\[\therefore P(E) = P(2 \text{ or } 3 \text{ or } 5 \text{ or } 7) \]
\[= P(2) + P(3) + P(5) + P(7) = 0.62 \]
Now, \(P(F) = P(1 \text{ or } 2 \text{ or } 3) \)
\[= P(1) + P(2) + P(3) = 0.50 \]
\[\therefore P(E \cap F) = P(2 \text{ or } 3) = P(2) + P(3) = 0.35 \]
Now, \(P(E \cup F) = P(E) + P(F) - P(E \cap F) \)
\[= 0.62 + 0.50 - 0.35 = 0.77 \]

SAMURAI SUDOKU

Samurai Sudoku puzzle consists of five overlapping sudoku grids. The standard sudoku rules apply to each 9 x 9 grid. Place digits from 1 to 9 in each empty cell. Every row, every column, and every 3 x 3 box should contain one of each digit.

The puzzle has a unique answer.

Readers can send their responses to editors@mtq.in or post us with complete address. Winners’ name with their valuable feedback will be published in next issue.

MATHEMATICS TODAY | DECEMBER 19
CBSE and NCERT to help classes IX, X students shortlist career options

The CBSE, in association with the NCERT, has come up with an aptitude test—‘Tamanna’ (Try and Measure Aptitude and Natural Abilities) – for students of Classes IX and X for determining their area of interest.

However, the board has clarified that the aptitude test is suggestive and should not be used as the sole deciding factor for choosing subjects. The test will be carried out at the school level and a test booklet has been given to all schools, along with score keys.

This exercise is known as Know Your Aptitude (KYA). The preparing authority is the NCERT and the controlling authority is the CBSE. They also plan to train some teachers who can assess the test. The initiative is to make sure that Class IX and X students know their strength and weakness. The test will be self-analysis of sorts so that students choose the right subject.

Students, teachers and parents have been told that the aptitude test gives information related to the strength of students and there is no pass or fail criteria. The test should be taken voluntarily by the interested students and must not be used to impose any subject, courses of study and/or vocations on them.

This Aptitude Test covers seven dimensions. Those dimensions and their operational definitions are given in the adjoining table.

A cluster of aptitudes is required to perform effectively in a course of study or in an occupation. Therefore, the choice of a course of study or occupation should not be based on performance in one single aptitude only.

Low score in all subsets

To help such students, educational and career planning sessions maybe organised and they may also be referred to the school counsellor for career counselling.

According to the aptitude manual, several students may not score high on any of the seven subtests. This does not mean that they lack the ability to pursue further education or training in courses to choose a career. Such students need assistance for self-exploration and encouraging participation in various school activities of their interest, in addition to the subjects of study.

<table>
<thead>
<tr>
<th>Seven Dimensions</th>
<th>Area of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Language Aptitude: It is concerned with a person’s ability to use and understand written language. It evaluates how well a student understands words and their synonyms, spells words correctly and identifies the correct meaning of the given proverbs/idioms.</td>
<td>Reading and writing such as teaching, journalism and media studies, advertising, law, library science, stenography, business development, etc.</td>
</tr>
<tr>
<td>2. Abstract Reasoning: It refers to a person’s ability for logical and analytical thinking. This sub-test is non-verbal and it assesses how well students can reason and logically relate geometric shapes or designs.</td>
<td>Mathematics, computer programming, architecture, law, medicine, economics, mechanics forensic science, etc.</td>
</tr>
<tr>
<td>3. Verbal Reasoning: It is the ability to understand and reason using concepts expressed in words. It evaluates a student’s ability to think constructively with words.</td>
<td>Psychology, speech therapist, auctioneering, advertising, linguistics, business, law, education, public relations, marketing, journalism, etc.</td>
</tr>
<tr>
<td>4. Mechanical Reasoning: It refers to a person’s ability to understand and apply mechanical concepts principles to solve problems.</td>
<td>Machinery/electrical/civil automobile engineering, carpentry, electrician, machine operator, physics, chemistry, etc.</td>
</tr>
<tr>
<td>5. Numerical Aptitude: It refers to understanding numerical relationships and applying the same to the issue/problem. This sub-test assesses how well a student is able to solve problems covering four primary arithmetic operations like addition, subtraction, multiplication and division.</td>
<td>All types of engineering, architecture, oceanography, geology, meteorology, biosciences, health sciences and of course statistics and natural sciences.</td>
</tr>
<tr>
<td>6. Spatial Aptitude: It is related to the capacity to mentally manipulate actual materials through imagining. A student in this ability test is required to quickly judge how an object would look like when constructed in a given way.</td>
<td>Manufacturing industry, drafting, designing (fashion, interior, toys and games, jewellery, urban planning, landscape designing, etc.), architecture, astronomy, chemist, visual arts, animation, multimedia art, etc.</td>
</tr>
<tr>
<td>7. Perceptual Aptitude: It refers to a person’s ability to quickly, accurately and meaningfully compare visual information, i.e., letters, numbers, objects, pictures or patterns. In this sub-test, perceptual aptitude assesses how the students rapidly compare the paired groups of letters or numbers and identify the similarity or differences.</td>
<td>Bank-teller, accountants, computer programmers, police detectives, data entry, assembly work, record keeping, dispatching, filing, etc.</td>
</tr>
</tbody>
</table>
FULLY LOADED & COMPLETELY UPDATED

MTG’s BITSAT Power Guide is not only the most exhaustive prep-tool, but also the only book available at present, updated as per the latest BITSAT syllabus for students aspiring for top rank in BITSAT 2020.

Attempt all questions from this book on the Web + Mobile for free
(For details see inside the book)

₹ 850/-

Get MTG’s BITSAT Power Guide today for a real-world feel of BITSAT. Find out what’s different about the BITSAT test, including its pattern of examination and key success factors. Be it with chapterwise MCQs or model test papers, check how good your chances are for glory in BITSAT 2020.

Visit www.MTG.in to buy online. Or visit a leading bookseller near you.
For more information, email info@mtg.in or call 1800-10-38673 (toll-free).

FEATURES
- Covers all 5 subjects - Physics, Chemistry, Mathematics, English & Logical Reasoning
- Chapterwise MCQs in each section for practice
- Past chapterwise BITSAT Qs (2019-2011)
- 10 Model Test Papers with detailed solutions
- Attempt all questions & tests from this book online, for free with #L
Q.1-Q.10 are multiple choice type questions. Select the correct option.

1. The coordinates of a point \(P \) are \((3, 12, 4)\) w.r.t. origin \(O\), then the direction cosines of \(OP\) are
 \[\begin{array}{ll}
 (a) & 3, 12, 4 \\
 (b) & \frac{1}{4}, \frac{1}{3}, \frac{1}{2} \\
 (c) & \frac{3}{\sqrt{13}}, \frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}} \\
 (d) & \frac{3}{13}, \frac{12}{13}, \frac{4}{13}
 \end{array}\]

2. The equation of a line passing through the point \((-3, 2, -4)\) and equally inclined to the axes are
 \[\begin{array}{ll}
 (a) & x + 3 = y + 2 = z - 4 \\
 (b) & x + 3 = y - 2 = z + 4 \\
 (c) & \frac{x + 3}{1} = \frac{y - 2}{2} = \frac{z + 4}{3} \\
 (d) & \text{None of these}
 \end{array}\]

3. The angle between the planes \(x + y = 0\) and \(y - z = 1\) is
 \[\begin{array}{ll}
 (a) & \frac{\pi}{6} \\
 (b) & \frac{\pi}{4} \\
 (c) & \frac{\pi}{3} \\
 (d) & \frac{\pi}{2}
 \end{array}\]

4. \(P \) is a point on the line segment joining the points \((3, 2, -1)\) and \((6, 2, -2)\). If \(x \) co-ordinate of \(P \) is 5, then its \(y \) co-ordinate is
 \[\begin{array}{ll}
 (a) & 2 \\
 (b) & 1 \\
 (c) & -1 \\
 (d) & -2
 \end{array}\]

5. The angle between the straight lines
 \[\frac{x + 1}{2} = \frac{y - 2}{5} = \frac{z + 3}{4} \quad \text{and} \quad \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z - 3}{-3} \]
 \[\begin{array}{ll}
 (a) & 45^\circ \\
 (b) & 30^\circ \\
 (c) & 60^\circ \\
 (d) & 90^\circ
 \end{array}\]

6. An equation of the plane passing through the points \((3, 2, -1), (3, 4, 2)\) and \((7, 0, 6)\) is \(5x + 3y - 2z = \lambda\), where \(\lambda\) is
 \[\begin{array}{ll}
 (a) & 23 \\
 (b) & 21 \\
 (c) & 19 \\
 (d) & 27
 \end{array}\]

7. The shortest distance between the lines
 \[\frac{x}{m_1} = \frac{y}{1} = \frac{z - a}{0}, \quad \frac{x}{m_2} = \frac{y}{1} = \frac{z + a}{0} \]
 \[\begin{array}{ll}
 \text{is}
 \end{array}\]
8. If a line makes angles \(\alpha, \beta, \gamma \) with the positive direction of coordinate axes, then write the value of \(\sin^2\alpha + \sin^2\beta + \sin^2\gamma \).

(a) 3 \hspace{1cm} (b) \frac{a}{m_1 - m_2} \hspace{1cm} (c) 1 \hspace{1cm} (d) \frac{2a}{m_1 - m_2}

9. If lines \(\frac{x - 1}{-3} = \frac{y - 2}{2k} = \frac{z - 3}{2} \)
and \(\frac{x - 1}{3k} = \frac{y - 5}{1} = \frac{z - 6}{-5} \)
are mutually perpendicular, then \(k \) is equal to

(a) \(-\frac{10}{7} \) \hspace{1cm} (b) \(-\frac{7}{10} \) \hspace{1cm} (c) -10 \hspace{1cm} (d) -7

10. In the figure, \(\vec{a} \) is the vector position of the point \(A \) with respect to the origin \(O \). \(l \) is a line parallel to a vector \(\vec{b} \). The vector equation of line \(l \) is

(a) \(\vec{r} = \lambda(\vec{a} \times \vec{b}) \) \hspace{1cm} (b) \(\vec{r} = \lambda\vec{a} - \vec{b} \)
(c) \(\vec{r} = \vec{a} + \lambda\vec{b} \) \hspace{1cm} (d) \(\vec{r} = \lambda(\vec{a} \cdot \vec{b}) \)

(Q.11 - Q.15) Fill in the blanks.

11. The distance of the plane \(2x - 3y + 6z + 14 = 0 \) from the origin is ________.

12. The cartesian equation of the plane \(\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 2 \) is ________.

13. A plane passes through the points \((2, 0, 0), (0, 3, 0) \)
and \((0, 0, 4) \), then the equation of plane is ________.

14. The direction cosines of the vector \(\hat{a} \) are ________.

15. The plane \(2x - 3y + 6z - 11 = 0 \) makes an angle \(\sin^{-1}(\alpha) \) with x-axis. The value of \(\alpha \) is equal to ________.

OR

The equation of the line parallel to the line \(\frac{x - 2}{-3} = \frac{y + 3}{2} = \frac{z + 5}{6} \) and passing through the point \((1, 2, 3) \) is ________.

(Q.16-Q.20) Answer the following questions.

16. For what values of \(m \), the vectors \(2\hat{i} - 3\hat{j} + 4\hat{k} \) and \(m\hat{i} + 6\hat{j} - 8\hat{k} \) are collinear?

17. Write the vector equation of \(\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{2 - z}{2} \).

18. Reduce the equation of the plane \(3x + 5y - 4z = 60 \) to intercept form and find its intercepts on the coordinate axes.

19. Show that the planes \(2x + 6y + 6z = 7 \) and \(3x + 4y - 5z = 8 \) are at right angles.

20. Find the distance of the plane \(\vec{r} \cdot \left(\frac{2\hat{i} + 3\hat{j} - 6\hat{k}}{7} \right) = 1 \) from the origin.

OR

Write the equation of the straight line through the point \((\alpha, \beta, \gamma)\) and parallel to z-axis.

SECTION-B

21. Find the vector and cartesian equations of the plane which passes through the point \((5, 2, -4) \) and perpendicular to the line with direction ratios \(2, 3, -1 \).

22. Find the shortest distance between the lines \(\vec{r} = (\hat{i} + 2\hat{j}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) \) and \(\vec{r} = (3\hat{i} + 3\hat{j} - 5\hat{k}) + \mu(2\hat{i} + 3\hat{j} + 6\hat{k}) \).

23. Find a unit vector normal to the plane \(\vec{r} \cdot (2\hat{i} - 3\hat{j} + 6\hat{k}) + 14 = 0 \).

24. Find the angle between the lines \(\vec{r} = \hat{2} - 5\hat{j} + \hat{k} + \lambda(3\hat{i} + 2\hat{j} + 6\hat{k}) \) and \(\vec{r} = 7\hat{i} - 6\hat{k} + \mu(\hat{i} + 2\hat{j} + \hat{k}) \).

OR

Find the value of \(\lambda \) for which the points \(A(-1, 3, 2), \)
\(B(-4, 2, -2) \) and \(C(5, 5, \lambda) \) are collinear.

25. Find the vector equation of the line passing through the point \((1, 2, -1) \) and parallel to the line \(5x - 25 = 14 - 7y = 35z \).
26. Find the cartesian equation of the plane passing through the points \((1, 1, 2), (0, 2, 3), (4, 5, 6)\).

SECTION C

27. Find the shortest distance between the lines \(L_1\) and \(L_2\) whose vector equations are
\[
L_1 : \vec{r} = \hat{i} + \hat{j} + \lambda (2\hat{i} - \hat{j} + \hat{k}) \\
L_2 : \vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu (3\hat{i} - 5\hat{j} + 2\hat{k}).
\]

28. Find the image of the point \((1, 6, 3)\) in the line \[
\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-2}{3}.
\]

OR

Find the value of \(\lambda\), so that the lines \[
\frac{1-x}{3} = \frac{7y-14}{2} = \frac{z-3}{\lambda} \quad \text{and} \quad \frac{7-7x}{3\lambda} = \frac{y-5}{1} = \frac{6-z}{5}
\]
are at right angles. Also, find whether the lines are intersecting or not.

29. Find the direction ratios of the normal to the plane passing through the point \((2, 1, 3)\) and the line of intersection of the planes \(x + 2y + z = 3\) and \(2x - y - z = 5\).

30. If the points \((1, 1, \lambda)\) and \((-3, 0, 1)\) be equidistant from the plane \(\vec{r} \cdot (3\hat{i} + 4\hat{j} - 12\hat{k}) + 13 = 0\), find the value of \(\lambda\).

OR

Show that the lines \[
\frac{x-2}{1} = \frac{y-4}{5} = \frac{z-6}{7} \quad \text{and} \quad \frac{x+1}{3} = \frac{y+3}{2} = \frac{z+5}{5}
\]
are coplanar.

31. The cartesian equations of a line are \(6x - 2 = 3y + 1 = 2z - 2\). Find the direction cosines of the line. Write down the cartesian and vector equations of a line passing through \((2, -1, -1)\) which is parallel to the given line.

32. If the perpendicular distance of a plane from the origin is 1 and d.c.'s of normal vector to the plane satisfies \[
\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k,
\]
then find the value of \(k\).

SECTION D

33. Find the vector and cartesian equations of a line passing through \((1, 2, -4)\) and perpendicular to the two lines \[
\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} \quad \text{and} \quad \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}.
\]

34. Find the vector and cartesian equations of a plane containing the two lines \[
\vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda (i + 2\hat{j} + 5\hat{k}) \quad \text{and} \quad \vec{r} = 3\hat{i} + 3\hat{j} + 2\hat{k} + \mu (3\hat{i} - 2\hat{j} + 5\hat{k}).
\]

Also show that the line \[
\vec{r} = (2\hat{i} + 5\hat{j} + 2\hat{k}) + p (3\hat{i} - 2\hat{j} + 5\hat{k})
\]
lies in the plane.

OR

Find the coordinate of the point \(P\) where the line through \(A(3, -4, -5)\) and \(B(2, -3, 1)\) crosses the plane passing through three points \(L(2, 2, 1), M(3, 0, 1)\) and \(N(4, -1, 0)\). Also, find the ratio in which \(P\) divides the line segment \(AB\).

35. Find the equations of two planes through the points \((4, 2, 1), (2, 1, -1)\) and \((4, 2, 1)\) and \((2, 1, -1)\) making angles \(\pi/4\) with the plane \(x - 4y + z - 9 = 0\).

36. Show that the lines \[
\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda (3\hat{i} - \hat{j})
\]
and \[
\vec{r} = (4\hat{i} - \hat{k}) + \mu (2\hat{i} + 3\hat{k})
\]
are coplanar. Also find the equation of the plane containing them.

OR

Find the position vector of the foot of perpendicular and the perpendicular distance from the point \(P\) with position vector \(2\hat{i} + 3\hat{j} + 4\hat{k}\) to the plane \(\vec{r} \cdot (2\hat{i} + \hat{j} + 3\hat{k}) - 26 = 0\). Also find image of \(P\) in the plane.

SOLUTIONS

1. (d) : Direction ratios of \(OP\) are \((3 - 0, 12 - 0, 4 - 0)\) or \((3, 12, 4)\). Also \(\sqrt{3^2 + 12^2 + 4^2} = 13\)

\[
\therefore \quad \text{Direction cosines are } \left(\frac{3}{13}, \frac{12}{13}, \frac{4}{13}\right).
\]

2. (b) : Since, line is equally inclined to the axes.

\[
\therefore \quad l = m = n \quad \text{...(i)}
\]

The required equation of line passing through \((-3, 2, -4)\) is
\[
x + 3 = \frac{y - 2}{l} = \frac{z + 4}{l}
\]

Using (i)
\[
\Rightarrow \frac{x + 3}{l} = \frac{y - 2}{1} = \frac{z + 4}{1} \quad \Rightarrow \quad x + 3 = y - 2 = z + 4
\]

3. (c) : The d.c.'s of the two normals are \(<1, 1, 0>\) and \(<0, 1, -1>\). The angle between the planes is

\[
\theta = \cos^{-1}\left(\frac{1\times0 + 1\times1 - 0\times1}{\sqrt{1^2 + 1^2 + 0^2}}\right) = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}
\]

4. (a) : Equation of line joining the points \((3, 2, -1)\) and \((6, 2, -2)\) is

\[
x - 3 = \frac{y - 2}{2 - 2} = \frac{z + 1}{-1 + 1} \quad \text{i.e.,} \quad \frac{x - 3}{0} = \frac{y - 2}{0} = \frac{z + 1}{-1} = \lambda
\]

\[
\Rightarrow \quad x = 3\lambda + 3, \quad y = 2, \quad z = -\lambda - 1
\]

So, \(y\)-coordinate of \(P\) is 2.
5. \(d\): The direction ratios of lines are
\(<2, 5, 4>\) and \(<1, 2, -3>\).
\[
\cos \theta = \frac{2 \cdot 1 + 5 \cdot 2 + 4 \cdot (-3)}{\sqrt{2^2 + 5^2 + 4^2} \cdot \sqrt{1^2 + 2^2 + (-3)^2}} = \frac{2 + 10 - 12}{\sqrt{4 + 25 + 16} \cdot \sqrt{1 + 4 + 9}} = 0 \quad \Rightarrow \quad \theta = 90^\circ
\]
6. \(a\): Equation of plane through \((3, 2, -1), (3, 4, 2) \) and \((7, 0, 6) \) is
\[
\begin{bmatrix} x - 3 & y - 2 & z + 1 \\ 0 & 2 & 3 \\ 4 & -2 & 7 \end{bmatrix} = 0
\]
i.e., \(5x + 3y - 2z = 23\). \(\therefore\) \(\lambda = 23\)
7. \(c\): Here, \(\vec{a}_1 = a\hat{k}, \vec{b}_1 = m\hat{i} + \hat{j}\), \(\vec{a}_2 = -a\hat{k}, \vec{b}_2 = \frac{m\hat{i}}{2} + \frac{\hat{j}}{2}\).
\[
\vec{b}_2 \times \vec{b}_2 = (m_1 - m_2) \hat{k}
\]
\(\therefore\) Shortest distance is \(\frac{|(\hat{a}_2 - \hat{a}_1) \cdot (\vec{b}_2 \times \vec{b}_2)|}{|\vec{b}_2|} = 2a\)
8. \(b\): Here, the direction cosines of the given line are \(\cos \alpha, \cos \beta, \cos \gamma\) and \(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1\)
\[
\Rightarrow (1 - \sin^2 \alpha) + (1 - \sin^2 \beta) + (1 - \sin^2 \gamma) = 1
\]
\(\Rightarrow \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2\)
9. \(a\): Lines \(\frac{x - 1}{-3} = \frac{y - 2}{2} = \frac{z - 3}{k}\) and \(\frac{x - 1}{-3} = \frac{y - 5}{1} = \frac{z - 6}{5}\) are perpendicular if
\[
-3k + 2k + 2(-5) = 0 \quad \Rightarrow \quad k = -10/7
\]
10. \(c\): The vector equation of line passing through point \(\vec{a}\) and parallel to a vector \(\vec{b}\) is given by \(\vec{r} = \vec{a} + \lambda \vec{b}\).
11. D.r.'s of the normal to the plane \(2x - 3y + 6z + 14 = 0\) are \(<-2, -3, 6>\).
\[
\text{Now, } \sqrt{2^2 + (-3)^2 + (6)^2} = \sqrt{49} = 7
\]
\(\therefore\) Required distance is \(14/\sqrt{7} = 2\)
12. Given vector equation is, \(\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 2\)
\(\Rightarrow\) \((\hat{i} + \hat{j} + z\hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k}) = 2 \quad \Rightarrow\) \(x + y + z = 2\) which is the cartesian form of plane.

\[\text{OR}\]

The d.r.'s of two normals are \(<3, 2, 1>\) and \(<1, 1, -2>\).
\(\therefore\) Angle between the planes is
\[
\cos^{-1}\left(\frac{3(1) + 2(0) + 1(-2)}{\sqrt{3^2 + 2^2 + 1^2} \cdot \sqrt{1^2 + 1^2 + (-2)^2}}\right) = \cos^{-1}\left(\frac{3}{2\sqrt{21}}\right)
\]
\(\therefore\) \(k = 21\)
13. The equation of plane passing through the points \((2, 0, 0), (0, 3, 0)\) and \((0, 0, 4)\) is \(\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1\).
14. Direction cosines of \((2\hat{i} + \hat{j} + \hat{k})\) are
\[
\frac{2}{\sqrt{4 + 4 + 1}}, \frac{2}{\sqrt{4 + 4 + 1}}, \frac{1}{\sqrt{4 + 4 + 1}} \quad \text{i.e.,} \quad \frac{2}{3}, \frac{2}{3}, \frac{1}{3}
\]
15. D.r.'s of \(x\)-axis is \(<1, 0, 0>\) and d.r.'s of the normal to the plane \(2x - 3y + 6z = 11\) is \(<-2, -3, 6>\).
\(\therefore\) \(\sin(\sin^{-1} \alpha) = \frac{2}{\sqrt{2^2 + 0^2 + 1^2}}\) \(\sqrt{2^2 + (-3)^2 + 6^2}\)
\(\Rightarrow\) \(\alpha = 2/7\)

\[\text{OR}\]

The equation of line parallel to line \(\frac{x - 2}{-3} = \frac{y + 3}{2} = \frac{z + 5}{6} \quad \text{i.e.,} \quad -3\hat{i} + 2\hat{j} + 3\hat{k}\) and passing through point having position vector \(\hat{i} + 2\hat{j} + 3\hat{k}\) is
\[
\frac{x - 1}{-3} = \frac{y - 2}{2} = \frac{z - 3}{6}
\]
16. Given, \(\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}\) and \(\vec{b} = \hat{m} + 6\hat{j} - 8\hat{k}\).
If \(\vec{a}\) and \(\vec{b}\) are collinear, then
\[
\frac{m}{2} = \frac{-6}{-3} = \frac{-8}{4} \Rightarrow \frac{m}{2} = -2 \Rightarrow m = -4
\]
17. The line passes through point \((5, -4, 6)\) and d.r.'s of the line are \(<3, 7, -2>\).
\(\therefore\) Vector equation is \(\vec{r} = (5\hat{i} - 4\hat{j} + 6\hat{k}) + \lambda(3\hat{i} + 7\hat{j} - 2\hat{k})\)
18. The equation of the given plane is
\[
3x + 5y - 4z = 60 \Rightarrow \frac{x}{20} + \frac{y}{12} + \frac{z}{(-15)} = 1
\]
So, the intercepts made by the plane with the coordinate axes are \(20, 12\) and \(-15\) respectively.
19. We have, planes \(2x + 6y + 7z = 7\) and \(3x + 4y - 5z = 8\).
Here, \(a_1 = 2, b_1 = 6, c_1 = 6, a_2 = 3, b_2 = 4, c_2 = -5\)
\(\therefore\) \(a_1a_2 + b_1b_2 + c_1c_2 = (2)(3) + (6)(4) + (6)(-5) = 0\)
So, planes are at right angles.
20. We have, \(\vec{r} = \left(\frac{2}{7}i + \frac{3}{7}j - \frac{6}{7}k\right)\). \(\therefore\) \(|\vec{n}| = \sqrt{\frac{49}{49}} = 1\)
Here, \(\vec{n} = \frac{2}{7}i + \frac{3}{7}j - \frac{6}{7}k \quad \therefore \quad |\vec{n}| = \sqrt{\frac{49}{49}} = 1\)
So, \(\vec{n}\) is a unit vector. Hence, given equation of plane is in normal form. So, distance from origin is 1.

\[\text{OR}\]

Any line parallel to \(z\)-axis has direction ratios proportional to \(<0, 0, 1>\).
21. The equation of the plane passing through the point whose position vector is \(\mathbf{a} = (5\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}) \) and the normal vector \(\mathbf{n} = (2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) \) is given by \(\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n} \) is \((2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) \cdot (\mathbf{r} - \mathbf{a}) = 0 \)

\[(2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) \cdot (\mathbf{r} - (5\mathbf{i} + 2\mathbf{j} - 4\mathbf{k})) = 0 \]

Let \(\mathbf{r} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \), then from (i), we have

\[(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot (2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) = 2x + 3y - z = 20 \]

which is the required cartesian equation of the plane.

22. Here \(\mathbf{a}_1 = \mathbf{i} + 2\mathbf{j} \), \(\mathbf{a}_2 = 3\mathbf{i} + 3\mathbf{j} - 5\mathbf{k} \), \(\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k} \)

\[\mathbf{b} \times (\mathbf{a}_2 - \mathbf{a}_1) = -7\mathbf{i} + 22\mathbf{j} + 7\mathbf{k} \]

\[|\mathbf{b} \times (\mathbf{a}_2 - \mathbf{a}_1)| = \sqrt{441 + 484 + 16} = \sqrt{941} \]

\[\mathbf{d} = \frac{|\mathbf{b} \times (\mathbf{a}_2 - \mathbf{a}_1)|}{|\mathbf{b}|} = \frac{\sqrt{941}}{7} \]

23. We have, \(\mathbf{r} \cdot (2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}) = 14 = 0 \)

\[\mathbf{r} \cdot (2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) = 14 \]

\[\mathbf{r} \cdot \mathbf{n} = 14, \text{ where } \mathbf{n} = (2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) \]

\[|\mathbf{n}| = \sqrt{(2)^2 + (3)^2 + (-6)^2} = 7 \]

24. Given lines are \(\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 6\mathbf{k} \) and \(\mathbf{r} = 7\mathbf{i} + 6\mathbf{k} + (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \)

On comparing with \(\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{b}_1 \) and \(\mathbf{r} = \mathbf{a}_2 + \lambda \mathbf{b}_2 \)

we get \(\mathbf{b}_1 = 3\mathbf{i} + 2\mathbf{j} + 6\mathbf{k} \) and \(\mathbf{b}_2 = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \)

\[\mathbf{b}_1 \cdot \mathbf{b}_2 = \frac{(3\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})}{|\mathbf{b}_1| \cdot |\mathbf{b}_2|} = \frac{|3\mathbf{i}^2 + 2\mathbf{j}^2 + 6\mathbf{k}^2 + 2\mathbf{i} \cdot \mathbf{j} + 2\mathbf{i} \cdot \mathbf{k}|}{\sqrt{9 + 4 + 36}} = \frac{19}{19} = 1 \]

\[\Rightarrow \theta = \cos^{-1}\left(\frac{19}{21}\right) \]

The equation of the line \(AB \) is

\[\frac{x + 1}{-4} = \frac{y - 3}{-2} = \frac{z - 2}{-4} \Rightarrow \frac{x + 1}{-3} = \frac{y - 3}{-1} = \frac{z - 2}{-4} \]

Since the points \(A, B \) and \(C \) are collinear, so the point \(C(5, 5, \lambda) \) lies on (i).

\[\frac{5 + 1}{-3} = \frac{5 - 3}{-1} = \frac{\lambda - 2}{-4} \Rightarrow \frac{\lambda - 2}{-4} = -2 \]

\[\Rightarrow \lambda - 2 = 8 \Rightarrow \lambda = 10 \]

25. Vector equation of the line passing through \((1, 2, -1)\) and parallel to the line \(5x - 25 = 14 - 7y = 35z\)

i.e., \(\frac{x - 5}{1} = \frac{y - 2}{1} \Rightarrow \frac{z - 3}{-3} = \frac{7}{1} \)

is \(\mathbf{r} = (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + \lambda(7\mathbf{i} - 5\mathbf{j} + \mathbf{k}) \).

26. Let \(A(x_1, y_1, z_1) = (1, 1, 2), B(x_2, y_2, z_2) = (0, 2, 3), C(x_3, y_3, z_3) = (4, 5, 6) \)

Equation of plane is given by

\[\begin{vmatrix} x - 1 & y - 1 & z - 2 \\ 3 & 4 & 4 \end{vmatrix} = 0 \]

\[\Rightarrow (x - 1)(4 - 3) - (y - 1)(-4 - 3) + (z - 2)(-1 - 4) = 0 \]

\[\Rightarrow y - 1 + z + 2 = 0 \Rightarrow y + z = 1 \]

27. Refer to answer 53, Page no. 283 of MTG CBSE Champion Mathematics, Class-12

28. Let the given point be \(P(1, 6, 3) \) and the given line be \(AB \) whose equation is \(\frac{x}{1} = \frac{y - 1}{2} = \frac{z - 2}{3} \)

Draw \(PQ \perp AB \) and produce it to \(P' \) such that \(PQ = P \).

Then \(P' \) is the image of \(P \) in the line \(AB \). Coordinates of \(Q \) are \((r, 2r + 1, 3r + 2)\) for some value of \(r \).

D.r.'s of \(PQ \) are \(<r - 1, 2r - 5, 3r - 1> \)

D.r.'s of \(AB \) are \(<1, 2, 3>\).
Since $PQ \perp AB \therefore 1(r - 1) + 2(2r - 5) + 3(3r - 1) = 0$
\Rightarrow 14r - 14 = 0 \Rightarrow r = 1
\therefore
Coordinates of Q are $(1, 3, 5).
Let the coordinates of P' be $(\alpha, \beta, \gamma).
Since Q is the mid-point of PP'
\begin{align*}
\frac{\alpha + 1}{2} &= 1, \quad \frac{\beta + 6}{2} = 3, \quad \frac{\gamma + 3}{2} = 5 \\
\Rightarrow \alpha &= 1, \beta = 0, \gamma = 7
\end{align*}
Hence, the coordinates of P' are $(1, 0, 7).

OR

Refer to answer 39, Page no. 281 of MTG CBSE Champion Mathematics, Class-12

29. The equation of the plane passing through the line of intersection of the planes $x + 2y + z = 3$ and $2x - y - z = 5$ is given by
\begin{align*}
(x + 2y + z - 3) + \lambda(2x - y - z - 5) &= 0 \\
\Rightarrow x(2\lambda + 1) + y(2 - \lambda) + z(1 - \lambda) - 3 - 5\lambda &= 0 \\
&\text{(i)}
\end{align*}
It passes through $(2, 1, 3)$, then
\begin{align*}
2(2\lambda + 1) + 2 - \lambda + 3 - 5\lambda &= 0 \\
&\Rightarrow 4 - 5\lambda = 0 \quad \Rightarrow \lambda = 4/5
\end{align*}
Substituting $\lambda = 4/5$ in (i), we get $13x + 6y + z - 35 = 0$ as the equation of the required plane. Direction ratios of normal to this plane are proportional to $13, 6, 1$.

30. It is given that the points $(1, 1, \lambda)$ and $(-3, 0, 1)$ are equidistant from the plane $\mathbf{r} \cdot (3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}) + 13 = 0$.
\begin{align*}
\left| \mathbf{r} \cdot (3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}) + 13 \right| &= \sqrt{9 + 16 + 144} \\
&= \sqrt{164} \\
&= \sqrt{9 + 16 + 144} \\
&= 13
\end{align*}
\begin{align*}
\Rightarrow |3x + 4 + 12y + 13| &= 13 \\
&\Rightarrow 20 - 12\lambda &= 8 \\
&\Rightarrow 20 - 12\lambda &= \pm 8 \\
&\Rightarrow 12\lambda &= 12 \quad \text{or} \quad 12\lambda = 28 \\
&\Rightarrow \lambda &= 1 \quad \text{or} \quad \lambda = 7/3
\end{align*}

OR

The given lines are
\begin{align*}
\frac{x - 2}{4} &= \frac{y - 4}{7} = \frac{z - 6}{5} \quad \text{and} \\
\frac{x + 1}{3} &= \frac{y + 3}{5} = \frac{z + 5}{7}
\end{align*}
Here, $x_1 = 2, y_1 = 4, z_1 = 6, x_2 = -1, y_2 = -3, z_2 = -5,$
\begin{align*}
a_1 &= 4, b_1 = 7, a_2 = 3, b_2 = 5, c_2 = 7
\end{align*}
\begin{align*}
\begin{vmatrix}
\begin{array}{ccc}
x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2
\end{array}
\end{vmatrix}
&= \begin{vmatrix}
-3 & -7 & -11 \\
1 & 4 & 7 \\
3 & 5 & 7
\end{vmatrix}
&= (-3)(28 - 35) + 7(7 - 21) - 11(5 - 12)
&= 21 - 98 + 77 = 0
\therefore
Given lines are coplanar.

31. Refer to answer 45, Page no. 282 of MTG CBSE Champion Mathematics, Class-12

32. Let d.c.'s of the normal to the plane be $< l, m, n >$.
Then equation of plane is $lx + my + nz = 1$ \hspace{1cm} \text{(i)}
Also, $l^2 + m^2 + n^2 = 1$ \hspace{1cm} \text{(ii)}
It is given that $< l, m, n >$ satisfy the equation
\begin{align*}
\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} &= k \\
\Rightarrow \frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2} &= k
\end{align*}
\Rightarrow \left(l^2 + m^2 + n^2 \right) \left(\frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2} \right) = k
Now, \begin{align*}
\frac{l^2 + m^2 + n^2}{3} &\geq \frac{3}{9} \\
&\Rightarrow \left(l^2 + m^2 + n^2 \right) \left(\frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2} \right) \geq 9 \\
&\Rightarrow k \geq 9.
\end{align*}

33. Let the equation of line passing through $(1, 2, -4)$ and perpendicular to the planes
\begin{align*}
x - 8 &= y + 19 \\
\frac{x}{3} - \frac{y}{7} - \frac{z}{6} &= 0 \\
\Rightarrow \frac{x - 8}{3} &= \frac{y + 19}{7} \quad \text{and} \\
\frac{x - 15}{3} &= \frac{y - 29}{8} \quad \text{and} \\
\frac{x - 9}{3} &= \frac{y - 2}{8}
\end{align*}
\begin{align*}
\therefore \quad l(3) + m(-16) + n(7) &= 0 \quad \text{and} \\
(l3) + m(8) + n(-5) &= 0
\end{align*}
\begin{align*}
\Rightarrow \frac{l}{80 - 56} &= \frac{m}{21 + 15} = \frac{n}{24 + 48} \Rightarrow \frac{l}{2} = \frac{m}{3} = \frac{n}{6}
\therefore
The equation of the required line is
\begin{align*}
x - 1 &= \frac{y - 2}{3} \quad \text{and} \\
\Rightarrow \frac{x - 1}{3} &= \frac{y - 2}{6}
\text{and its vector equation is } \mathbf{r} = (\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}) + \lambda(2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}).
\end{align*}
34. The given lines are
\begin{align*}
\mathbf{r} &= 2\mathbf{i} + \mathbf{j} - 3\mathbf{k} + \lambda(2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}) \\
\mathbf{r} &= 3\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \mu(2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k})
\end{align*}
\begin{align*}
\text{Here, } \mathbf{a}_1 &= 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}, \quad \mathbf{b}_1 = 2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k} \\
\mathbf{a}_2 &= 3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}, \quad \mathbf{b}_2 = 3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}
\end{align*}
The plane containing lines (i) and (ii) will pass through $\mathbf{a}_1 = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$.
Also the plane is parallel to two vectors \mathbf{b}_1 and \mathbf{b}_2.
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{n} &= 0 \\
\Rightarrow \mathbf{n} \cdot \mathbf{b}_1 &= 0 \\
&\Rightarrow \mathbf{a}_1 \cdot \mathbf{n} = \mathbf{a}_1 \cdot \mathbf{b}_1
\end{align*}
The plane is normal to the vector
\begin{align*}
\mathbf{n} &= \mathbf{b}_1 \times \mathbf{b}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 5 & -8 \\
3 & -2 & 5
\end{vmatrix}
&= 20\mathbf{i} + 10\mathbf{j} - 8\mathbf{k}
\therefore
The vector equation of the required plane is
\begin{align*}
(\mathbf{r} - \mathbf{a}_1) \cdot \mathbf{n} &= 0 \\
\Rightarrow \mathbf{r} \cdot \mathbf{n} &= \mathbf{a}_1 \cdot \mathbf{n}
\end{align*}
\begin{align*}
\Rightarrow \mathbf{r} \cdot (20\mathbf{i} + 10\mathbf{j} - 8\mathbf{k}) &= (2\mathbf{i} + \mathbf{j} - 3\mathbf{k}) \cdot (20\mathbf{i} + 10\mathbf{j} - 8\mathbf{k}) \\
\Rightarrow \mathbf{r} \cdot (10\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}) &= 37
\end{align*}
\hspace{1cm} \text{(iii)}
Its cartesian equation is \(10x + 5y - 4z = 37 \).

The given line is \(\vec{r} = (2i + 5j + 2k) + p(3i - 2j + 5k) \)

... (iv)

The line (iv) will lie in the plane (iii) if the plane passes through the point \(\vec{a} = 2i + 5j + 2k \) on line (iv) and is parallel to the line (iv).

Now, \(\vec{a} \cdot (10i + 5j - 4k) = 37 \)

\[= (2i + 5j + 2k) \cdot (10i + 5j - 4k) = 37 \]

\(\therefore \) \(\vec{a} \) lies in the plane (iii).

Also, \((10i + 5j - 4k) \cdot (3i - 2j + 5k) = 10(3) + 5(-2) - 4(5) = 0 \)

\(\therefore \) Line (iv) is parallel to the plane (iii).

\(\therefore \) Line (iv) lies in the plane (iii).

OR

Refer to answer 71, Page no. 287 of MTG CBSE Champion Mathematics, Class-12

35. Any plane through the point \((4, 2, 1)\) is \(A(x - 4) + B(y - 2) + C(z - 1) = 0 \)...

(i)

Since it passes through the point \((2, 1, -1)\), we have

\[A(2 - 4) + B(1 - 2) + C(-1 - 1) = 0 \]

or \[2A + B + 2C = 0 \]...

(ii)

As plane (i) makes an angle of \(\pi/4 \) with the plane \(x - 4y + z - 9 = 0 \), we have

\[\frac{|A - 4B + C|}{\sqrt{1 + 16 + 1}} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \]

\[\Rightarrow |A - 4B + C| = 3 \sqrt{A^2 + B^2 + C^2} \]

\[\Rightarrow 9(A^2 + B^2 + C^2) = (A - 4B + C)^2 \]...

(iii)

Putting \(B = -2A - 2C \) from (ii) in (iii), we get

\[9(A^2 + 4A^2 + 4C^2 + 8AC + C^2) = (9A + 9C)^2 \]

\[\Rightarrow 2A^2 + 5AC + 2C^2 = 0 \]

\((2A + C)(A + 2C) = 0 \)

\(\Rightarrow A = -C/2 \) or \(-2C\)

From (ii), when \(A = -C/2 \), \(B = -C \) and when \(A = -2C, B = 2C \).

Substituting these values in (i), we get

\[\frac{C}{2} (x - 4) - C(y - 2) + C(z - 1) = 0 \]

\[\Rightarrow x + 2y - 2z - 6 = 0 \]

and \(-2 C (x - 4) + 2C (y - 2) + C(z - 1) = 0 \) \((C \neq 0) \)

\[\Rightarrow 2x - 2y - z - 3 = 0 \]

36. The given lines are

\[\vec{r} = (i + j - k) + \lambda (3i - j) \] and \(\vec{r} = (4i - k) + \mu (2i + 3k) \)

Here, \(\vec{a}_1 = i + j - k, \vec{b}_1 = 3i - j \)

\[\vec{a}_2 = 4i - k, \vec{b}_2 = 2i + 3k \]

We know that the lines \(\vec{r} = \vec{a}_1 + \lambda \vec{b}_1 \) and \(\vec{r} = \vec{a}_2 + \mu \vec{b}_2 \) are coplanar if \([\vec{a}_2 - \vec{a}_1, \vec{b}_1, \vec{b}_2] = 0 \)

\[\Rightarrow [\vec{a}_2 - \vec{a}_1, \vec{b}_1, \vec{b}_2] = [\vec{a}_2, \vec{b}_1, \vec{b}_2]. \]

Now, \[[\vec{a}_1, \vec{b}_1, \vec{b}_2] = \begin{vmatrix} 1 & 1 & -1 \\ 3 & -1 & 0 \\ 2 & 0 & 3 \end{vmatrix} = 1(-3) - 1(9) - 1(2) = -14 \]

and \[[\vec{a}_2, \vec{b}_1, \vec{b}_2] = \begin{vmatrix} 4 & 0 & -1 \\ 3 & -1 & 0 \\ 2 & 0 & 3 \end{vmatrix} = 4(-3) - 1(-2) = -14 \]

Hence, \([\vec{a}_1, \vec{b}_1, \vec{b}_2] = [\vec{a}_2, \vec{b}_1, \vec{b}_2] \)

\(\Rightarrow \) The given lines are coplanar.

Now the eq. of the plane containing the given lines is

\[(\vec{r} - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) = 0 \]

or \[[\vec{r}, \vec{b}_1, \vec{b}_2] = [\vec{a}_1, \vec{b}_1, \vec{b}_2] \]

\[\Rightarrow \vec{r} \cdot (\vec{b}_1 \times \vec{b}_2) = -14 \]

Since, \(\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} i & j & k \\ 3 & -1 & 0 \\ 2 & 0 & 3 \end{vmatrix} = -3i - 9j + 2k \)

From (i), \(\vec{r} \cdot (-3i - 9j + 2k) = -14 \)

\[\Rightarrow \vec{r} \cdot (3i + 9j - 2k) = 14. \]

OR

Refer to answer 102, Page no. 293 of MTG CBSE Champion Mathematics, Class-12
Concerned about your performance in Class XII Boards?

Well, fear no more, help is at hand.....
To excel, studying in right direction is more important than studying hard. Which is why we created the Excel Series. These books for Physics, Chemistry, Biology & Mathematics - have been put together totally keeping in mind the prescribed syllabus and the pattern of CBSE’s Board examinations, so that students prepare and practice with just the right study material to excel in board exams.

Did you know nearly all questions in CBSE’s 2019 Board Examination were a part of our Excel books? That too fully solved!

HIGHLIGHTS
- Comprehensive theory strictly based on NCERT, complemented with illustrations, activities and solutions of NCERT questions
- Topicwise Practice questions for Board Exams
- Topicwise Previous years’ (2001-2019) CBSE Board Solved Papers
- Chapterwise Self-assessment for better practice
- Model Test Papers as per latest CBSE Blue Print

Visit www.mtg.in for latest offers and to buy online!
1. If \(I_n = \int_0^{\pi/4} \tan^n \theta d\theta \), then \(I_8 + I_6 \) equals
 (a) \(\frac{1}{4} \)
 (b) \(\frac{1}{5} \)
 (c) \(\frac{1}{6} \)
 (d) \(\frac{1}{7} \)

2. The value of \(\int_0^{\pi/8} \frac{1}{1 + x^2} \) is
 (a) \(\pi \log 2 \)
 (b) \(\frac{\pi}{8 \log 2} \)
 (c) \(\frac{\pi}{2 \log 2} \)
 (d) \(\log 2 \)

3. The value of \(\int_{c^{-1}}^c \frac{\log x}{x} \) is
 (a) \(\frac{3}{2} \)
 (b) \(\frac{5}{2} \)
 (c) \(3 \)
 (d) \(5 \)

4. The integral \(\int_2^4 \frac{\log x^2}{\log(36 - 12x + x^2)} dx \) is equal to
 (a) \(2 \)
 (b) \(4 \)
 (c) \(1 \)
 (d) \(6 \)

5. Let the straight line \(x = b \) divide the area enclosed by \(y = (1 - x)^2 \), \(y = 0 \) and \(x = 0 \) into two parts \(R_1 (0 \leq x \leq b) \) and \(R_2 (b \leq x \leq 1) \) such that \(R_1 - R_2 = \frac{1}{4} \).
 Then, \(b \) equals
 (a) \(\frac{3}{4} \)
 (b) \(\frac{1}{2} \)
 (c) \(\frac{1}{3} \)
 (d) \(\frac{1}{4} \)

6. Let \(C \) be a curve passing through \(M(2, 2) \) such that the slope of the tangent at any point to the curve is reciprocal of the ordinate of the point. If the area bounded by curve \(C \) and line \(x = 2 \) is \(A \) sq. unit, then the value of \(\frac{3A}{2} \) is
 (a) \(8 \)
 (b) \(9 \)
 (c) \(10 \)
 (d) \(11 \)

7. The value of \(\int_{1/e}^1 \frac{\tan x}{1 + t^2} dt + \int_{1/e}^1 \frac{\cot x}{t(1 + t^2)} dt \) is
 (a) \(\frac{1}{2 + \tan^2 x} \)
 (b) \(1 \)
 (c) \(\frac{\pi}{4} \)
 (d) \(\frac{1}{\pi(1 + t^2)} \)

8. The area enclosed between the curves, \(x^2 = y \) and \(y^2 = x \) is equal to
 (a) \(\frac{1}{3} \) sq. unit
 (b) \(2 \int_0^1 (x - x^2) dx \)
 (c) area of the region \(\{ (x, y) : x^2 \leq y \leq |x| \} \)
 (d) None of these

9. Let \(f(x) = 7 \tan^3 x + 7 \tan^5 x - 3 \tan^4 x - 3 \tan^2 x \) for all \(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \). Then the correct expression(s) is (are)
 (a) \(\int_{\pi/4}^{\pi/4} x f(x) dx = \frac{1}{12} \)
 (b) \(\int_{\pi/4}^{\pi/4} f(x) dx = 0 \)
 (c) \(\int_0^{\pi/4} x f(x) dx = \frac{1}{6} \)
 (d) \(\int_0^{\pi/4} f(x) dx = 1 \)
10. The value of \(\int \frac{2x^2 + 3x + 3}{(x+1)(x^2 + 2x + 2)} \, dx \) is

(a) \(\frac{\pi}{4} + 2 \log 2 - \tan^{-1} \frac{1}{2} \)
(b) \(\frac{\pi}{4} + 2 \log 2 - \tan^{-1} \frac{1}{3} \)
(c) \(2 \log 2 - \cot^{-1} 3 \)
(d) \(-\frac{\pi}{4} + \log 4 + \cot^{-1} 2 \)

11. Let \(\int \frac{f(\alpha + \beta - x)}{f(x) + f(\alpha + \beta - x)} \, dx = 4 \), then

(a) \(\alpha = -1, \beta = 7 \)
(b) \(\alpha = 5, \beta = 13 \)
(c) \(\alpha = -2, \beta = 6 \)
(d) \(\alpha = -10, \beta = 4 \)

12. For which of the following values of \(m \), is the area of the region bounded by the curve \(y = x - x^2 \) and the line \(y = mx \) equals \(9/2 \)?

(a) \(-4\)
(b) \(-2\)
(c) \(2\)
(d) \(4\)

13. The parabola \(y^2 = 4x \) and \(x^2 = 4y \) divide the square region bounded by the lines \(x = 4 \), \(y = 4 \) and the coordinate axes. If \(S_1, S_2, S_3 \) are the areas of these parts numbered from top to bottom respectively, then

(a) \(S_1 : S_2 = 1 : 1 \)
(b) \(S_2 : S_3 = 1 : 2 \)
(c) \(S_1 : S_3 = 1 : 1 \)
(d) \(S_2 : S_3 = 2 : 1 \)

Comprehension Type

Let \(f(x) \) be a continuous function defined on the closed interval \([a, b]\), then

\[
\lim_{n \to \infty} \sum_{r=0}^{n-1} \frac{1}{n} f\left(\frac{r}{n} \right) = \int_{a}^{b} f(x) \, dx
\]

14. The value of \(\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{n+1} + \frac{2}{n+2} + \ldots + \frac{3n}{4n} \right) \) is

(a) \(5 - 2 \ln 2 \)
(b) \(4 - 2 \ln 2 \)
(c) \(3 - 2 \ln 2 \)
(d) \(2 - 2 \ln 2 \)

15. The value of \(\lim_{n \to \infty} \left(\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \ldots + \frac{1}{8n} \right) \) is

(a) \(\frac{5}{4} \)
(b) \(\frac{3}{4} \)
(c) \(\frac{5}{8} \)
(d) \(\frac{3}{8} \)

Matrix Match Type

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. The area bounded by the curve (y = x</td>
<td>x</td>
</tr>
<tr>
<td>Q. The area of the region lying between the lines (x - y + 2 = 0, x = 0) and the curve (x = \sqrt{y}) is</td>
<td>2. 2 sq. units</td>
</tr>
<tr>
<td>R. The area enclosed between the curves (y^2 = x) and (y =</td>
<td>x</td>
</tr>
<tr>
<td>S. The area bounded by the curves (y =</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 1</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>(b) 3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>(c) 2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(d) 4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Numerical Value Type

17. If \(f(x) = \int_a^x f(x) \, dx \) and \(\int_a^x f(x) \, dx = \sqrt{2} \), then the value of \(f(200) \) must be

18. The area enclosed by the curve \(xy^2 = 4(2 - x) \) and \(y \)-axis is \(\lambda \) sq. unit, then the value of 5050 \(\cos(20 \lambda) \) must be

\[
2^{2010} \int_0^1 x^{1004}(1-x)^{1004} \, dx
\]

19. The value of

\[
\frac{1005}{\left(\int_0^1 x^{1004}(1-x)^{2010} \, dx \right)^{1004}}
\]

20. If the area of the region \(\{(x, y) : 0 \leq y \leq x^2 + 1, 0 \leq y \leq x + 1, 0 \leq x \leq 2\} \) is \(A \), then the value of \(6A - 17 \) is

Self Check

Check your score! If your score is

- **EXCELLENT WORK!** You are well prepared to take the challenge of final exam.
- **GOOD WORK!** You can score good in the final exam.
- **SATISFACTORY!** You need to score more next time.
- **NOT SATISFACTORY!** Revise thoroughly and strengthen your concepts.

Keys are published in this issue. Search now!
Now, savings of up to ₹920* with MTG’s magazine subscription plans!

On cover price of ₹40/-(

Our new offers are here! Pick the combo best suited for your needs. Fill-in the Subscription Form at the bottom and mail it to us today. If in a rush, log on to www.mtg.in now to subscribe online.

About MTG’s Magazines
Perfect for students who like to prepare at a steady pace, MTG’s magazines (Physics For You, Chemistry Today, Mathematics Today & Biology Today) ensure you practice bit by bit, month by month, to build all-round command over key subjects. Did you know these magazines are the only source for solved test papers of all national and state level engineering and medical college entrance exams?

SUBSCRIPTION FORM

Confirm your choice by placing tick-marks in relevant boxes.

<table>
<thead>
<tr>
<th>Plan 1: Individual magazines P, C, M, B</th>
<th>27 months</th>
<th>15 months</th>
<th>9 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>₹850</td>
<td>₹500</td>
<td>₹300</td>
</tr>
<tr>
<td>Chemistry</td>
<td>₹850</td>
<td>₹500</td>
<td>₹300</td>
</tr>
<tr>
<td>Mathematics</td>
<td>₹850</td>
<td>₹500</td>
<td>₹300</td>
</tr>
<tr>
<td>Biology</td>
<td>₹850</td>
<td>₹500</td>
<td>₹300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan 2: Combo of 3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM</td>
<td>₹2500</td>
<td>₹1400</td>
<td>₹900</td>
</tr>
<tr>
<td>PCB</td>
<td>₹2500</td>
<td>₹1400</td>
<td>₹900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan 3: PCMB Combo</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>₹3400</td>
<td>₹1900</td>
<td>₹1200</td>
<td></td>
</tr>
</tbody>
</table>

| Courier Charges | | | |
| Add to your subscription amount for quicker & reliable delivery | ₹600 | ₹450 | ₹240 |

Recommended by (Optional)

Name:__________________________

Complete Postal Address:__________________________

Pin Code:____________

Mobile #:_____________________

Other Phone #:_____________________

Email:_____________________

Note: Magazines are dispatched by Book Post on 4th of every month (each magazine separately).

E-mail subscription@mtg.in. Visit www.mtg.in to subscribe online. Call (0)1800-10-38673 for more info.

Get digital editions of MTG Magazines on http://digital.mtg.in/

Over 1.2 Cr readers. Since 1982.

- Practice steadily, paced month by month, with very-similar & model test papers
- Self-assessment tests for you to evaluate your readiness and confidence for the big exams
- Content put together by a team comprising experts and members from MTG’s well-experienced Editorial Board
- Stay up to date with important information such as examination dates, trends & changes in syllabi
- All-round skill enhancement - confidence building exercises, new studying techniques, time management, even advice from past JEE/NEET/AIIMS toppers

Bonus: Exposure to competition at a global level, with questions from International Olympiads & Contests

Lifetime Subscription Plan for teachers, and special schemes and offers available for libraries and coaching institutes. SMS MTG to 8800255334 to learn more.

Enclose Demand Draft favouring MTG Learning Media (P) Ltd, payable at New Delhi. Mail this Subscription Form to Subscription Dept., MTG Learning Media (P) Ltd, Plot 99, Sector 44, Gurugram -122 003 (HR).
IF YOU AIM TO BE #1, BE WITH THE #1.

(IT’S THAT SIMPLE!)

#1 BESTSELLER ON AMAZON
AMONG TOP 10 AMAZON BESTSELLERS

WHAT MAKES US #1:
- Chapterwise student-friendly synopses for quick-and-easy revision
- Topicwise MCQs to check your progress
- NCERT Exemplar MCQs
- Assertion & Reason questions for an edge in your AIIMS/JEE Preparation
- HOTS MCQs to boost your concepts
- 6 Practice Papers for self-assessment
- High Definition (HD) multicolour pages

Call 0124-6601200/1800-10-38 673 or email info@mtg.in to learn more
How can history help to succeed in JEE!

Wouldn’t you agree that previous years’ test papers provide great insights into the pattern and structure of future tests. Studies corroborate this, and have shown that successful JEE aspirants begin by familiarising themselves with problems that have appeared in past JEEs, as early as 2 years in advance.

Which is why the MTG team created 42 Years Chapterwise Solutions. The most comprehensive ‘real’ question bank out there, complete with detailed solutions by experts. An invaluable aid in your quest for success in JEE. Visit www.mtg.in to order online. Or simply scan the QR code to check for current offers.

Note: 42 Years Chapterwise Solutions are also available for each subject separately.

Available at all leading book shops throughout India. To buy online visit www.mtg.in.
For more information or for help in placing your order, call 0124-6601200 or e-mail info@mtg.in
More than magic words, you need help from a magician to pass JEE with flying colours. Which is why MTG has collaborated with Dr. Ramanaiah Gundala, the popular Maths professor from Chennai, to bring you the all-new Objective Mathematics for JEE Main & Advanced.

Includes 6 assignments for self-assessment
Previous years’ JEE questions (2019-13)

After securing his DIIT and Ph.D from IIT Kharagpur, Dr. Gundala was elected Fellow of National Academy of Sciences (FNASc). His 50+ years of teaching experience includes distinguished tenures at IIT Kharagpur and Anna University, Chennai. He has authored 7 books and published an astonishing 85 research papers. He’s now retired and prepares students for success in IIT-JEE at two leading coaching institutes in Chennai and Warangal.

Visit www.MTG.in to buy online or visit a leading bookseller near you. For more information, e-mail info@mtg.in or call 1800-10-38673 (toll-free) today.

Highlights of MTG’s Objective Mathematics for JEE Main & Advanced
• Well-structured theory covering summary of important concepts and easy-to-understand illustrations
• 6500+ questions
• Unique and brain-stimulating exercises including questions of the following types:
 • Single Correct Option
 • More Than One Correct Option
 • Assertion and Reason;
 • Comprehension Type
 • Matrix Match
 • Integer Answer Type

TRUST OF MILLIONS, SINCE 1982
CBSE CHAMPION Chapterwise - Topicwise Solved Papers Series contains topicwise questions and solutions asked over last decade in CBSE-Board examination.

Questions are supported with topicwise graphical analysis of previous years CBSE Board questions as well as comprehensive and lucid theory. The questions in each topic have been arranged in descending order as per the marks category. Questions from Delhi, All India, Foreign and Compartment papers are included. This ensures that all types of questions that are necessary for Board exam preparation have been covered.

Important feature of these books is that the solutions to all the questions have been given according to CBSE marking scheme. CBSE sample paper and practice papers are also supplemented.

Examination papers for Class-10 and 12 Boards are based on a certain pattern. To excel, studying right is therefore more important than studying hard, which is why we created this series.

Available at all leading book shops throughout India. For more information or for help in placing your order:
Call 0124-6601200 or email info@mtg.in

Visit www.mtg.in for latest offers and to buy online!
LAUNCH INTO A BRIGHT FUTURE

SRMJEE 2020
SRM Joint Entrance Examination - B.Tech Admissions Open
12th April - 20th April 2020 (Computer based test)
To apply online and other details visit www.srmist.edu.in

For eligibility and fee details, visit the respective websites
Top 3000 SRMJEEE rank holders will get scholarship

LAST DATE FOR SUBMITTING ONLINE APPLICATION: 30th MARCH 2020
ONLINE APPLICATION FEE: ₹1100/-

LEAD WITH SRMIST

- Multicultural Learning Environment
- International Students from 64 Countries
- SRM Innovation & Incubation Centre (SIC) funded by National Science and Technology Entrepreneurship Development, DST, Govt. of India
- Students from all States of India
- 165+ MOUs with 33 countries
- 300+ students from SRM go to our Semester Abroad Programme (SAP) every year
- 2 years + 2 years transfer programmes with our global partners
- More from our Social Media: Facebook, Instagram, and Twitter

Admissions Helpline: 044 2745 5510 ; 044 4743 7500
Email: admissions.india@srmist.edu.in

SRM University Sikkim offers only Science and Humanities

NUMBERS SPEAK FOR THEMSELVES

4749
offers from 4 Top IT firms

1612+
Super Dream & Dream offers

The success story of SRM 2020 batch placement continues...
- TCS, Infosys, Cognizant & Wipro make the highest number of offers Pan India
- More than 7000 offers till date and still counting

IDEAL (Interdisciplinary Experiential Active Learning) equips you with Dual Specialisation • World-class faculty and infrastructure • International Exposure

NATIONAL RECOGNITION - SRMIST
- NAAC “A++” grade • Category I University by UGC
- Ranked 32nd under University Category by NIRF • 12B status by UGC
- ARIIA Ranked Third under the Category of Private or Self financed Institutions

GLOBAL RECOGNITION - SRMIST
- Quacquarelli Symonds (QS) also awarded SRM 5 stars for Teaching, Employability and inclusiveness
- QS T-QUACER Diamond rated Institute

Offline application forms can be obtained:
- From the designated branches of Post Offices on cash payment of ₹1100 (last available on website)
- From SRM campuses by handing over a DD for ₹1100 in favour of SRMIST payable at Chennai
Excellent Performance by Aakashians in NEET-UG | AIIMS | JEE (Main) | JEE (Advanced)

RESULTS 2019

80081
688
7879
1633

NEET-UG 2019
AIIMS 2019
JEE (Main) 2019
JEE (Advanced) 2019

88 in Top 10 | 56 in Top 20 | 21 in Top 50 | 10 in Top 100 | 83 in Top 100 | 23 in Top 200
6 in Top 10 | 17 in Top 20 | 25 in Top 50 | 16 in Top 100
16 in Top 100
51 in Top 200

Our Top Rankers in General Category

Hrunal Khandelwal
Bhuvik Bansal
Vishva Vardaraj
Ankit Khawshik

Our Top Rankers from Classroom Programs in Open Category

Arnav Singh
Arunabha B.
Prateek Chaudhary

Gajendra Majumdar
Siddharth Chaubal

and many more...
and many more...
and many more...

(CLASSROOM COURSES)

1, 2, 3, 4 YEAR INTEGRATED COURSES
JEE (Main & Advanced) & Other Engg. Ent. Exams | NEET & AIIMS
For Class IX, X, XI & XII Studying Students

POWER STEP COURSE
(Repeater Course)
JEE (Main & Advanced) & Other Engineering Entrance Exams
For Class XII Passed Students

REGULAR COURSE
(Repeater Course)
JEE (Main) & Other Engineering Entrance Exams | NEET & AIIMS
For Class XII Passed Students

DIGITAL / DISTANCE LEARNING PROGRAMS

for NEET & AIIMS / JEE (Main & Advanced) - Class XI & XII Studying / Passed Students | For School / Board Exams / NTSE & Olympiads (Class VIII / IX / X)

TOLL-FREE 1800-102-2727
Give a missed call 9599280683

Aakash
Medical | IIT-JEE Foundations
(Divisions of Aakash Educational Services Limited)