From Assyrian spears to the AK47, weapons—and the warriors who have brandished them—have forged history, shaping the rise of empires and the course of revolutions with ax, bow, sword, and gun.

Weapon is the definitive guide to this compelling story, from ancient times to the present day. Weapon explores the technological developments in arms and armor, chronicling their use in warfare, hunting, and crime to provide a complete visual record of humankind’s tools of combat.

- **Visual catalogs**—outstanding photographic guides display a vast range of arms, from ancient Egyptian axes through tribal bows and spears to the machine-guns and grenades of modern infantry forces.
- **Great warriors**—from the Greek hoplite to the Navy Seal, fighting forces and the weapons they have wielded are profiled, their tactics explained, and their fighting methods revealed.
- **Showcase weapons**—key weapons from every era are photographed in arresting detail and the mechanisms that operate them are displayed and explained with stunning clarity.

With superb, specially commissioned photographs and detailed analysis of each tool of combat, Weapon is the ultimate record of arms and armor through the ages.
WEAPON
WEAPON
A VISUAL HISTORY OF ARMS AND ARMOR
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>6</td>
</tr>
<tr>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>THE ANCIENT WORLD (3000 BCE–1000 CE)</td>
<td>24</td>
</tr>
<tr>
<td>The First Weapons</td>
<td>30</td>
</tr>
<tr>
<td>Mesopotamian Weapons and Armor</td>
<td>32</td>
</tr>
<tr>
<td>Ancient Egyptian Weapons and Armor</td>
<td>34</td>
</tr>
<tr>
<td>Ancient Greek Weapons and Armor</td>
<td>40</td>
</tr>
<tr>
<td>GREAT WARRIORS: Greek Hoplites</td>
<td>42</td>
</tr>
<tr>
<td>Ancient Roman Weapons and Armor</td>
<td>44</td>
</tr>
<tr>
<td>GREAT WARRIORS: Roman Legionary</td>
<td>46</td>
</tr>
<tr>
<td>Bronze- and Iron-Age Weapons and Armor</td>
<td>48</td>
</tr>
<tr>
<td>Anglo-Saxon and Frankish Weapons and Armor</td>
<td>50</td>
</tr>
<tr>
<td>Viking Weapons and Armor</td>
<td>52</td>
</tr>
<tr>
<td>THE MIDDLE AGES (1000–1500)</td>
<td>56</td>
</tr>
<tr>
<td>European Swords</td>
<td>62</td>
</tr>
<tr>
<td>Japanese and Chinese Swords</td>
<td>66</td>
</tr>
<tr>
<td>European Daggers</td>
<td>68</td>
</tr>
<tr>
<td>European Staff Weapons</td>
<td>72</td>
</tr>
<tr>
<td>Asian Staff Weapons</td>
<td>74</td>
</tr>
<tr>
<td>GREAT WARRIORS: Mongol Warrior</td>
<td>76</td>
</tr>
<tr>
<td>Longbows and Crossbows</td>
<td>78</td>
</tr>
<tr>
<td>WEAPON SHOWCASE: Crossbow</td>
<td>80</td>
</tr>
<tr>
<td>Aztec Weapons and Shields</td>
<td>82</td>
</tr>
<tr>
<td>European Helms and Basinets</td>
<td>86</td>
</tr>
<tr>
<td>European Jousting Helms, Barbutes, and Sallets</td>
<td>88</td>
</tr>
<tr>
<td>GREAT WARRIORS: Medieval Knight</td>
<td>90</td>
</tr>
<tr>
<td>European Mail Armor</td>
<td>92</td>
</tr>
<tr>
<td>European Plate Armor</td>
<td>94</td>
</tr>
<tr>
<td>THE EARLY MODERN WORLD (1500–1775)</td>
<td>96</td>
</tr>
<tr>
<td>Two-handed Swords</td>
<td>102</td>
</tr>
<tr>
<td>European Infantry and Cavalry Swords</td>
<td>104</td>
</tr>
<tr>
<td>GREAT WARRIORS: Landsknecht</td>
<td>108</td>
</tr>
<tr>
<td>European Rapiers</td>
<td>110</td>
</tr>
<tr>
<td>European Smallwords</td>
<td>112</td>
</tr>
<tr>
<td>European Hunting Swords</td>
<td>116</td>
</tr>
<tr>
<td>WEAPON SHOWCASE: Hunting Trousse</td>
<td>118</td>
</tr>
<tr>
<td>Japanese Samurai Swords</td>
<td>120</td>
</tr>
<tr>
<td>WEAPON SHOWCASE: Wakazashi Sword</td>
<td>124</td>
</tr>
<tr>
<td>GREAT WARRIORS: Samurai</td>
<td>126</td>
</tr>
<tr>
<td>Indian and Sri Lankan Swords</td>
<td>128</td>
</tr>
<tr>
<td>European Daggers</td>
<td>130</td>
</tr>
<tr>
<td>Asian Daggers</td>
<td>134</td>
</tr>
<tr>
<td>European One-Handed Staff Weapons</td>
<td>136</td>
</tr>
<tr>
<td>European Two-Handed Staff Weapons</td>
<td>140</td>
</tr>
<tr>
<td>Indian and Sri Lankan Staff Weapons</td>
<td>142</td>
</tr>
<tr>
<td>European Crossbows</td>
<td>144</td>
</tr>
<tr>
<td>Asian Bows</td>
<td>146</td>
</tr>
<tr>
<td>Matchlock and Flintlock Long Guns</td>
<td>148</td>
</tr>
<tr>
<td>WEAPON SHOWCASE: Matchlock Musket</td>
<td>150</td>
</tr>
<tr>
<td>European Hunting Guns 1600–1700</td>
<td>152</td>
</tr>
<tr>
<td>European Hunting Guns From 1700</td>
<td>154</td>
</tr>
<tr>
<td>Asian Matchlocks</td>
<td>156</td>
</tr>
<tr>
<td>Combination Weapons</td>
<td>158</td>
</tr>
<tr>
<td>European Pistols 1500–1700</td>
<td>160</td>
</tr>
<tr>
<td>European Pistols 1700–1775</td>
<td>162</td>
</tr>
</tbody>
</table>
THE REVOLUTIONARY WORLD (1775–1900) 174

European Swords	180
American Civil War Swords	184
Ottoman Empire Swords	186
Chinese and Tibetan Swords	188
Indian Swords	190
Indian and Nepalese Daggers	192
European and American Bayonets	194
Indian Staff Weapons	196
African Edged Weapons	198
GREAT WARRIORS: Zulu Warrior	200
Oceanian Clubs and Daggers	202
North American Knives and Clubs	204
North American Hunting Bows	208
Australian Boomerangs and Shields	210
Flintlock Pistols From 1775	212
Flintlock Pistols To 1850	214
Percussion Cap Pistols	216
American Percussion Cap Revolvers	218
GREAT WARRIORS: US Civil War Infantryman	220
British Percussion Cap Revolvers	222
Brass Cartridge Pistols	224
WEAPON SHOWCASE: Colt Navy Pistols	226
Self-Loading Pistols	228
Flintlock Muskets and Rifles	232
WEAPON SHOWCASE: Baker Rifle	234
Percussion Cap Muskets and Rifles	236
WEAPON SHOWCASE: Le Page Sport Gun	238
Percussion Cap Breech Loaders	240
GREAT WARRIORS: British Redcoat	242
Sport Guns	244
Ottoman Empire Firearms	246
Single-Shot Breech-Loading Rifles	248
WEAPON SHOWCASE: Enfield Rifle-Musket	250
Manually Loaded Repeater Rifles 1855–1880	252
Manually Loaded Repeater Rifles 1881–1891	256
Manually Loaded Repeater Rifles 1892–1898	258
Indian Firearms	260
Asian Firearms	262
Multi-Shot Firearms	264
Ammunition Pre–1900	266
Indian Armor and Shields	268
African Shields	270
Oceanian Shields	272

THE MODERN WORLD (1900–2006) 274

African Edged Weapons	280
Bayonets and Knives 1914–1945	284
GREAT WARRIORS: French WWI Infantryman	288
Self-Loading Pistols 1900–1920	290
Self-Loading Pistols 1920–1950	292
Self-Loading Pistols From 1950	294
Revolvers 1900–1950	296
Revolvers From 1950	298
Manually Loaded Repeater Rifles	300
GREAT WARRIORS: Red Army Infantryman	302
Self-Loading Rifles 1914–1950	304
WEAPON SHOWCASE: AK47	306
Self-Loading Rifles 1950–2006	308
WEAPON SHOWCASE: SA80	310
Sport Guns	312
Shotguns	314
Sniper Rifles 1914–1985	318
Sniper Rifles 1985–2006	320
Recoil-Operated Machine Guns	322
Gas-Operated Machine Guns	324
WEAPON SHOWCASE: MG43	326
Light Machine Guns 1914–1945	328
Light Machine Guns Since 1945	330
Submachine Guns 1920–1945	332
WEAPON SHOWCASE: MP5	334
Submachine Guns Since 1945	336
Ammunition Since 1900	338
Man–Portable Anti–Tank Weapons	340
Rifle-Mounted Grenade Launchers	342
Stand-alone Grenade Launchers	344
GREAT WARRIORS: US Navy SEAL	346
Improvised Guns 1950–1980	348
Helmets From 1900	350

Index 354
Acknowledgments 360
Joining the Board of Trustees of the Royal Armouries in 2005 spun my life full circle. As a Cambridge undergraduate I spent a summer working at the Armouries, then located in the Tower of London. Had my career taken a different turn, I might easily have become a curator rather than a military historian. In one sense the two paths are not that divergent, for military history is never far from the battlefield: it is hard to think of men in battle without considering the weapons they use.

Warfare is older than civilization—in fact it is older than the human race itself, as clues from our hominid ancestors show—and weapons are the tools of the soldier’s trade. The following pages reveal the importance of weapons, showing how they grew quickly from primitive implements used for hunting wild animals, and soon took on the characteristics that were to define them for thousands of years. First there were percussion weapons, used to strike an opponent directly, beginning with the club and proceeding through axes to swords, daggers and thrusting-spears. There were also missile weapons, propelled from a distance, starting with the sharpened stick—hurled as a javelin—and developing into throwing spears, arrows, and crossbow bolts. Gunpowder weapons, which made their presence felt from the 15th century, did not immediately replace percussion or missile weapons. In the 17th century musketeers were protected by pikemen, and Napoleonic cavalry plied swords in close-quarter combat. Even at the beginning of the 21st century the bayonet, descendent of the edged weapons of yesteryear, is still part of the infantry soldier’s equipment.

The huge chronological and geographical spread of this book reveals illuminating similarities between weapons in entirely different cultures and periods. The appearance of firearms was not immediately decisive, and historians argue whether the period of change spanning the first half of the 17th century was rapid and thorough enough to
constitute a “military revolution.” However, their impact was certainly profound. Fortresses built to withstand siege-engines crumbled before artillery, and in this respect the fall of Constantinople in 1453 was a landmark. So too were battles like Pavia in 1525, when infantry armed with muskets repulsed armored horsemen. Firearms were essential to the advent of mass armies, for they became subject to mass production. Their development has been rapid: little more than a century and a half separates the muzzle-loading flintlock musket—short-ranged, inaccurate, and unreliable—from the modern assault rifle.

But weapons are more than the soldier’s tools, and leafing through the pages you will be amazed at the ingenuity and creativity that weaponry induces for hunting, self-defence, and law-enforcement. Some weapons had religious or magical connotations and others, like the pair of swords worn by the Japanese samurai or the smallsword at the hip of the 18th century European gentleman, were badges of status, and reflections of wealth too. There has been a long connection between the right to carry weapons and social position, and some societies, such as the city-states of ancient Greece, saw a direct connection between civic rights and bearing arms.

It is impossible to consider arms without reflecting on armor too, and this book also illustrates how armor has striven to do more than safeguard its wearers. It is often intended to impress or terrify as well as advertise its wearer’s wealth or status: the horned helmet of the bronze-age warrior and the mempo face-guard of the samurai have much in common. The past century has witnessed its rediscovery, and the contemporary soldier, with his Kevlar helmet and body armor, has a silhouette which is both ancient and modern.

It has been a real pleasure to have been involved in this project, which embodies the scholarship of the Royal Armories’ curatorial staff and provides a showcase for the Armories’ world-class collection.

RICHARD HOLMES
BOWS, ARROWS, AND SPEARS

There is a greater range. In the hands of nomadic peoples such as the Mongols, it could devastate infantry formations that would be picked off at a distance. From the 13th century, the English made extensive use of the longbow, a simple bow up to 6½ ft (2 m) long made of yew. It combined range and rapidity of fire, and proved key to victory against the Scots at Falkirk (1298) and the French at Crécy (1346) and Agincourt (1415).

The crossbow is a form of mechanical bow shooting wooden or metal bolts with a stock that enables it to be kept loaded without a string being held taut by hand. First attested in Han China (206 BCE–220 CE), they were widely used in medieval Europe from the crusades onward. As time went on, the mechanism to reload (or span) the crossbow became increasingly complex, including the use of foot-operated levers and the cranequin. Such devices allowed the crossbow to be made more powerful, but meant it was slower to reload. By the late 16th century, it had almost disappeared from the battlefield.

PROJECTILE weapons, such as bows and spears, allow the exercise of force at a distance, and the evident utility of this in hunting led to their use from the very earliest times. The simplest form is the throwing spear, a pole with a pointed end. The principal disadvantage is that once thrown, the weapon is lost and might indeed be hurled back by an enemy. The Roman *pilum* solved this by having an iron shank that bent on contact, rendering further use impossible.

Simple bows are made up of a shaft of wood with a drawstring attached at both ends. In this form, they are easy to construct and operate, and saw use throughout the Ancient World. The composite bow, made of several pieces of wood glued together, its core strengthened with bone and sinew, has greater elasticity, and therefore a greater range. In the hands of nomadic peoples such as the Mongols, it could devastate infantry formations that would be picked off at a distance. From the 13th century, the English made extensive use of the longbow, a simple bow up to 6½ ft (2 m) long made of yew. It combined range and rapidity of fire, and proved key to victory against the Scots at Falkirk (1298) and the French at Crécy (1346) and Agincourt (1415).

THE CROSSBOW
The crossbow is a form of mechanical bow shooting wooden or metal bolts with a stock that enables it to be kept loaded without a string being held taut by hand. First attested in Han China (206 BCE–220 CE), they were widely used in medieval Europe from the crusades onward. As time went on, the mechanism to reload (or span) the crossbow became increasingly complex, including the use of foot-operated levers and the cranequin. Such devices allowed the crossbow to be made more powerful, but meant it was slower to reload. By the late 16th century, it had almost disappeared from the battlefield.

JAPANESE ARROW
Japanese samurai used a variety of arrowheads. This type of bifurcated arrowhead, known as a *kunihata*, could inflict multiple wounds and was used for hunting as well as in battle.
AXES AND CLUBS

ROCKS and sharpened stones would have been the most primitive form of weaponry. When these were mounted on a stick the result—a club or ax—immediately gave greater range and increased the force, through leverage, of the blow. Clubs could deliver crushing blows to armored opponents, while even a glancing strike from an ax could lead to massive bleeding.

Simple clubs appeared very early, but their effectiveness is proved by their appearance in such diverse forms as the Zulu’s knobkerrie club, whalebone clubs from the Arctic regions of the Americas, and highly decorated wooden clubs from New Zealand. In the Pacific, such clubs were the most widespread weapon before European colonization. Composite clubs, with a head bound or socketed to a shaft, often added spikes or flanges, with a corresponding increase in lethality. In Australia, throwing clubs, or boomerangs, were developed, some curved in such a way that their flight carried back to the thrower should they miss their target.

FORGING AHEAD

Hand axes were first used about 1.5 million years ago and were probably used as scrapers. Bronze-headed axes appeared in the Near East in the 3rd millennium BCE and became commonplace as far apart as Egypt and Scandinavia. The invention of iron and steel made the forging of sharper heads with thinner blades more practical. Although the Romans did not make extensive use of the ax, some of their barbarian opponents employed them, such as the Frankish throwing ax (or francisca). The Vikings used a large two-handed battle ax as a principal weapon, and some forms persisted into the Middle Ages in modified form as halberds. In societies that retained a strong hunting tradition, however, axes remained in common use, from the North American tomahawk to the dao, a hybrid sword ax, of the Assamese Naga people.

ELITE CLUB

Although wooden clubs were used for fighting in South Africa, this beautifully produced example, with the ball at its end carved into 19 segments, is as likely to have been a prestige object belonging to a notable.
SWORDS AND DAGGERS

The sword is one of the most widespread of weapons. In essence a long knife with a grip, its greater length and variations in the blade’s shape and areas of sharpness mean it can be adapted for cutting or thrusting. The earliest blades were constructed of flint or obsidian, and it was not until the invention of bronze around the 3rd millennium BCE that swords really came into their own, with blades of increased strength and durability. Minoan and Mycenaean short swords (c.1400 BCE) lack sophisticated grips, but already flanges between the grip and hilt had been designed to protect the wearer’s hand. By 900 BCE, with the invention of iron, and subsequently pattern-welding to blend the parts of the blade into a stronger and flexible whole, swords became more lethal.

SWORDS

The Greek hoplite’s sword, however, was still a secondary weapon and it was not until the advent of the Roman legionaries’ short gladius hispaniensis, designed for an upward stabbing stroke at close quarters, that swordplay in its own right became a part of infantry tactics.

By the Middle Ages in Europe, the carrying of a sword became the mark of a military elite. At first they tended to be broad-bladed for cutting and delivering crushing blows against mail armor. With the appearance of plate armor from the 14th century, swords tended to become narrower, more adapted to thrusting at vulnerable joints between the plates. They ultimately developed into the rapiers of the 16th and 17th centuries. Hilt arms became ever more elaborate, often with cups and baskets of metal bars to protect the bearer’s hands.

Outside Europe, the sword reached the apogee of its development in 14th-century Japan.

CUP-HILT RAPIER

Hilts, such as the cup-shaped hilt on this rapier, became common in the 17th century. On other examples the quillons sweep down to deflect an opponent’s stroke.

The katana long sword of the Japanese samurai was both a badge of rank and, with its layered folded steel blade, a lethally effective blade. The Islamic world, too, had a long history of swordmaking, with Damascus long acting as a center for sword manufacture and trade. The Ottoman Empire, with its emphasis on cavalry, produced many fine types, such as the curved kilij and yataghan sabers: from Mughal India came the talwar, with its characteristic disc-shape pommel.

CEREMONIAL SWORDS
The advent of hand-held firearms, however, rendered the sword—as many other close-quarters arms—almost redundant. In Western armies, the sword survived longest as a combat weapon in the cavalry, where a downward stroke at the gallop with a curved saber could inflict severe wounds. But by the 20th century, the sword was largely a ceremonial weapon, confined to the dress uniforms of officers.

DAGGERS
Daggers were some of the earliest weapons, an evolution of a cutting knife for use in combat. Because of the relative shortness of their blades—from 6 to 19½ in (15 to 50 cm)—daggers are principally a close-quarters weapon, used for thrusting or stabbing.

In Africa, however, throwing knives evolved, with a variety of points designed to pierce at whatever angle they struck the target. Some daggers, such as the Indian katar, had reinforced blades and enhanced gripping surfaces to allow the penetration of mail armor. In the 17th century, as fencing techniques became more elaborate, the dagger emerged, wielded in the other hand from the sword to allow parrying and close-in stabbing under the opponent’s guard. Occasionally, daggers with toothed edges were used that could catch and break an enemy’s weapon. From the 17th century, the dagger gave rise to the bayonet—essentially a dagger attached to a firearm should hand-to-hand combat occur. The dagger continues to find use among warriors who are liable to find themselves in close contact with the enemy, such as those in the special forces.

MACHETE
A South American weapon with a characteristic curved blade that can be used both for cutting through undergrowth and hacking at enemies. This lightweight palm-wood example is from Ecuador.
The attaching of a blade or club to a long, commonly wooden, shaft to create a staff weapon gave foot soldiers some means to attack cavalry, or at least to keep them at bay. The greatest variety of types were seen in the later Middle Ages and Renaissance in Europe, just at the time social changes pitted infantry militias from Switzerland, the Netherlands, and Italy against armies of mounted knights. Yet in origin, they are far more ancient than this. The principal weapon of the Greek hoplite in the 6th century BCE was a spear used in a phalanx formation as a thrusting weapon to create an almost impenetrable metal hedgehog. Alexander the Great’s Macedonians in the 4th century BCE employed an extended—almost 20 ft (6 m) long—pike (or sarissa), but thereafter long-shafted staff weapons largely fell out of favor until the 13th century.

Crushing Weapons

Among those staff weapons used primarily for close-quarters fighting was the mace, which came to be a symbol of authority in some countries. The Egyptian ruler is seen wielding one on the Palette of Narmer (c.3000 BCE), while in late medieval Europe, the mace became associated with civic and royal power. Its military use was as a crushing weapon that could break bones even when they were shielded by armor. Steel flanges were often used to focus the force of the blow and to inflict even more severe injuries upon opponents.

Many of the staff weapons that appeared from the 14th century onward had their origins in the modification of agricultural implements. The bill, for example, which had a sharp edge on the inside of the blade, is a modified scythe, while the military fork or trident is an adaptation of the farmer’s pitch fork.

Jousting Lance

Tournament lances such as this, with a tapering wooden shaft, were designed to shatter on impact with armor or a shield. If the point, or fragments of the wood, penetrated the neck or helmet, the injuries caused could be fatal.
The pike, a simple variant of the ancient form, became the most widespread staff weapon, having earlier fallen out of favor. Wielded in dense formation by infantrymen, most notably the Swiss, and in mixed formations, such as the Spanish tercio, as a defensive shield behind which musketeers could fire, it would prove to be a useful multipurpose weapon. The pike showed its effectiveness in battles such as Courtrai (1302) where Flemish militiamen armed with long spears and wooden clubs (or goedendags) disrupted a charge by French knights and then hacked them to pieces.

LATER STAFF WEAPONS

The addition of an axhead to a pike point, along with a spike on the back of the head, created a halberd, a versatile weapon that—shorter than a pike—could be used for thrusting, hooking cavalrymen from horses, or clubbing. A common type of staff weapon in eastern Europe was the bardiche, which had a long cutting edge similar to an ax, but lacked the pointed end of the halberd.

Particularly in use among cavalrymen was the war-hammer—with a hammer head on one side of the shaft-head and a picklike blade on the other. The hammer was used to stun opponents, the pick to penetrate armor to finish them off.

The increasing importance of firearms, however, meant fewer infantrymen were equipped with staff weapons. Increasingly they became badges of office for non-commissioned officers, lingering on into the 18th and 19th century as the sponto.

Yet just at this time, staff weapons in the form of the lance gained wider use in cavalry formations. Having their origins in the jousting weapons of medieval knights, lances were reintroduced in Napoleonic times as a shock weapon for units of Uhlan. As late as World War I, lances were still carried by the cavalry of some armies, but by then, both staff weapons and cavalry itself were relics of a past era.

GERMAN PARTISAN

Almost the last type of staff weapon to survive was the partisan. Decorative versions, such as this late-17th century German example, were used as badges of office by sergeants and other non-commissioned officers.
MATCHLOCKS
The first improvement to this simple design, which created the matchlock, saw the addition of a serpentine (so-called because it was S-shaped and resembled a snake) which held a length of string (or “slow-match”), treated with saltpeter to keep it alight. The serpentine was pivoted around its center; pulling back on its lower arm pushed its upper arm forward, touching the glowing end of the string into the priming powder. The latter lay in a pan outside the barrel, but was connected to the main charge of powder and ball by a touch-hole. The chief advantage of this design was that one man could use it on his own. A trigger was added later, to act upon the serpentine by way of a connecting sear, along with a spring that held the match off the pan until positive pressure was applied to the trigger. A version was also produced in which the spring worked the other way (when the sear was released, it propelled the match forward)—but the impact often extinguished the match.
Despite various improvements, however, the matchlock remained a cumbersome and unpredictable device. Far more reliable was the wheellock, invented around 1500, which used a wheel turned by a coiled spring to strike sparks from pyrites into the pan. Though complicated, it made it possible for the gun to be used one-handed and for it to be held ready for use.

FLINTLOCKS
The next step was to find a simpler way of creating sparks. This was achieved by using a spring-loaded flint (which lasted longer than pyrites) and bringing it into contact with a suitably-shaped serrated steel, striking sparks from it in the process. The first such lock was known in English as a snaphance, or schnapp hahn, “pecking hen,” which described the action of what became known as the cock.

The snaphance originated in northern Europe, notably the way the pan cover was displaced at the vital moment by means of the exposed mainspring, creating the miquelet lock.

About 60 years later, a French gunmaker, Marin le Bourgeois, combined the one-piece steel and pan cover of the miquelet lock with the internal mainspring of the snaphance to produce the first true flintlock. Later improvements were minor, and saw the addition of roller bearings and strengthening bridles.

HADLEY FLINTLOCK SPORT GUN, 1770
The flintlock was perfected by about 1750, having acquired roller bearings to act on the springs and bridles to hold the components in perfect alignment. This shotgun is an example of the flintlock in its heyday.
The cap is formed of two layers of copper foil between which a mixture of fulminate of mercury, potassium chlorate, and sulfur or antimony. The composition bursts into flame when it is struck, the flame burning through the foil and passing down the bore of the anvil to ignite the powder.

The hammer acts on a mainspring and is retained, holding it under pressure, by a sear connected to the trigger. Tripping the sear releases the hammer, driving it onto an anvil on which the percussion cap has been placed.

The primer in the cap bursts into flame when it is struck. The flame passes down a bore in the anvil and into the powder charge in the barrel.

PERCUSSION CAPS
Even in its most efficient form, the flintlock had its drawbacks. Chief among these were the need for the flint to be kept in precisely the right shape and place, and for the touch-hole to be kept clear of residue. There was also a delay between the cock falling and the gun firing. Fulminating salts, which exploded on impact, had been known for over a century, but they were still too volatile to be a practical substitute for flint. Then, in 1800, Edward Howard synthesized fulminate of mercury, which was relatively docile. The Reverend Alexander Forsyth (a keen wildfowler) combined it with potassium chlorate and used the new priming to detonate gunpowder. It was another 20 years before a reliable system of delivering fulminate primer to the breech, in the shape of percussion caps, was developed, but when it was (probably by British-born artist Joshua Shaw, working in the US in 1822), it rendered all other ignition systems obsolete.

REVOLVERS
The first firearms produced to exploit the new development were conversions of existing weapons (single-shot muzzle-loading pistols and rifles), but they were soon joined by multiple-barreled pistols, known as pepperboxes, in which a group of barrels was mounted on an axial rod which was turned, complete with charge and percussion cap, to present a fresh barrel to the hammer. And then, in 1836, a young American named Samuel Colt patented the cylinder revolver, and began producing both pistols and rifles in this form. Colt's guns could fire six shots in a few seconds, but they were still slow to load, even though the loading process had become easier with the invention of the waterproof cartridge, which contained both charge and projectile and didn't have to be introduced via the muzzle.

PEPPERBOX REVOLVER, 1849
The pepperbox revolver, with its barrels mounted on an axial pin, was a successful, though expensive, way of producing a multiple-shot pocket pistol. It was soon superseded by the cylinder revolver.
Colt enjoyed a monopoly until 1857, but by the 1850s gunmakers on both sides of the Atlantic had begun to consider afresh the thorny problem of how to load a gun at the breech and then to make a gas-tight seal there—a process called obturation.

BRASS CARTRIDGES

Already, by about 1840, Parisian gunmaker Louis Flobert had produced the first brass cartridges—tiny affairs (used for indoor target practice) in which the propellant was fulminate. Flobert showed his cartridges at the Great Exhibition in London in 1851, and thus to every gunmaker of note in the world. One of these, Daniel Wesson, took the idea further, and combined fulminate primer, contained in the rim of a brass case, with gunpowder and a bullet; the unitary brass cartridge was born. This new type of cartridge solved two problems at once. It combined all the elements of a gun’s ammunition into one package, and it guaranteed perfect obturation, since the brass casing itself formed the seal at the breech.

Rim-fire cartridges were imperfect and soon disappeared in all but the smallest calibers, but more robust center-fire cartridges were available by 1866, and soon the world’s armies were clamoring for them. Just as the first percussion weapons had been converted flintlocks, so the first martial breech-loaders were converted muzzle-loaders, but these were stop-gap measures, and it was only a few years before the first purpose-designed breech-loaders, such as the Martini-Henry and the Mauser M71, were being issued.

THE GATLING GUN, 1875

Richard Gatling produced his first workable hand-cranked multiple-barrel machine gun in 1862. Cartridges were introduced from a top-mounted hopper into the open breech of the barrel in the twelve o’clock position. The breech closed on its way down to six o’clock, where that barrel was fired, and opened again on its way back up.
At the other end of the scale, Wesson and his partner Horace Smith, who had worked for Winchester, had turned their attention to designing a revolver to take brass cartridges, but had discovered that a patent already existed for the “bored-through” cylinder that they needed to utilize. Fortunately, they were able to acquire it, in return for a royalty of 15 cents for every gun they produced, and in 1857, as soon as they were free to exploit Colt’s patent, they unveiled the first effective cartridge revolver. Colt was then frustrated by patent protection in his turn, and it was only in 1873, 11 years after his death, that his company was able to bring out another world-beater: the Single-Action Army revolver, widely known as the Peacemaker. Elsewhere, others were attempting to exploit the self-contained nature of the brass cartridge to produce other types of repeating firearm. Two were notably successful early on: Christopher Spencer and Benjamin Tyler Henry, both of whom produced tubular magazine repeater rifles in 1860 (Spencer’s had its magazine in the butt; Henry’s was below the barrel). Both were imperfect, however, for they could only handle low-powered ammunition, and this did not satisfy military requirements. The US Army, therefore, clung to its single-shot breech-loaders, but in Europe, thanks largely to the Mauser brothers’ success with the M/71, attention swung to designing rifles with rotating bolts. Spencer’s and Henry’s guns had another weakness, too: their tubular magazines. The problem lay in the fact that the tip of the bullet was lodged against the primer of the cartridge ahead of it, and in certain circumstances could work as a firing pin, with catastrophic results.

The US Army kept single-shot breech-loaders until 1892, when it adopted a bolt-action magazine rifle, the Norwegian Krag. In 1903 it replaced the Krag with a modified Mauser type rifle from the Springfield Armory.
Bolt Action

The bolt action, essentially no more complicated than the device that holds a garden gate closed, is (perhaps because it is so simple) the most sure and effective method of providing a rifle with an opening breech mechanism. The locking lugs may be at the head of the bolt or the tail, or even in both locations.

The bolt handle is lifted, rotating the body of the bolt and freeing its locking lugs, and is then drawn fully to the rear. On its return, it picks up a cartridge from the magazine and chambers it.

Pulling the trigger trips the sear, which then releases the firing pin. Under the influence of the spring, the pin flies forward and impacts with the primer in the head of the cartridge, detonating it.

Withdrawing the bolt extracts the case by means of a hook on the bolt head, which engages with its rim. As it is withdrawn, it encounters a stop that disengages the case from the extractor, ejecting it.

Elsewhere in Germany, driven by Prussian militarism, increasing numbers of companies were entering the field of armaments manufacture. One, Ludwig Loewe, which had started life as a manufacturer of sewing machines, was to obtain a license to make Maxim's machine guns, and prospered as Deutsche Waffen und Munitionsfabrik (DWM), swallowing up Mauser in the process.

It was at DWM that the first workable self-loading pistol, the Borchardt C/93, was produced. The company also made most of the Mauser C/96, and it was while working for DWM that Georg Luger produced his masterpiece, the P’08.

The latter part of the century saw the emergence of another singular force in gunmaking: John Moses Browning, a Mormon from Ogden, Utah. Having worked for Winchester, where he produced the first pump- and self-loading shotguns, he then began an alliance with Fabrique National of Herstal, near Liège, in Belgium, and produced designs for machine guns and self-loading pistols, which were to be among the best in the world.

BERGMANN M8/1
The unwieldiness of the first generation of rapid-fire pistols lead to the creation of the submachine gun. One of the first of these was the Bergmann M8/1, made in 1918.

GLOSSARY

HEAVY MACHINE GUN A machine gun chambered for a round of larger-than-rifle caliber, usually 12.7 mm.
HINGED FRAME A pistol in which the barrel can be hinged down to expose the chamber or chambers.
HOLD-OPEN DEVICE A catch that holds the bolt back if there is no cartridge to be chambered; a catch that holds the slide of a self-loading pistol back so that the weapon may be dismantled.
HOLLOW-POINT A bullet with a chamber or a recess at its point, which causes it to expand or fragment when it hits its target.
LANDS The inner surfaces of a barrel, between the grooves.
LIGHT MACHINE GUN A machine gun, usually fitted with a bipod, chambered for rifle-caliber ammunition, but not capable of sustained fire.
LOADED BREECH A weapon in which the breech-block is physically locked to the barrel during firing.
MACHINE GUN A weapon that uses gas or recoil to cycle its action and thus give continuous fire.
MACHINE-PISTOL See submachine gun.
MAGAZINE A holder for cartridges that delivers them, usually by means of spring pressure, to the action.
MEDIUM MACHINE GUN A machine gun chambered for rifle-caliber ammunition, which is capable of sustained fire.
MUZZLE The open front end of the barrel.
MUZZLE BRAKE See compensator.
OPEN BOLT A weapon in which the bolt is held back until the trigger is pulled, allowing the chamber to cool; see also closed bolt.
PARABELLUM The 9 mm x 19 cartridge developed by Luger for his self-loading pistol.
PRIMER Fine gunpowder used to initiate the firing sequence; a percussion cap set into a cartridge case.

Some European gunmakers used tubular magazines in bolt-action rifles, but they were soon discredited, and box magazines took their place.

SELF-LOADING FIREARMS
Mauser was the dominant force in military rifle design during the latter part of the 19th century, and went on to capture much of the global market for heavy-caliber sport rifles, too. Most other designers simply copied Mauser's work, and only in the United Kingdom, at the Royal Ordnance Factory at Enfield, was a markedly different type of bolt-action rifle, the work of an American of Scottish birth, James Paris Lee, produced in very significant numbers (though designs by other Europeans, notably the Austro-German Ferdinand von Mannlicher and the Swiss Schmidt were adopted by smaller armies).
MACHINE GUNS

An American, Hiram Stevens Maxim, built his first machine gun in London in 1883. It used the weapon’s recoil to extract the fired case and chamber another, cocking the action in the process. If the trigger was held down, the process repeated until the ammunition supply was exhausted (or the gun jammed, which was more likely in the early days). It took some years for the real meaning of his invention to sink in, but when it did, it changed the very nature of warfare.

Maxim’s patents had expired by the outbreak of World War I, and already there were competing designs in production. But inasmuch as three of the six major combatants—Britain, Germany, and Russia (and one of the minor: the Ottoman Empire, which was armed by Germany)—relied on Maxim designs, they can fairly be said to have dominated that conflict. Indeed, Britain and what was by then the Soviet Union, were still relying on Maxims (the former in the shape of the Vickers) throughout World War II. The French Army fielded a machine gun of its own, the gas-operated, air-cooled Hotchkiss, which had gone into production in 1893. It was considerably simpler than the Maxim, but tended to overheat—a problem from which the water-cooled gun never suffered, so long as a supply of coolant was available.

Heavy machine guns like the Maxim and the Hotchkiss, and the Austro-Hungarian Skoda and Schwarzlose, and the American Browning (the denomination refers not to the ammunition for which they were chambered, which was rifle-caliber, but to their ability to maintain heavy sustained fire) were not the only automatic weapons found on the battlefields of World War I. Lighter, more portable weapons such as the Lewis and the lightened Maxim, known as the MG08/15, chambered for the same rounds, but which could accompany infantrymen in the assault, were also present.

DEsert EAGLE, 1983
The Israeli Desert Eagle was the first self-loading pistol capable of handling the heaviest, most powerful Magnum pistol ammunition, thanks to its gas-operated, locked-breech design.
Toward the end of World War I, the rifle-caliber machine guns were joined by a much smaller automatic weapon, chambered for pistol ammunition and designed to put automatic firepower into the hands of the individual infantryman. The Bergmann MP18/1 played only a very minor role, but it was to be a prophetic one. By the time war broke out in Europe again, the submachine gun had become ubiquitous. That, however, is not to say that its role has ever been completely understood in anything but close-quarters combat. Indeed, many, even now, would maintain that its best application is in anything but close-quarters combat. Indeed, it is significant that perhaps the best of the genre in modern times, Heckler & Koch’s MP5, is available shorn of its rapid-fire setting. The police officers (and many of the soldiers) who carry such weapons do so not for their firepower, but for the increase in accuracy they offer over a pistol, thanks to their longer barrels, and for the greater capacity of their magazines.

Submachine guns have never been seen as replacements for the infantryman’s assault rifle. Indeed, thanks to the drastic modifications the assault rifle has undergone, there is now more reason than ever to suggest that the submachine gun will soon join the pistol in having no effective military role beyond self-defense. More than any other man- portable weapon, the assault rifle (much-reduced in weight and length, thanks to the introduction of “bullpup” designs, which have the mechanism housed within the shoulder stock, and chambered for much lighter ammunition) has changed to accommodate the nature of the task facing the soldier who carries it.

PROJECTOR, INFANTRY, ANTI-TANK, 1942
The British Army’s PIAT of World War II vintage was perhaps one of the most bizarre weapons of the 20th century, yet despite its simplicity, it was capable of disabling even heavy tanks at up to a hundred yards, and could also function as a mortar and “bunker buster.”
The most ancient form of armor was probably made of animal hides, followed by leather or cotton. As metal technology progressed, bronze, and then iron armor appeared. Greek hoplites from the 7th century BCE wore a bronze helmet, a bell-shaped corselet of leather or bronze, and bronze greaves for the shins.

During the early empire, the Romans developed banded-iron armor (called lorica segmentata), with reinforced sections across the shoulder, that allowed for more flexible movement. Later Roman infantry tended to be less heavily armored, although their cavalry (or cataphracts) wore a coat of heavy mail.

Mail then remained the dominant form of armor in western Europe until the 15th century.

Steppe nomads, such as the Turks and Mongols, wore both scale and lamellar armor, the latter constructed of individual pieces (or lamé) laced together in horizontal rows (rather than being sewn on). The arrangement of protective plates thus formed could become quite elaborate, reaching the summit of its development in the O-Yoroi armor of Japanese samurai. Their hardened leather plates coated in lacquer to give strength equal to steel also provided greater flexibility and lightness.

Technological Improvements

By the 15th century, the danger from improved weapons including the longbow, crossbow, and firearms meant that chain armor, well adapted for deflecting sword blows, became more vulnerable. Small plates or discs of steel had already been added to armor to protect the most vulnerable areas, and these now evolved into entire suits of toughened steel.

Gradually, from the 16th century, armor was reduced to save weight—and expense—for foot soldiers. For the cavalry, however, back- and breastplates (or cuirasses) survived into the 19th century, and in ceremonial form even later. With the development in the 20th century...
of lightweight materials such as Kevlar, which could impede bullets, body armor made a return to the battlefield in the form of ballistic jackets.

HELMETS
After the fall of Rome, the techniques for creating helmets from a single sheet of iron disappeared. Segmented helmets such as the Bandhelm, popular among the Vikings, replaced them, with a band holding the two parts of the bowl of the helmet together. Such early medieval European helmets did not protect the whole face, and just as body armor became heavier, so did head protection, leading to the evolution by the 12th century of “Great Helms” that covered the whole face and neck. Again, these proved too heavy and impractical and lighter versions, such as basins, appeared by the later Middle Ages.

Turkish and Mongol helmets often took a peaked form, a version in metal of the steppe nomads’ felt cap, while the Japanese samurai wore elaborate helmets of lacquered leather, with a mempo for additional protection. With the increased use in firearms, helmets began to disappear until improved designs, which could defend against bullets and shrapnel, led to a renaissance in helmets, from World War I “tin-pot” helmets, to the reinforced Kevlar helmets of the modern infantryman.

SAMURAI HELMET
Japanese samurai helmets came in a wide variety of styles. This Hineno zunari bachi is a “head-shaped” version, with a helmet bowl of simplified construction, lacquered in red, with its frontal plate finished in gold lacquer.
The earliest weapons—the bow, spear, club, and ax—had their origins in hunting, but it was in warfare—the competition for resources conducted by violent means—that they were honed and perfected as killing tools. Although the basic design of these weapons, and the materials used to make them, remained largely unchanged throughout the ancient period, from stone to copper, bronze and then iron, their efficacy (and the organization of those who wielded them) increased.

“Royal Standard of Ur,” excavated from one of the most successful of these city-states, carries the earliest depiction of an organized armed force, led by its lugal or king. It consists of a mixture of light infantry bearing javelins and battle axes (but no shields) and helmeted heavy infantry wielding a mass of longer spears. The Sumerian chariots were cumbersome affairs with solid wheels drawn by four ass-like creatures—hardly practical vehicles for warfare. A commemorative tablet known as the Stele of Vultures shows that by c.2450 BCE, the Sumerians were fighting in a tight formation of helmeted spearmen, which prefigured the phalanx—the mainstay of infantry warfare for over 2,000 years.

The Sumerian cities were eventually overcome by Sargon of Agade (c.2300 BCE), who built the world’s earliest empire, campaigning with an army that was the first to exploit mixed arms, combining light troops with heavier infantry and archers. Although warfare continued to plague the region, the pace of technological change was relatively slow, mainly consisting of refinements of existing weaponry. One example of this is in the improved molding that allowed the Mesopotamian battle ax to become double-bladed, inflicting appalling dashing and gouging wounds, and leading, in turn, to the increased use of metal helmets.

TECHNOLOGICAL INNOVATIONS

A series of cultural and technological developments in the 2nd millennium BCE changed the face of warfare and allowed states to project their power ever further, garner more resources, and repeat the process until they came up against a stronger foe. One of these developments was the widespread domestication of the horse. At the same time, the perfection of bent-wood techniques, allowed spokes to be used on chariot wheels. Along with the development of a practical composite bow that allowed rapid fire from these new chariots, these developments helped New Kingdom Egypt—which though long politically united, had remained very
The discovery in around 1200 BCE of hot-hitting and quenching iron in water to give stronger and longer-lasting blades added a new element of lethality to warfare, and also helped the spread of longer stabbing and slashing swords to supplant the daggers and axes, which had hitherto been the most common bladed weapons.

THE FIRST STANDING ARMY

It was the Assyrians who were the first to really exploit this development. Employing the earliest standing army—as many as 100,000 strong according to one text—and exploiting their military prowess and reputation for ruthless extermination of those who opposed them, they carved out an enormous empire encompassing most of Mesopotamia. The Assyrians possessed a well-defined chain of command, with specialist units of cavalry, armed with iron-tipped spears, slingers, and bowmen, whose massed fire could be devastating to an enemy, and which led to an increased use in armor, such as knee-length scale tunic. They also developed extensive expertise in siege warfare, and in the taking of Lachish (701 BCE) deployed siege engines that were not surpassed until Roman times.

The Assyrans state under kings such as Tiglath-PIleser III (745–27 BCE) was capable of fighting sustained campaigns and defending a large area with mobile chariot forces. In the end, however, the multinational nature of its empire was to prove its undoing, as its resources became overstretched and a series of revolts caused its rapid collapse in c.612 BCE. The Persians, too, built a multiethnic empire from the mid-6th century BCE, but on a magnified scale, stretching from the borders of India to the Aegean. At the heart of their army was an elite corps of “Immortals,” fighting with short spear and bow from behind a shield-wall. As the Persian domain expanded, light cavalry from Media, light infantry from the mountain regions, and even a camel-corps from the Middle East were added. Ironically, despite this well-balanced combination, the Persians were eventually defeated by an apparently tactically inflexible force, the Greek hoplite army.

Greece was ill-suited to cavalry, its generally mountainous terrain was better for small-scale infantry warfare. Emerging by 800 BCE from the dark age of heroic warfare depicted in the epic poems of Homer, the Greek city-states relied on massed ranks of infantry soldiers, or hoplites.

ASSYRIAN SIEGE

Archers formed a key component in an Assyrian army whose sophistication enabled it to fight pitched battles, send chariot forces across large distances, and deploy complex siege engines against any city that dared oppose it.
Wielding a large shield held by a central hand-grip that protected only the left-side of the body, hoplites were dependent on their neighbor to shield their unguarded right side. Deployed in a phalanx, eight to twelve men deep, wielding long spears and protected by bronze helmets that left only the eyes and mouth exposed, the hoplites presented a shield and spear wall that opponents found very difficult to penetrate. The earliest depiction of such a phalanx occurred in around 670 BCE. By the time of the Persian invasion in 490 BCE, the development of this style of warfare, which depended on the cohesion of the soldiers within it, and their momentum as a mass, had been perfected by the Spartans, who possessed a full-time army trained in basic drills and able to conduct maneuvers such as facing an enemy coming from two directions. At Marathon (490 BCE) and Plataea (479 BCE), the Persians crumbled in the face of a hoplite charge, unable to counter with their cavalry, and undermined by their inferior discipline and cohesion.

THE ARMY OF ALEXANDER THE GREAT

By the 4th century BCE, it was a very different Greek army that took the fight to the Persians. The Macedonian army of Alexander the Great resolved the fundamental weakness of the hoplite force—it's lack of a mounted striking arm. Alexander's "Companions," an elite cavalry unit, was trained to fight in a wedge-shaped formation ideal for penetrating other cavalry formations and disrupting infantry shield-walls. Added to this were the foot-companions, who fought on foot in a phalanx formation and were armed with the sarissa, a pike around 19½ ft (6 m) long. The sarissa of the foremost rank would project around 13 ft (4 m) in front of the phalanx, that of the second rank 6½ ft (2 m) and so on, creating an obstacle to deter all but the most determined assailant and which could also deflect missiles.

The weight of the sarissa was such that the members of the phalanx wore just light leather corselets and greaves and carried only daggers as sidearms. In battle, the Companions would generally punch a hole in the enemy line, which the sarissa phalanx would exploit.

The tactical genius of Alexander, who used oblique formations, feints, and envelopments to devastating effect, combined with the tactical flexibility that the mixed cavalry-infantry army of Macedonia permitted, enabled him to defeat the numerically superior Persians at Issus (333 BCE) and Gaugamela (331 BCE) and take over their empire wholesale. What they won through military cohesion, the Macedonian successors of Alexander lost through political fractiousness, and by the 1st century BCE, the successor states in Asia and Africa were much weakened, while a manpower crisis in Greece meant traditional hoplite armies were increasingly difficult to sustain.

THE ROMAN ARMY

The Roman Empire's survival for over 400 years is a tribute to its ability to modify its military organization to face changing strategic needs. Under Marius in the late 2nd century BCE, extensive reforms created the classic Roman legion, with standardized equipment supplied by the state, the cohort of around 100 men as the tactical unit, and a legion strength of about 4–5,000 men. Legionaries bore the short gladius (sword), the pilum (heavy throwing spear) —designed to break on impact — the oval scutum (shield), and, from the 1st century CE, generally lorica segmentata (armor). The legions were supported by auxiliary troops, with more varied equipment, and specialists such as mounted archers and slingers. Under the later empire, legion sizes became much smaller—as little as 1,000—while the role of the cavalry and units recruited from Germanic tribes increased.

EGYPTIAN SPEARHEAD

This spearhead, discovered wrapped in a linen binding, is typical of the weapons carried by Pharaonic armies from the Old Kingdom right up until military changes during the New Kingdom brought chariot-borne archers to the fore.
opponents who had no cities or fixed centers to defend, however, the Roman way of war faltered. When defending long, fixed frontiers the legions could not cover all possible points of attack. Long vulnerable to mounted horse archers, such as the Parthians who overwhelmed Crassus at Carrhae in 53 BCE, the Romans also found it increasingly difficult to absorb the sapping pillage and run tactics of the German warrior federations that evolved from the 3rd century. The late empire, from the time of Gallienus (260–68 CE), came to depend more on a mobile field force (the comitatenses), with an enhanced heavy cavalry arm, wielding longer spatha swords. With their suits of mail, and sometimes carrying lances, these armored soldiers began to resemble the knights of early medieval times. At the same time, the frontier troops (limitanei), starved of resources and motivation, became increasingly unable to withstand the successive waves of Goths, Vandals, Huns, and other barbarian invaders.

AFTER THE ROMANS

When the Roman Empire in the West finally collapsed in 476 CE, the Germanic successor states inherited many of its legal and administrative systems. The most powerful of these, the Frankish kingdom, was able to project its power beyond the Rhine, into Italy and even northern Spain in the late 8th century under Charlemagne. Fighting in mailed byrnes (leather jackets) and armed with long swords and axes, the Frankish army’s superior arms and organization, along with its use of auxiliaries from conquered nations such as the Saxons and Carinthians, made it invulnerable to everything save the political division and dynastic squabbling that fragmented the kingdom in the 9th century. The break-up of the Frankish Empire came just as Europe and Byzantium—the remnant of the Roman Empire in the East—faced fresh military challenges. From the north came the Vikings, at first small groups of ship-borne raiders preying on lightly-defended coastal territories, and then larger forces carried inland on ponies or by portage along rivers to bring devastation as far afield as Anglo-Saxon Wessex, Paris, Kievan Rus, and Constantinople. Fighting with double-edged swords 28½–32 in (70–80 cm) in length, light spears for throwing and heavier ones for thrusting, and long-handled broad-bladed battle axes, the Vikings inspired terror in Europe for over 250 years.

Out of the Middle East, meanwhile, came another military force, which was to endure far longer. From the 630s, Arab armies, united under the banner of the new religion of Islam, swept through the peninsula and then outward to overwhelm the tired autocracies of Byzantium and Persia. The Islamic victory was not achieved at first through any superior technology—although the Arab armies’ use of the camel for transportation doubtless assisted them in the desert terrain of many of their victories—but through the cohesive inspiration of ideology. When the new religion spread to the Turkic horse archers of the Central Asian steppes by the 9th century, the combination threatened for a time to be unstoppable.

TERRACOTTA WARRIOR

The terracotta army, buried in the tomb of Emperor Huang Di, who unified China c.220 BCE, is testament to the variety and sophistication of Chinese armies of the time.
THE ABILITY OF HUMAN BEINGS to manufacture tools was an early step toward gaining mastery over their environment. Among the first tools to appear were simple hand blades and axes made from hard rock; they would have been used to kill and dismember animals, but they also had the potential to be employed against other humans. The distinction between hunting and military weaponry necessarily remained blurred for many millennia. With the invention of the handle or shaft, and the development of projectile weapons—the spear and, above all, the bow and arrow—a revolution in hunting and fighting was underway.

PALEOLITHIC BLADES

To be able to cut was of prime importance for early man, and these blades—dating back to about 40,000 BCE—would have been used to dismember animals that had been killed by paleolithic hunters. Such blades were capable of severing sinew, and separating the skin from the animal’s flesh.

DATE: c. 40,000 BCE
ORIGIN: UNKNOWN
LENGTH: 4 IN (10 CM)

HAND AX

A key tool of the paleolithic age, the hand ax was shaped to provide both a cutting edge and a point. Although hand axes were essentially domestic tools, they were capable of inflicting savage wounds against both animals and people. Their cutting ability made them highly prized implements.

DATE: c. 250,000–70,000 BCE
ORIGIN: UNKNOWN
LENGTH: 6 IN (15 CM)

FLINT DAGGER HEAD

A development of the hand ax, this dagger is fashioned from flint, a hard rock readily available in areas of chalk downland and capable of taking a sharp edge. A piece of flint would be repeatedly struck by a stone hammer, knocking off small flakes of flint until a fine edge remained.

DATE: c. 2000 BCE
ORIGIN: UNKNOWN
LENGTH: 6 IN (15 CM)

SERRATED FLINT KNIFE

A development of the simple flint dagger is the serrated knife shown here. The knife’s teeth make possible a sawing action, and this provided the paleolithic hunter with an opportunity of cutting through harder objects such as bone, gristle, and—during the Ice Age—frozen meat.

DATE: 1,500,000–10,000 BCE
ORIGIN: UNKNOWN
LENGTH: 8 IN (20 CM)
EARLY ADZE
The stone head of the adze is inserted into a sleeve made from antler-horn, which is then bound to the wooden shaft by strips of leather. The adze is primarily a domestic or agricultural tool, but it does not take too much imagination to see this as a forerunner to the battle ax.

FLINT HAND DAGGER
By lashing the flint blade to a wooden shaft with a binding of sinew or leather strips, the simple hand dagger was transformed into a deadly weapon of war. The addition of the shaft enabled the Stone-Age fighter to plunge the blade into his opponent with the full force of his arm.

SMALL CLOVIS POINT
In 1932 this Ice-Age spearhead was unearthed in Clovis, New Mexico, along with other weapon points. The broad blade of this spearhead could inflict severe wounds. The binding of the spearhead to a long wooden shaft gave the fighter an opportunity to throw it at his opponent with great force, from a relatively safe distance.

STONE AXHEAD
A dual-purpose tool, the stone ax could have been used for clearing vegetation, but would have been capable of smashing in a human skull. The addition of a wooden handle provided greater reach and power. This axhead was dredged from the Thames River in London.

FLINT ARROWHEADS
The bow was a leap forward in weapon technology, enabling the archer to fire from a distance with power and accuracy. Made from flint, these arrowheads have barbs that would embed themselves deep inside the victim, ensuring that any attempt to remove them would be difficult.
Mesopotamian Weapons and Armor

Organized warfare originated in the Sumerian city states of southern Mesopotamia in around 3000 BCE. Armor was made from leather, copper, and bronze, and the chief weapons were the bow and spear. Mobility was provided by chariots, at first four-wheeled vehicles drawn by asses, but improved to become light, horse-drawn, two-wheeled platforms for archers and spearmen. Improvements in city fortification led to developments in siege warfare techniques, such as the use of battering rams and scaling towers.

Ceremonial Dagger
Excavated from the burial site of the Sumerian Queen Pu-Abi in around 2500 BCE, this ceremonial dagger is of the highest quality—a suitable weapon for a monarch to carry on her journey to the afterlife. The blade and scabbard are made from gold, while the hilt is constructed from lapis lazuli finished with gold decoration.

<table>
<thead>
<tr>
<th>Date</th>
<th>c.2500 BCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Sumeria</td>
</tr>
<tr>
<td>Length</td>
<td>9½–12 in (20–30 cm)</td>
</tr>
</tbody>
</table>

Hair-effect decoration

Blue lapis lazuli hilt

Diadem

Intricate geometric design

Double-edged blade

Gold scabbard

Cheek guards to protect side of face

Hole for attaching lining

Helmet of Meskalam-Dug
Made from an alloy of gold and silver, this ceremonial helmet was found in the Sumerian city of Ur and dates back to the third millennium BCE. Known as a wig helmet, the decoration mimics the hairstyle worn by Sumerian kings of the period.

<table>
<thead>
<tr>
<th>Date</th>
<th>c.2500 BCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Sumeria</td>
</tr>
<tr>
<td>Length</td>
<td>8½ in (22 cm)</td>
</tr>
</tbody>
</table>
ASSYRIAN SCALE ARMOR

Constructured from bronze, this early example of lamellar armor—where small plates are laced together—was worn by an Assyrian warrior. Such armor was popular in the Middle East until the end of the Middle Ages.

ASSYRIAN WARFARE

Assyrian warriors, here depicted on a relief carving, in the Battle of Til-Tuba c.650 BCE. Some men are well protected with armor and large shields, and the two main Assyrian weapons, spear and bow, are clearly in evidence.

ASSYRIAN BOW AND ARROWS

While we know that the Ancient Egyptians used composite bows of wood, horn, and sinew glued together, our knowledge of Assyrian bows is less clear; they may have used composite bows, or simple wood bows. The bow and arrows shown here are replicas.
ANCIENT EGYPTIAN WEAPONS AND ARMOR

FROM APPROXIMATELY 3000–1500 BCE the Egyptian army fought mainly on foot, its soldiers protected by large wooden shields and armed with bows, spears, and axes. The long struggle with the people of Hyksos, who came to rule parts of Egypt in the second millennium BCE, brought about a change in weapon technology. Helmets, armor, and swords became more common, and chariots provided highly mobile archery platforms.

CROCODILE-SKIN ARMOR

The crocodile was revered by the Ancient Egyptians, who believed that the wearer of its skin would take on the strength and attributes of this fearsome animal. Crocodile cults continued into classical times, and the wearing of crocodile armor was popular with Roman soldiers garrisoned in Egypt.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>3RD CENTURY CE</td>
<td>EGYPT</td>
<td>CUIRASS: 34 IN (88.5 CM)</td>
</tr>
</tbody>
</table>

BRONZE AXHEAD

The Egyptian enthusiasm for axes led to the development of a wide variety of axhead shapes. This broad, scalloped example has small holes where the head is bound to the shaft. The distinctive shape of the blade makes possible a wide slashing action, effective against opponents wearing little or no armor.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200–1640 BCE</td>
<td>EGYPT</td>
<td>6 IN (17.1 CM)</td>
</tr>
</tbody>
</table>

BRONZE SPEARHEAD

This spearhead is typical of those carried by Egyptian infantrymen, whose main weapon was the spear. Made from bronze, it was covered in fine linen cloth, whose weave is apparent in this view. This weapon would have been used mainly for thrusting, not thrown as a javelin.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.2000 BCE</td>
<td>EGYPT</td>
<td>10 IN (25 CM)</td>
</tr>
</tbody>
</table>
Leaf-shaped spearpoint

Khepesh (sickle-shaped sword)

FLINT ARROWHEAD
The Egyptians were early exponents of the bow, and it formed the most effective element within their armory. The first composite bow was portrayed on a victory monument as early as 2800 BCE. Early arrowheads were made from flint, subsequently to be replaced by bronze.

BRONZE HEAD
Used either to arm a thin spear or an arrow, this bronze head is notable for its pronounced barbs. Although expensive to produce, bronze arrowheads were widely used by the Egyptians, who fitted them to shafts made from the long reeds growing along the Nile River.

“LION KING” SHIELD
One of the eight ceremonial shields discovered in the annex to Tutankhamun’s tomb, it depicts the king in the guise of a lion scattering his enemies before him. This is one of a number of depictions showing Tutankhamun adopting a martial pose. Simple wooden versions of this type of shield would have been carried by Egyptian foot soldiers.

“SMITING A LION” CEREMONIAL SHIELD
The discovery of the tomb of Tutankhamun (who reigned c.1336–1327 BCE) provided a mass of information on Egyptian life, including the weapons and tools of the period. This ceremonial shield shows the king slaying a lion while armed with an unusual type of sword called a khepesh.
ANCIENT EGYPTIAN WEAPONS AND ARMOR

SHORT SWORD

Until the New Kingdom (c. 1539–1075 BCE) the sword had not been highly regarded by the Egyptians, but military encounters with warlike peoples from the Middle East encouraged the development of edged weapons capable of penetrating armor. This broad-bladed short sword has a gold gilt handle, almost certainly that of a member of the Egyptian royal family.

DATE 1539–1075 BCE
ORIGIN EGYPT
LENGTH 12 1/2 IN (32.3 CM)

A PHARAOH’S DAGGER

Belonging to Tutankhamen, this gold-handled dagger has an iron blade rare in this period. The Egyptians had no direct access to iron ore and were dependent on supplies from the Middle East—often under the control of their enemies—which consequently made the production of iron weapons a difficult business.

DATE c. 1370–1352 BCE
ORIGIN EGYPT
LENGTH 16 1/4 IN (41.1 CM)

LONG SWORD

Featuring a large, mushroom-shaped pommel, this sword has a copper blade, while the handle is covered in gilded gold. Although copper was readily available in Egypt, it lacked the strength of bronze and iron, and the blade could not be made to take a sharp edge.

DATE 1539–1075 BCE
ORIGIN EGYPT
LENGTH 16 IN (40.6 CM)
BATTLE AX
This heavy bronze axhead is inserted into a wooden shaft and then bound securely in place. Such axes would have been capable of penetrating leather, and light bronze armor.

DATE 1630–1520 BCE
ORIGIN Egypt
LENGTH 16½ in (41.1 cm)

CEREMONIAL AX
The ax (and the mace) were weapons that had strong associations with power and prestige, and ceremonial versions were carried by Egyptian rulers. Typically, a scene showing the triumph of the Pharaoh would be engraved on the axhead, although in this instance, a warrior is depicted on horseback in an open metalwork design.

DATE 1539–1075 BCE
ORIGIN Egypt
LENGTH 17 in (43.5 cm)

REPLICA BATTLE AX
This modern reconstruction of an Egyptian battle ax shows the axhead in place within a wooden shaft. This is the type of weapon that would have been used by the ordinary Egyptian foot soldier, and was a response to the increased use of armor by Egypt’s enemies during the middle of the second millennium BCE.

DATE 20th century
ORIGIN Egypt
LENGTH 16½ in (42 cm)
Tutankhamun

Egyptian King Tutankhamun (r. 1332–1322 BCE) shoots arrows at retreating enemies from his chariot. Evidence that bows and arrows were among the most common weapons of this period is found in tomb paintings, on coffins, and from excavated finds. These weapons would have been used alongside axes and short swords.
ANCIENT GREEK WEAPONS AND ARMOR

WARFARE IN CLASSICAL GREECE was centered around the hoplite, a heavily equipped foot soldier armed with a spear and sword, and protected by a large round shield, bronze helmet, bronze or leather cuirass, and greaves. Hoplites fought closely together, forming a wall of shields in a phalanx that maximized their protection while enabling them to use their spear. The hoplite phalanx was supported by light infantry armed with bows and sling shots.

GREEK SPEARHEAD
The spear was the hoplite’s principal weapon, his short iron sword only being used if his spear was broken during fighting. This spearhead is wide-bladed and made from iron, and the missing shaft would have been fashioned from strong wood such as ash.

DATE 6–5TH CENTURIES BCE
ORIGIN GREECE
LENGTH 12 ¼ IN (31 CM)

BRONZE CUIRASS
This muscled cuirass consists of a breast- and backplate joined together by hooks and straps. It would have been worn by a senior officer and would have been made to measure. The ordinary hoplite wore a more simple cuirass made either from bronze or from stiffened leather.

DATE 5TH CENTURY BCE
ORIGIN ITALY
LENGTH 19 ½ IN (50 CM)

HOPLITE SPEAR BUTT
Made from bronze, this spear butt’s main purpose was to act as a counterweight to the head at the other end of the spear, although if the spearhead broke off in battle, the butt could be used as a weapon. A thick bronze ring secured the butt to the spear.

DATE 4TH CENTURY CE
ORIGIN MACEDONIA
LENGTH 15 IN (38 CM)

Spearpoint
Socket for spear shaft
Wide leaf-shaped spear blade
Two plates joined at side by leather strap
Indentation for bronze securing ring
Ridges to align with body muscles
Open side areas most vulnerable sections
CORINTHIAN HELMET

An early example of perhaps the most famous Greek helmet, this Corinthian design follows the shape of the skull, and extends downward toward the shoulders and neck, leaving a narrow face opening with space for the eyes between a nasal.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.650 BCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>GREECE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>3½–3¾ lb (1.5–1.75 kg)</td>
</tr>
</tbody>
</table>

BRONZE GREAVES

The hoplite's large shield protected the lower abdomen and thighs, but to protect his knees and shins, he wore a pair of bronze greaves. The greaves shown here are sufficiently light and flexible that they could be "clipped on" over the soldier's calves without the need for leather straps.

<table>
<thead>
<tr>
<th>DATE</th>
<th>6TH CENTURY BCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>GREECE</td>
</tr>
<tr>
<td>LENGTH</td>
<td>19 in (48 cm)</td>
</tr>
</tbody>
</table>

ATTIC HELMET

Based on the Chalcidian helmet—which had evolved from the Corinthian—the Attic helmet provided better all-round vision and hearing, even if protection was reduced. Although named after the region around Athens, the Attic helmet proved most popular in the Greek city states in southern Italy.

<table>
<thead>
<tr>
<th>DATE</th>
<th>5TH CENTURY BCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>GREECE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>3½–3¾ lb (1.5–1.75 kg)</td>
</tr>
</tbody>
</table>
GREEK HOPLITE

FROM THE 7TH TO THE 4TH century BCE, the city states of Ancient Greece had citizen armies built around heavy infantry known as hoplites. Fighting at close quarters in tight formation, they proved more than a match for Persian invaders at Marathon and Plataea, and fought one another in the internecine Peloponnesian Wars. After the decline of the city states, Greek infantry served in the all-conquering army of Alexander the Great and as mercenaries fighting for Middle Eastern powers.

CITIZEN SOLDIERS
The hoplite of the city-state era was an amateur, part-time soldier. Military service was both a duty and a privilege of his status as a citizen of Athens, Sparta, or Thebes. The hoplite was obliged to present himself for service equipped with armor, shield, sword, and spear when the state required.

Only well-off citizens could afford the panoply of armor and other equipment, so hoplites were of necessity a social elite. They fought banded together in a tight formation known as a phalanx, while lightly armed infantry from the lower classes swarmed around their flanks armed with missile weapons. The best trained and disciplined of the city-state armies was that of Sparta. Its citizens were dedicated to military life from the age of seven and young men lived in barracks, away from their wives, to encourage male bonding. In general, though, as one would expect of a citizens’ militia, hoplites were not rigorously trained. Physical fitness through competitive games was considered a better preparation for war than drill or strict discipline.

Their effectiveness as fighters was largely consequent upon the high morale of free men battling for their own city and for their reputation in the eyes of their fellow citizens. This gave them the resolve to prevail in face-to-face, close-quarters combat.

HOPLITE ARMOR
A fully armored hoplite wore a helmet, cuirass, and greaves, all made of bronze. Polished until it shone, armor provided an impressive visual display of status as well as practical protection.

HOPLITES ENTERING BATTLE
As hoplites enter combat, the stabbing spear is wielded overarm while the large round shield is worn hooked over the left forearm. The need for greaves to protect the lower leg, exposed beneath the level of the shield, is evident. The horsehair crests on the helmets were probably for visual effect. Showing the hoplites without clothing aside from their armor is only an artistic convention.

Cuirass molding idealizes warrior’s muscles
Two cuirass plates held together at sides with leather straps
Bronze greaves protect legs exposed below shield

HOPLITE AND CHARIOT
Chariots are frequently represented in Ancient Greek art, because they feature prominently in the story of the Trojan Wars as narrated in Homer’s Iliad. By the city-state period, the Greeks no longer used chariots, although their enemies, the Persians, certainly did.
GREAT WARRIORS

“GO NEAR, STRIKE WITH A LONG SPEAR OR A SWORD AT CLOSE RANGE, AND KILL A MAN. SET FOOT AGAINST FOOT, PRESS SHIELD AGAINST SHIELD, FLING CREST AGAINST CREST...”

SPARTAN POET TYRTAEUS, 7TH CENTURY BCE

TOOLS OF COMBAT

SPEARHEAD

SPEAR-BUTT SPIKE

CORINTHIAN HELMET

PHALANX FORMATION

Greek hoplites fought standing shoulder to shoulder in a phalanx, confronting the enemy with a wall of shields. Since each man’s safety depended on his neighbor standing firm, it was a style of warfare in which group bonding was at a premium. When two phalanxes met, charging in opposite directions, there was a mighty clash of shield on shield. The hoplites stabbed with their spears and pushed with their shields until one of the formations broke and fled.

HOPLITE PHALANX
ANCIENT ROMAN WEAPONS AND ARMOR

THE ROMAN ARMY was the finest fighting machine of the Ancient World. Its troops were highly disciplined, well trained, and generally well led. The Roman legionary was also well equipped for whatever task was demanded of him. Archers and javelin-throwing light troops would disrupt the enemy, but the main battle was invariably fought by the heavy foot soldier: protected by a large rectangular shield, he fought in close formation to overwhelm the enemy with his short sword.

LORICA SEGMENTATA
Made of iron strips, this reproduction lorica segmentata—a combination of cuirass and shoulder defense—was worn from early in the 1st century CE to the 3rd century CE. This armor gave the Roman legionary a reasonable degree of protection and mobility.

LORICA SQUAMATA
Another type of cuirass was the squamata. This was made of overlapping bronze or iron scales attached to hide or strong cloth. The scales, joined to each other with metal wires, were usually positioned in horizontal rows.

Gallic Helmet
Originating in the Roman province of Gaul, the Gallic helmet was used widely from 50 to 150 CE. Made from iron, this replica features a deep neck guard, a short brow guard to deflect sword and ax strokes away from the face, and broad cheek guards. The cheek guards are hinged to the side of the helmet, and then tied under the chin with straps or cords.

Scutum
This is a replica of a rectangular infantry shield or scutum. The shield, made from laminated strips of wood, was covered with leather and then linen, the latter providing a surface upon which to paint legionary insignia. The shield was slightly curved to provide an element of all-round protection.

Lorica segmentata
Another type of cuirass was the squamata. This was made of overlapping bronze or iron scales attached to hide or strong cloth. The scales, joined to each other with metal wires, were usually positioned in horizontal rows.
GLADIUS AND SCABBARD
While spears were important in softening up the enemy, the key Roman weapon was the short sword or gladius, which the legionary used to stab his opponent. Decorated in gold and silver, this magnificent ceremonial gladius was probably presented to a favored officer by the Emperor Tiberius.

DATE c.15 CE
ORIGIN ROME
LENGTH 22½ IN (57.5 CM)

LANCEA
Traces of wood from scabbard adhering to steel blade

PILUM
Long iron point

LANCEA AND PILUM
There are three main types of Roman spear: the heavy thrusting spear (hasta), the light thrusting spear (lancea), and the weighted javelin (pilum). This replica pilum has a long iron spearhead intended to pierce shields or armor; it was also designed to bend or break off on impact to prevent the enemy from throwing it back.

MONTEFORTINO HELMET
This replica helmet design dates back to 200 BCE, and was based on that used by the Romans' Celtic opponents. Like the similar Coolus helmet, it was made from bronze, and produced in vast numbers for Roman legionaries until the mid-1st century CE.

DATE 2ND BCE–1ST CE
ORIGIN ITALY

GALLIC HELMET
This replica Roman Gallic-style helmet proved effective for the Roman Army: it provided good protection for the head and shoulders and allowed the legionary good visibility and the ability to hear commands.

DATE 2ND BCE–1ST CE
ORIGIN ITALY

GLADIATOR'S HELMET
The provocator (or challenger) gladiator was equipped with a helmet based on the Roman legionary's Gallic pattern, but with the addition of a full-face visor with two round eye holes covered with protective grates.

DATE 1ST BCE–3RD CE
ORIGIN ROME
THE ROMAN ARMY of the 1st century CE held together an empire stretching from Britain to North Africa, and from Spain to the Middle East. The majority of the soldiers of the Roman legions were armored infantry. Stationed in fortresses, forts, and camps around the empire, the legionaries acted as police, administrators, construction workers, and engineers, and carried out duties that ranged from patrols to full-scale wars.

PROFESSIONAL SOLDIERS
The Roman legionary was a professional soldier engaged for 20 years active service plus five years lighter duties as a “veteran.” Legionaries were recruited from Roman citizens, mostly volunteers from the poorer classes. They were organized into centuries of 80 men, led by a centurion. Six centuries made a cohort and ten cohorts a legion. The system encouraged group loyalty at every level.

Rigorous training and daily drill made the legionary a disciplined, hardened fighting man. He was trained to march 20 miles (322 km) in five hours and to fight with absolute ruthlessness. Drawn up for battle, legions waited until the enemy was almost upon them before throwing their pilum (spear), then attacking with the gladius (short sword). Punishments for lapses of discipline were brutal—a man who slept on guard was clubbed to death by his colleagues. On retirement, the legionary received a plot of land or a lump-sum payment in recognition of his service.

TRAJAN’S COLUMN
In a scene from the Dacian Wars (101–106 CE), as depicted on Trajan’s Column in Rome, Roman soldiers fight back against a Dacian assault on the walls of their fort, while a column of legionaries with a mounted officer arrives to rescue them. Erected to commemorate the emperor Trajan’s campaigns, the column provides a visual record of Roman military life.

LEGIONARY DRESS
When the Roman Empire was at its height, legionaries wore simple bronze helmets and segmented armor (lorica segmentata). Under the armor, they had a belted tunic and, on their feet, sturdy metal-studded sandals. The ability of the Roman state to equip all its soldiers with armor and helmets contrasted with the Empire’s “barbarian” enemies.

HADRIAN’S WALL
Roman legionaries could be classified as combat engineers, for construction work was as much a part of their duties as fighting. Hadrian’s Wall, which stretches across 73 miles (118 km) of northern England, was built by legionaries in the early 2nd century. Marking the northern limit of the Empire, the wall and its forts were manned by the legions for over 250 years.

EXCAVATED VINDOLANDA FORT RUINS AT HADRIAN’S WALL

“THE ROMANS INSTILL INTO THEIR SOLDIERS FORTITUDE, NOT ONLY OF BODY, BUT ALSO OF SOUL.”

CONTEMPORARY JEWISH HISTORIAN JOSEPHUS, THE JEWISH WAR

Horsehair crest may have indicated rank

Cheek pieces hinged to side of helmet

Reproduction 1st century BCE bronze Montefortina-style helmet

Reproduction 1st century AD plate armor

Extra protection for shoulder

Iron plates attached to leather straps

Roman auxiliaries offer the severed heads of their enemies to the emperor, behind the backs of a rank of legionaries. Whereas all legionaries were Roman citizens, the auxiliaries were non-citizens. They can be distinguished by their oval shields and mail body armor. The auxiliary legions had lower status but were often made to bear the brunt of the fighting.
TOOLS OF COMBAT

ORIGINAL SCABBARD

SWORD BLADE

GLADIUS: SHORT SWORD

HASTA AND PILUM: THROWING SPEARS

GLADIUS SCABBARD

GREAT WARRIORS
BRONZE- AND IRON-AGE WEAPONS AND ARMOR

BRONZE HELMET
The only horned Iron-Age helmet to be found in Europe, this piece is made from bronze sheets riveted together. Dredged from the Thames River in London, it is almost certainly a parade helmet, not being strong enough to wear in battle.

DATE 250–50 BCE
ORIGIN BRITAIN
HEIGHT 9.5 in (24 cm)

CELtic DAGger
The breathtaking art of the Celts is displayed on the hilt of this dagger. As with so many pieces of arms and armor that have survived, it has probably done so because it was used for funerary or display purposes. Knives and daggers were working tools, but this is so beautiful and intricate that it may not have been designed for everyday use.

DATE UNKNOWN
ORIGIN BRITAIN

BRONZE LEAF-SHAPED SWORD
Until iron working started around 600 BCE, bronze dominated weapon manufacture. This leaf-shaped sword is typical in size and shape of Bronze-Age swords, with a double-edged blade. Bronze is hard to sharpen and keep sharp, so this blade represents significant metalworking skills.

DATE c. 1000 BCE
ORIGIN BRITAIN
LENGTH 22 3/4 in (57.9 cm)

GERMANIC BRONZE SWORD
Bronze-Age one-piece, leaf-shaped swords were designed for slashing and were often more effective than a spear or longer thrusting sword. This suited the method of fighting the Celts preferred.

DATE 1000 BCE
ORIGIN GERMANY
LENGTH 22 3/4 in (56.5 cm)

THE CELTS WERE great warriors: in 390 BCE they crushed the army of the Roman Republic and sacked Rome itself. They were known as swordsmen, heavy infantry who repeatedly charged their enemies. Most fought on foot with little armor other than a helmet and shield. The nobles fought from horseback or, particularly in Britain, chariots. The Celts are famed for their decorative and metalworking skills.
BATTERSEA SHIELD
Pulled from the Thames River at Battersea Bridge in London in 1857, this is the decorative bronze cover to a wooden shield. Almost certainly a parade shield, it seems too finely wrought to have been used in combat. Celtic shields were circular at first, but during the Iron Age period, they adopted the longer, full-body shield.

DATE 350–50 BCE
ORIGIN BRITAIN
LENGTH 30½ in (77.7 cm)

IRON-AGE DAGGER IN SHEATH
This decorated iron dagger in its bronze sheath would have belonged to a tribal chief. Iron blades showed status in this period, and were also used for everyday functions, but only in extreme circumstances in battles fought with swords or spears.

DATE 550–450 BCE
ORIGIN BRITAIN

BRONZE AXHEAD
Bronze battle axes, with sockets to take a wooden shaft, are associated with the Celts from the earliest times. They were used as tools but they were also useful in hand-to-hand combat. They would become more effective when made from iron.

DATE UNKNOWN
ORIGIN NORTHERN EUROPE

LONG STEEL CUTTING EDGE

SHAFT WEDGED TIGHT RATHER THAN TIED

DECORATED GUARD

LA TÉNE-STYLE DECORATION

FULL VIEW

SHIELD HAS 27 STUDS OF RED GLASS

BROAD-BLADED BATTLE AX
The head of this ax has been hammered from one iron bar. A long wooden handle was wedged tightly into the socket to make an effective weapon for hand-to-hand combat.

DATE UNKNOWN
ORIGIN NORTHERN EUROPE

LONG STEEL CUTTING EDGE

SHAFT WEDGED TIGHT RATHER THAN TIED

DECORATED GUARD

LA TÉNE-STYLE DECORATION

FULL VIEW

SHIELD HAS 27 STUDS OF RED GLASS

BROAD-LAID BATTLE AX
The head of this ax has been hammered from one iron bar. A long wooden handle was wedged tightly into the socket to make an effective weapon for hand-to-hand combat.

DATE UNKNOWN
ORIGIN NORTHERN EUROPE

LONG STEEL CUTTING EDGE

SHAFT WEDGED TIGHT RATHER THAN TIED

DECORATED GUARD

LA TÉNE-STYLE DECORATION

FULL VIEW

SHIELD HAS 27 STUDS OF RED GLASS

BRONZE SPEARHEAD
Spears and javelins played an important role in Celtic battle tactics. Charging the enemy, the infantry would hurl their javelins from about 90 ft (30 m) hoping to break up the ranks ahead for single combat. Spears were used as thrusting weapons, by infantry and cavalry.

DATE 900–800 BCE
ORIGIN UNKNOWN
LENGTH 20 IN (50 CM)

LEAF-SHAPED HEAD

HOLES FOR CROSS-STRAPS

WOODEN SHEATH WITH BRONZE STRIPS

BOSSES PROTECTS HOLLOWED-OUT HANDHOLD ON THE REVERSE

IRON-AGE DAGGER IN SHEATH
This decorated iron dagger in its bronze sheath would have belonged to a tribal chief. Iron blades showed status in this period, and were also used for everyday functions, but only in extreme circumstances in battles fought with swords or spears.

DATE 550–450 BCE
ORIGIN BRITAIN

IRON-AGE DAGGER IN SHEATH
This decorated iron dagger in its bronze sheath would have belonged to a tribal chief. Iron blades showed status in this period, and were also used for everyday functions, but only in extreme circumstances in battles fought with swords or spears.

DATE 550–450 BCE
ORIGIN BRITISH
ANGLO-SAXON AND FRANKISH WEAPONS AND ARMOR

THE MASS OF ANGLO-SAXON and Frankish warriors were infantrymen, who carried a shield and a dagger (a *seax*), often wore a helmet, and fought with spears, axes, and the single-bladed heavy weapon called variously the *scamasax*, *scramasax*, or long *seax*. The nobility and their retinues of professional soldiers had more sophisticated armor and weaponry: chain mail; *spangenhelm* helmets with neck and face protection; *angons* (throwing spears similar to the Roman *pilum*); and, of course, swords.

SCAMASAX
The *scamasax* or *scramasax* is a long *seax*—the length of a sword—with a lower, curved, sharpened edge, and no pommel. Crude, easier to manufacture than a sword, and more like machetes, they were effective weapons that would see service until the 15th century, providing those who could not afford a sword with a long blade.

SHORT SAXON SPEAR
The main weapon of this period was the spear, carried equally by a lord, his retinue, professional fighters, and the mass of troops. There were two types, those used for hand-to-hand combat and those thrown before contact with the enemy, which tend to be lighter and, in the case of the Frankish *angon*, much like the Roman *pilum*.

BLADE OF A SEAX
Swords were extremely expensive weapons, so most people carried a blade that doubled as a fighting dagger and a working tool. Called the *sax* or *seax* (the root of the name “Saxon”), examples have been found from the 5th century onward.

<table>
<thead>
<tr>
<th>DATE</th>
<th>900–1000 CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>NORTHERN EUROPE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2 oz (0.06 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>9 ¼ in (22.7 cm)</td>
</tr>
</tbody>
</table>
FRANCISCA THROWING AX
The throwing ax was popular with the Germanic warriors who fought against Rome in its later years. It was used in a similar way to the javelin—thrown before contact with the enemy to create gaps in their battle lines.

<table>
<thead>
<tr>
<th>DATE</th>
<th>400–500 CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>15 oz (0.43 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>6½ IN (16.5 CM)</td>
</tr>
</tbody>
</table>

NORTHERN EUROPEAN AXHEAD
Axes were popular weapons because they doubled as tools and were cheap to make. The technique was very simple. A strip of iron was folded in half around a mandrel, creating a socket. Between the two halves, the cutting edge of harder iron or steel was fire-welded in place. A wooden shaft of suitable length was then wedged into the socket.

<table>
<thead>
<tr>
<th>DATE</th>
<th>900–1000 CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>NORTHERN EUROPE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>17½ oz (0.50 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>8¾ IN (22 CM)</td>
</tr>
</tbody>
</table>

LONG SAXON SPEAR
The use of spears is portrayed in the Anglo-Saxon poem about the Battle of Maldon in 991 CE. Eorl Byrhtnoth throws two javelins, killing two men, before he himself is wounded by a thrown Viking spear. Only then does he draw his sword. Thrusting spears were longer, with larger heads such as this example, attached to the shaft with a split socket and rivet.

<table>
<thead>
<tr>
<th>DATE</th>
<th>400–500 CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>NORTHERN EUROPE</td>
</tr>
<tr>
<td>LENGTH</td>
<td>19 IN (48 CM)</td>
</tr>
</tbody>
</table>

FRANKISH SPANGENHELM
As with mail and armor, helmets were taken from the dead on the battlefield and are rarely found in burials. However, a sufficient number of these spangenhelm survived. The style originated in the Middle East and spread to Western Europe by the 3rd century CE.

<table>
<thead>
<tr>
<th>DATE</th>
<th>500–600 CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>WESTERN EUROPE</td>
</tr>
<tr>
<td>LENGTH</td>
<td>19 IN (48 CM)</td>
</tr>
</tbody>
</table>

SAXON SWORD
Swords were expensive and time-consuming to manufacture by pattern welding. They were only used in Saxon society by people of high rank or professional warriors, and were objects of great veneration.

<table>
<thead>
<tr>
<th>DATE</th>
<th>500–600 CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>NORTHERN EUROPE</td>
</tr>
</tbody>
</table>
THE SEAFARING SCANDINAVIANS known as Norsemen or Vikings have a special place in European history. From the British Isles to the Varangian Guard in Kievan Rus, they came to symbolize the quintessential Dark-Age warrior. Striking from the sea in their longboats, they plundered the coasts of Europe before colonizing and settling possibly as far afield as Nova Scotia. They were well armed, in particular with swords and axes, but also with spears, javelins, and bows. They carried round shields and most wore helmets; many wore mail as well.

MAIL SHIRT WITH DAGGED POINTS
Initially worn only by the rich and powerful, mail shirts, called brynya or hringserle, became more common in the 11th and 12th centuries.

IRON AXHEAD
This ax has a convex blade with a hardened edge welded on separately, and a flattened ovoid socket. It would have had a wooden handle.

PAINTED WOODEN SHIELD
The shield was an important part of the Viking's battlefield armory. Made from wood, they were covered in leather. This example is a replica.
SHAPED PLATES MAKE UP DOME

Dome strengthened by keel rib

SWEDISH HELMET
Discovered in a grave at Vendel in Sweden, this conical helmet is similar to the Gjermun-dbu find with its spectacle visor. Most Viking warriors possessed helmets, but few would have been as ornate as this.

DATE 800–900 CE
ORIGIN SWEDEN

Metal-plated helmet

This is a reconstruction of a helmet from fragments found in a grave at Gjermund-bu. It is made up of a dome of four plates fixed to a brow band by two bars that crisscross the head.

DATE c.875 CE
ORIGIN NORWAY

ENGRAVED IRON AXHEAD
This beautifully decorated axehead was found in Mammen in Jutland, and is the name for this style of ornamentation.

DATE c.970 CE
ORIGIN DENMARK
LENGTH 6 1/2 in (16.5 cm)

Iron ax

This is one of three forms of Viking ax, the bearded ax whose elongated lower edge and slanting blade favored downward blows.

DATE c.900 CE
ORIGIN UNKNOWN

WENCESLAS HELM
Named after the helmet from the Treasury of Prague Cathedral, the Wenceslas style is characterized by its one-piece forging with added brow band and nasal guard, which are silvered and highly decorated.

DATE c.900 CE
ORIGIN CZECHOSLOVAKIA

Metal-plated helmet

Another Gjermundbu-style helmet, this has a spectacle guard riveted to a brow band and two strengthening bands to hold together the four plates that make up the dome.

DATE c.900 CE
ORIGIN NORWAY

SPECTACLE VISOR PROTECTS EYES AND NOSE

DISCOVERED IN A GRAVE AT VENDEL IN SWEDEN, THIS CONICAL HELMET IS SIMILAR TO THE GJERMUND-BU FIND WITH ITS SPECTACLE VISOR. MOST VIKING WARRIORS POSSESSED HELMETS, BUT FEW WOULD HAVE BEEN AS ORNATE AS THIS.
VIKING WEAPONS AND ARMOR

8TH–9TH CENTURY VIKING SWORD
This iron sword is typical of Viking weapons, being straight-sided and about 35 1/2 in (90 cm) long. It has a two-piece pommel and guard, both of which are decorated with an interface pattern in brass inlay. The blade is inlaid in iron on one face with a figure-of-eight mark.

DATE 900–1000
ORIGIN UNKNOWN
LENGTH 35 1/2 in (90 cm)

DOUBLE-EDGED SWORD
There were many variations in Viking swords, mainly in the form of the pommel, guard, and hilt. Most blades were double-edged with a rounded tip because they were used for big, slashing blows delivered to miss a shield or defensive parry, which could severely damage the blade.

DATE 800–1100
ORIGIN DENMARK
LENGTH 90 cm (35 1/2 in)

EMBELLISHED DOUBLE-EDGED SWORD
Many Viking swords such as this one were pattern-welded for extra strength. This ancient process involves introducing carbon into the red-hot iron and making a number of rods. These are twisted and forged together with rods containing less carbon, producing a patterned appearance.

DATE 700–800
ORIGIN DENMARK
LENGTH 35 1/2 in (90 cm)

LATE VIKING SWORD
This broad, straight, two-edged blade retains traces of an inlaid inscription, now indecipherable, and a scroll-design pommel; the grip is missing. The sword is more tapered than earlier versions.

DATE 900–1150
ORIGIN SCANDINAVIA
LENGTH 35 1/2 in (90 cm)

VIKING SWORD BLADE
This later Viking sword blade is much corroded, as are so many found on archaeological sites. Their wooden scabbards and hilts have almost always completely rotted away, making interpretation of runic inscriptions very difficult.

DATE 900–1000
ORIGIN UNKNOWN
LENGTH 80–100 cm (31–39 in)

Typical iron double-edged blade

Pattern-welded blade

Hilt arrangement

Large decorated pommel

Hilt decorated with geometric patterns of silver and brass

Rounded pommel

Two-edged pattern-welded blade

Guard formed of large boat-shaped plate

Straight guard
WINGED SPEARHEAD
This lugged or “winged” spearhead, of a type used for war and hunting, has a corroded iron head, leaf-shaped blade of flattened diamond-section—now curved out of true by heat or burial—and a tapered iron socket. The wings can catch and lock an opponent’s weapon in hand-to-hand combat, stop a blade from sliding down the spear toward the user’s hands, and can hook a shield out of the way.

DATE 700–800
ORIGIN NORTHERN EUROPE
LENGTH 18 in (47 cm)

LOZENGE-SHAPED SPEARHEAD
Throwing spears were important Viking weapons, and their use is recorded in the sagas, including stories of those who could throw two at once. Olaf Tryggvasson was said to be able to do this from each hand at the same time.

DATE 600–1000
ORIGIN NORTHERN EUROPE
LENGTH 14¼ in (36.6 cm)

VIKING SWORD HILT
This sword hilt has a characteristic Viking rounded pommel — it is probably made from copper and decorated with inlaid geometric designs in silver. The sword is too finely crafted to have been used in battle and would have been carried by a chieftain to show his status or used in ceremonies.

DATE c.700–1050
ORIGIN NORTHERN EUROPE
THE MIDDLE AGES
Many of the weapons, tactics, and forms of social organization popularly held to be characteristic of the Middle Ages had, in fact, been prefigured in late antiquity. Heavy cavalry, the holding of land in exchange for military service, religious warfare, and the struggle of urban cultures against incursions by mounted nomads were themselves new phenomena. What altered at the end of the medieval period was the growth in the capacity of states to maintain a centralized administration and the appearance of gunpowder weapons—powerful indicators of changes to come.

FROM 955 CE, when the heavy cavalry of Otto I of Germany crushed the lighter mounted Magyars at the Battle of Lechfeld, Europe experienced a period of comparative peace. Yet, it was also a time of political fragmentation, as, most notably in France and Germany, the centralized kingdoms of the 9th century gave way to a constellation of smaller states often no larger or more enduring than the ability of a local warlord to enforce his will. As the capacity of royal courts to organize large armed bodies declined, a system of feudalism arose to fill the breach (see box page 60).

The emergence of mounted armies

The core of feudal armies was formed by mounted men-at-arms—not all of them knights. The ability to fight on horseback—as opposed to merely arriving by horse on the battlefield or engaging with the enemy at bow-shot distance—had been hugely enhanced in the 8th century with the arrival in Europe of the stirrup, which gave a mounted warrior a much more stable platform from which to employ swords or spears. The characteristic dress of such 11th- and 12th-century fighters is summed up in the 1181 Assize of Arms of Henry II of England, which declared “let every holder of a knight’s fee have a hauberk [coat of mail], a helmet, a shield and a lance.”

Such armies were expensive to maintain and inflexible, and as the obligatory period of service was so short, campaigns could not be long. This, and the need to avoid casualties among the hard-to-replace heavy cavalry, meant that the raid or chevauchée came to be the standard form of warfare. Pitched battles were relatively rare, although those large-scale battles that did occur, such as the defeat of the Normans by William of Normandy’s mail-clad army assault the Breton town of Dinan, defended by a motte-and-bailey fortification, in the style the Normans would import into England.

NORMAN ATTACK

William of Normandy’s mail-clad army assault the Breton town of Dinan, defended by a motte-and-bailey fortification, in the style the Normans would import into England.
English king Harold II by the Norman Duke William at Hastings in 1066, were all the more decisive for it. William’s army is depicted on the Bayeux Tapestry clothed in mail and sporting conical helms. A large portion of the Norman army was, in fact, composed of archers, with shortbows or mechanical crossbows. At Hastings, massed volleys of arrows, combined with hit-and-run cavalry attacks, overcame the English shield wall manned by Harold’s huscarls, warriors of undoubted effectiveness wielding two-headed axes, but who lacked the mobility to counter the Norman tactics.

CASTLE BUILDING
The establishment of Norman rule across England was accompanied by a program of castle building. The rapid spread of such fortifications controlled by local magnates, rather than the royal courts, became a defining feature of the political landscape of western Europe. In England, these were at first of the motte-and-bailey type with a fortified wooden tower constructed on an earthen mound. By the 13th century, they had become more sophisticated affairs of stone, with concentric rings of defenses and rounded towers to guard against undermining. Castles such as Harlech in Wales or Chateau Gaillard in France could be defended by relatively small numbers of trained troops and, if well provisioned, withstand quite extensive sieges. Wars came to center on the reduction of such strongholds by storming, diplomacy, or—most often—by waiting for hunger or disease to strike down the defenders; in 1138 King David of Scotland captured Wark Castle by allowing the garrison to go free and even providing them with horses to replace their own, which they had been forced to eat.

THE CRUSADES
Further refinements in military architecture, such as the use of castellation, were imported from the Middle East during the time of the Crusades. The Muslim armies of the Levant were composed mostly of lightly armed mounted archers, who used their maneuverability and elusiveness to deft effect in wearing down and picking off the more cumbersome Crusader knights. Western armor had by this time become heavier, with the mail coat reaching down to the knee, and long kite-shaped shields intended to provide maximum protection on horseback. Armed with couched lances, a massed charge by the crusader knights, as at Arsuf in 1191, could be devastating, but equally, as when Saladin wore down the Christian army through heat and thirst at Hattin in 1187, such a heavily armored force could rapidly become ineffective if denied supply and shelter.

One solution to over-reliance on an expensive and inflexible mounted arm was to increase the role of footsoldiers. In truth, knights often did fight on foot—at Dorylaeum in 1097 during the First Crusade, one half of the crusading army dismounted and fought as infantry. But states came increasingly to rely on pure footsoldiers, first in a supporting role, and then as a principal element in their armies. This was particularly marked from the 13th century as the economic power of towns grew and their capacity to provide soldiers burgeoned. In 1340, Bruges was able to raise 7,000 men from its population of 35,000. Armed with weapons such as polearms, which required less training than the equipage of a knight, the later medieval infantry relied on solidity and massed formations, very much in the spirit of the Macedonian phalanx.
A defining moment came in 1302 at Courtrai, when a force of Flemish burghers, armed with pikes and spears, routed an army of French knights as it stumbled through a muddy, broken terrain of ditches and trench traps.

THE CROSSBOW AND THE LONGBOW
The infantry did not rely solely on static defensive weapons such as pikes, or close-quarter bludgeons such as clubs. An increase in the effectiveness of missile technology brought crossbows and, most particularly, longbows to prominence on the battlefield. The crossbow was already well-established in Europe by 1139 when the Lateran Council sought—in vain—to ban its use against Christians because of the terrible wounds it inflicted. The crossbow bolt’s penetrative power and the fact that to use it required little expertise, meant its use became extremely widespread. The English, however, favored the longbow, which required great strength—both in its construction and from the archer—but whose rate of fire was roughly four times that of a crossbow. Although first used to real effect at Falkirk against the Scots in 1297, the longbowmen played a key role during the Hundred Years War in defeating the French at Poitiers in 1356 and Agincourt in 1415. In both cases, however, the French army also fell victim to a persistent tendency to favor the heavy cavalry charge, even when the terrain slowed and channelled their progress to make them especially vulnerable to arrow-fire.

One response to this weakness was to increase the protective capacity of the knight’s armor yet further. In the 14th century, open helmets were replaced with closed “great helms” and the following century saw the gradual introduction of full plate armor, which became increasingly elaborate and beautifully worked. Although fluting of the metal and the molding of the pieces to the physique of the wearer meant they were not as impossibly heavy as they seemed, such suits of armor were almost luxury items, affordable only by the aristocracy. While they might protect and mark out commanders, they were a further indication that armies composed largely of mounted knights were on the verge of obsolescence.

THE MONGOLS
In the mid-13th century, another group of light cavalry again showed the power of massed horse archers. The Mongols emerged from central Asia, overwhelming first northern China—which they took in 1234—then Persia and the Muslim states of the Levant, before sweeping down on Russia and eastern Europe in the 1240s. Relying on light,
mounted bowmen who could travel long distances rapidly, even in adverse conditions, the Mongols were able to bring opponents to battle on their own terms. They employed tactics of surprise and terror to such effect that many towns simply surrendered to them rather than risk the wholesale slaughter of their citizenry. In April 1241, within a few days, they simply crushed two European armies of Poles and Hungarians that dared to face them. Only the capricious nature of the Mongol dynastic succession saved western Europe from utter devastation.

EARLY FIREARMS

During their Chinese campaigns, the Mongols would, for the first time, have faced a new type of weaponry—firearms. The earliest recipe for gunpowder comes from the *Wujing Zongjiao* (c.1040), while the Chinese may have used “fire-lances” against the nomadic Jurchen in 1132. The Mongols themselves used primitive gunpowder weapons in their abortive invasions of Japan in 1274 and 1281, but it was their successors, the Ming, who first exploited them, justifying the name by which gunpowder came to be known in Europe—“Chinese salt.” The Ming, indeed, had a military school by the early 1400s specifically tasked with instructing soldiers in the use of firearms, and also employed dragoons—mounted handgunners.

Although cannons were used by the English at Crécy in 1346, it was only at the very end of the period that firearms really began to play a significant role. This was most notable in siege warfare, where the problems of transporting the massive cannons was less pressing than in battlefield use. The huge bombard used by the Ottomans against Constantinople in 1453 heralded a brief age in which strong fortifications were no longer a reliable protection for defending forces. It was not, however, until the introduction of iron balls, which meant cannons could be smaller, and corned powder (around 1420), which gave them more power, that field artillery became a possibility. The victory of the French at Castillon in 1453, when Jean Bureau’s cannons raked the English army and forced its flight, was perhaps the first example of a victory won through its use.

The first handguns had appeared in the early 1400s—by 1421 John the Fearless of Burgundy was said to have 4,000 in his army. Yet it was not until the introduction, from around 1450, of matchlock arquebuses, which were possible just to reload in combat, that the handgun began to find a place on the battlefield. Even so, the late 15th century was very much a time of transition: as late as 1494, half the French army that invaded Italy was composed of heavy cavalry, while, in contrast, the Swiss mercenaries who defeated the Burgundians at Nancy in 1477 were composed of a combined force of pikemen mixed with handgunners. The Burgundians could not penetrate the Swiss phalanx, leaving them vulnerable to volleys of fire from the handgunners.

By the early 16th century, the idea of military obligation in return for land had faded in western Europe and, elsewhere, states, such as those of the Ming and the Ottoman Turks were consolidating to such an extent that central resources were once again equal to deploying larger armies and keeping them in the field for extended periods. The world lay on the verge of a military revolution.
The sword was the most highly regarded of weapons. It was not only a magnificent weapon of war—often handed down through the generations—but had evolved into a symbol of status and prestige; a man became a knight by the dubbing of a sword on his shoulders. Early medieval swords were heavy cutting weapons that were used to hack their way through mail. The development of high-quality plate armor encouraged the introduction of sharply pointed thrusting swords, whose blades became progressively longer.

CRUSADER SWORD
This type of sword—with its broad blade, simple cross-guard, and pommel—became popular during the Crusades, and spread throughout Europe. The heavy cutting blade would have been devastating against lightly armed opponents.

DATE 12TH CENTURY
ORIGIN WESTERN EUROPE
WEIGHT 2 LB (1.27 KG)
LENGTH 38 IN (96.5 CM)

ITALIAN SWORD
Probably Italian in origin, the Arabic inscription on this sword's ricasso—a part of the blade close to the hilt—states that it was given to the Arsenal of Alexandria by an Egyptian Sultan in 1432. The long ricasso enabled the swordsman to hook his forefinger over the cross-guard and grip the blade, thereby providing better control.

DATE c.1400
ORIGIN ITALY
WEIGHT 1 LB (0.76 KG)
LENGTH 41 IN (104 CM)
FRENCH SWORD
Reflecting the need to overcome the plate armor that was becoming increasingly common in the 14th century, this powerful sword would have been used for both delivering heavy cutting blows and for thrusting. The double-edged blade is wide at the hilt and tapers rapidly to a sharp point to penetrate an opponent’s armor.

<table>
<thead>
<tr>
<th>DATE</th>
<th>14TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>FRANCE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2 LB (1.16 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>33 IN (83.7 CM)</td>
</tr>
</tbody>
</table>

RIDING SWORD
This heavily corroded sword, reputedly discovered in the Nene River in England, is termed a “riding sword.” It has a decorated copper-alloy disc pommel, and quillons slightly inclining toward the blade, which is double-edged, and of a flattened diamond cross-section.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1325</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ENGLAND</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>1 LB (0.71 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>31 IN (80 CM)</td>
</tr>
</tbody>
</table>

ENGLISH SWORD
This sword is distinguished by its long, tapering, and slightly down-curved quillons. Thought to be English-made, it has a short tang and a small wheel pommel, and its double-edged blade incorporates a single, shallow fuller for two-thirds of its length.

<table>
<thead>
<tr>
<th>DATE</th>
<th>14TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ENGLAND</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>1 LB (0.76 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>41 IN (104 CM)</td>
</tr>
</tbody>
</table>

CASTILLON SWORD
This is one of a group of at least 80 swords said to come from the same find spot in Castillon, France, where a battle was fought between English and French forces in 1453. The iron hilt consists of a pommel of “scents-stopper” form, and a straight cross-guard with droplike ends. Vestiges of the original wooden grip and gilding survive.

<table>
<thead>
<tr>
<th>DATE</th>
<th>MID 15TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ENGLAND</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2 LB (1 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>43 IN (109.2 CM)</td>
</tr>
</tbody>
</table>
EUROPEAN SWORDS

BASELARD
This simple, single-edged short sword would ideally be used against lightly armored opponents. A weapon of the ordinary soldier, this sword type was popular in northwest Europe in the 14th and 15th centuries.

- **DATE**: 1480–1520
- **ORIGIN**: England
- **WEIGHT**: 1 lb (0.57 kg)
- **LENGTH**: 27 in (69 cm)

BRONZE GILDED SWORD
This ornate sword features bronze gilding to both the hilt and the pommel. The grip is made from black horn and is carved to flow into the fish-tailed pommel. The four-sided, double-edged blade is in remarkably good condition and tapers to a sharp fine point.

- **DATE**: 15th century
- **ORIGIN**: Italy
- **WEIGHT**: 3 lb (1.34 kg)
- **LENGTH**: 34 in (86.3 cm)

HAND-AND-A-HALF SWORD
Also known as a “bastard” sword, this long-bladed weapon was primarily used for thrusting at an opponent. To improve direction and give greater power, it was provided with an extra long handle so that it could be gripped with both hands on occasion.

- **DATE**: Early 15th century
- **ORIGIN**: England
- **WEIGHT**: 3 lb (1.34 kg)
- **LENGTH**: 37 in (119 cm)
DOUBLE-EDGED SWORD
A rusted knight’s medieval broadsword characterized by a broad blade and rounded point. Distinctive features also include a simple cross-guard, short hilt, and large oval pommel. It would have been used primarily as a heavy cutting sword.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1150–1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>Germany</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>4 lb (1.95 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>32 in (82.2 cm)</td>
</tr>
</tbody>
</table>

SHORT SWORD
Used primarily by foot soldiers, this English-style sword was designed with a single edge and a sharp point. The quillons are extended in length, and the rear quillon bent upward and backward toward an extended pommel, thereby forming a simple knucklebow.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>England</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>1 lb (0.79 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>29 in (74.5 cm)</td>
</tr>
</tbody>
</table>

TRANSITIONAL SWORD
This sword is a transitional weapon, moving away from the classic cross-hilt medieval sword and looking ahead to the rapier of the 16th century. The short tang suggests that the swordsman’s fingers would have gripped the ricasso, protected by a double finger guard.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>Italy</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2 lb (0.94 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>40 in (103 cm)</td>
</tr>
</tbody>
</table>
THE SWORDS USED by Japanese samurai warriors were among the finest cutting weapons ever made. Japanese swordsmiths were elite craftsmen who used a process of smelting, forging, folding, and hammering to create curved blades that were immensely hard, but not brittle. Only the steel of the sharp cutting edge was water-quenched to full hardness. The softer back of the blade (the *mune*) was used to block blows—the samurai carried no shield. Chinese swords, sometimes straight rather than curved, had little of the almost mystical prestige of their Japanese equivalents.

AIKUCHI

The aikuchi was one of the many types of Japanese dagger, distinguished by having no hand guard (*tsuba*). It was often carried by ageing samurai in semi-retirement. This aikuchi, shown with its scabbard, is a 19th-century reproduction of a medieval weapon.

KATANA

The samurai's long sword, the katana, was worn with the cutting edge uppermost, so it could deliver a sweeping cut in a single movement. This katana is signed by swordsmith Kunitoshi.

JAPANESE AND CHINESE SWORDS
CHINESE SWORD

This sword, decorated with Buddhist emblems, was made for presentation to a Tibetan monastery. It is shown in its leather-covered iron-bound wooden scabbard.

KATANA

Attributed to the Shizu group of swordsmiths, this katana blade dates from the Sengoku period. The sword could be used with one hand, though a two-handed grip was needed for full power.

WAKIZASHI

This 16th-century-style wakizashi was a samurai’s shorter sword, and was normally carried paired with the katana. A useful secondary weapon, it was worn indoors when the katana was set aside at the entrance.

TACHI MOUNTING

The tachi sword was worn slung from a belt, to which it was attached by the sageo (cord) on its scabbard. In this late example of an earlier style, the sageo is made of gilded leather, traded from the Dutch. The tachi was, for most of Japanese history, the proper mount to be worn with armor.

DATE c.1570
ORIGIN CHINA
WEIGHT 3 lb (1.30 kg)
LENGTH 35½ in (90.3 cm)

DATE 17th CENTURY
ORIGIN JAPAN
WEIGHT 1 lb (0.42 kg)
LENGTH 26½ in (67 cm)

DATE c.1570
ORIGIN JAPAN
WEIGHT c.1¾ lb (1 kg)
LENGTH 42 in (107 cm)

DATE 18th CENTURY
ORIGIN JAPAN
WEIGHT ½ lb (0.13 kg)
LENGTH 29½ in (74.5 cm)
EUROPEAN DAGGERS

The vast array of medieval dagger types was used mainly for thrusting at an opponent: for self-defense, assassinations, and for close-combat fighting where a sword would be too cumbersome. Traditionally, daggers were considered a weapon of the low-born, but, during the 14th century, men-at-arms and knights began to carry them, the weapon normally being worn at the right hip.

EUROPEAN DAGGERS

QUILLON DAGGER

So named because it resembles a scaled-down version of a sword, with prominent quillons that curve down toward the blade. This example has an unusual pommel—mirroring the quillons—that is curbed around a rivet. Sword daggers were typically carried by men of high rank, especially when not wearing armor.

QUILLON DAGGER

This example of a sword dagger has a distinctive brass pommel and quillons with an inlaid geometric design. The blade has a short ricasso with a mark inlaid in brass at the center, and the original grip is missing from the tang.

QUILLON DAGGER

A good example of the more basic and widely used daggers of the late Middle Ages, crudely constructed for the ordinary fighting man. This dagger’s unusual features are its hammer-head pommel and the horizontally S-shaped quillons of the guard.

BASELARD

The name possibly derives from the Swiss city of Basel, and the baselard (or basilard) was in use throughout western Europe in the 14th and 15th centuries. This example has a reconstructed H-shaped hilt—made of bone—combined with the original broad blade that tapers to a sharp point.
QUILLON DAGGER
This English dagger is distinguished by brass quillons, a crown-shaped brass pommel, and an unusual scalloped grip highlighted with pins. The heavy, single-edged blade—triangular in shape with a spearpoint—could have been used for both thrusting and cutting.

- **DATE**: 16TH CENTURY
- **ORIGIN**: ENGLAND
- **WEIGHT**: 0.6 LB (0.26 KG)
- **LENGTH**: 13 IN (34.5 CM)

RONDEL DAGGER
The rondel dagger is distinguished by its round, disclike guard and pommel. It was also known as a dague à rouelles and was a popular dagger with the gentry and aristocracy. In this example, the tang runs directly through the hand grip and attaches to the pommel.

- **DATE**: 15TH CENTURY
- **ORIGIN**: ENGLAND
- **WEIGHT**: 0.5 LB (0.23 KG)
- **LENGTH**: 13 IN (35 CM)

BALLOCK DAGGER
Also euphemistically known as a “kidney dagger,” this weapon was named after the distinctive shape of its guard, with two rounded lobes. The ballock dagger was used throughout Europe, although it was most popular in England and the Low Countries, and equipped soldiers of all ranks.

- **DATE**: c.1500
- **ORIGIN**: ENGLAND
- **WEIGHT**: 0.4 LB (0.17 KG)
- **LENGTH**: 13 IN (34.9 CM)
Using crossbows, arrows, swords, and staff weapons, as well as the heat of the desert, Saladin and his army defeated the Christian crusaders in 1187 at the Horns of Hattin, near Lake Tiberias in northern Palestine. The loss of this battle was a disaster that led to the destruction of the Kingdom of Jerusalem.
THE LONG, TWO-HANDED staff weapons of the Middle Ages were used primarily by infantrymen as a defense against the usually invincible armored knight. At the battle of Courtrai in 1302, a rag-tag army of Flemish peasants and townspeople defeated a force of armored French cavalry using long, axlike weapons, a forerunner of the halberd. Cavalry were also armed with pole arms, although these were single-handed weapons such as the war hammer and mace. They could be wielded on horseback and were capable of causing severe injuries to even the best-protected men.

POLEAX
The poleax was a multi-purpose weapon: the spike was used for thrusting, the ax blade for cutting through armor, and the hammer head for crushing tissue and bones. This poleax has long langets and a rondel or disc to protect the bearer's hands from weapons sliding down the shaft.

HALBERD
Developed by the Swiss in the 13th century, the halberd was primarily a slashing weapon, although its spike could be used for thrusting. The fearsome Swiss infantry used halberds to great effect at the battle of Morgarten, where they destroyed an Austrian army, in 1315.

GERMAN HALBERD
During the 16th century, halberds became increasingly decorative in style, but this example, dated around 1500, is very much a utilitarian weapon of war. A powerful spike is combined with a diagonal ax blade and a hooked fluke.

BARDICHE
Popular in Scandinavia, Eastern Europe, and Turkey from the 15th to 17th centuries, the bardiche was a form of poleax. A particular feature of the weapon was the attachment of the lower end of the axhead to the wooden shaft.
WAR HAMMER
The single-handed war hammer typically comprised a blunt hammer head or set of claws at the front with a sharp pick at the back. The war hammer became increasingly popular during the Hundred Years War (1337–1453), although it had been in use since the 13th century.

<table>
<thead>
<tr>
<th>DATE</th>
<th>LATE 15TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ITALY</td>
</tr>
<tr>
<td>LENGTH</td>
<td>27¾ IN (69.5 CM)</td>
</tr>
</tbody>
</table>

BRONZE MACE
The mace was a clublike weapon usually made entirely of metal, or, at least, with a metal head. This example of a simple mace consists of a circular bronze head—with vertical ridges or flanges—and a thick wooden shaft. Like the war hammer, maces were popular with cavalymen.

<table>
<thead>
<tr>
<th>DATE</th>
<th>14TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
</tr>
<tr>
<td>LENGTH</td>
<td>3½ IN (8 CM)</td>
</tr>
</tbody>
</table>

ENGRAVED AXHEAD
Favored weapons of the Vikings, axes continued to be used by warriors in the Middle Ages, often thrown with deadly accuracy. The Bayeux Tapestry shows several instances of foot soldiers using axes, both single- and double-handed.

<table>
<thead>
<tr>
<th>DATE</th>
<th>MEDIEVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>GERMANY</td>
</tr>
</tbody>
</table>

MACE HEAD
Cast from a copper alloy, this mace head was originally thought to have dated back to the Bronze Age, but is now believed to come from the 12th-13th centuries. The hollow-sOCKETED head features several short spikes.

<table>
<thead>
<tr>
<th>DATE</th>
<th>12–13TH CENTURIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
</tr>
<tr>
<td>LENGTH</td>
<td>HEAD 3¾ IN (8 CM)</td>
</tr>
</tbody>
</table>

LANCE HEAD
The lance was a defining weapon of the medieval knight, and used the momentum of the knight's horse to deadly effect. A typical lance was 169 in (430 cm) in length, the shaft made from a wood such as ash, and fitted with a small iron or steel head.

<table>
<thead>
<tr>
<th>DATE</th>
<th>MEDIEVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
</tr>
<tr>
<td>LENGTH</td>
<td>7½ IN (19 CM)</td>
</tr>
</tbody>
</table>

LONG-HANDED AX
In the 11th century, axes were used by the English Saxons and Scandinavian warriors, but during the next two centuries, the ax became common throughout continental Europe. This long-handled ax would have been used with both hands.

<table>
<thead>
<tr>
<th>DATE</th>
<th>13TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
</tr>
<tr>
<td>LENGTH</td>
<td></td>
</tr>
</tbody>
</table>

SHORT AX
Although heavily rusted, the highly curved blade of this single-handed ax is clearly visible. Instead of the shaft being inserted into a socket on the axhead, here a tanglike projection is forced into the shaft. Another distinctive feature is the long spike at the back of the head.

<table>
<thead>
<tr>
<th>DATE</th>
<th>14TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
</tr>
<tr>
<td>LENGTH</td>
<td></td>
</tr>
</tbody>
</table>
ASIAN STAFF WEAPONS

MEDIEVAL ASIAN ARMIES deployed a wide range of staff weapons, including maces and long-handled battle axes, and weapons with blades or pointed heads. Staff weapons generally evolved from agricultural implements or from simple clubs, but they could be highly effective in face-to-face combat. Although gradually rendered obsolete by the gunpowder revolution, many such weapons remained in use, virtually unaltered, in some Asian armies into the 18th and even 19th centuries.

MUGHAL MACE
This 16th century-style mace is in essence little more than a curved solid iron bar, but it could undoubtedly deliver a powerful blow if energetically wielded. Maces of this kind were used by Mughal soldiers during the conquest of India in the 1500s. They are recognizable in many miniature paintings that represent the Mughals at war.

DATE 18TH CENTURY
ORIGIN INDIA
WEIGHT 3 LB (1.5 KG)
LENGTH 30 IN (77.5 CM)

DECORATED IRON MACE
This splendid mace dates from the period of Chinese history in which the rule of the Mongol invaders was overthrown and the native Ming dynasty took power. The elaborate decoration suggests that it would have served a warrior of high status, possibly a member of the Mongol elite fighting on horseback.

DATE 14TH CENTURY
ORIGIN CHINA OR MONGOLIA
WEIGHT 2 LB (1.17 KG)
LENGTH 15 IN (40 CM)

CURVED BLADE BATTLE AX
In Asia as in medieval Europe, the battle ax became a weapon of choice for aristocratic cavalymen to use when fighting dismounted. No helmet or armor could offer sure protection against the powerful blow such an ax could deliver. The spikes radiating around the axhead could do damage as well as the blade.

DATE 17TH CENTURY
ORIGIN INDIA
WEIGHT 2 LB (1 KG)
LENGTH 17 IN (44 CM)
NAGINATA

The *naginata*, a Japanese cousin of the European glaive, consists of a long, curved blade attached to a wooden shaft. It was a standard weapon of foot soldiers in medieval Japan, but was especially associated with fighting monks, the sohei. They are described by Japanese chroniclers as entering battle “whirling their *naginata* like waterwheels.”

Saintie

Known as a *saintie*, this 16th century-style Indian spear is a parrying weapon—its function is both defensive and offensive. The shaft could be used like a staff to deflect hostile blows, while the spearpoint was thickened to allow a thrust to penetrate clothing or armor.

Bronze Carved Mace Head

Dating from the period when Persia was dominated by the Seljuk Turks, this hollow mace head is made of bronze. Its curved head is made of bronze. It has raised fins around the edges to focus the impact of a blow. The mace head has been decorated with foliage and calligraphy in a fine tradition of Islamic craftsmanship.

Ottoman Gurz

The armies of the Ottoman Turks had varieties of mace or "gurz" among their richly diversified weaponry. This reproduction hollow steel weapon could have been more deadly against an armored Christian knight than any sword, capable of concussing an enemy or breaking his bones without penetrating the armor.
MONGOL WARRIOR

IN THE 13TH CENTURY, the Mongol horsemen of the Asian steppe were the world’s most effective fighting men. Under the leadership of Genghis Khan and his successors, they created an empire that stretched from China and Korea to the eastern edge of Europe. Totally without humane sentiment, the Mongols had a well-earned reputation for massacre, using terror systematically to weaken the resolve of their enemies. But the foundation of their success lay in traditional military qualities: rapidity of movement, disciplined battlefield maneuver, and the ruthless pursuit of decisive victory.

HARDY HORSEMEN
Every Mongol tribesman was a warrior. From early childhood he learned to fire an arrow and ride a horse, the two essential skills of steppe warfare. The harsh life of the Asian steppe taught toughness and endurance, while the disciplined mass maneuvers required for an effective war of movement were learned on tribal hunting expeditions.

Organized into army groups 10,000 strong, the Mongol horsemen swept across Eurasia at a speed of up to 60 miles (100 km) a day. Each man had a string of horses, so he could change mount when necessary. The horses were also a mobile source of food—warriors drank their milk and their blood. Advancing in columns preceded by scouts, the Mongols sought to destroy enemy armies.

Most of the horsemen were archers, using their composite bows in hit-and-run warfare familiar to all steppe nomads—closing in to release their volleys of arrows, fleeing before the enemy could engage them, and ambushing any foe foolish enough to pursue them. After the archers had done their work, the Mongols’ elite fighters, armed with lances, maces, and swords, would close in to finish off the already decimated enemy. Over time, the Mongol armies adapted to siege warfare and even naval operations, exploiting the skills of conquered peoples, Muslim and Chinese. But their political skills were never equal to the task of retaining the power won by their military prowess.

WAR LEADER
Born around 1162, Genghis Khan was a chief’s son in one of the many warring nomadic tribes that inhabited the Mongolian steppe. An aggressive warrior and a skilled diplomat, by 1206 he had united the tribes under his rule. He led them in campaigns against the Chinese Empire to the east and the empire of Khwarazam in central Asia. Genghis died in 1227, but his sons and grandsons continued his work of empire building.

WARRIOR ARMOR
Most Mongol warriors fought as light horsemen, wearing leather body armor and, if possible, a silk undershirt—allegedly offering protection against an arrow shot. Their minority of heavy cavalry, however, were sometimes equipped with Chinese-style metal armor. Made of overlapping plates, usually sown onto a backing garment, this is a replica of a mongol armor that was flexible and offered good protection in close combat.
The Mongol leader is shown here in the costume of a light horseman. Warriors usually shot their bows from horseback, and also used swords belonging to both the Islamic and Chinese traditions.

“WHOEVER DOES NOT SURRENDER BUT OPPOSES WITH STRUGGLE AND DISSENSION, SHALL BE ANNIHILATED.”

ORDER OF GENGHIS KHAN TO HIS ARMY
LONGBOWS AND CROSSBOWS

INVENTED IN CHINA, the crossbow came into widespread use in Europe from the 12th century. Fired from the shoulder, it was both powerful and accurate, effective against armored knights and in siege warfare. The longbow was developed in Wales and was used in the English Army from the 13th to the 16th century. It is given credit for victories at Crécy, Poitiers, and Agincourt. Capable of ten times the rate of fire of crossbows, longbows were typically shot in unaimed volleys, decimating an advancing enemy with sheer volume of arrows.
Tip would have had horn nock to hold bowstring.

Three flights made from goose feathers.

ENGLISH LONGBOW

This is one of the longbows retrieved from the wreck of Henry VIII's warship the Mary Rose, which sank in 1545. It is a simple bow, cut from a length of yew, but the bowyer has skilfully taken advantage of the natural layering of the wood. The flat back of the bow is sapwood, which performs better under tension, while the rounded belly is heartwood, reacting best under compression. Using a replica of a bow from the Mary Rose, a modern archer shot an arrow a distance of 360 yards (328 m).

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1540</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ENGLAND</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>1½ lb (0.73 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>78¾ cm (2 m)</td>
</tr>
</tbody>
</table>

ARCHERS IN ACTION

An archer needed considerable strength to draw the longbow—medieval archers' skeletons have been found with enlarged left arms and other deformities. They were expected to loose six aimed or 12 unaimed shots per minute.

ENGLISH LONGBOW ARROWS

“Clothyard” arrows were mass-produced in medieval England to supply the king's longbowmen. The three feathers were essential to stabilize the arrow in flight.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1520</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ENGLAND</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>1½ oz (42 g)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>29½ in (75 cm)</td>
</tr>
</tbody>
</table>

BARBED ARROWHEADS

Broad-barbed iron arrowheads could cause a deep, wide wound, and were extremely difficult to extract. Not ideal for penetrating armor, they came to be used for hunting more than for warfare.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>LEFT 1 oz (28.3 g)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>LEFT 3½ in (8.5 cm)</td>
</tr>
</tbody>
</table>
CROSSBOW

THIS TYPICAL LATE MEDIEVAL European hunting bow could shoot a bolt roughly 328 yards (300 m). Its composite lath (or bow), made of layers of wood, sinew, and horn, had far too high a draw-weight to be spanned by unaided muscle power. Using the rack-and-pinion device known as a cranequin (also called a cric or rack), the archer pulled the bowstring back to the nut, where it was hooked until released by pressing the long trigger under the crossbow tiller. When shooting, the huntsman rested the butt of the crossbow on his shoulder, looking along the tiller and using the tip of the bolt as his sight.

Preparing The Crossbow

To use a cranequin, the archer first anchored it to the crossbow by looping the cord over the steel pins on the tiller. The claws at the front end of the toothed rack lay over the bowstring. By turning the lever, the archer rotated geared cogwheels engaged with the teeth of the rack, thus drawing the bowstring and bending the bow. When the string was hooked over the nut, the archer removed the cranequin, laid a bolt in the groove, and was ready to shoot.

CROSSBOW BOLT

Bolts were typically twice as heavy as other arrows. The flights were of wood or paper, and only two were used, because a third would snag on the nut.

CRANEQUIN

The cranequin was first introduced in Europe in the late 14th century. One of its advantages was that it could be employed on horseback. It was an expensive device and worked slowly—two considerations that made it less suitable for warfare than for use by wealthy huntsmen.
Curved claws grip bowstring

Composite bow of horn, sinew, and wood

Triangular metal head

Cord bridle binds tiller to lath

Tiller tapers to butt

Tiller veneered with plain bone

Toothed rack

Cord bowstring

Steel handle of lever

FULL VIEW
WARFARE IN THE AZTEC EMPIRE, which covered much of what is now Mexico, was driven by the need for a regular supply of prisoners for human sacrifice. Although the Aztecs had bows, slings, and throwing spears, they preferred to use close-quarters cutting weapons to disable an enemy, often by a blow to the legs. Ultimately, the “stone-age” Aztec weaponry proved no match for the steel and gunpowder of the Spanish invaders who conquered the region in the 16th century.

AZTEC WEAPONS AND SHIELDS

OBSIDIAN KNIFE
The Aztecs referred to human sacrifice as “the flowered death by the obsidian knife.” Obsidian, a volcanic glass, provided a razor-sharp blade that Aztec priests used to cut out the hearts of sacrificial victims. After the heart had been ritually burned, the corpse was dismembered.

DATE c.1500
ORIGIN AZTEC EMPIRE
LENGTH 11¾ in (30 cm)

FLINT KNIVES
Practical and easy to make by flaking, flint knives like these two examples had a wide range of uses in Aztec society. Aztec priests often used them to carry out human sacrifice in preference to obsidian knives because obsidian, although sharper than flint, was extremely brittle.

DATE c.1500
ORIGIN AZTEC EMPIRE
LENGTH 11¾ in (30 cm)

DECORATED FLINT KNIFE
This decorated flint knife was found in the Great Temple, which stood in the center of the Aztec capital, Tenochtitlan. More than 20,000 victims may have been sacrificed at the dedication of the Temple in 1487.

DATE c.1500
ORIGIN AZTEC EMPIRE
LENGTH 11¾ in (30 cm)

Eyes made of shell and obsidian or haematite

Teeth shaped from shell

Serrated edge

Head and shaft are made of wood

Obsidian blade set in grooves along edge of club

Knives were sometimes decorated to resemble the face of the god to whom sacrificial hearts were offered
Chimalli (shield)
An Aztec warrior's round shield, or chimalli, was highly decorated, partly to intimidate the enemy. The shield had a wooden or bamboo frame covered in feathers and skin. Shields were made by featherworkers, who also produced fans and headdresses.

DATE c.1500
ORIGIN AZTEC EMPIRE

Throwing Spear
The Aztec's stone-edged spears were often launched by a throwing stick, or atlatl. This made them powerful weapons capable of causing severe injury—even to a fully armored Spanish soldier.

DATE c.1500
ORIGIN AZTEC EMPIRE

ORNATE CHALCEDONY KNIFE
The handle of this sacrificial knife represents an eagle warrior, one of a prestigious order of Aztec fighting men. The knife blade is chalcedony, a type of quartz.

DATE c.1500
ORIGIN AZTEC EMPIRE

LENGTH 12 1/2 in (31.7 cm)

MAQUAHUITL (CLUB)
The principal close-quarters weapon was a wooden club with obsidian blades. Known as a maquahuitl, it was wielded like a sword, delivering a razor-sharp cut that could sever a horse’s head.

DATE c.1500
ORIGIN AZTEC EMPIRE

LENGTH 29 1/2 in (75 cm)

CHIMALLI (SHIELD)
An Aztec warrior's round shield, or chimalli, was highly decorated, partly to intimidate the enemy. The shield had a wooden or bamboo frame covered in feathers and skin. Shields were made by featherworkers, who also produced fans and headdresses.

DATE c.1500
ORIGIN AZTEC EMPIRE

LENGTH 29 1/2 in (75 cm)

ENEMY CAPTURE
This image from a Mexican codex shows an Aztec warrior taking an enemy fighter prisoner. The warrior carries a chimalli shield and wears a cumbersome feather-covered frame on his back, which marks him out as of officer status. The more captives a warrior took, the higher his status grew.

DATE c.1500
ORIGIN AZTEC EMPIRE

LENGTH 29 1/2 in (75 cm)
The war in Mexico between the Aztecs and the plate-armored Spanish conquistadors in the 16th century was fought with the shields and axes of a society that did not have steel, on one side, and the steel spears and swords of the Spanish on the other.
EUROPEAN HELMS AND BASINETES

THE SPANGENHELM WITH NASAL that had been worn by the Normans was replaced at the end of the 12th century with a rounder helmet, which eventually covered the entire face, and evolved into the great helm. Although providing good protection, the great helm was cumbersome, making it hard for the wearer to turn and see clearly. During the 14th century, it was largely relegated to a tournament role, being superseded by the basinet, a helmet that provided a good compromise between protection, mobility, and visibility.

GREAT BASINET
The origins of the basinet helmet go back to the metal skull cap worn inside a mail coif and under a great helm. In the case of the basinet, the skull cap extended to protect the side and back of the head. This basinet has no visor, but the holes for the vervelles that secured the mail aventail are visible.

DATE c.1370
ORIGIN NORTHERN ITALY
WEIGHT 6 ¾ lb (3 kg)

GREAT HELM
This great helm is constructed from three plates of steel, with a pointed crown and skull to deflect blows. The vision slits, or “sights” are formed between the skull and side plates, and the lower part of the helm is pierced by numerous ventilation holes called breaths.

DATE c.1350
ORIGIN ENGLAND
WEIGHT 5 ½ lb (2.5 kg)

SEGMENTED HELM
This segmented helm dates back to the 11th century and is constructed from four triangular iron plates, originally covered in gilt copper sheet, and joined by copper rivets.

DATE 11TH CENTURY
ORIGIN POLAND
WEIGHT 6 ¾ lb (3 kg)
Narow sights date 1350–1400 origin northern Italy weight 15¾ lb (7.12 kg) basinet and a V entail

This hounskull basinet with an ogival skull is typical of that worn by knights throughout Europe in the middle-to-late 14th century. The mail collar or aventail has a leather band on the upper edge with holes that fit onto the brass vervelles that border the helmet’s rim. A small hole has been drilled into each vervelle, through which a piece of string is drawn, attaching the vervelle to the basinet.

Great Basinet

This skull from a great basinet shows how the helmet sides extend further down than was the case with a standard basinet. Over time the mail aventail was replaced by a bevor and gorget plates. This helmet comes from the Yorkshire tomb of Sir John Melsa in the UK.

Date: late 14th century
Origin: UK
Weight: 6¾ lb (3.06 kg)

Houskull Basinet

The distinctive pointed visors found on many basinet helmets were nicknamed “houskulls,” an English corruption of the German Hundsgegel (“dog head”). The whole visor could easily be removed by withdrawing the locking pins—shown here tethered by a chain.

Date: 1350–1400
Origin: Italy
Weight: 15½ lb (7 kg)

Basinet and Aventail

This houskull basinet with an ogival skull is typical of that worn by knights throughout Europe in the middle-to-late 14th century. The mail collar or aventail has a leather band on the upper edge with holes that fit onto the brass vervelles that border the helmet’s rim. A small hole has been drilled into each vervelle, through which a piece of string is drawn, attaching the vervelle to the basinet.

Date: 1350–1400
Origin: Northern Italy
Weight: 15¾ lb (7.12 kg)
EUROPEAN JOUSTING HELMS, BARBUTES, AND SALLETS

THE GREAT HELM—relegated to the jousting field in the mid-14th century—evolved into the frog-mouthed helmet, a piece of armor ideally suited to jousting. During the 15th century the basinet was superseded by a range of newer designs, of which the sallet was the most popular. Toward the end of the century, northern Italy and southern Germany began to take a lead in armor development that other countries followed. Italian armor was rounded in style, while the German or Gothic style featured decoration in the form of radiating patterns of lines and ridges over the entire harness of armor.

JOUSTING HELM
The frog-mouthed jousting helm would sit squarely on the knight’s cuirass, and, in the case of this example, have steel attachments to lock it firmly to breast- and backplates. The forward part of the helmet was specifically designed to deflect the opponent’s lance.

DATE c. 1480
ORIGIN SOUTHERN GERMANY
WEIGHT 22½ lb (10.2 kg)

FROG-MOUTHED HELM
The frog-mouthed helm provided the jousting knight with basic straight-ahead vision and maximum protection at the point of impact. He would lean his head forward at the commencement of the charge to look out of the vision slit or sight, but the moment before the lances clashed he would swiftly lift his head up to deny his opponent any opportunity to thrust his lance into the sight.

DATE EARLY 15TH CENTURY
ORIGIN ENGLAND
WEIGHT 22 lb (10 kg)
<table>
<thead>
<tr>
<th>JOUSTING HELM</th>
<th>DATE</th>
<th>15TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
<td></td>
</tr>
<tr>
<td>WEIGHT</td>
<td>16¼ LB (7.4 KG)</td>
<td></td>
</tr>
</tbody>
</table>

The construction of a frog-mouthed jousting helm is fairly straightforward because it consists of just two pieces of steel: the first sits on the skull while the second is wrapped around the whole head, coming to a rounded point at the front of the face. A series of prominent rivets join the edges together.

<table>
<thead>
<tr>
<th>SHORT-TAILED SALLET</th>
<th>DATE</th>
<th>c.1440</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>NORTHERN ITALY</td>
<td></td>
</tr>
<tr>
<td>WEIGHT</td>
<td>3¼ LB (1.48 KG)</td>
<td></td>
</tr>
</tbody>
</table>

Originating in Italy, the sallet was a helmet adopted by all classes of fighting men in 15th-century Europe, worn either with or without a visor. This visorless helmet is closely shaped to the head and has a tail considerably shorter than most other sallets.

<table>
<thead>
<tr>
<th>LONG-TAILED SALLET</th>
<th>DATE</th>
<th>1480–1510</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>GERMANY</td>
<td></td>
</tr>
<tr>
<td>WEIGHT</td>
<td>5¾ LB (2.6 KG)</td>
<td></td>
</tr>
</tbody>
</table>

This helmet is fairly typical of German sallets toward the end of the 15th century, featuring a long sweeping tail to protect the neck, as well as a visor with a single sight. For knights and men-at-arms, sallets would normally be worn with a bevor to protect the throat, chin, and lower face.

<table>
<thead>
<tr>
<th>BARBUTE</th>
<th>DATE</th>
<th>c.1445</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ITALY</td>
<td></td>
</tr>
<tr>
<td>WEIGHT</td>
<td>5¼ LB (2.67 KG)</td>
<td></td>
</tr>
</tbody>
</table>

The barbute (or barbuta) is a close-fitting, shoulder-length helmet, and many have a T-shaped opening for the face. This example also has a nasal, and because of its similarity to the helmets of classical Greece, it is known as a “Corinthian” barbute. The helmet was usually worn by infantry and was in use throughout the 15th century.

<table>
<thead>
<tr>
<th>PAINTED SALLET</th>
<th>DATE</th>
<th>1490</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>GERMANY</td>
<td></td>
</tr>
<tr>
<td>WEIGHT</td>
<td>5 LB (2.2 KG)</td>
<td></td>
</tr>
</tbody>
</table>

It was not uncommon for sallets to be covered in cloth or leather, or have heraldic designs painted on them. This sallet has numerous pairs of small holes to attach a fabric covering, and is painted with a checkered design in red, white, and green, on the visor and lower part.
MEDIEVAL KNIGHT

THE ARMORED KNIGHT was the elite fighting man of medieval Europe. With his horse, armor, lance, and sword, he was both a costly warrior and a figure with high cultural and social prestige. Although warfare rarely lived up to the ideal of mounted nobles clashing in chivalrous combat, knights were highly skilled soldiers who adapted well to the constantly evolving challenges of the medieval battlefield.

WITH SWORD AND LANCE

Medieval society expected any young male of social standing to seek glory in war. Training was taken very seriously. Boys served first as pages and then as squires in the household of a knight who ensured their education in horsemanship and the use of the sword and lance. After graduation to knighthood, training continued through tournaments that honed fighting skills, and through more or less constant warfare. If there was no fighting to be had close to home, knights would seek it out, traveling to the edges of the Christian world to fight the “infidels.”

The classic form of knightly combat was the charge with couched lance on horseback. But knights were also effective on foot, wielding swords, maces, or battle-axes. The code of chivalry to which knights subscribed expressed a Christian ethic of warfare, but in practice the plundering, skirmishing, and sieges of medieval warfare left little place for idealism. In the relatively rare pitched battles, knights were sometimes routed by disciplined foot soldiers or bowmen, but they remained a dominant force into the 16th century.

TEMPLARS

In the 12th century, knights of the Christian kingdoms in Palestine formed military monastic orders such as the Knights Templar. Obeying austere religious rules, these fighting monks became elite forces dedicated to the struggle against Islam. Named after the Temple in Jerusalem where they had their headquarters, the Templars accumulated wealth that attracted the envy of kings. The order was condemned for alleged heresy and suppressed in 1312.
The full steel plate armor worn by knights in the 15th century offered excellent protection. The helmet was curved to deflect the impact of a mace blow, and slashing sword strokes would have no effect. The knight was only vulnerable to steel crossbows and firearms. This "Gothic" armor, with its elaborate decorative detail, was made in Germany.

MAIL-CLAD KNIGHTS
Mounted knights in mail and emblazoned cloth surcoats with heraldic designs wield their swords in a melee. Close grappling was a significant element in knightly fighting skills.

BATTLE OF CRÉCY
Fought in August 1346, Crécy was one of the encounters that questioned knights' dominance on the battlefield. Although French and English knights did engage with lance and sword, the flower of French chivalry was mown down by Welsh longbowmen.

WHAT IS THE FUNCTION OF KNIGHTS? TO GUARD THE CHURCH, TO FIGHT UNBELIEVERS ... AND IF NEED BE, TO LAY DOWN THEIR LIVES.

John of Salisbury, Policraticus, 1159
MAIL ARMOR—the linking together of small iron or steel rings to form a mesh—dates back as far as the 5th century BCE. By the time of the Norman Conquest of England in 1066, three-quarter length mail armor was common among knights and, by the 13th century, it was being worn from head to toe. Construction was a slow and laborious process, and as many as 30,000 separate links were required for a single shirt of mail.

MAIL HABERK
The hauberk or byrnie—a knee-length shirt of mail—was the central item of armor for 11th- and 12th-century knights and men-at-arms. To guard against blunt trauma blows to the body, the knight would wear a padded garment called a gambeson underneath his hauberk.

DATE 20TH-CENTURY REPLICA
ORIGIN EUROPE

MAIL SHIRT
This mail shirt—called a “haubergeon”—has been made in the Asian style. All the rings have been welded together, whereas in the west, the common practice was for mail to be made of alternate lines of welded and riveted rings.

DATE 20TH-CENTURY REPLICA
ORIGIN EUROPE

MAIL COIF
Although some suits of mail armor included an integral hood with the hauberk, others had a separate hood, or coif, to be worn under a plate helmet. Mail was usually constructed from wrought iron, although mild steel was used on occasion.

DATE 20TH-CENTURY REPLICA
ORIGIN EUROPE

MAIL FLAP TO BE DRAWN ACROSS FACE WHILE IN COMBAT
HORSEMAN’S SLIT TO ALLOW FREEDOM OF MOVEMENT WHILE ON HORSEBACK
SHORT SLEEVES FOR MOBILITY
WELDED IRON RINGS
ANGLO SAXON-STYLE SQUARE NECK
EUROPEAN MAIL ARMOR
THE BATTLE OF BOUVINES
This contemporary illustration of the battle of Bouvines in 1214—where an English army and its allies were defeated by the French—shows both cavalry and foot soldiers wearing full suits of mail armor.

MAIL DETAIL
Mail was usually connected by the four-to-one system, where each ring was linked to four other rings. In Europe the most common practice was for mail to be made from alternate rows of welded and riveted rings, and from the 14th century onward, entirely from riveted rings.

MAIL SHIRT AND AVENTAIL
This full-sleeved hauberk and aventail—the mail collar hanging directly from the helmet—is thought to have belonged to Rudolf IV, the Habsburg Duke of Austria. Although plate armor was becoming common in this period, mail was still in demand in Europe for another 100 years.

<table>
<thead>
<tr>
<th>DATE</th>
<th>MID-14TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>AUSTRIA</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>30½ LB (13.83 KG)</td>
</tr>
</tbody>
</table>
EUROPEAN PLATE ARMOR

During the 14th century, mail armor was increasingly supplemented by plate armor, which was surprisingly flexible and provided its wearer with a good deal of mobility. By the middle of the 15th century, knights were equipped with complete suits of plate armor with mail relegated to covering exposed areas behind the armor joints. During the late 15th and early 16th centuries, plate armor reached its apogee, and the main elements are revealed in this breakdown of a mid-16th-century Italian suit of armor.

Italian Armor
The close helm tightly encloses the entire head. Its pivoted visor is divided into two parts: the visor proper and the upper bevor. The cuirass, covering the torso, consists of a breastplate linked to a backplate (not shown) by leather straps. Extending from the breastplate are skirts and tassets to guard the abdomen and upper thighs. Neck, arm, and leg defenses complete the head-to-toe protection.

Date: mid-16th century
Origin: Italy

DURING THE 14TH CENTURY mail armor was increasingly supplemented by plate armor, which was surprisingly flexible and provided its wearer with a good deal of mobility. By the middle of the 15th century, knights were equipped with complete suits of plate armor with mail relegated to covering exposed areas behind the armor joints. During the late 15th and early 16th centuries, plate armor reached its apogee, and the main elements are revealed in this breakdown of a mid-16th-century Italian suit of armor.
Pauldron to protect shoulder

Rerebrace to protect arm

Cuisses to protect thigh

Greaves to protect lower leg

Poleyn to protect knee

Thumb plate

Rivet connecting tassets

Articulated steel plates

Mitten gauntlet

Skirt strap for buckling skirt to tassets

Couter to protect elbow

Cuisses to protect thigh

Pyleyn to protect knee

One plate, the cuff, covers wrist

Scrolling decoration

Sabiton to protect foot/made from small overlapping plates

Sabiton to protect foot

Hook for closing greave

Rivet connecting tassets

Greaves to protect lower leg

Thong plate

Mitten gauntlet

Gorget

Raised neck and armpit edge for deflecting swords and staff weapons.
THE EARLY MODERN WORLD
The 16th and 17th centuries saw the rapid spread of firearms, both within and outside Europe, and the modification of military and political strategy to cope with the effects of the new technology. A world in which elites were not born to military service, but rather trained and drilled to it, coupled with a generalized growth in the capacity of states both to raise taxes and—to a lesser extent—to direct their expenditure effectively, meant that armies, as well as the weapons they deployed, became ever more lethal.

OPEN FIGHTING

At Pavia (1525), the battle was decided by imperial arquebusiers and pikemen fighting in the open, unshielded by entrenchment; the French Army was decimated and their king, Francois I, was captured by Charles V, the Holy Roman Emperor.

By the Early 16th Century, artillery had clearly demonstrated its effectiveness. This was underlined by developments such as the introduction of the trunnion—horizontally projecting lugs that allowed guns to be elevated or depressed more effectively. For a short period, the late medieval propensity to skulk behind powerful fortifications and for campaigns to focus on sieges and raids was replaced by a phase during which armies, aware that they could no longer defend fixed points, were much more willing to risk pitched battles.

Siege Warfare

The Italian Wars (1494–1509) saw the first large-scale demonstrations of the potency of field artillery and firearms on the battlefield. At Cerignola (1503), the Spanish fought from shelter behind a trench and earth parapet, subjecting the French cavalry to withering fire. At the battle of Ravenna (1512), the combat opened with a two-hour artillery duel, the first of these ever to be recorded. This era of open warfare, however, was soon replaced by a long period in which sieges became once more the dominant feature in campaigns. The spread of *trace italienne* fortifications (see box page 100) meant that sieges became prolonged and costly affairs and the benefits to a defending army of remaining safe within city walls more obvious.

The arquebus was a primitive firearm that was widely used from the 15th–17th centuries. Around the 1520s a new weapon appeared—the musket. Weighing up to 20 lb (9 kg)—much heavier than the arquebus—it required a forked rest to allow its bearer to fire, but did have the advantage of delivering a ball with much greater force. The musket's unwieldiness meant it was most effective in sieges. The advent of gunpowder weapons did not, at a stroke, make infantry stalwarts such as the pike obsolete. Swiss pike formations were a common feature of early 16th century battles, and their aggressive tactics, such as charging entrenched arquebusiers at Novara (1513), made them
rightly feared. The proportions of pikemen in armies steadily declined, however, to as little as one in five by the mid-17th century. The retention of the pike was one aspect of a self-conscious tendency in European armies for military theorists (as much as Renaissance architects) to draw on ancient classical models, such as the spear-wielding Greek hoplites or the disciplined ranks of the Roman army, for their own campaigns. In 1534 Francois I of France established seven companies d’ordonnance, each 6,000-strong, modeled on the Roman legions, while Italian theorists promoted a standard infantry company of 256, drawn up in a 16 by 16 square.

EUROPE’S GROWING ARMIES
The Italian poet Fulvio Testi wrote in the 1640s, “This is the century of the soldier,” in reference both to the increased bloodiness of battles—at Ceresole in 1544, some 7,000 of the 25,000 combatants perished—and to the sheer size of armies. That of Charles the Bold of Burgundy had been regarded as large in the 1470s at 15,000, a number dwarfed by Philip II of Spain’s 86,000-strong army in the Netherlands a century later. The huge expense of refortifying towns and raising ever-larger armies put enormous strain on the leading powers in Europe.

European wars had, until the late 15th century, been fought principally for dynastic reasons, but the Protestant Reformation in the early 16th century added a religious and ideological dimension to warfare. By the 1560s, both France and the Netherlands had descended into religious civil war. The French Wars of Religion ended in 1589, but the revolt of the Netherlands was more protracted—ending only in 1648—and saw the resources of the Habsburgs under Charles V and then Philip II stretched to the limit. It also became the crucible of significant developments in military strategy. The use of firepower brought about a change in battlefield formation as it was most effectively delivered in a line of battle, rather than a traditional block. Throughout the 16th and 17th centuries, the ranks of armies thinned out and their lines extended. Fighting in line formation, however, required greater discipline—especially as opposing armies often opened fire at a range of only 164 ft (50 m). The Dutch Protestant leader Maurice of Nassau began to introduce his troops to “exercises” in the 1590s, drilling them and instructing them in basic maneuvers. His brother William Louis pioneered a system whereby consecutive rows of musketeers fired in turn, then retired to reload, allowing for continuous fire.

THE OLD WORLD MEETS THE NEW WORLD
The 16th century saw the first really successful projection of European power overseas. In the Americas, the Spanish confronted the Inca and Aztec empires, neither of which had developed iron. Wooden clubs and stone axes could not penetrate Spanish cuirasses, and only the Aztecs’ copper-tipped arrow made much impact against their enemies. At the siege of Cuzco in 1536, 190 Spanish soldiers defeated up to 200,000 Inca warriors armed largely with stones. The Spanish benefited from divisions among their enemies as much as from their technology. In Mexico they harnessed the antipathy of the Tlaxcala toward the Aztecs to obtain intelligence, while in Peru they exploited a civil war between two rival claimants to the Inca throne. Yet indigenous peoples learned fast. In North America the Massachusetts Indians were manufacturing shot by the 1670s, so that, whereas in earlier encounters there were few European casualties, in King Philip’s War in 1675–76 there were 3,000 English wounded.
THE DEVELOPMENT OF GUNPOWDER

Against the Asian powers of Ottoman Turkey, Mughal India, Tokugawa Japan, and Ming and Qing China, military inroads by Europeans were relatively minor. Until their defeat at the second siege of Vienna (1683), the Ottomans pressed hard, engaging in constant small-scale warfare with the Austrian Habsburgs. The janissary infantry corps that had brought the Turks such great successes in the 16th century were beginning to atrophy as a military power, but they still possessed a light cavalry arm unmatched in Europe. Although the Chinese had developed gunpowder earlier, Europe had opened up a technological lead by the 16th century. The Chinese then acquired Portuguese cannons in the 1520s, but were not content with merely aping the foreign technology. During the 16th century, they developed a “continuous bullet gun,” a primitive form of machine gun. A military manual of 1598 set out the precise measurement of gun barrels to tiny fractions of inches, while Chinese guns were stamped with serial numbers, indicating tight central control on production.

In Japan, the Onin Wars of 1467–76 had set in train a period of political fragmentation when local warlords, the daimyo, built up independent domains. Japan acquired firearms in 1542—from Portuguese passengers on a pirate ship that blew off course—and they spread rapidly. Units of musketeers (teppotai) played a crucial role in the unification of Japan under Oda Nobunaga, who captured the royal capital of Kyoto in 1568 and conquered most of Japan before his death in 1582.

Battles in Japan at this time became more similar to the pitched encounters of European armies than the challenge and counter-challenge of elite samurai warriors that characterized earlier warfare there. Japanese armies showed considerable technical and tactical ingenuity; at Osaka in 1576, Nobunaga had seven ships constructed, shielded by armed plates, which were armed with cannons and muskets, creating a very early version of an ironclad; while at Nagashina in 1575, Nobunaga’s musketeers fired in ranks in rotation, some years before the practice became established in Europe. Yet the final unification of Japan under the Tokugawa after 1600 meant that military conflict, and with it the impetus for technical development, declined. Already in 1588, the “Sword-hunt Edict” had ordered the confiscation of all weapons held in private hands, including firearms, contributing to a demilitarization that would leave it ill-equipped to face western intruders in the 19th century.

THE THIRTY YEARS WAR

The Thirty Years War (1618–48), a complex struggle, that pitted the Catholic Habsburgs against a shifting coalition of mostly Protestant foes, saw a further evolution in the sophistication of armies and tactics. Increasingly armies wore uniforms, or at least some identifying colour – the Habsburgs favoured red, while their French enemies wore blue. The Swedish army under Gustavus Adolphus took the reforms further than most. Gustavus effectively introduced conscription with his 1620 “Ordinance of Military Personnel”, while a War Board was established to supervise military administration. The fruit of these
improvements came in a string of spectacular Swedish battlefield successes. At Breitenfeld (1631) a Swedish army formed up in six ranks faced a Habsburg army drawn up in “squares” 30 deep and 50 wide and won a crushing victory, killing almost 8,000 of their opponents.

Throughout the Thirty Years War, states had been forced to rely on mercenaries for manpower. Military entrepreneurs had flourished, such as Albrecht von Wallenstein, who was able to offer the services of a force numbering 25,000-strong. But after the Peace of Westphalia (1648), countries increasingly established standing armies, which were not disbanded at the end of a campaign. France’s army reached 125,000 by 1659 (and around 400,000 by 1690); while even the tiny German state of Jülich–Berg maintained a permanent fighting force of 5,000.

By now, wars cost huge sums to fight; between 1679 and 1725, the Russian armed forces cost 60 percent of total revenue in peacetime, and nearly all of it in wartime. In Louis XIV’s France, the construction of a barrier of fortresses across the northeastern Frontier, many designed by Vauban (see box) was ruinously expensive—that at Ath took six years and five million livres to build. Campaigns once more centered on sieges—during the Nine Years War (1688–97) the French sought to push their frontier eastward, but the siege of just one fortress, Philippsburg, took two months.

Use of the Musket and Bayonet

The late 17th century saw the final demise of the pike, and its replacement by the bayonet. The plug bayonet, which blocked the muzzle of the musket and needed to be removed for firing, did not catch on. However, in 1669 the socket bayonet was developed, which created no such impediment. By 1689 it was becoming standard issue for French infantry. The latter 17th century also saw the development of the flintlock musket, lighter than the matchlock and with double the rate of fire. The introduction of pre-packaged cartridges, with the gunpowder charge already measured out, also increased the rate of fire (they became general issue in the French army by 1738).

The Beginnings of Global Warfare

For a time in the 17th century, armies had employed a cavalry tactic, known as “caracole,” where the cavalry, armed with wheellock pistols, would trot into range, let off a volley and then retreat. But the combination of flintlock and socket bayonet made the mounted arm especially vulnerable, and by the late 18th century, they made up only 16 percent of the French army, principally used against other cavalry or in pursuit of already broken infantry.

Toward the end of the period, however, the cavalry underwent a revival, as they largely abandoned their firearms and relied instead on the shock of rapid and decisive charges—the English general Marlborough’s cavalry squadrons played a key role in his victory at Blenheim (1704) during the Spanish War of Succession. Prussia under Frederick the Great (1740–86) built up Europe’s most effective military force, founded on discipline and constant practice. Innovative tactics such as the oblique attack set a standard for other countries—the Russian Infantry Code of 1755 was firmly based on the Prussian model. During the Seven Years War (1756–63), the Prussians and their British allies faced a coalition of France, Austria, and Russia, intent on putting a stop to Prussian dominance of central Europe. This war is most notable, however, for being the first truly global conflict, as French and British rivalry played itself out across North America and the Indian subcontinent. From 1720 the Prussians had iron ramrods for their muskets, and could let off as many as three rounds a minute, fired on the move—a relatively new tactic—delivering Frederick successes such as Leuthen (1757), where some Prussian musketeers let off up to 180 rounds each.

As the 18th century progressed, field artillery became an increasingly vital component of armies. The French artillery train in Flanders in 1748 had no fewer than 150 cannon drawn by almost 3,000 horses. From 1739, barrels were cast in a single piece and then bored, allowing finer tolerances and more powerful pieces at a given size. With the establishment of gunnery schools, such as the French Royal Corps of Artillery in 1679, artillery officers were often some of the best trained in European armies. It is fitting, therefore, that it was to be a French artillery officer, Napoleon Bonaparte, who would finally bring an end to the ancient regime of the absolute monarchs and revolutionize warfare.

Japanese Firearms

At Nagashino in 1575, Oda Nobunaga’s ranks of arquebusiers fired rotating volleys to decimate the charge of his opponent Takeda Katsuyori. Those of Takeda’s horsemen who reached Oda’s lines were held off by pikes, in an echo of European tactics of the era.
DURING THE MIDDLE AGES, most infantry swords were relatively light and easy to wield, but by the late 15th century, a distinctive group of larger weapons grew in popularity, particularly in Germany. These two-handed (doppelhänder—double-hander or beidenhände—both-hander) swords were specialist weapons. The Landsknecht mercenaries who used them were called doppelsöldner and received double pay; but they earned it. They were expected to hack their way into enemy pike units. The impressive but clumsy weapons were also used for ceremonial duties and executions.

HIGHLAND SWORD
The Scots developed their own tradition of "hand-and-a-half" weapons, derived from earlier medieval Scottish and Irish longswords. This Highland sword (Claidheamh dà làimh) has a blade just over 3 ft (1 m) long, and was shorter and lighter than German doppelhänder weapons. The forward-sloping quillons ending in quatrefoils were a common feature.

PARADE SWORD
In 16th- and early 17th-century Germany, particularly ornate two-handed swords such as this example were used on ceremonial occasions. These paratschwerter (parade swords, also called "bearing swords") were longer and heavier than battlefield weapons, and often so ornate that they were of little use as offensive weapons. The flame form of the blade (flammenschwert) was impressive, but made little difference to its cutting qualities.

LOWLAND SWORD
Outwardly this sword is typical of the weapons used by German Landsknecht mercenaries on European battlefields during the early and mid-16th century. However, in this particular example, the blade is surmounted by a hilt produced in Scotland, and it is of typical Scottish design.

TWO-HANDED SWORD
This doppelhänder sword was designed as a battlefield weapon, and is of a type used by the German Landsknecht. The sword has a blunt tip because it was designed to hack through enemy units rather than to pierce its victims.
EXECUTION SWORD

This heavily ornate example of a municipal executioner’s sword has a shorter hilt than earlier doppelhänder swords. Etched with depictions of gruesome executions, it was used for only one function. When not in use, the sword hung in a civic building as a deterrent to potential wrongdoers.

DATE c. 1674
ORIGIN GERMANY
WEIGHT 4 3/4 lb (2.15 kg)
LENGTH 32 1/4 in (0.83 m)
While the military revolution that followed on the heels of the Renaissance meant that firepower was becoming increasingly important, the *arme blanche* (cold steel) still remained a battle-winning weapon, particularly for cavalry. Most infantry swords from the 16th century onward tended to be used as thrusting weapons, but cavalry still needed to slash downward at infantry, so they favored larger, double-edged swords that could be used equally well against mounted and dismounted opponents. However, standardized military sword patterns now emphasized style as much as practicality. They were more elegant, but probably no less deadly.

Infantry Sword

In contrast to the other swords on this page, this highly decorated but simply designed sword offered little protection to the swordsman, but it could be wielded using one or two hands.

- **DATE**: c.1500
- **ORIGIN**: Switzerland
- **WEIGHT**: 2 lb (0.91 kg)
- **LENGTH**: 35¼ in (90 cm)

Basket-hilted Sword

This broadsword consists of an early 17th century German blade produced in Solingen attached to an English basket hilt dating from over a century before the blade was cast.

- **DATE**: c.1540
- **ORIGIN**: England
- **WEIGHT**: 3 lb (1.36 kg)
- **LENGTH**: 41¼ in (1.04 m)

Cavalry Sword

By the mid-18th century, cavalry swords had developed into two types: light, curved blades for light cavalry, and longer, heavier, straight blades for heavy cavalry. This example is typical of those used by European heavy cavalry for over a century. The single fuller (the groove along the back of the blade) meant that the blade was single-edged.

- **DATE**: 1750
- **ORIGIN**: England
- **WEIGHT**: 3 lb (1.36 kg)
- **LENGTH**: 39½ in (1 m)
CAVALRY SWORD

Unlike the rapier favored by soldiers on foot, cavalrymen during the 16th and 17th centuries relied on variants of the broadsword, such as this finely engraved Swedish weapon. A shell guard protects the swordsman’s hand, while the simple pommel is reminiscent of late medieval weapons. The straight blade could be used with equal efficiency as a cutting or thrusting weapon.

DÜSACK

The düsack or dussak was primarily a South German and Austrian weapon of war. Its curved, saber-style blade made it a useful cutting weapon, while its enclosed guard offered good protection to the swordsman. Early 17th-century woodcuts support evidence that the düsack was also used as a dueling weapon in Southern Germany.

BROADSWORD

This proto-basket-hilt sword is an unusual composite of several sword types. It is described by its blade type. The cut-steel guard is basic, but represents a significant improvement over earlier Swiss weapons.
EUROPEAN INFANTRY AND CAVALRY SWORDS

DESTINY’S CHARGE
With sword in hand, King Gustavus Adolphus of Sweden led a cavalry charge against his protestant German foes during the Battle of Lützen (1632). He outpaced his bodyguard and found himself surrounded by enemy horsemen, who cut the Swedish king down without mercy.

BROADSWORD
Although basket-hilted swords were used throughout Europe from the mid-16th century, they are most closely associated with the 18th-century Scottish Highlander. Most of these were made in the lowlands, principally in Glasgow and Stirling, although many of the blades were imported from Germany. The characteristically Scottish basket-hilt guard was designed to protect the swordsman’s hand.

SCHIAVONA SWORD
This more delicate, characteristically Venetian example of a broadsword is known as a schiavona, meaning Slavonic. Schiavonas have a distinctive form of basket hilt, and almost always feature a pommel designed to resemble the head of a cat, an allusion to agility and stealth. They were primarily used by Dalmatian troops in the service of the Venetian Republic.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1750</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>SCOTLAND</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>3 LB (1.36 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>35¾ IN (91 CM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1780</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ITALY</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2½ LB (1.12 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>43½ IN (1.05 M)</td>
</tr>
</tbody>
</table>
INFANTRY HANGER
While most infantrymen relied on the bayonet for combat, many foot troops were also issued with a "hanger," a crude military variant of a short hunting sword. This almost always has a straight or slightly curved blade. The hanger was more practical in difficult terrain than conventional longer swords.

DATE c.1760–1820
ORIGIN ENGLAND
WEIGHT 1 ¾ lb (0.84 kg)
LENGTH 31 ¼ in (79.7 cm)

MORTUARY SWORD
So named because some examples bear an apparent chiseled likeness of Charles I on the hilt, these swords were widely used by cavalrmen during the English Civil War that preceded the execution of the king in 1649. Although the blade was manufactured in Germany, the hilt of this weapon is of a uniquely English design.

DATE 1640–60
ORIGIN ENGLAND
WEIGHT 2 lb (0.91 kg)
LENGTH 36 in (91 cm)

CAVALRY SWORD
This is typical of the single-edged swords carried by heavy cavalry for much of the 18th century. While cavalrmen still cut with their swords, it was considered more practical for heavy cavalry to use the point of their sword instead of the edge. This weapon was dual purpose, without being particularly well suited for either type of swordplay. After 1780 most British Army swords were designed to set patterns.

DATE c.1775
ORIGIN ENGLAND
WEIGHT 1 ¾ lb (0.85 kg)
LENGTH 33 in (83.8 cm)

SWEPT-HILT RAPIER
The classic infantry weapon of the 17th century was designed purely as a thrusting weapon, whereas swordplay "at the point" was considered the art of a gentleman. As well as a military weapon, the rapier was also regarded as the dueler's weapon of choice, until it was replaced by the pistol in the late 17th century.

DATE 1600–60
ORIGIN EUROPE
WEIGHT 2 ¼ lb (1.07 kg)
LENGTH 36 in (91 cm)
THE GARISHLY DRESSED, swaggering mercenary bands known as the Landsknecht were founded in 1486 by Holy Roman Emperor Maximilian I, who wanted his own infantry force to match the Swiss pikemen who had been victorious at the battles of Murten and Nancy in 1476–77. Officially, the Landsknecht were bound to serve the emperor, but the lure of pay and plunder soon led many of them to seek alternative employers. Feared and admired, they were a ubiquitous presence on European battlefields in the first half of the 16th century.

MERCENARY FIGHTERS

Individual mercenary captains were contracted to recruit, train, and organize regiments about 4,000 strong. The majority of recruits came from German-speaking areas, although some hailed from as far afield as Scotland. They were tempted by pay of four guilders a month, a good income for the time, but they had to supply their own equipment. Only the better off could afford full armor or an arquebus. The weapon of the majority was the pike, 15 or 20 ft (5 or 6 m) long, and costing around one guilder. The core of the Landsknecht battlefield formation was a phalanx of pikemen, supported by skirmishers armed with crossbows and arquebuses and, in the van, the regiment’s best soldiers armed with two-handed swords. On the battlefield, the Landsknecht were disciplined and courageous but, when their wages were not paid, they gained a reputation for mutiny and plundering.
THE SACK OF ROME

In 1527, the Landsknecht and other imperial forces of Charles V, Holy Roman Emperor, occupied Rome. As Lutherans, the Landsknecht hated the Catholic Church. One Landsknecht recorded: "We put over 6,000 men to the sword, seized all that we could find in the churches, burned down a great part of the city ...". The occupation lasted nine months, with the mercenaries refusing to leave until they had been paid arrears of wages.

IMPERIAL FORCES ENTERING ROME

"WE WERE 1,800 GERMANS AND WERE ATTACKED BY 15,000 SWEDISH PEASANTS ... WE STRUCK MOST OF THEM DEAD."

LANDSKNECHT PAUL DOLSTEIN, ON FIGHTING FOR THE KING OF DENMARK, JULY 1502

TOOLS OF COMBAT

PIKE

HALBERD

PARADE SWORD

TWO-HANDED SWORD

DOUBLE-PAY MEN

These Landsknecht doppelsöldner, or "double-pay men," earned their extra wages fighting in the front line. Wielding their two-handed swords, they assailed the ranks of enemy pikemen, opening up gaps in their formation. The bizarre outfits that the Landsknecht wore—extravagantly puffed and slashed, with assorted headgear—expressed an arrogant spirit that made them of doubtful loyalty to their employers, and a much-feared menace to civilians.
EUROPEAN RAPIERS

IN THE 16TH CENTURY, the rapier became the weapon of a gentleman; a symbol that he was a man of substance and status, and that he knew how to use his sword. The term is derived from the 15th-century Spanish term espada ropera (sword of the robes) meaning the weapon of a gentleman. By 1500 the rapier was used throughout Europe, and it would remain the premier gentleman's sword until the late 17th century. While it was certainly used on the battlefield, it is more readily associated with court, dueling, and fashion, hence the tendency toward delicate, intricate designs.

CUP-HILT RAPIER
In Spain, and those parts of Italy under Spanish influence, the guard of the rapier became fully enclosed, producing the "cup-hilt" guard form shown here. The Rompepuntus is used to trap opponents' blades.

DATE: c.1650
ORIGIN: SPAIN
WEIGHT: 2¼ lb (1.02 kg)
LENGTH: 37¾ in (96 cm)

SWEPT-HILT RAPIER
This classic form of rapier guard is known as a swept-hilt, because the bars sweep up in a graceful curve from the ricasso to the pommel. Despite its apparent lack of protection, this style of rapier remained in fashion until the early 17th century, largely because of its elegant appearance.

DATE: EARLY 17TH CENTURY
ORIGIN: ITALY
WEIGHT: 2¼ lb (1.02 kg)
LENGTH: 53½ in (1.36 m)
Simple ricasso

Pommel in the form of an urn

Pair of symmetrically pierced shell guards

Diamond-section twisting blade

Early form of rapier hilt

Shell-shaped lenticular pommel

Straight double-edged blade

Hilt designed to provide added protection

1. Swept hilt of chiselled iron

Early rapier

The first rapiers were clumsy weapons compared to the elegant designs that followed them, more akin to contemporary military swords than weapons designed primarily for civilian wear. This example shows some reworking, which may suggest that the blade is a replacement. However, the guard itself has something of the elegance of later swept-hilt designs.

PAPPENHEIM-HILT RAPIER

This style of rapier was popularized by Count Pappenheim, an imperial general of the Thirty Years War (1618–48). The design was soon copied throughout Europe as its two pierced shell guards provided good protection for the swordsman. The Pappenheim variant was designed for military use.

EARLY RAPIER

The first rapiers were clumsy weapons compared to the elegant designs that followed them, more akin to contemporary military swords than weapons designed primarily for civilian wear. This example shows some reworking, which may suggest that the blade is a replacement. However, the guard itself has something of the elegance of later swept-hilt designs.

SWEPT-HILT RAPIER

Another variant of a swept-hilt rapier design, this weapon might be less elegant than its counterpart on the left, but its small, perforated shell guards offered better protection. In this example the grip is bound in woven wire. It suggests this rapier was made as a dress sword rather than for military use.

CUP-HILT RAPIER

Unlike other rapiers, this later weapon was designed as a fencing piece rather than as a weapon that denoted gentlemanly status. It has an extremely narrow diamond-section blade, and a simple, unadorned cup and hilt.
A DEVELOPMENT OF THE RAPIER, the smallsword came into general use in Western Europe toward the end of the 17th century. It was a civilian weapon: an essential item of dress for any gentleman that also acted as a dueling sword. Intended solely for thrusting, the smallsword typically had a stiff triangular blade, without sharpened edges, which in the hands of a skilful swordsman was a deadly fencing weapon. Although simple in overall design—the handguard consisting of a small cup, and finger and knuckle guards—many smallswords were magnificently decorated, reflecting the status of their owners.

ETCHED SWORD

This fine sword is decorated with hunting scenes of hounds and game chiseled in relief against a matte gold background. The steel hilt has a spherical pommel and button, and the grip is bound with silver ribbon and plated silver wire.

DATE c.1720
ORIGIN FRANCE
WEIGHT ¾ LB (0.40 KG)
LENGTH 34¾ IN (88.5 CM)

SWORD WITH GOLD DECORATION

The hilt of this sword is made from blued steel and encrusted with gold decoration of flowers, musical instruments, flags, and trophies of arms. The forte—the thickest part of the blade near the hilt—has been gilded, while the rest of the blade has been etched with a variety of designs.

DATE c.1720
ORIGIN FRANCE
WEIGHT 1¼ LB (0.54 KG)
LENGTH 39½ IN (100 CM)
COLICHEMARDE-TYPE SWORD
The silver hilt of this sword is chiseled with musical trophies and the grip is bound with silver foil and wire. The hollow triangular section of the blade is of a colichemarde type where the forte is particularly wide. The strengthened forte was used for parrying an opponent’s sword, leaving the blade light at the point to increase speed and control.

DATE c.1756
ORIGIN ENGLAND
WEIGHT 1 lb (0.45 kg)
LENGTH 39¼ in (99.5 cm)

SWORD WITH WIRE KNUCKLE GUARD
This sword’s distinguishing features are the urn-shaped pommel, a knuckle guard of cut-steel beads strung on wire, and a dished oval guard decorated with pierced triangles in three rows. The blade is blued for much of its length with gold decoration.

DATE c.1825
ORIGIN ENGLAND
WEIGHT 1 lb (0.45 kg)
LENGTH 39 in (99 cm)

SWORD WITH GILDED GRIP
The spherical pommel and gilded grip of this smallsword are complemented by a lobate quillon and two symmetrical shell guards. The forte of the blade is blued with gold embellishments.

DATE c.1770
ORIGIN FRANCE
WEIGHT 15 oz (0.43 kg)
LENGTH 13½ in (35 cm)

CASED SWORD
Boxed within a sword case, this British smallsword has an urn-shaped pommel, a faceted steel grip, and a knuckle guard of cut-steel beads on wire. Below the straight quillons is a dished oval guard. The blade is encased within a scabbard.

DATE c.1825
ORIGIN ENGLAND
WEIGHT 1 lb (0.45 kg)
LENGTH 39 in (99 cm)
Battle of Marignano

French King François I fought a close battle against Swiss pikemen in September 1515 at Marignano, modern-day Melegnano near Milan. The King and his army of Landsknecht mercenaries are depicted here in a relief on the King's tomb.
DURING THE 16TH century specialist hunting swords came into widespread use among Europe’s aristocracy. The swords were short in length, and often had a slightly curved, single-edged blade. For the most part, hunting swords were used to finish off an animal wounded by a spear or shot, although in the case of boar swords they might act as the primary weapon. In many instances, hunting swords were elaborately decorated and often featured engraved scenes of the chase. During the 18th century the hanger type of hunting sword acted as a model for the ordinary soldier’s fighting sword.
Hunting Hanger

This hanger has a single-edged curved blade with a “false edge” (in fact, a sharpened edge) for the last 4 in (10 cm) on the upper, otherwise blunt side of the blade. The steel hilt has a cap pommel, a wooden grip and two shell guards, encrusted in silver dots within a trellis pattern.

Date: c.1650
Origin: England (hilt)
GERMANY (blade)
Weight: 1½ lb (0.73 kg)
Length: 28½ in (72.5 cm)

Boar Sword

Boars were one of the more popular animals for the serious hunter, not least because they could fight back and had dangerous tusks. Boars were traditionally hunted with spears, but in the late 15th century a specialist sword came into use, featuring a stiff blade with a transverse bar.

Date: c.1550
Origin: Europe
Weight: 4¼ lb (1.98 kg)
Length: 51½ in (131 cm)

Hunting Hanger

Manufactured in England, but using a German blade, the hilt of this sword is made from cow horn and features a cruciform hilt and “beak”-shaped pommel. The piqué decoration takes the form of an inlay of white metal studs (either silver or pewter) and stag horn and ebony roundels.

Date: 1647
Origin: England (hilt)
Germany (blade)
Weight: 2½ lb (0.86 kg)
Length: 31 in (78½ cm)

Straight Hanger

This short hunting sword from the late 18th century is of a more decorative than functional design. The brass guard and pommel are complemented by a straight, finely engraved, single-edged blade.

Date: c.1780
Origin: France
Weight: 2 lb (0.86 kg)
Length: 29½ in (75 cm)
HUNTING TROUSSE

HUNTING IN THE MEDIEVAL and Renaissance period was seen both as a means of putting meat on the table and as training for war. Preparatory to setting out on the chase, the huntsman would assemble a trousse; a set of carving and eating tools contained within a sheath. This would typically contain miniature saws, small cleavers, and carving knives that were used for killing, skinning, jointing, serving, and finally eating the animal. The German hunting tradition produced many fine examples of hunting weapons; the sword and cleaver displayed here are a matched set that would have been used by a Saxon huntsman in the late 17th century.

HUNTING SWORD
Relatively long for a hunting sword, this weapon features an interesting guard that comprises straight quillons combined with S-shaped quillons, the lower one forming a simple knuckle guard. All four are decorated with leaf-shaped finials.

DATE 1662
ORIGIN GERMANY
WEIGHT 12LB (2.8KG)
LENGTH 35.2IN (90CM)

HUNTING CLEAVER
While the sword delivered the coup de grace to the wounded animal, the cleaver was used to disembowel the carcass. This sharp, heavy blade would have little trouble in cutting through animal joints, including those from larger beasts such as boar and deer.

DATE C.1662
ORIGIN GERMANY
WEIGHT 23/4LB (1KG)
LENGTH 18IN (46CM)

TROUSSE SCABBARD
Made of leather to hold the thick-bladed cleaver, this scabbard also contains five meat-trimming utensils, including a carving knife (below).

STAG HORN GRIP decorated with brass studs
KNUCKLE GUARD
LEAF-SHAPED FINIAL
STRAIGHT QUILLON
CROSS-GUARD
MAKER’S MARK
CARVING KNIFE

INITIALS REFER TO THE OWNER JOHN-GEORGE II

116–117 EUROPEAN HUNTING SWORDS
Single-edged blade with narrow fuller extending most of its length.

Fuller running down length of blade.

Forward-facing S-shaped quillon.

Maker’s mark.

Sword scabbard and two small knives.

The sword’s leather scabbard has a pouch containing two small knives and the bodkin. The latter is a tool for making holes; it also has a file for sharpening knives.

Sharp blade for trimming meat.

File for sharpening knives.

Fuller running down length of blade.

Heavy single-edged blade.

Bodkin.
JAPANESE SWORD BLADES are considered among the finest ever made. Their success was due to the combination of a hard cutting edge with a softer, resilient core and back. After a complex process creating a soft core enfolded in hard outer layers of steel, the swordsmith covered the blade in clay, leaving only a thin layer over what was to become the cutting edge. During quenching the edge cools rapidly, becoming very hard, while the back cools more slowly, and softens. The mountings for blades developed their own aesthetic finesse. For example, in the 15th century, the manufacture of tsuka (guards) became a separate profession, and these are now collectors’ items in their own right.

SAMURAI RULER
This print, entitled Shizu Peak Moon, shows the great Japanese warlord Toyotomi Hideyoshi (1536–98) blowing his war trumpet at dawn before the famous victory over Shibata Katsuie at Shizugatake in 1583, which made him undisputed ruler of Japan. Hideyoshi has a tachi and a tanto tied into his belt or obi.
A wakazashi is a sword with a blade 30–60 cm (12–24 in) long. Japanese blades are also differentiated by details of shape and by their hamon—the line left between the areas of the blade covered and uncovered during the tempering process. There are various patterns of hamon, some associated with specific swordsmiths. This blade was made by Seshu ju Nagatsuna.

WAKAZASHI FROM A DAISHO

The custom for a samurai to wear two swords, a long katana and a shorter wakazashi, was established in the 16th century. In the Edo period (1603–1876) samurai sometimes wore a wakazashi and a katana with matching mountings on hilts and scabbards, a combination known as a daisho. This wakazashi forms a daisho with the katana below.

<table>
<thead>
<tr>
<th>Date</th>
<th>18th century</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Japan</td>
</tr>
<tr>
<td>Weight</td>
<td>1½ lb (0.68 kg)</td>
</tr>
<tr>
<td>Length</td>
<td>27¾ in (69.8 cm)</td>
</tr>
</tbody>
</table>

SHEATHED KATANA

This katana forms a daisho in combination with the matching wakazashi above. In the Edo period, the longer sword was exclusively worn by samurai, whereas merchants and townspeople were allowed to carry a wakazashi. In combat a samurai typically held the katana in a two-handed grip, for which the tsuka (handle) allows plenty of room.

<table>
<thead>
<tr>
<th>Date</th>
<th>18th century</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Japan</td>
</tr>
<tr>
<td>Weight</td>
<td>1½ lb (0.68 kg)</td>
</tr>
<tr>
<td>Length</td>
<td>27¾ in (69.8 cm)</td>
</tr>
</tbody>
</table>

WAKAZASHI SWORD AND SCABBARD

A wakazashi is a sword with a blade 30–60 cm (12–24 in) long. Japanese blades are also differentiated by details of shape and by their hamon—the line left between the areas of the blade covered and uncovered during the tempering process. There are various patterns of hamon, some associated with specific swordsmiths. This blade was made by Seshu ju Nagatsuna.
JAPANESE SAMURAI SWORDS

WAKAZASHI AND SCABBARD
The wakazashi was a samurai’s constant companion, worn from waking until sleeping, and even kept nearby during the night. As well as serving as an additional fighting sword to the katana and as, in effect, a side- arm, it was often the weapon used by samurai to perform ritual suicide (seppuku).

<table>
<thead>
<tr>
<th>Date</th>
<th>17th Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Japan</td>
</tr>
<tr>
<td>Weight</td>
<td>1 lb (0.42 kg)</td>
</tr>
<tr>
<td>Length</td>
<td>19 in (48.5 cm)</td>
</tr>
</tbody>
</table>

This is a lavishly mounted reproduction wakazashi. The real thing would almost certainly have been worn on ceremonial occasions as a display of status. The sides of the scabbard carry the katagana (knife) and kogai (hair-arranging implement) associated with the wakazashi.

TACHI IN GOLD SCABBARD
The blade of a tachi was traditionally over 24 in (60 cm) in length, although shorter than the nodachi field sword, which was worn slung over a samurai’s shoulder. Tachi hilts were fitted with a traditionally shaped kashira that wrapped around the end.

<table>
<thead>
<tr>
<th>Date</th>
<th>Late 18th Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Japan</td>
</tr>
<tr>
<td>Weight</td>
<td>1 1/2 lb (0.68 kg)</td>
</tr>
<tr>
<td>Length</td>
<td>28 1/4 in (71.75 cm)</td>
</tr>
</tbody>
</table>

The blade of a tachi was traditionally over 24 in (60 cm) in length, although shorter than the nodachi field sword, which was worn slung over a samurai’s shoulder. Tachi hilts were fitted with a traditionally shaped kashira that wrapped around the end.

ORNATE WAKAZASHI
This is a lavishly mounted reproduction wakazashi. The real thing would almost certainly have been worn on ceremonial occasions as a display of status. The sides of the scabbard carry the katagana (knife) and kogai (hair-arranging implement) associated with the wakazashi.

<table>
<thead>
<tr>
<th>Date</th>
<th>20th Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Japan</td>
</tr>
<tr>
<td>Weight</td>
<td>1 lb (0.42 kg)</td>
</tr>
<tr>
<td>Length</td>
<td>20 in (50 cm)</td>
</tr>
</tbody>
</table>

The blade of a tachi was traditionally over 24 in (60 cm) in length, although shorter than the nodachi field sword, which was worn slung over a samurai’s shoulder. Tachi hilts were fitted with a traditionally shaped kashira that wrapped around the end.

Kashira (pommel)
Silk braid
Menuki (hilt ornament)
Rayskin
Ornate lacquered scabbard
Mekugi joins hilt to tang of blade
Pocket for katagana
Sageo (cord)
During the period of militarism in the 1930s, the Japanese adopted a style of sword for army officers based on the traditional tachi. Most were fitted with a mass-produced blade, but the mount is capable of being fitted to a traditional blade.

GUNTO IN SCABBARD

DATE 1933
ORIGIN JAPAN
WEIGHT 1½ Lb (0.72 kg)
LENGTH 27 in (68.9 cm)
WAKAZASHI SWORD

THE HILT AND GUARD of this Japanese short sword, or *wakazashi*, are of a style popular in the Edo period (1603–1876). It might have been worn by a samurai when in civilian dress, as an accompaniment to his long sword (*katana*), or on its own by rich merchants or townsmen. When indoors, a samurai would leave the long sword on a rack by the door, but would still wear the *wakazashi*. The mounting (hilt and guard) was a separate item to the blade. A well-off individual might have several mountings for a single blade, choosing the most suitable style for a given occasion. A lavish mounting was a visible symbol of the wearer’s wealth.

SUNAGI
When it was not fitted on a blade, the mounting of the sword would be assembled on a wooden copy of a blade and tang called a *sunagi*. Separated from its mounting, the blade was stored in a wooden scabbard with a plain wood grip called a *shirasaya*.

BLADE
The blade was the heart of the sword. Making its hard, sharp edge and softer, resilient core and back was a complex, skilled operation. The tang was often marked with the swordsmith’s signature; this blade is signed by Tadahiro of Hizen province on Kyushu island.

TSUKA
The hilt, or *tsuka*, was made of magnolia wood. It was grooved on the inside to fit exactly the tapering shape of the tang. The rayskin covering was valuable, hence perhaps the lozenge openings in the silk braid that allow it to be seen. The *menuki* ornaments have the practical function of helping to fill the hand gripping the sword.

TSUBA AND SEPPA
The metal guard, or *tsuba*, had a central hole for the tang, flanked by holes for the *kogatana* and *kogai*. Copper spacers (seppa) fitted on each side of the guard. *Tsuba* were decorated with gold or silver inlay.

MEKUGI
The *mekugi* was a small peg that passed through a hole in the hilt and a corresponding hole in the tang of the blade. It thus fixed the hilt to the tang. The *mekugi* was usually made of bamboo, but occasionally of horn or ivory.

HABAKI
The *habaki*, a part of the blade rather than the mounting, slid over the tang and butted against the blade notches.

DATE

<table>
<thead>
<tr>
<th>DATE</th>
<th>17TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>JAPAN</td>
</tr>
<tr>
<td>BLADE WEIGHT</td>
<td>1 lb (0.49 kg)</td>
</tr>
<tr>
<td>BLADE LENGTH</td>
<td>21 in (53.4 cm)</td>
</tr>
</tbody>
</table>

Kogatana (small blade)

The knife often carried in a pocket on the wakazashi scabbard was known either as a kogatana, after its blade, or as a kozuka, after its hilt. It was an all-purpose implement, more likely to be used as a paper knife than as a weapon.

Kogai (hair implement)

The kogai, often slipped into a pocket on the wakazashi scabbard, was primarily an implement employed in arranging a samurai’s hair. A knob on the end of the handle was used to clean out ear wax.

Saya (scabbard)

Like the hilt, the saya (scabbard) was made of magnolia wood. It was lacquered to protect it from the weather. The sageo, a length of strong braid, attached the scabbard to the owner’s belt. Pockets on opposite faces of the scabbard held a small knife (kogatana) and an implement known as a kogai.

Sageo (cord for tying scabbard to belt)

Sageo (cord for tying scabbard to belt)

Ear cleaner

Handle decoration matches kozuka

Thin end inserted into hair

Kissaki (point)

Hamon (temper line)

Shinogi (blade ridge)

Yakiba (hardened edge)

Tsuka (hilt)

Tsuba (handguard)

Kogai (hair implement)

Kogatana (small blade)

Kissaki (point)

Sunagi (wooden copy of blade)
ORIGINALLY FIGHTING in the service of the emperor or nobles, by the 12th century, the samurai had emerged as a warrior elite, dominating Japanese society. The shogunate, established in 1185, made the samurai rulers of Japan, with the emperor as a figurehead. Centuries of civil war took place between samurai clans and daimyo (warlords) until pacification under the Tokugawa shogunate in the 1600s reduced the clans to redundancy—a military elite with no wars to fight.

Evolving warriors

The early samurai were, above all, archers. It was not until the 13th century that the sword gained ascendancy over the bow as a samurai weapon. Early samurai warfare was often individualistic and ritualized. When battle lines were drawn, leading warriors would challenge prominent enemies to combat with long, florid speeches, and then gallop forward shooting arrows. It was warfare largely conditioned by the fact that, with the exception of two brief Mongol landings in 1274 and 1281, the medieval samurai fought only one another. Along with ritualized combat went ritualized death, as the tradition developed of defeated samurai committing seppuku (ritual suicide) by hana-iri (the belly-cut). The concept of an honorable death was given higher value than victory in battle.

In the Sengoku period, from the 1460s to 1615, samurai warfare became more practical, organized, and varied. As constant warfare raged between the daimyo, the samurai fought in large armies on foot or in the saddle, supported by disciplined bodies of infantry, the ashigaru, drawn from the common people. The samurai completely abandoned the bow, which became an ashigaru weapon, relying on their swords and long spears.

MINAMOTO YORIMASA

Minamoto Yorimasa is credited with establishing the pattern for samurai ritual suicide. He was a veteran in his 70s when, in 1180, he led the Minamoto clan against the Taira at the outset of the Gempei Wars. Defeated at the battle of Uji, Yorimasa retreated to a temple, where he wrote an elegant poem on the back of a fan before cutting open his abdomen with a dagger.
The samurai completely abandoned the bow, which became an *ashigaru* weapon, relying instead on their swords and long spears. Their battlefield dominance was challenged by the introduction of firearms—the great general Oda Nobunaga equipped his *ashigaru* with arquebuses to devastating effect at the battle of Nagashino in 1575. But the samurai remained elite forces and their professionalization in the Sengoku period did not preclude personal duels and legendary feats of individual swordplay. Many of these were attributed to *ronin*, wandering masterless samurai whose instruction manual *The Book of Five Rings* helped pass on the mystique of samurai swordsmanship to later generations.

After the definitive victory of the Tokugawa clan established a durable peace, the samurai remained a privileged class with the exclusive right to bear arms. It was at this time that the principles of samurai behavior were formalized into the chivalric *bushido* code, stressing loyalty as the supreme virtue and sacrificial death as the highest fulfilment of life. The samurai class was formally abolished in 1876 after the Meiji Restoration.

Samurai Torii Mototada, at the Siege of Fushimi Castle, 1600

"It is not the way of the warrior to be shamed and avoid death... I will hold off the forces of the entire country here and die a resplendent death."

Tools of Combat

- Tachi sword and scabbard
- Wakazashi dagger and sheath
- Late samurai spear

Clan Battle

Armies of the Minamoto and Taira clans clash with swords in one of the battles of the Gempei Wars (1180–85), the conflict that established the Minamoto shogunate.
INDIAN AND SRI LANKAN SWORDS

The establishment of the Mughal Empire in northern India in the 16th century brought with it the fine curved swords found through most of the Islamic world. These talwars and shamshirs were superb cutting instruments that achieved near-perfection of form and function. Although many Hindu princes adopted the talwar, the traditional straight-bladed Hindu khanda continued to be made. By the 18th century, many sword blades were being imported from Europe, where manufacturers produced to Indian designs.

KHANDA

The straight khanda is the traditional sword of Hindu India. This example, made under the influence of the Mughal Empire, has a hilt that is of Indo-Muslim design. Its decoration includes the repeated image of an eagle.

- **DATE**: 1632–33
- **ORIGIN**: MUGHAL INDIA
- **WEIGHT**: 2¼ lb (1.25 kg)
- **LENGTH**: 35 in (89 cm)

TALWAR

The talwar, of Persian origin, was the quintessential sword of Mughal India. Many were works of outstanding craftsmanship. This talwar has a more shallowly curved blade than those produced later in the Mughal period.

- **DATE**: EARLY 17TH CENTURY
- **ORIGIN**: MUGHAL INDIA
- **WEIGHT**: 2½ lb (1.04 kg)
- **LENGTH**: 37¾ in (95.7 cm)

SHAMSHIR

The shamshir is the sword known to Europeans as the scimitar. It was introduced to India in the 16th century from Persia. This example is typical of Persian production, with its deeply curved, single-edged, tapering blade. In combat, it was superbly suited to slashing, but less effective for thrusting.

- **DATE**: EARLY 19TH CENTURY
- **ORIGIN**: LUCKNOW, INDIA
- **WEIGHT**: 2 lb (0.86 kg)
- **LENGTH**: 36½ in (93 cm)

KASTANE

The kastane, the characteristic sword of Sri Lanka, had a short, curved blade, usually imported, and a hilt carved with fantastical decorations. Its value as a work of craftsmanship equaled its effectiveness as a weapon. The example shown here dates from the time of the Portuguese occupation of Sri Lanka.

- **DATE**: 17TH CENTURY
- **ORIGIN**: SRI LANKA
- **WEIGHT**: 1¼ lb (0.55 kg)
- **LENGTH**: 36¼ in (92 cm)

AYUDHA KATTI
Indigenous to Mysore, Kurg, and the Malabar coast, the ayudha katti developed from an implement used to cut through dense undergrowth. Its blade, like that of the Turkish yataghan and northern Indian sosun pattah, is related to the Ancient Greek kopis blade.

DATE 18TH CENTURY
ORIGIN KURG, INDIA
WEIGHT 2½ LB (1.15 KG)
LENGTH 23¾ IN (59.3 CM)

TALWAR
This sword was in use in Mysore, southern India, at the time of the wars between the British East India Company and Mysore’s ruler, Tipu Sultan. The deeply curved blade is in a traditional Indian style.

DATE LATE 18TH CENTURY
ORIGIN MYSSORE, INDIA
WEIGHT 3 LB (1.38 KG)
LENGTH 34¾ IN (88.3 CM)

TALWAR
Probably made in Lahore, in what is now Pakistan, this talwar with a Persian blade bears a bilingual inscription in Hindi and Urdu inside the knucklebow. The hilt is decorated with koftgari—steel inlaid with gold—which was a form of ornamentation found on many Indian swords.

DATE 1801–02
ORIGIN LAHORE, INDIA
WEIGHT 2½ LB (0.91 KG)
LENGTH 23½ IN (59.3 CM)

MALIBAR COAST SWORD
This straight, double-edged sword from southern India has a ribbed iron grip, and a U-shaped guard and pommel-plate. The blade broadens where it is riveted to langets on each face.

DATE 18TH CENTURY
ORIGIN MALIBAR, INDIA
WEIGHT 2½ LB (0.65 KG)
LENGTH 36¾ IN (86.3 CM)
THE DAGGER’S PRIME ROLE as a weapon of self-defense continued into the 16th and 17th centuries, although some new variants evolved, including the left-hand, or maingauche dagger. As its name suggests, this dagger was held in the left hand and complemented a sword or rapier held in the right. The left-hand dagger parried thrusts and cuts from the opponent’s blade, and acted as an offensive weapon in its own right. The bayonet, another modification of the dagger, continues in use to this day.

ITALIAN MAINGAUCHE
During the 17th century, the left-hand dagger fell out of fashion, except in Spain and southern Italy where it developed into the highly specialized weapon depicted here, complete with wide knuckle guard and quillons.

DATE c.1650
ORIGIN NAPLES, ITALY
LENGTH 22 in (56 cm)

QUILLON DAGGER
This English left-hand dagger features a scallop-shell motif that is expressed in the iron pommel, shell guard, and quillon finials. A dagger such as this was used for parrying an opponent’s blade and also for close combat.

DATE LATE 16TH CENTURY
ORIGIN ENGLAND
LENGTH 15¼ in (38.7 cm)

QUILLON DAGGER
The forward-facing quillons of a left-hand dagger were intended to hold an opponent’s blade so that it could be deflected away safely.

DATE c.1600
ORIGIN EUROPE
LENGTH 16½ in (42 cm)

QUILLON DAGGER
The forward-facing quillons of a left-hand dagger were intended to hold an opponent’s blade so that it could be deflected away safely.

DATE c.1600
ORIGIN EUROPE
LENGTH 16½ in (42 cm)
DUDGEON DAGGER
A descendent of the medieval ballock dagger, the dudgeon dagger became increasingly Scottish in character toward the end of the 16th century, defined by its wooden handle and the panels of foliate decoration on the blade. The main scabbard often included a smaller scabbard for holding a by-knife.

DATE 1603
ORIGIN SCOTLAND
LENGTH 14 IN (35.4 CM)

HIGHLAND DIRK
In the 16th and 17th centuries, Scottish Highlanders armed themselves with long, unadorned daggers called dirks. Like the dudgeon, the dirk evolved from the ballock knife. Toward the end of the 18th century, the dirk became increasingly ceremonial in form. It was often decorated with silver pommel caps and ferrules.

DATE EARLY 18TH CENTURY
ORIGIN SCOTLAND
LENGTH 12–18 IN (30–45 CM)

QUILLON DAGGER
The forward-facing quillons of this weapon are typical of a left-handed dagger. Other features include a flat, vat-shaped pommel with vertical fullers, a wooden grip bound with iron wire, and a ring jutting out from the cross-guard to protect the hand.

DATE LATE 16TH CENTURY
ORIGIN EUROPE
LENGTH 19 IN (48.1 CM)

STILETTO
Typically known as “the assassin’s weapon,” the stiletto was popular in Italy during the 16th and 17th centuries. Being long and thin, it was easy to conceal, and its triangular or four-sided blade could penetrate easily and deeply into the human body. The narrow point could even pierce mail and pass through gaps in plate armor.

DATE LATE 16TH CENTURY
ORIGIN ITALY
LENGTH 11½ IN (30 CM)
EUROPEAN DAGGERS

SWORD-BREAKER
One of the more extreme left-hand daggers was the so-called sword-breaker. The comb-shaped steel blade was designed to trap an opponent’s sword, and with a flick of the wrist pull it from his grasp or even break the blade.

- **DATE:** c. 1660
- **ORIGIN:** Italy
- **WEIGHT:** 1 3/4 lb (0.81 kg)
- **LENGTH:** 20 in (50.8 cm)

PRESENTATION DAGGER
This extensively decorated dress dagger was presented to Henri IV, King of France, by the city of Paris to commemorate his marriage to Marie de Medici. The entire dagger is lavishly covered in oval discs of mother-of-pearl, with gold inlay.

- **DATE:** 1598–1600
- **ORIGIN:** France
- **WEIGHT:** 1 3/4 lb (0.81 kg)
- **LENGTH:** 20 in (50.8 cm)

QUILLON DAGGER
This German dagger has straight quillons and a serrated blade with pierced fullers. It was used for parrying an opponent’s blade.

- **DATE:** c. 1600
- **ORIGIN:** Germany
- **WEIGHT:** 1 3/4 lb (0.75 kg)
- **LENGTH:** 19 1/2 in (50 cm)
QUILLON DAGGER
This weapon follows the conventions of a left-hand dagger: medium-length blade, wide and forward-facing quillons, and a ring guard to protect the hand.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>GERMANY</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>¾ lb (0.37 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>19 in (48.2 cm)</td>
</tr>
</tbody>
</table>

QUILLON DAGGER

GUNNER’S STILETTO
This specialist version of the stiletto dagger was used by artillerymen for a variety of battlefield tasks. These included measuring the bore of the gun and the size of the shot, tearing open cloth or paper cartridges, piercing the cartridge through the touch-hole, and cleaning out the touch-hole after firing.

<table>
<thead>
<tr>
<th>DATE</th>
<th>18TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ITALY</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>¾ lb (0.155 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>13½ in (34 cm)</td>
</tr>
</tbody>
</table>

PLUG BAYONET
By inserting a knife handle into the muzzle of the gun, the infantryman was able to act as a pikeman against hostile cavalry after firing his musket. Plug bayonets did, of course, prevent the musket from being reloaded when fixed, and were later replaced by the socket bayonet.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1665–85</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>¾ lb (0.37 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>19 in (48.2 cm)</td>
</tr>
</tbody>
</table>

SCABBARD TO PLUG BAYONET
This wooden scabbard is covered with parchment and tooled with herringbone and checkered ornamentation. On the front is a pocket for a small knife, and at the back are two lugs for suspension.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1665–85</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>EUROPE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>½ oz (15 g)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>13 in (33.3 cm)</td>
</tr>
</tbody>
</table>
From the 16th to the early 18th centuries, when most of India was ruled by the Mughal Empire, the daggers of the Indian subcontinent were notable for their high-quality metalwork, ornamentation, and distinctive forms. Some daggers, such as the kard, were Islamic imports; others, including the katar, had specifically Indian roots. Daggers were worn by Indian princes and nobles for self-defense, for hunting, and for display. In combat, they were essential close-quarters weapons, capable of piercing the mail armor worn by Indian warriors.

Indian Kard

Of Persian origin, the straight-bladed, single-edged kard was in use across much of the Islamic world by the 18th century, from Ottoman Turkey to Mughal India. It was mostly used as a stabbing weapon. This example bears the name of its maker, Mohammed Baqir.

- **Date**: 1710–11
- **Origin**: India
- **Weight**: ¾ lb (0.34 kg)
- **Length**: 15 ¼ in (38.5 cm)

Indian Katar

To use this north Indian dagger, the warrior grasped the cross-grips, making a fist, so that the sidebars of the hilt lay on either side of his hand and forearm. With the blade horizontal, he then stabbed with a punching motion. The katar's form changed little over hundreds of years; this example is from the 19th century.

- **Date**: Early 19th century
- **Origin**: India
- **Weight**: 1 lb (0.5 kg)
- **Length**: 16 ½ in (42.1 cm)

Indian Katar

Decorated with amusingly naive animal figures, this katar and its scabbard constitute a luxury item designed to show off its owner's wealth. Although ornate, it was nevertheless an effective weapon in close combat. The double-edged blade could penetrate mail armor with a punching stab.

- **Date**: 1759–60
- **Origin**: India
- **Weight**: 1 lb (0.5 kg)
- **Length**: 17 ½ in (44.6 cm)
SRI LANKAN PIHA KAETTA
The broad-bladed, single-edged knife known as a piha kaetta is native to the island of Sri Lanka. Many were produced by the royal workshops. With lavish use of silver on both knife and scabbard, this fine example probably belonged to a courtier, noble, or high-ranking official.

<table>
<thead>
<tr>
<th>DATE</th>
<th>18TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>SRI LANKA</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>½ LB (0.25 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>14¾ IN (37.5 CM)</td>
</tr>
</tbody>
</table>

BHUTANESE DAGGER
This straight-bladed dagger originated from the remote Himalayan kingdom of Bhutan, which has borders with Nepal and India. The hilt is chiseled with various Chinese symbols of good luck on a background of tendrils. The wooden scabbard has a border and chape of gilded iron.

<table>
<thead>
<tr>
<th>DATE</th>
<th>18TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>BHUTAN</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>¾ LB (0.35 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>17 IN (43.4 CM)</td>
</tr>
</tbody>
</table>

INDIAN BICH’HWA
Named after an Indian word for scorpion, and derived from the shape of an animal horn, the bich’hwa was a small but deadly dagger. In this example, the iron hilt, decorated in silver koftgari (form), is in the form of a flattened loop, attached to the blade by two rivets. The recurved blade is reinforced at the point to increase its penetration.

<table>
<thead>
<tr>
<th>DATE</th>
<th>18TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>INDIA</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>½ LB (0.21 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>10¾ IN (27.2 CM)</td>
</tr>
</tbody>
</table>

INDIAN BICH’HWA
This bich’hwa has a cast-brass hilt decorated with a fanciful monster’s head. The knucklebow is designed so that the beast appears to be eating its own tail. The narrow, double-curved blade has a low medial ridge on both sides. The crudely cut marks on the quillon block may be letters.

<table>
<thead>
<tr>
<th>DATE</th>
<th>18TH CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>INDIA</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>½ LB (0.24 KG)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>11¾ IN (29.8 CM)</td>
</tr>
</tbody>
</table>
SINGLE-HANDED STAFF weapons were primarily used by horsemen; their role was to fracture plate armor or do internal damage to an opponent. These were simple, brutal weapons, although the pick of the war hammer was useful in penetrating gaps in armor. Despite their clublike nature, many were carried by men of high birth and, as a result, were finely crafted with elaborate decoration.

HORSEMAN’S HAMMER
The small, four-sided hammer is counterbalanced by a longer pick or spike that is also four-sided. The square-shaped socket extends into four langets that run down the sides of the wooden shaft. This war hammer would have been part of the armament of a cavalryman.

DATE 16TH CENTURY
ORIGIN GERMANY
WEIGHT 1 3/4 LB (0.8 KG)
LENGTH 21.5 IN (54.6 CM)

Pick or spike
Socket with descending langets
Four-sided hammer
Shaped steel flange
Langet to protect shaft
Decorated steel shaft
MACE WITH FLANGED HEAD
From the late 15th century onward, most maces were made entirely from steel, with the head constructed from a number of flanges—seven was a common number—shaped with complex inundations and projections. Each flange would be brazed around a central tubular core.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>16TH CENTURY</td>
<td>EUROPE</td>
<td>3½ lb (1.56 kg)</td>
<td>24¾ in (63 cm)</td>
</tr>
</tbody>
</table>

DECORATED MACE
This flanged mace is decorated with a foliate pattern along the length of the shaft and is topped by an upper flanial (or terminal) in the shape of an acorn. The hole visible halfway along the steel shaft is for a wrist loop, especially important for mounted soldiers, so that if the mace fell out of the hand, it could easily be retrieved.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>16TH CENTURY</td>
<td>EUROPE</td>
<td>3½ lb (1.56 kg)</td>
<td>25 in (63 cm)</td>
</tr>
</tbody>
</table>

MACE WITH CONICAL FINIAL
Made from steel, this mace has a conical finial fitted above seven flanges, each of which is drawn to a concave-sided point. The shaft is decorated with scrolling vine foliage in shallow relief. The flanged mace was the most common type of mace in use during the 16th century.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>16TH CENTURY</td>
<td>EUROPE</td>
<td>1 lb ¾ (0.82 kg)</td>
<td>8½ in (21.5 cm)</td>
</tr>
</tbody>
</table>

HORSEMAN’S HAMMER
Popular with cavalrymen for smashing armor plate, war hammers were also used by those fighting on foot in tournaments. During the 16th century, the pick was increased in size and the hammer correspondingly reduced, suggesting greater primacy for the pick in combat.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>16TH CENTURY</td>
<td>EUROPE</td>
<td>¾ lb (0.82 kg)</td>
<td>c.23½ in (60 cm)</td>
</tr>
</tbody>
</table>

MACE WITH INTERLACE HEAD
This unusual mace from Egypt features an interlace design on a bulbous head and is signed, in gold, by its maker. Maces increasingly became ceremonial objects in the 16th and 17th centuries—the British House of Commons continues to use a mace as a symbol of its authority.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>15TH CENTURY</td>
<td>EGYPT</td>
<td>3½ lb (1.56 kg)</td>
<td>c.23½ in (60 cm)</td>
</tr>
</tbody>
</table>
The Habsburg defeat of France at the Battle of Pavia in 1525, is commemorated here in this contemporary tapestry. It was a battle in which the Imperial pikemen and arquebusiers of the Italian army proved effective against the advance of the armored French knights.
European Two-Handed Staff Weapons

Staff weapons, especially when combined with bows, had proved highly effective against cavalry during the Middle Ages. In the 16th century, they continued to be the foot soldier’s most effective weapon, although the bow was superseded by the musket. Swiss mercenaries popularized the halberd, which, in the hands of a strong man, was capable of smashing through plate armor: as was the poleax, the weapon favored by armored knights when fighting on foot. By the early 17th century, these weapons were being replaced by the pike, and used in a ceremonial capacity.

Poleax
Popular in the 15th and 16th centuries with knights fighting on foot, the poleax comprised an axhead balanced by a hammer or fluke that was topped by a steel spike—all useful elements in penetrating plate armor. The weapon’s name derives from the old English name for head, “poll.”

DATE	16TH CENTURY
ORIGIN	GERMANY
LENGTH	11 IN (28 CM)

Decorated Glaive
The glaive was an infantry weapon with a large blade shaped like a kitchen knife. This is a particularly splendid example of a skilfully etched blade showing the firesteels of Burgundy surmounted by a crown and date. The intertwined double “M” represents the names Maximilian and Maria.

DATE	1564
ORIGIN	GERMANY
LENGTH	27 1/2 IN (70 CM)

Bill
Employed throughout Europe, the bill was especially popular in England, where it continued to be used well into the 17th century. The various spikes and flukes made it an effective parrying weapon. This example has two triangular spikes and a short triangular fluke.

DATE	16TH CENTURY
ORIGIN	ENGLAND
LENGTH	19 1/4 IN (49 CM)
MORNING STAR
A peasant weapon common in Europe, the morning star consists of a head of wood or iron studded spikes. It was cheap and easy to manufacture, and useful against opponents without armor. Also known as a “holy water sprinkler,” most such weapons have a more bulbous head than this example.

DATE 17TH CENTURY
ORIGIN EUROPE
LENGTH 23½ IN (60 CM)

HALBERD
Originating in Switzerland, the halberd was used as an infantry weapon in much of Europe by the 16th century. A cleaverlike blade is backed by a lug or fluke. This Italian halberd is missing its langets and is distinguished by a particularly long and narrow spike.

DATE c.1570–80
ORIGIN ITALY
LENGTH 22 IN (56 CM)

BARDICHE
A weapon popular in Eastern Europe, the bardiche has a distinctive enlarged blade attached to the shaft through a socket, as well as at the bottom of the blade. This weapon has an elaborately fashioned, curved blade that suggests a ceremonial role.

DATE c.16TH CENTURY
ORIGIN RUSSIA
LENGTH 30¾ IN (78 CM)

CEREMONIAL HALBERD
This finely crafted and elaborately decorated halberd—carried by the personal guard of the Elector of Saxony—is indicative of the movement of staff weapons away from the battlefield to the court, where they were used in a ceremonial capacity.

DATE c.1580–1620
ORIGIN GERMANY
WEIGHT 22½ IN (57 CM)
UNTIL THE 17TH CENTURY, the development of staff weapons in the Indian subcontinent was broadly similar to their evolution in Europe, although local Hindu traditions and the influence of Muslim invaders guaranteed that there were notable differences in design and decoration. Despite the adoption of Western-style firearms by Indian rulers, maces and axes remained in active use with Indian armies long after they had become obsolete in Europe, largely because Indian warriors continued to wear armor.

Indian and Sri Lankan Staff Weapons

Tubar
The saddle ax, or tabar, was a standard weapon of Indian armies. This example is from Sind, in what is now Pakistan. The curved cutting edge concentrated the weight of a blow at a narrow point of impact. Unscrewing the knop at the base of the weapon revealed a slim knife, 21¼ in (54 cm) long, concealed inside the hollow shaft.

Child’s Mace
With less than a tenth of the weight of a full-sized weapon and around a third of the length, this miniature mace was designed for use by a child. It may have been employed for early military training. The head has eight rounded flanges, and is topped by a small, ribbed knop.

Flanged Mace
This mace, or goriz, has a knuckle guard in the “Hindu basket” style, as often seen on khanda swords. The eight spiral flanges on the head are sharpened to a cutting edge. The flanges focused the impact of a blow from this heavy weapon, making it effective even against armor.

Spiked Mace
This mace resembles a more refined version of the “morning star” maces of 16th-century Europe. The grip of the spikes prevented curved armor from deflecting blows. With its fine decoration, this weapon was designed as much to show its owner’s wealth and status as it was for combat.
FLAIL WITH QUOITS
This flail, or cumberjung, was made in Gujarat when the area was under the rule of the Hindu Maratha Empire. The shaft was manipulated to send the sharp-edged quoits scything through the air. It was a fearsome weapon in close combat, but considerable skill was required to use it effectively.

DATE 18TH CENTURY
ORIGIN GUJARAT, INDIA
WEIGHT 2½ lb (1.05 kg)
LENGTH SHAFT: 18½ in (46.8 cm)

ELEPHANT GOAD
This elaborately decorated goad, or ankus, was used to train and control elephants by applying pressure to parts of their skin with the hook or spike. Elephants were commonly employed on Indian battlefields from ancient times up to the 19th century, so goads were often found in armories. In the heat of battle, they would presumably also have served as weapons.

DATE 18TH CENTURY
ORIGIN SRI LANKA
WEIGHT 3½ lb (1.7 kg)
LENGTH 36½ in (93 cm)
DURING THE COURSE OF the 16th century crossbows disappeared from European battlefields, supplanted by gunpowder weapons, but they continued to be widely employed for hunting and for shooting competitions. The use of spring steel for the lath became almost universal; steel bows were easier to make than composite bows and achieved impressive consistency. Built-in spanning levers allowed archers to dispense with the need to carry a cranequin or goatsfoot lever, while sights were added and the design of triggers much improved. Crossbows shooting stones or bullets instead of a bolt became popular for hunting birds and small game.

HUNTING CROSSBOW

Weapons for the leisure pursuits of the wealthy were often elaborately decorated. This bow bears two coats of arms. It would have been spanned using a goatsfoot lever or a cranequin.

- **DATE**: 1526
- **ORIGIN**: GERMANY
- **WEIGHT**: 6⅓ lb (2.98 kg)
- **LENGTH**: 25½ in (64.6 cm)

ITALIAN SPORTING BOW

This late 16th-century steel bow may have belonged to the Aldobrandini, one of Italy's great Renaissance families. It was designed to shoot stones or bullets. Carvings on the wooden tiller include a coat of arms and a seahorse.

- **DATE**: c.1600
- **ORIGIN**: ITALY
- **WEIGHT**: 2½ kg (5½ lb)
- **LENGTH**: 99.1 cm (39 in)

GERMAN STONE BOW

This stone-shooting bow has both a lath and tiller made of steel. Its butt shows the influence of firearms on crossbow design. A built-in spanning lever was raised to engage the bowstring and then pulled back manually to bend the bow.

- **DATE**: 18TH CENTURY
- **ORIGIN**: GERMANY
- **WEIGHT**: 4½ kg (9 lb)
- **LENGTH**: 105.4 cm (41½ in)
TRIGGER DETAIL
The long trigger underneath the tiller of a crossbow was usually pushed upward with the thumb, rotating the nut to release the bowstring. This trigger mechanism could impair accuracy by jolting the weapon as the bolt was shot. The tiller is inlaid with ivory plaques displaying exquisite Renaissance imagery.

ENGLISH BULLET BOW
This mid-18th-century crossbow has a built-in spanning lever and flip-up sights. The stone or bullet was placed in a pouch fixed between the two cords of a double bowstring, an arrangement that held the front of the pouch wide open so the missile could fly free.

DATE c.1750
ORIGIN ENGLAND
WEIGHT 5lb (2.5kg)
LENGTH 29in (73.8cm)
OFTEN SHOT FROM HORSEBACK, bows were central to Asian warfare. Although the Chinese were the inventors of the crossbow, laminated and composite bows predominated. Laminated bows were made from several layers of wood glued together. In composite bows, the layers were of different materials, usually horn, wood, and sinew. The strips of horn formed the belly of the bow, closest to the archer, with sinew used for the back and a wooden core sandwiched between the two. By exploiting the contrasting properties of these materials, bows of relatively small size achieved remarkable strength and power.

CHINESE COMPOSITE BOW
This is a typical Chinese-Mongolian composite bow made from horn, wood, and sinew. When the bow is unstrung, its limbs relax forward. Stringing the bow usually requires two people, one of whom hooks the bowstring in the nocks while the other pulls the limbs backward into the recurved shape. The Indian bow shown on the right illustrates how a recurved bow looks when strung.

JAPANESE PALANQUIN BOW
The Japanese bow—the original prime weapon of samurai warriors—was typically made from laminated wood, but this example is made of whalebone. Despite its length, similar to that of an English longbow, it was often shot from horseback. The grip was not central, but placed closer to the bottom of the bow. This example is a small palanquin bow intended for ceremonial use.

CHINESE BOWCASE AND QUIVER
This bowcase (gongdai) and quiver (jiantong) are made from leather covered with purple velvet, with added decorative leather shapes cut out on top. The bowcase is shaped to hold a composite bow. Folded layers of thick red felt inside the quiver would have helped to retain the arrows.
INDIAN COMPOSITE BOW

This bow from northern India is made from horn strips glued to a wooden core, the whole backed with sinew. Horn, which forms the belly of the bow, resists compression, whereas the sinew on the back of the bow is strong under tension. The deeply curved limbs have long, recurved ears.

DATE 18TH CENTURY
ORIGIN NORTHERN INDIA
WEIGHT 1 LB (0.55 KG)
LENGTH 37½ IN (95 CM) STRUNG

INNOVATION

The nock holding the bowstring was typically made from horn. The string itself is of silk with loops of sinew. As the bow is drawn, the rigid “ears” act as levers, making drawing easier. On release of the arrow, the inertia of the ears gives a final snap to the string as the arrow leaves the bow.

INNOVATION

Ear of bow
Grip painted green and gold

INNOVATION

Bamboo shaft
Cylindrical reed shaft
Triangular point

INNOVATION

Fletching

INNOVATION

Velvet quiver suspended by cords
Set of arrows

INNOVATION

Blunt, octagonal head
Flat-sided, triangular head
Armor-piercing head

INNOVATION

Triangular point
Cylindrical reed shaft

INNOVATION

INNOVATION
THE MATCHLOCK WAS AN EARLY firing mechanism, or “lock,” for hand-held guns. Pulling the trigger plunged a smouldering match into a pan containing a tiny gunpowder charge, or primer. The primer ignited, sending a flash through a small touch hole in the barrel wall to set off the main charge. The matchlock was far simpler than the wheellock, its contemporary, which ignited the primer with sparks struck from a piece of iron pyrites by a spinning wheel. Only with the development of the flintlock, which produced sparks by striking a flint against a steel plate, did the matchlock begin to decline in popularity.

PRUSSIAN RIFLED FLINTLOCK CARBINE
King Frederick William I of Prussia, who came to the throne in 1713, raised a standing army that amounted to four percent of the country’s adult male population. He established a state arsenal at Potsdam and among its early products were carbines like this, which were manufactured from 1722 to 1774. Ten men in each squadron of cuirassiers were issued with rifled weapons.

ENGLISH MATCHLOCK MUSKET
Muskets like this featured prominently in the English Civil War, from the first encounter between Royalists and Parliamentarians at Edgehill in 1642, to its conclusion at Worcester in 1651. Because matchlocks took so long to load, musketeers were extremely vulnerable, particularly to cavalry, and had to be protected by pikemen.
By the end of their period of dominance, the best matchlocks had acquired a simple sophistication, at least in their finish. They had also become much lighter, and thus were considerably easier to handle. A high-quality piece such as this would have been a prime contender for conversion into a snaphaunce or flintlock, had it not been preserved in a collection.

This modified version of the original Land-Pattern Musket, or “Brown Bess,” was issued in 1742. It had a new trigger guard, a more pronounced comb to the stock, and a bridge linking the flashpan with the screw that secured the combined striker and pan cover. This example by Tippin is a “sealed pattern,” meaning that it was retained in the Tower of London Armory as a model for other gunmakers producing this type of musket.

This unusual musket is fitted with both a flintlock and a matchlock mechanism. The matchlock pan is part of the top of the striking steel. The flintlock is operated by the trigger guard, while the operation of the matchlock is by means of the trigger.

During the Seven Years War, which spanned Europe, Asia, and America, the British Army’s dragoons—cavalry armed with sabers—were issued this carbine. It was a scaled-down version of the Long Land-Pattern Musket, with a shorter barrel and in a smaller caliber. In form, although not in size, all the carbine’s components are identical with those of the musket.
MATCHLOCK MUSKET

THE INVENTION OF THE MATCHLOCK hackenbüse, or “arquebus,” can not be dated precisely, but evidence points to it having taken place sometime around 1475, probably in Germany. Technically, matchlocks were superceded with the invention of the wheellock in the 16th century, but they continued to be employed until the end of the 17th century, largely due to their simplicity.

MATCHLOCK MUSKET
While the matchlock was a significant improvement over the hand-cannon, it was still a very clumsy weapon. Even in dry weather the match could be extinguished all too easily, and its glowing end was a giveaway at night. However, the best models were surprisingly accurate and were capable of killing a man at a hundred yards or more.

DATE MID-17TH CENTURY
ORIGIN UK
WEIGHT 13½lb (6.05kg)
BARREL 40½in (125¾cm)
CALIBER .75in

LEAD BALL
It was not until about 1600 that lead, with its low melting point and high specific gravity, became the universal material for bullets. Earlier, with armor still commonplace, iron balls had often been used.

MUSKET REST
The earliest military matchlocks were massive, and required the use of a rest. Of course, the rest itself had to be of sturdy design, and this increased the gunner’s load. By about 1650, guns had become light enough for rests to be dispensed with.

POWDER FLASK
The earliest powder flasks were fabricated from wood or leather. They often had a prickler attached for clearing the gun’s touch-hole, but there was no mechanism for measuring the charge.

Sling is decorative as well as functional

Plain spout without measuring device

Comb of stock assists in bringing shoulder to axis of recoil

Iron lock cover

Trigger guard

Trigger
In addition to carrying a powder flask, a musketeer might have worn a belt from which small flasks, each filled with a measured charge of powder, were suspended.
EUROPEAN HUNTING GUNS 1600 – 1700

HUNTING, BOTH FOR SPORT and for the pot, became far more predictable with the introduction of firearms, and by the early 17th century, the wheellock had become commonplace within the ranks of the landed gentry. Rifled wheellocks from this period were useful against even small game such as rabbits, but were slow to load and needed to be stripped for cleaning after around 30 rounds had been fired.

GERMAN WHEELLOCK
The wheellock was invented in Italy, but within half a century, fine specimens were being produced in Germany. This example has its serrated wheel mounted externally, to make it easier to clean, though the rest of the lockwork is protected within the stock.

- **DATE**: c.1640
- **ORIGIN**: Germany
- **WEIGHT**: 8½ lb (3.8 kg)
- **BARREL**: 34 in (86.4 cm)
- **CALIBER**: .65 in

ITALIAN WHEELLOCK
By the 17th century, the northern cities of Brescia and Bologna had long become the centers for the fabrication of wheellock guns in Italy. This example is by Lazarino Cominazzo of Brescia, who was better known for his pistols.

- **DATE**: c.1630
- **ORIGIN**: Italy
- **WEIGHT**: 4¼ lb (1.9 kg)
- **BARREL**: 31½ in (80 cm)
- **CALIBER**: .45 in

SWEDISH “BALTIC” FLINTLOCK
This early flintlock rifle, with a characteristic Baltic lock from the south of Sweden, has the distinctive “Goinge” type short butt stock reminiscent of weapons of an even earlier date. Compared with later examples, its simple lock, to a pattern devised in northern Germany, is crudely made.

- **DATE**: c.1650
- **ORIGIN**: Sweden
- **WEIGHT**: 7½ lb (3.28 kg)
- **BARREL**: 38½ in (98 cm)
- **CALIBER**: .6 in
ITALIAN REPEATING FLINTLOCK
Italian gunmaker Michele Lorenzoni lived in Florence from 1683–1733, and invented an early form of repeating breech-loading flintlock. Paired magazines, one for powder and the other for shot, were located in the butt stock, and the breech block was rotated for charging by means of a lever on the left side of the gun.

DATE: c.1690
ORIGIN: ITALY
WEIGHT: 8½ lb (3.95 kg)
BARREL: 35 in (89 cm)
CALIBER: .53 in

GERMAN WHEELLOCK
Wheellocks exist in three basic forms: fully enclosed; with the wheel exposed but with the rest of the lock enclosed; and with the entire mechanism exposed. The latter form, known as a “Tschinke,” from where it was devised, is more easily damaged but easier to clean and maintain. This example was made in Silesia, and its stock is inlaid with horn and mother-of-pearl.

DATE: c.1630
ORIGIN: GERMANY
WEIGHT: 7¼ lb (3.4 kg)
BARREL: 37 in (94 cm)
CALIBER: .33 in

SCOTTISH SNAPHAUNCE
The name snaphaunce derives from the Dutch schnapp-hahn, meaning “pecking hen,” which it was thought to resemble. It was the first attempt to simplify the wheellock’s method of striking sparks from a piece of iron pyrites. This superb example is attributed to Alison of Dundee, and was a gift from James to Louis XIII of France.

DATE: 1614
ORIGIN: SCOTLAND
WEIGHT: 4½ lb (2 kg)
BARREL: 38 in (96.5 cm)
CALIBER: .45 in

ENGLISH FLINTLOCK
Andrew Dolep was a Dutch gunmaker who settled in London and set up shop near Charing Cross. He produced this magnificent flintlock—its walnut stock extensively inlaid with silver wire—toward the end of his career. Dolep is credited with the design of the “Brown Bess” musket, which this gun resembles.

DATE: 1690
ORIGIN: ENGLAND
WEIGHT: 7 lb (3.2 kg)
BARREL: 96⅜ in (245 cm)
CALIBER: .75 in
THE GAP THAT HAD EXISTED between English gunmakers and their counterparts in Europe had largely disappeared by the start of the 18th century. The flintlock now predominated, except in southern Europe, where the more primitive miquelet lock was still widely used. While we see a more austere style, the remaining ornamentation became more sophisticated, with minimal ornate inlaying and emphasis placed on the natural qualities of the wood.

FLINTLOCK SPORT GUN

This full-stocked sport gun, attributed to John Shaw, shows considerable similarity to a military firearm of the same period. However, the attention that has been paid to the selection of the wood for its stock immediately sets it apart, as does the care that has been lavished on its finishing.

RUSSIAN FLINTLOCK

This beautifully decorated smooth-bore flintlock gun was made by Ivan Permjakov, one of the most accomplished Russian gunmakers. Although it was clearly intended as a sport gun, rather than a military weapon, it is believed to have been recovered from the field after the battle of the Alma River, which took place in 1854, during the Crimean War.
ENGLISH FLINTLOCK SPORT GUN
The gunmaker Benjamin Griffin worked in fashionable Bond Street in London from 1735 to 1770, and was joined in 1790 by his son Joseph. Both father and son were renowned for their excellent pistols and long guns, many of which were graced with ornate engraving to the metal parts, decorative brasswork, and silver-wire inlay.

<table>
<thead>
<tr>
<th>Date: c.1760</th>
<th>Origin: England</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight: 6 1/4 lb (2.84 kg)</td>
<td>Barrel: 36 in (91.4 cm)</td>
</tr>
<tr>
<td>Caliber: .68 in</td>
<td></td>
</tr>
</tbody>
</table>

DOUBLE-BARRELED FLINTLOCK SHOTGUN
This side-by-side double-barreled flintlock shotgun, attributed to Hadley, is typical of high-class fowling pieces of the latter part of the 18th century. Not only is its short stock silver mounted, but both its pans and its touch-holes are gold-plated to fend off corrosion.

<table>
<thead>
<tr>
<th>Date: c.1770</th>
<th>Origin: England</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight: 5 1/2 lb (2.55 kg)</td>
<td>Barrel: 36 1/2 in (92.2 cm)</td>
</tr>
<tr>
<td>Caliber: .6 in</td>
<td></td>
</tr>
</tbody>
</table>

SCOTTISH DOUBLE-BARRELED FLINTLOCK
By the beginning of the 19th century, the design of sport guns had already begun to diverge from that of military weapons, with shortened stocks becoming commonplace. This double-barreled piece is thought to have been made by Morris of Perth for Sir David Montcrieffe, a celebrated sportsman.

<table>
<thead>
<tr>
<th>Date: 1819</th>
<th>Origin: Scotland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight: 7 1/2 lb (3.4 kg)</td>
<td>Barrel: 30 in (76 cm)</td>
</tr>
<tr>
<td>Caliber: .68 in</td>
<td></td>
</tr>
</tbody>
</table>

ITALIAN MIQUELET SPORT GUN
The miquelet lock introduced the combined striker and pan cover, but used an external mainspring (unlike the later true flintlock, in which the mainspring was internal). This miquelet lock musket is something of an oddity. It was manufactured in Naples by Pacifico around 1775, but has what is clearly an English-made barrel dating from around the time of the Battle of Waterloo (1815).

<table>
<thead>
<tr>
<th>Date: c.1775</th>
<th>Origin: Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight: 8 1/4 lb (3.75 kg)</td>
<td>Barrel: 31 1/2 in (80 cm)</td>
</tr>
<tr>
<td>Caliber: .75 in</td>
<td></td>
</tr>
</tbody>
</table>
ASIAN MATCHLOCKS

SRI LANKAN MATCHLOCK

This massively stocked musket was made on the island of Sri Lanka, probably toward the end of the 17th century. Its surface is ornately carved. Had it not been so ornately decorated, it would probably have been discarded when the lock broke. Its lock is missing but was usually mounted on the left-hand side of the stock.

THE PORTUGUESE WERE THE FIRST EUROPEANS to reach the Indian subcontinent, in 1498, and 45 years later they arrived in Japan. They brought with them firearms in the shape of the matchlock musket. Accomplished armorers abounded in Asia, and indigenous craftsmen soon began to copy the weapons they saw, adapting them to their own needs. They also brought to firearms the same degree and style of decoration that they routinely applied to other weapons. This involved using precious metals and other valuable materials and, in the case of the Japanese, lacquerwork. Distinctive local styles soon evolved.
INDIAN CARNATIC TORADAR
The barrel of this matchlock from Mysore (in what is now Karnataka State, southern India) is exquisitely decorated with incised flowers and foliage, and entirely gilded. The incised side plates are made of iron, and on its trigger it has a tiger in koftgari—a method of inlaying gold into steel or iron.

JAPANESE MATCHLOCK
A rather less ornate weapon than that shown below, this matchlock is by Kunitomo Tobei Shigeyasu of Omo, on Japan’s west coast. Its red-oak stock is in the style of the Sakai school. Decoration is limited to engraving on the octagonal barrel and some brass inlay; the lock and mainspring are also of brass.

JAPANESE TEPPO
This early 18th-century matchlock teppo is the work of the Enami family of Sakai, who are widely held to be among the finest Japanese gunmakers of the pre-industrial period. The stock is of red oak, decorated all over with kara kusa scrolls in gold lacquer, with additional inlays of brass and silver. The decoration may have been added at a later date.

INDIAN MATCHLOCK TORADAR
This 19th-century toradar has a stock of polished red wood with circular pierced medallions on either side of the butt of iron with gilding and koftgari applied over red velvet. The barrel has an elaborate arabesque decoration in gold koftgari at the breech, and the muzzle is fashioned into the shape of a tiger’s head.
GERMAN AND ITALIAN ARMORERS of the 16th century were particularly adept at incorporating firearms into other blunt and edged weapons. Many of the examples that survive were probably intended to be showpieces, since they frequently display the most ornate decoration, and it is not clear whether they were ever meant for martial use. The tradition continued—a rifle or pistol equipped with a bayonet can be said to be a combination weapon—and spread to other countries, notably to India, where more practical examples were produced during the late Mughal period.

Combination Weapons

War Hammer Wheellock
This long-shafted war hammer (only the beak remains; the balancing hammer head is missing) incorporates a wheellock pistol. Equipped with a gunmaker’s “standard” pistol lock and barrel, this weapon seems to have been produced for practical rather than ceremonial purposes.

Mace Wheellock
The barrel of this wheellock pistol forms the shaft of a mace, the head of which has six pointed flanges, each pierced with a trefoil shape. The lock incorporates a simple safety catch that engages with the sear. The hollow lower section of the shaft contains a compartment that can be accessed by opening the hinged pommel. The entire weapon is engraved and selectively gilded.

Halberd Double-Barreled Wheellock
A hunting halberd fitted with a double-barreled wheellock pistol. The pistol barrels are octagonal and mounted on either side of the leaf-shaped blade. The whole is etched and partly gilt with strap and scroll-work, the ax and fluke of the head having additional trophies of arms.
AX MATCH- AND WHEELLOCK
The hollow axhead contains five short barrels. These are hidden by a hinged cover that forms the blade. If the piece was intended to function as a weapon, which is debatable, the pointed fluke would probably have been more effective in an offensive role. The decoration is rather crude.

DATE c.1610
ORIGIN GERMANY OR IBERIA
WEIGHT 6½ LB (2.95 KG)
LENGTH 22 IN (56 CM)
CALIBER .31 IN

MATCHLOCK AX/DAGGER
A simple, all-iron matchlock lies at the heart of this combination of gun, ax, and dagger. The barrel is closed by a tubular, cross-hatched grip with a small terminal pommel, which unscrews to reveal a knife. The knife pommel itself unscrews, and the compartment within contains a pair of tweezers. The axhead, decorated with engraved scroll-work, is mounted on an iron shaft.

DATE c.1820
ORIGIN INDIA
WEIGHT 2¼ LB (1.2 KG)
LENGTH 20½ IN (52.3 CM)
CALIBER .55 IN

BARREL DETAIL
The uppermost barrel is fitted with a matchlock on the left side, and the second with a wheellock. A tubular extension to the pan held a length of match. This would have been ignited by the flash of the priming, and then used to touch off the remaining three barrels, along with a sixth, located in the hollow shaft.

DATE c.1720
ORIGIN DENMARK
WEIGHT 3½ LB (1.55 KG)
LENGTH 32½ IN (82.5 CM)
CALIBER .58 IN

CARBINE AX
The butt of this fully stocked, dog-lock carbine is reduced so that it can be gripped in the hand. The axhead is shaped to double-up as a rudimentary bayonet, and its balancing fluke as the bead of a war hammer. The head, retained by a spring catch, can be easily removed.

DATE c.1610
ORIGIN GERMANY OR IBERIA
WEIGHT 6½ LB (2.95 KG)
LENGTH 22 IN (56 CM)
CALIBER .31 IN

DETAIL OF HAMMER
In keeping with the highly decorated nature of the entire wheellock halberd, the paired cocks are more than just spring-loaded clamps to hold pieces of iron pyrites against the serrated edge of the striking wheels. They are exquisitely worked ornaments in their own right—gilded and chased with a floral pattern.
Prior to the introduction of the wheellock—the first mechanical means of igniting a gun's powder charge—pistols were rare, since one could not pocket or holster a matchlock. The invention of the wheellock (perhaps by Leonardo da Vinci) late in the 15th century made it possible to carry a gun and still have one's hands free. Wheellocks were expensive, complicated, and prone to breakage—and usually only repairable by the man who had made the gun. By about 1650, they had been replaced by the less complex snaphaunce (which struck sparks with a spring-loaded flint).

This then evolved into the even simpler “true” flintlock.
Steel mountings are selectively gilded

Round barrel

Flattened pommel

Steel mountings are selectively gilded

Round barrel

Striker for lower barrel

Striker for upper barrel

Cock

Cock

Steel mountings are selectively gilded

Round barrel

DUTCH DOUBLE-BARRELED FLINTLOCK
Early multiple-shot handguns normally had a lock for each barrel. However, by mounting a pair of barrels on an axial pin and providing each with a striker and pan with a secure cover, it was possible to present each in turn to a single lock, reducing the cost considerably.

| DATE | c. 1650
| ORIGIN | NETHERLANDS
| WEIGHT | 2 1/2 lb (1.2 kg)
| BARREL | 19 3/4 in (50.3 cm)
| CALIBER | 36 bore

AUSTRIAN FLINTLOCK
Made in Vienna by Lamarre, this ornate holster pistol, though certainly atypical in the level and high quality of its decoration, represents the state of the gunmaker’s art as it was in the last decades of the 17th century.

| DATE | c. 1690
| ORIGIN | AUSTRIA
| WEIGHT | 2 1/4 lb (1 kg)
| BARREL | 14 in (35.3 cm)
| CALIBER | 37 bore

FLEMISH FLINTLOCK PISTOL
Even everyday 17th- and 18th-century firearms frequently received some embellishment in the shape of carving. Some were even given silver mountings, as can be seen here on this piece by the Flemish gunmaker Guillaume Henoul.

| DATE | c. 1700
| ORIGIN | NETHERLANDS
| WEIGHT | 2 1/4 lb (1 kg)
| BARREL | 10 3/4 in (26 cm)
| CALIBER | 25 bore

ENGLISH FLINTLOCK PISTOL
English gunmakers did not come into their own until the end of the 18th century. In the middle of the 17th century, when this holster pistol was made, they were still taking their lead from continental colleagues, and the maker of this piece, which has a French-style lock, was no exception.

| DATE | c. 1650
| ORIGIN | ENGLAND
| WEIGHT | 2 1/4 lb (1 kg)
| BARREL | 14 1/4 in (34.2 cm)
| CALIBER | 25 bore
EUROPEAN PISTOLS
1700—1775

THE FRENCH COURT GUNMAKER Marin le Bourgeoys invented the true flintlock around 1610, when he combined the striker and pan cover of the miquelet lock with the internal mechanism of the snaphaunce, and modified the sear, which “connected” cock and trigger, to act vertically instead of horizontally. While snaphaunces and miquelets were still produced for a long time after—as, for a while, were wheellocks and matchlocks—they were technically obsolete. Over the next 200 years, until the development of the percussion lock, only minor improvements were necessary, though the introduction of the enclosed box lock was a distinct step forward.

DOUBLE-BARRELED TAP-ACTION PISTOL
The tap is a rod that fits tightly into a cylinder below the pan. The tap is bored through; the bore is filled with powder, the tap is turned through 90°, and the pan is then primed in the normal way. After firing the upper barrel, the tap is turned again, the powder in the bore then primes the lower barrel.

SCOTTISH PISTOL
It was the fashion in Scotland during the 18th century to make pistols entirely of brass or iron, with their entire surface covered by intricate engraving. Typically, they lacked trigger guards. Most were snaphaunces; this example is unusual, in that it is a flintlock. It was made by Thomas Cadell of Doune, who made some of the best iron pistols.

ENGLISH PISTOL
A pistol such as this would have been carried in a holster on the saddle of a horse (gun holsters worn by people were later inventions). Holster pistols were heavy, with long barrels, and after being discharged they were often used as bludgeons—hence the metal butt cap.
DOUBLE-BARRELED PISTOL
This is one of a pair of excellent English twin-lock, double-barreled, over-and-under pistols. It was made by the émigré Dutch gun maker Andrew Dolep in London at the very end of the 17th century. The right-hand lock and the forward trigger fire the upper barrel.

Date: 1700
Origin: England
Weight: 3 lb (1.41 kg)
Barrel: 13 in (32.9 cm)
Caliber: .5 in

SPANISH BREECH-LOADING PISTOL
This miquelet-lock pistol is from Ripoll, Catalonia, a key gunmaking town in the 17th and 18th centuries. The breech-block screws out with one full turn of the trigger guard to which it is attached, allowing the ball and powder charge to be inserted.

Date: c.1725
Origin: Spain
Weight: 3½ lb (1.6 kg)
Barrel: 10 in (25.4 cm)
Caliber: .62 in

LIÈGE PISTOL
Made in the city of Liège by M. Delince, this holster pistol appears to have been shortened at the muzzle, and shows the signs of hard use. Oddly, for a gun made so late in the 18th century, this example has no reinforcing bridle on its lock.

Date: 1765
Origin: Belgium
Weight: 2 lb (0.88 kg)
Barrel: 9 in (22.9 cm)
Caliber: .62 in
In 1620, the Battle of White Mountain marked the start of the Thirty Years War, which left few regions of central and western Europe untouched. Here, the Bohemian protestants are defeated by the Christian Imperial army using pikes and muskets.
EUROPEAN TOURNAMENT ARMOR

DURING THE 15TH century, specialist armor began to be developed for tournaments, a trend that reached its highest expression in the following century. Not only was additional armor introduced for specific events—such as strengthening the vulnerable left side for jousting—but the armor became increasingly ornate, with enormous attention being paid to the most exquisite decoration. Indeed, so great was the quality of this work that some items of armor became too precious to use in combat and were used for display as parade armor. Certain types of parade armor became increasingly fantastical, with armorers mimicking current styles of civilian dress and devising “grotesque” helmets in the shape of animals.

FOOT COMBAT ARMOR
In foot combat, two contestants wearing special suits of armor fought in the lists (the arena) with poleaxes, spears, maces, swords, and daggers. Foot combat as practiced in the 15th and 16th centuries historically derived from “judicial duels”—officially sanctioned fights, often to the death, to resolve legal disputes. Foot combat was the most dangerous of all the tournament competitions, and required an armor that gave head-to-toe protection to the wearer.

DATE 1580
ORIGIN GERMANY

VENTILATION HOLES PIERCED ON RIGHT SIDE, AWAY FROM VULNERABLE LEFT SIDE THAT WOULD FACE OPPONENT’S LANCE

CLOSE HELM WITH PIVOTED UPPER BEVOR AND VISOR

GORGET (COLLAR GUARD)

RERE brace (upper arm guard)

Breastplate constructed in “doublet” style

Full View
A KING'S ARMOR
Made for King Henry VIII of England in 1540, this harness of armor from the Italian-influenced Greenwich armories reflects the increasingly stout figure of the monarch. Intended for both field and tournament use, the decoration on this armor has been attributed to a Florentine, Giovanni de' Maiano, with assistance from the painter Hans Holbein.

DATE 1540
ORIGIN ENGLAND
WEIGHT 78 LB (35.33 KG)
HEIGHT 77 7/8 IN (197.5 CM)

LOCKING GAUNTLET
One of the dangers faced by a heavily armored knight was his sword dropping or being knocked from his hand. A gauntlet such as this prevented it by locking the sword into the steel mitten until unlocked after combat.

DATE 16TH CENTURY
ORIGIN ITALY
WEIGHT c. 2 1/2 LB (1.14 KG)
LENGTH c. 6 IN (15 CM)

BREASTPLATE
Made in Italy, this light yet strong breastplate is a superb example of the armorer’s art, its shape imitates the bulge of the close-fitting doublet of the period. The breastplate is decorated with engraved and gilded heavenly figures.

DATE 16TH CENTURY
ORIGIN ITALY
WEIGHT c. 6 1/4 LB (2.80 KG)
HEIGHT c. 19 IN (48 CM)

DECORATED VAMPLATE
The vamplate was a funnel-shaped, circular guard fixed to the lance to protect the hand. The first vamplates appeared in the 14th century as a tournament feature. By the 16th century, they had evolved into large and finely decorated conical shapes.

DATE 16TH CENTURY
ORIGIN ITALY
WEIGHT c. 1 3/4 LB (0.6 KG)
LENGTH c. 10 IN (25 CM)
EUROPEAN TOURNAMENT HELMETS

THE EVOLUTION OF parade and ceremonial helmets in the 16th century very much matched that of armor intended for use on the battlefield. In the case of tilting helmets, effective protection was of very practical use to stave off potentially fatal head injuries inflicted by jousting lances. Open-faced helmets, such as the burgonet, were less suitable for this purpose and it was in close helmets of the later 16th century that parade helmets reached the height of their magnificence—the greater protective surface areas of such helms also provided more space for the armorer to add decorative engravings and ornaments.

EMBOSSED CLOSE HELMET
The entire surface of this close helmet is of bright steel embossed with scenes of equestrian combat, figures in classical armor, trophies, lions, and cherub heads in low relief. A piece of such high quality, originally gilded, was clearly designed for parade purposes. The visor has flanges to fit into the bevor, a feature typical of the close helmet.

DATE c.1575
ORIGIN FRANCE
WEIGHT 5½ lb (2.5 kg)

1500—1775

168
King Henry II of France was an avid hunter and participant in jousting tournaments. However, on July 1, 1559, he was killed by the lance of Gabriel Montgomery, captain of the King's Scottish Guard. His death was due to the Achilles heel of the close helmets of the day; his opponent's lance shattered and a fragment glanced down between the king's visor and bevor, piercing his eye and penetrating his brain.
BETWEEN THE 16TH AND 18TH CENTURIES, broadly similar weapons and armor were used by armies from the Middle East to India and Central Asia. These included mail-and-plate body armor and a type of round shield, made of leather or steel, that was called a dhal in India and a sipar in Persia. China and Korea, while culturally distinct, were also influenced by these essentially Islamic styles. Even though firearms were widely used in Asia, armor and shields remained in use for longer than in Europe.

ASIAN ARMOR AND HELMETS

IN ALL THESE AREAS, BETWEEN THE 16TH AND 18TH CENTURIES, broadly similar weapons and armor were used by armies from the Middle East to India and Central Asia. These included mail-and-plate body armor and a type of round shield, made of leather or steel, that was also used in the Middle East and Central Asia. China and Korea, while culturally distinct, were also influenced by these essentially Islamic styles. Even though firearms were widely used in Asia, armor and shields remained in use for longer than in Europe.
Indian Dhal

This Indian round shield, or dhal, is made of watered steel. It was held by passing an arm through two handles on the back. The handles are fastened by ring bolts, which are riveted to the four bosses on the shield's face. Shields gave Indian craftsmen an irresistible opportunity to indulge their passion for chiseled and gilded decoration.

- **Date**: c. 1800
- **Origin**: India
- **Weight**: 8½ lb (3.8 kg)
- **Width**: 24 in (60 cm)

Korean Helmet

This lacquered leather helmet would have been worn by a wealthy Korean warrior, evidenced by the decorative silverwork on the cap and peak. Three fabric flaps containing internal iron plates protect the neck and cheeks. The tube at the apex of the helmet would have carried a plume.

- **Date**: Late 16th Century
- **Origin**: Korea
- **Weight**: 2¾ lb (2.4 kg)
- **Height**: 13 in (33 cm)

Chinese Zhou

This helmet, or zhou, is from Ming dynasty China. The skull of the helmet is made in two pieces joined by a riveted seam. This is a luxury item, elaborately decorated with precious stones and corals, and with a gilt holder at the apex into which a plume would have been inserted. Traces of blue silk remain at the base of the skull—probably all that is left of a neck guard.

- **Date**: 16th Century
- **Origin**: China
- **Height**: 13½ in (35 cm)

Indian Dhali

This Indian round shield, or dhal, is made of watered steel. It was held by passing an arm through two handles on the back. The handles are fastened by ring bolts, which are riveted to the four bosses on the shield's face. Shields gave Indian craftsmen an irresistible opportunity to indulge their passion for chiseled and gilded decoration.

- **Date**: c. 1800
- **Origin**: India
- **Weight**: 8½ lb (3.8 kg)
- **Width**: 24 in (60 cm)
JAPANESE SAMURAI ARMOR, which evolved from the Asiatic tradition of lamellar (scaled) armor, consists of lacquered plates of metal or leather bound together by leather or silk lacing. This flexible armor gave adequate protection while permitting the free and rapid movement needed by a sword-fighter. Samurai armor increased in complexity over time, achieving its pinnacle in the tosei gusoku (modern armor) style from the 16th century onward. Armor and helmets were intended for display as well as combat. At their most ornate in the Edo period, after the pacification of Japan, the samurai had then ceased to be active warriors.

TOSEI GUSOKU (MODERN ARMOR)
This fine quality tosei gusoku armor is twinned with a helmet spectacularly topped by imitation buffalo-horn wakidate, or side crests (antlers were also popular as wakidate). The black lacquered half-mask, or mempo, has wrinkles and teeth but lacks one frequently found feature: a moustache. The mask protected the lower face, helped hold the helmet on the warrior’s head, and made the wearer look more frightening. Other details, such as the eyebrows embossed on the browplate, also helped to create an intimidating effect. An aesthetically pleasing color scheme is achieved through the use of gold lacquer and red silk.

DATE 19TH CENTURY
ORIGIN JAPAN
WEIGHT HELMET 6 LB (2.75 KG)
Gold lacquered hide

Gattari (bracket for personal flag)

Kusari (plate in mail)

Abiki-na-o (shoulder cord)

Front of Do (Cuirass)

Shoulder Defense (Sode)

Kote (Arm Defense)

Suneate (Greaves)

Gold lacquered ito (plates) fastened with red silk knots

Tateagi (laced plate)

Yurugi-ito (lacing) for kusazuri (skirts)

Gold lacquered hide
THE REVOLUTIONARY WORLD
In 1770, Europe was ruled largely by dynastic sovereigns, who continued to conduct politics and fight wars much as they had done 200 years before. Yet over the next century, revolutions—both political and industrial—transformed the face of warfare, as new technologies, ideas of nationalism and democracy, and efficient bureaucracies gave ever more power to those who possessed them and reduced to political ciphers or colonies those who did not.
BEGINNING WITH THE American Revolution, the traditional order was challenged, overthrown, and then, reconstituted. Britain fought a bitter war from 1775 to 1783 to retain its North American colonies, which demanded some share in their governance. George Washington, the commander of the rebel army, knew that he could not match the British in open battle. But the British depended on supplies reaching them by sea, and when French intervention in the war in 1778 hurt this, their control over North America became tenuous. The Americans became a fighting army with the help of Augustus von Steuben, a Prussian army officer, who devised a simplified drill for Washington’s soldiers. The result was a humiliation for Britain and the loss of most of its North American colonies.

THE FRENCH REVOLUTIONARY WARS Revolution broke out in France in 1789, in part provoked by anger at unemployment and high levels of taxation needed to fund the army and Louis XVI’s inability to do anything to remedy these problems. Most army officers fled the country, or at least resigned their commissions. By that time France was at war with Austria and so fewer experienced officers were available. Their replacements came from the middle and lower classes, so that by 1794, only one in 25 officers was a nobleman. A mass conscription in 1793 in effect, militarized France, as all men of military age were deemed to be in service. The new army adopted modified tactics—from 1792 skirmishers or sharpshooters were introduced into infantry battalions. These tirailleurs would harass enemy formations and screen the maneuvers of their parent battalions. A string of French Republican victories, most notably those of Napoleon Bonaparte in Italy from 1796, exhibited the new army’s ability to use these revised combinations of line, column, and skirmishing tactics to great effect.

In the 1790s, the French army pioneered the use of the division, a self-contained unit of several regiments combining infantry, cavalry, and artillery. Napoleon took this further, establishing a system of army corps, each made up of several divisions. The corps system meant that parts of the French army, which “lived off the land” instead of relying on fixed supplies, could take separate routes to their objective, reducing the risk of exhausting the ability of the areas they marched through to support them. This flexibility and the speed of the French armies left Napoleon’s enemies often seeming sluggish.

Napoleon also expanded the French artillery, and by 1805 the army had 4,500 heavy guns and 7,300 medium and light. A string of victories, most notably Marengo (1800) and Austerlitz (1805), left the successive coalitions formed against him reeling. Napoleon also realized the destruction of the enemy’s field armies should be his main objective, rather than allowing himself to be delayed by protracted sieges.

Yet the strain on France’s resources began to show: An estimated 20 percent of Frenchmen born between 1790 and 1795 died in the wars. Increasingly, Napoleon’s soldiers were foreign, less well-trained and less motivated than the French. After 1808, divisions were standardized to two brigades, and the numbers of companies per battalion reduced to make command easier. The result was a less flexible force, and Napoleon’s later battles tended to be elephantine affairs, with large masses of men hurled headlong against the enemy, and far fewer flashes of sheer brilliance. At Borodino, in the Russian campaign of 1812, some 250,000 men fought on a narrow front just 5 miles (8 km) wide, leading to heavy losses on both sides.

ENGLISH TACTICS AGAINST NAPOLEON During this period Napoleon’s enemies, too, had learned and adapted their armies. The British experimented with light infantry from the 1790s, and in 1800 an experimental corps was set up armed with new rifled muskets, more accurate than the prevailing smooth-bore. The British favored line over column tactics and also paid more attention to logistics, not relying so consistently on foraging, which, in the guerrilla-infested hills of Spain, had badly failed the French forces. In 1813 the Prussians created regiments of jäger, volunteer riflemen, as a riposte to the French tirailleurs. Attrition, the exhaustion of French resources, British naval superiority—most notably demonstrated at Trafalgar (1805)—and Napoleon’s strategic greed led to his downfall in 1814, and his return from exile for the “Hundred Days” ended similarly in defeat at Waterloo in 1815.

BATTLE OF THE NATIONS
French curassiers charge at the Battle of Leipzig in 1813.

The sheer size of the force opposing him—at 365,000 men—was too much even for Napoleon. The situation was made worse by the fact that his army sorely missed the veterans who had perished in Russia the year before.
than élan or tactical brilliance that delivered down of railroads, and strategic planning, rather which it was the output of factories, the laying to an increasing industrialization of warfare, in powers to produce large quantities of weapons and the capacity of technologically advanced armies. The increasing firepower of troops, new rifles became the mainstays of European Adapted by Claude-Étienne Minié in 1849, the firearms to around 440–650 tightly, and doubled the effective range of firing, gripping the rifling of the barrel more the cylindro-conic bullet, which expanded on technical advances, including the invention of were largely retained, but there were important strategic slumber. Napoleonic drill and tactics decades, and Europe relapsed into a sort of technical advances

TRENCH WARFARE The final stages of the American Civil War degenerated into a dogged campaign of entrenchment and siege. Here, Union soldiers wait in the trenches in front of the Confederate stronghold of Petersburg, Virginia.

TECHNICAL ADVANCES The Congress of Vienna (1815) ensured no repetition of the revolutionary wars for several decades, and Europe relapsed into a sort of strategic slumber. Napoleonic drill and tactics were largely retained, but there were important technical advances, including the invention of the cylindro-conic bullet, which expanded on firing, gripping the rifling of the barrel more tightly, and doubled the effective range of firearms to around 440–650 yards (400–600 m). Adapted by Claude-Étienne Minié in 1849, the new rifles became the mainstays of European armies. The increasing firepower of troops, and the capacity of technologically advanced powers to produce large quantities of weapons that could be used even by raw conscripts, led to an increasing industrialization of warfare, in which it was the output of factories, the laying down of railroads, and strategic planning, rather than élan or tactical brilliance that delivered victories. The new technology saw its first real test in the Crimean War (1853–55), in which Britain and France invaded Russia to prevent the tsar from picking bare the bones of the decrepit Ottoman empire. At Inkerman in 1854, British Enfield rifled muskets slaughtered the Russians, who suffered 12,000 casualties to the allies’ 3,000. Yet the British neglected logistics this time—their supply base at Balaklava turned out to have a quayside of only 33 yards (30 m), and it was a 9-mile (15-km) journey to the front line. The campaign became bogged down in a bludgeoning siege of the fortress-city of Sevastopol, whose defensive trench networks presaged those of World War I.

THE AMERICAN CIVIL WAR The American Civil War (1861–66) saw the full flowering of industrialized warfare. It was the North, which had over 70 percent of the undivided pre-war Union’s population and almost all its industry—93 percent of pig-iron and 97 percent of firearms production—that possessed critical advantages from the outset. The South had brilliant generals, such as Robert E. Lee, and an army motivated by the desire to defend its way of life. Yet victories such as Bull Run (1861), and Fredericksburg (1862), and a near-run thing at Gettysburg (1863), amounted in the end to nothing. The Union commander Ulysses S. Grant realized that by cutting the Confederacy in two and destroying its fledgling industries and railroad system, its capacity to resist—no matter battlefield heroics—would be strangled. American Civil War soldiers could fire at a rate of five to six rounds per minute and extended lines proved more effective than the massed columns of Napoleonic warfare. Temporary earthwork entrenchments such as breastworks and rifle pits became more important, while the withering fire of Springfield rifled muskets meant that where infantry advanced unsupported in the open, as in “Pickett’s Charge” at Gettysburg, they were simply mown down.

THE PRUSSIAN ARMY In Europe, meanwhile, Prussia, under von Moltke—Chief of General Staff from 1858—implemented a system of uniform education for all staff officers, and service in the army was extended to five years, so that by the late 1850s, the army had 504,000 troops (including reserves). The Prussians also invested heavily in railroads, laying down nearly 19,000 miles (30,000 km) by 1860. Their soldiers, moreover, were equipped with the Dreyse needle gun, a breech-loader which could be shot from a prone position, and which fired up to five times faster than muzzle-loaders. Although it was prone to misfire, the Dreyse gave the Prussians the edge on the battlefield and this, along with their superior planning, enabled them to win a crushing victory over the Austrians at Königgrätz in 1866, which freed Bismarck, the German Chancellor, to pursue his goal of a united German state.

The attempts by French emperor Napoleon III to interfere with Bismarck’s ambitions led to the Franco-Prussian War (1870–71). The French were armed with the Chassepot rifle, a more reliable version of the Dreyse. The Prussians exploited their superior staff numbers to the full, and were able to deliver 380,000 men—in large part by train—rapidly to the frontier. They also possessed steel breech-loading cannons designed by Alfred Krupps, which had a range of up to 7,600 yards (7,000 m) and could devastate French formations as they formed up far from the battlefield. The French were outmaneuvered at a strategic level, and when their last operational field army was surrounded at Sedan (1871), its surrender spelled the end of Napoleon III’s rule and any effective opposition to Bismarck’s plans for Germany.

THE GROWTH OF EUROPEAN IMPERIALISM Once Bismarck had forged a united country after 1871, he turned to acquiring an overseas empire, beginning with modern Namibia, Togo, and Tanzania in the 1880s. The late
19th century was the high-point of European imperialism, which developed a momentum of its own far beyond the need to protect trading posts or suppress native opposition. Many of the wars fought in the last half of the century were imperial, in which Western technological superiority and organization normally proved decisive. At Omdurman in the Sudan in 1898, Kitchener, the British commander, simply deployed his 25,000 men in tight formation, and when the opposing Mahdists charged, they were scythed down by his Maxim machine guns: the Sudanese lost up to 30,000 men for the loss of only 50 of the Anglo-Egyptian force.

Non-European armies did, occasionally, emerge victorious. In 1896 the Italians were defeated at Adowa by an Ethiopian army armed with 100,000 rifles that the French governor of Somaliland had obligingly sold to them. Where native armies adopted guerrilla warfare, such as Samori Touré in West Africa in the 1880s and 1890s, European tactics struggled to overcome them. Eventually, however, even stubborn resistance was not enough. The Europeans or Americans had superior industrial and demographic resources, and could weather defeats their opponents could not.

Germany’s victories in 1866 and 1870 led German statesmen and generals to believe that rapid deployment and the exploitation of technology should override all other concerns. At the end of the 19th century, European countries became embroiled in an arms race that was ruinously expensive and contributed to a chilling climate of mistrust in international diplomacy. The rapid growth of the German economy, unaccompanied by a corresponding increase in political sophistication, led to a dangerous alliance of economic power, nationalist agitation, and technological prowess, which, when a spark set it alight, would lead to the appalling carnage of World War I.

BOER PICKET

It cost the British two years, the despatch of 450,000 men, and 22,000 dead to win the Boer War (1899–1902). The Boers, armed with lethally effective Mausers, won a series of victories such as Spion Kop (1900). Even when their field armies were finally defeated, it took unconventional British tactics such as the use of concentration camps to force the last groups of guerrillas to surrender.

NATIONALISM

The French Revolution unleashed a political virus in Europe, with the notion that states should constitute the whole of a people or “nation.” Hence, France was the nation of the French and should include all of them. Multiethnic empires, such as those of the Austrian Habsburgs or the Ottoman Turks, were threatened with extinction as this idea found political and military expression. In 1848, a wave of nationalist revolts burst across Europe, sweeping a revolutionary government to power in Hungary and threatening to overturn the Prussian and French regimes. In 1861 nationalism contributed to the unification of Italy—with Garibaldi (pictured here) playing a flamboyant role, and Germany in 1867. Similarly, nationalist feelings contributed to the decay of the Ottoman Empire, from the Greek declaration of independence in 1821. All these movements appealed to a national ideal, inspiring a fervor that loyalty to a dynasty, or remote imperial power, had almost never been able to do.

INSURRECTION IN 1861 AT PALERMO WHICH LED TO THE UNIFICATION OF ITALY
By the time of the French Revolutionary (1789-1799) and Napoleonic Wars (1799-1815), cavalry edged weapons had evolved into the long, straight, thrusting sword of the heavy cavalry, and the light cavalry’s curved saber that was designed for cutting and slicing. For the infantry, swords were already well on their way to becoming ceremonial weapons, but such was their status that they continued to be used as symbols of rank, carried by officers and senior NCOs. Having lost their practical function, infantry swords became increasingly decorative, some even harking back to weapons of the classical era.

1853 Pattern Cavalry Sword

Of fairly conventional construction, this weapon—the 1853 Pattern Cavalry Sword—would have equipped British heavy cavalry regiments in the Crimean War and during some of Britain’s subsequent colonial campaigns.

Model 1827 Saber

A copy of cavalry swords of the Napoleonic era, the Russian Model 1827 Cavalry Sabre had a slightly curved single-edged blade with a single wide fuller and a brass hilt. The twin langets were useful in firmly securing the sword to the scabbard, as well as acting as a trap to an opponent’s sword.

1775—1900

62–65 European Swords

104–107 European Infantry and Cavalry Swords

110–111 European Rapiers

112–113 European Small Swords
Pioneer Sword
The hilt of this Russian sword is based on the French Model 1831 infantry sword. Both weapons reflect an interest in the classical world and clearly demonstrate the influence of the Roman gladius short sword. The all-brass hilt includes a simple cross-guard and a short wide blade with a single fuller.

- **Date:** 1847
- **Origin:** Germany
- **Weight:** 2 1/2 lb (1.18 kg)
- **Length:** 25 in (63.5 cm)

Model An IV Cavalry Sword
Known as the Model An IV (Year 4, after the French Revolutionary calendar) this sword equipped some French heavy cavalry and dragoons during the Napoleonic period. It has a long blade, which, like other French swords, was narrower than its British equivalent.

- **Date:** 1794
- **Origin:** France
- **Weight:** 2 1/2 lb (1.16 kg)
- **Length:** 44 1/2 in (113 cm)

Heavy Cavalry Sword
Based on Austrian designs, the stirrup-hilt British Heavy Cavalry Sword of 1796 equipped British heavy cavalry during the Napoleonic Wars. It received criticism for being unwieldy in action, although it was considered a forceful cutting sword.

- **Date:** 1796
- **Origin:** UK
- **Weight:** 2 1/2 lb (1.13 kg)
- **Length:** 40 in (101.5 cm)
1796 LIGHT CAVALRY SWORD
Considered to be among the finest of cutting swords, the 1796 Light Cavalry Sword was developed in tandem with the Heavy Cavalry Sword. The broadening of the blade near the tip gave greater power at the point of impact.

DATE 1796
ORIGIN UK
WEIGHT 2½ lb (1 kg)
LENGTH 38 in (96.5 cm)

NAPOLEONIC INFANTRY SWORD
Carried by the ordinary foot soldier during the Napoleonic Wars, this infantry hanger, known as a "briquet," has a simple, one-piece brass hilt and a curved steel blade. It was also issued to sailors.

DATE EARLY 19TH CENTURY
ORIGIN FRANCE
WEIGHT 2 lb (0.9 kg)
LENGTH 29 in (74 cm)

MODEL 1804 NAVAL CUTLASS
The British Model 1804 cutlass—issued a year before Trafalgar—is a utilitarian, straight-bladed weapon with a double disc guard and a serrated iron handle, painted black to protect against corrosion.

DATE c.1804
ORIGIN UK
WEIGHT 3 lb (1.32 kg)
LENGTH 33½ in (85.5 cm)
PIONEER SWORD
The sword’s one-piece brass hilt is surmounted by a crowing rooster figure that acts as the pommel. The steel blade includes a serrated or sawback edge—found on pioneer swords—and is slightly curved with a point reminiscent of a falchion.

DATE c.1800
ORIGIN FRANCE
WEIGHT 2 3/4 LB (1.22 KG)
LENGTH 32 IN (81 CM)

MODEL AN XIII SWORD
A successor to the An IV sword, this weapon armed the French dragoons and heavy cavalry in the latter part of the Napoleonic Wars. The sword has a straight, single-edged blade with two prominent fullers running down its length.

DATE 1810
ORIGIN FRANCE
WEIGHT 7 LB (3.13 KG)
LENGTH 44 1/4 IN (112.5 CM)

CEREMONIAL CADET SWORD
This ceremonial sword, designed by artist Jacques Louis David, followed the classical Roman model popular at the time, and was issued to students of the French military academy.

DATE 1794
ORIGIN FRANCE
WEIGHT 2 LB (0.90 KG)
LENGTH 26 1/2 IN (67 CM)
American Civil War Swords

The Armorers of the new US Republic followed patterns for swordmaking from a mixture of German, French, and British sources. But from the 1840s onward, US swords were based almost exclusively on French designs, and it was these swords that armed the soldiers of the American Civil War (1861–65). While the forces of the Union North were well supplied with arms and equipment, the Confederate armies of the South were short of weapons of all kinds, including swords. They were forced to rely on captured Union stocks, foreign sources, and their own home-produced weapons.

Model 1850 “Foot” Officer’s Sword
This sword would have equipped officers on both sides during the Civil War, and was very similar to the Model 1850 “Mounted” Field and Staff Officer’s Sword. Influenced by French patterns, this sword has a brass hilt and a grip made either from leather or the skin of a ray or shark—material which gave a very good grip. The single-edged blade is slightly curved.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1850</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2 lb (1.13 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>31 in (78.75 cm)</td>
</tr>
</tbody>
</table>

Model 1860 Light Cavalry Saber
The Model 1860 Light Cavalry Saber was a heavy, powerful sword whose weight made it unpopular with the troopers, who nicknamed it “Old Wrist Breaker.” Its replacement, the Model 1860 Light Cavalry Saber, was not considered much of an improvement, although it was an effective thrusting and hacking weapon.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1860</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>3 lb (1.36 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>35 in (90 cm)</td>
</tr>
</tbody>
</table>

Model 1850 Infantry Sword
Edged weapons like this Model 1850 “Foot” Officer’s Sword equipped the majority of infantry officers on the Union side. By the time of the American Civil War, officers would rarely have used a sword in actual combat, but such was its potency that it continued to be worn throughout the 19th century as a symbol of rank.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1850</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2 lb (1.13 kg)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>30 in (76.8 cm)</td>
</tr>
</tbody>
</table>
“FOOT” OFFICER’S SWORD
The artillery had its own distinctive swords. This Confederate artillery saber was made by Boyle, Gamble & McFee, who were based in Richmond, Virginia, and the blade dates from the 1820s. The sword was used by General William Miller of the 1st Florida Regiment.

- **Date:** c.1820
- **Origin:** US
- **Weight:** 2 lb (1.13 kg)
- **Length:** 29 in (73.6 cm)

CONFEDERATE CAVALRY SABER
The Confederate States of America manufactured many thousands of swords based on both the 1840 and 1860 models of cavalry saber. Although an essential part of any cavalryman’s equipment, on the battlefield, the sword was being replaced by the carbine and revolver.

- **Date:** c.1850
- **Origin:** US
- **Weight:** 3 lb (1.56 kg)
- **Length:** 35 in (89 cm)

MODEL 1850 INFANTRY SWORD
The Model 1850 “Foot” Officer’s Sword was not only a functional weapon of war, it was also an object of the finest craftsmanship, with intricate detail a feature of the hilt. The sword was carried by company grade officers in the infantry, and continued in service until the early 1870s when it was replaced by the Model 1860 sword.

- **Date:** c.1850
- **Origin:** US
- **Weight:** 2 lb (1.13 kg)
- **Length:** 30 in (76 cm)

CONFEDERATE SWORD
The subscription purchase of weapons for popular officers was a feature of military life, and this fine sword, made by Leech & Rigdon, was presented in 1864 to General D. W. Adams of the Confederate Army by the men under his command.

- **Date:** c.1860
- **Origin:** US
- **Weight:** 2 lb (1.13 kg)
- **Length:** 30 in (76.2 cm)
OTTOMAN EMPIRE SWORDS

The Ottoman Empire, at its height from the 15th to the 17th century, was founded by Turks who migrated to Anatolia from central Asia. Their curved swords reflect these origins, being derived from the central Asian Turko-Mongolian saber of the 13th century. Europeans encountered these curved blades in wars with the Ottomans, and collectively termed them “scimitars.” Many of the swords shown here date from the 19th century, but they are typical of the Ottoman Empire at its peak. Similar weapons were used across the Islamic world, from North Africa to Persia and India.

PERSIAN KILIJ

Persian craftsmen were acknowledged masters of sword making. The kilij was first used in the Ottoman Empire in the 15th century. Over time, its blade showed many variations. This example has a deep curve cut away along its back edge, and flares into a yelman toward the point.

DATE	**EARLY 19TH CENTURY**
ORIGIN | **PERSIA**
WEIGHT | **1 ¼ LB (0.6 KG)**
LENGTH | **32 IN (81 CM)**

SHAMSHIR

The form of saber known as a shamshir spread from Persia in the 17th century. Its blade had the curve of a kilij, but tapered to a point. It was a fearsome slashing weapon, whether used on foot or horseback. A horseman could also use the point to run an enemy foot soldier through.

DATE	**EARLY 19TH CENTURY**
ORIGIN | **ARMENIA**
WEIGHT | **1 1/2 LB (0.71 KG)**
LENGTH | **37 IN (94 CM)**
TURKISH SABER

This ornate Ottoman sword bears the name of the master swordsman who made its blade: Haji Gafur. Swords in the Islamic world were frequently inscribed with prayers and texts from the Koran.

DATE	EARLY 19TH CENTURY
ORIGIN | TURKEY
WEIGHT | 1 ¾ LB (0.81 KG)
LENGTH | 38 IN (96 CM)

TURKISH YATAGHAN

A yataghan has a type of forward-curving blade known as a kopis blade, after the Ancient Greek sword of that name. The yataghan is allied to the Indian sosun pattah and the Nepalese kukri. This late Ottoman example is identical in style to those used when the empire was at its height. The wooden scabbard is clad in leather.

DATE	MID-19TH CENTURY
ORIGIN | TURKEY
WEIGHT | 1 ½ LB (0.7 KG)
LENGTH | 29 IN (74 CM)

NORTH AFRICAN SAIF

Saif is simply an Arabic word for sword. This example is from North Africa, part of the Ottoman Empire from the 16th century. Unlike a shamshir, it does not taper to a point, and the blade’s curve is shallow. The knuckle guard is made of four silver chains.

DATE	LATE 18TH CENTURY
ORIGIN | NORTH AFRICA
WEIGHT | 1 ½ LB (0.7 KG)
LENGTH | 32 ¾ IN (83.5 CM)

OTTOMAN QUAMA

Called a kirpa in the Caucasus and a kama in Georgia, this style of short sword is also known as a “Cossack dagger.” This example, with its splendidly decorated hilt and scabbard, was designed to display its owner’s wealth and status.

DATE	19TH CENTURY
ORIGIN | TURKEY
WEIGHT | 1 ½ LB (0.7 KG)
LENGTH | 24 IN (61 CM)
FOR THE CHINESE, the four major weapons of a fighting man were the staff, the spear, and two swords: the single-edged dao and the double-edged jian. While the straight-bladed jian was the more prestigious of the two sword types, the curved dao was more practical and easier to use. As in Europe, by the 19th century swords in China were becoming primarily ceremonial items. The military tradition of Tibet is often forgotten, but the Tibetans fought many wars and developed their own significant tradition of sword manufacture, which was loosely related to Chinese models.

CHINESE DAO

Dating from the last century of the Ming dynasty, the single-edged, curved blade of this dao shows its affinity with Indian talwars and shamshirs, and with European sabers. The blade is of the form known as liuyedao (willow-leaf knife), with a longer, deeper curve than the yanmaodaodao (goose-quill knife), which can be seen below.

CHINESE DAO

This short dao has a near-straight yanmaodaodao blade. Primarily a cavalry weapon, its single edge was used for slashing, and its point for running through. The blade was layered, in a similar fashion to Japanese swords. The core of hard steel, which was exposed at the cutting edge, was sandwiched between layers of softer steel.

CHINESE JIAN

With its straight, double-edged blade, the jian was the weapon chosen by Chinese swordsmen to show off their skills. It was also worn by high officials and officers as part of their ceremonial regalia. This jian sword dates from the reign of emperor Qianlong, of the Manchu Qing dynasty.
TIBETAN SWORD

The long blade of this Tibetan sword exhibits elaborate swirled patterns of mixed steels on both faces. This was a weapon for a high-status individual, evidenced by the highly decorated pommel and the grip wrapped in silver wire.

TIBETAN SWORD

A large and elaborate sword with a poor quality blade, this was undoubtedly intended primarily for ceremonial use. The scabbard—which is made of wood and covered in brown leather—is finely decorated with silver, gilding, and coral.

CHINESE JIAN

In the 19th century, the declining Qing Empire was obsessed with developing firearms to match those of Europe. Though somewhat neglected, swords continued in use as weapons and ceremonial arms. This sword has the diamond profile of the traditional jian blade.
INDIAN SWORDS

DURING THE LATE 18th and early 19th centuries, the British East India Company extended its control over most of India, paving the way for the establishment of the British Raj. These political changes had limited impact upon Indian swordsmiths, who continued to produce swords in a great diversity of forms. These included not only mainstream swords in the Muslim and Hindu traditions, chiefly forms of *tahwar* and *khanda*, made for the Indian princely courts that survived under British suzerainty, but also many regional or tribal variants—some distinctly strange to Western eyes. British officers often took swords home with them as souvenirs, many of which have ended up in museums.

KHANDA
Influenced by the Hindu Maratha culture, this *khanda* has a straight, watered-steel blade that widens toward the tip. As is common in *khandas* of this period, the light, elastic blade is stiffened by reinforcements that run two-thirds of the length of one edge and a short way up the other.

DATE 19TH CENTURY
ORIGIN INDIA
WEIGHT 2 ¾ Lb (1.3 kg)
LENGTH 39 in (99.3 cm)

VECHEVORAL
The Indian subcontinent abounded in varieties of cutting implements for warfare and general agricultural use. This ornate *vechevoral* has a handle of wood and ivory, and a sickle-shaped blade with a concave cutting edge and a band of brass and decorative scrolling along the back.

DATE 19TH CENTURY
ORIGIN INDIA
WEIGHT 2 ¾ Lb (1.3 Kg)
LENGTH 24 ½ in (62.1 cm)
TALWAR
The blade inscription of this talwar suggests that it was made for one of the Nizams of Hyderabad, Muslim princes who ruled part of northern India from 1724 to 1948. The blade is unadorned; the hilt has fine traditional Indo-Muslim decoration.

DATE 18TH CENTURY
ORIGIN INDIA
WEIGHT 2 1/2 LB (1.1 KG)
LENGTH 37 1/4 IN (94.9 CM)

SOSUN PATTAH
A traditional form of Indian sword, a sosun pattah has a forward-curving blade—the reverse of, for example, the curve of a talwar. Swords known as sosun pattah exist in both Islamic and Hindu variants. This one has an Indo-Muslim-style hilt.

DATE 19TH CENTURY
ORIGIN INDIA
WEIGHT 2 1/4 LB (1.05 KG)
LENGTH 34 1/4 IN (87 CM)

ASSAMESE DAO
The swords, or dao, made by the metal workers of Assam’s Naga people were versatile implements used for both cutting wood and combat. The owner would have fitted his own wooden handle to the tang, probably decorated with goat hair.

DATE 19TH CENTURY
ORIGIN INDIA
WEIGHT 2 1/4 LB (1.05 KG)
LENGTH 28 IN (71 CM)

EXECUTIONER’S SWORD
By the 1800s the ruler of Oudh in northern India was under the effective control of the British, but executions were still an area in which he could assert his status. This heavy blade, bearing the ruler’s arms, would have severed a neck at a blow.

DATE 19TH CENTURY
ORIGIN INDIA
WEIGHT 2 1/4 LB (1.05 KG)
LENGTH 28 IN (71 CM)
THE INDIAN SUBCONTINENT is the source of some of the world’s most effective and original melee weapons. These include a range of fearsome sharp-pointed knives with double-curved blades and various forms of fist dagger, which allowed the user to deliver a stabbing blow to an enemy with a punching movement. Parrying sticks were a feature that Indian armies had in common with African tribal forces. Nepal made its contribution with the very effective *kukri*, an implement with many practical non-military uses, as well its role as the weapon carried by all Nepalese Gurkhas.

INDIAN DOUBLE-EDGE KNIFE
Made in Vijayanagar, this knife has a typically sinuous Indian blade. The hilt is skilfully shaped to fit the hand and fingers, giving a firm and comfortable grip. The blade thickens into a diamond shape behind the tapering point.

- **Date**: 19th Century
- **Origin**: India
- **Weight**: 1 ¾ lb (0.83 kg)
- **Length**: 20 in (51 cm)

NEPALESE KUKRI
With its wooden handle, broad, angled blade, and notch or *cho*, this is a typical example of the Nepalese Gurkhas’ *kukri*. The *cho* has religious significance as the symbol of the destructive Hindu god Shiva. The quality of the sheath suggests this was the property of a wealthy man.

- **Date**: c. 1900
- **Origin**: Nepal
- **Weight**: 1 lb (0.48 kg)
- **Length**: 17 ½ in (44.5 cm)
INDIAN BICH’HIWA

The name of this dagger derives from bichwa—a scorpion—whose deadly sting the blade is presumed to resemble. The four bagh nakh or tiger’s claws, attached to the steel rings on the handle, offer an alternative mode of attack.

DATE c.1900
ORIGIN India
WEIGHT ½ lb (0.3 kg)
LENGTH 12 in (30.5 cm)

INDIAN PARRYING WEAPON

This weapon combines a steel parrying stick for defense and a fist dagger for attack. Holding the grip with knuckles toward the dagger, a man could fend off blows, using the stick as a shield, and deliver punching stabs with the dagger.

DATE c.1900
ORIGIN India
WEIGHT 1 ¾ lb (0.82 kg)
LENGTH 18½ in (47 cm)

INDIAN PICHANGATTI

This broad-bladed knife is notable for its silver hilt and striking pommel—the parrot’s eyes are uncut red stones. Attached by a chain to the scabbard are five implements for cleaning the ears and nails. The knife was brought to Britain by an army officer as a memento of the Indian Mutiny.

DATE 19th century
ORIGIN India
WEIGHT ½ lb (0.28 kg)
LENGTH 12 in (30.6 cm)

BUCK-HORN PARRYING STICK

Known as a madu or maru, this parrying weapon from Mysore is made from two antelope horns riveted together, with a space between for the fingers. It could act as a shield against missiles and blows, and steel heads on the horn tips make it a potentially dangerous offensive weapon as well.

DATE late 18th century
ORIGIN India
WEIGHT ½ lb (0.2 kg)
LENGTH 18½ in (47.3 cm)
THE SWORD BAYONET with its long blade, became increasingly popular in the 19th century, replacing the hanger sword and socket bayonet of the ordinary infantryman. But the 19th century also saw the development of mass-produced, long-range firepower that rendered the bayonet irrelevant as a military weapon. Despite this, armies continued to place great emphasis on the bayonet, not least because it was believed to encourage an aggressive, offensive spirit among the infantry. It was this attitude that, in part, led to the mass slaughters of 1914, where soldiers, with bayons fixed, were pitted against quick-firing artillery and machine guns.

VOLUNTEER INFANTRY SWORD BAYONET
During the Napoleonic Wars, the regular British Army was equipped with the Baker rifle and its sword bayonet; volunteer units, however, had to draw upon other sources for their rifles and bayonets. This sword bayonet was made for the London gunmaker Staudenmayer and features a gilded hilt and straight steel blade. Its use of the knuckle grip to lock the rifle to the bayonet proved less effective than the mortise slot and muzzle ring of the Baker rifle/bayonet, and it was this latter system that continued to set the pattern for most bayonet attachments.

SWORD BAYONET
This French sword bayonet is unusual in having a basket hilt that was usually associated with a cavalry sword. The long, narrow blade has twin fullers running down the length of the blade to strengthen it.

CHASSEPOT BAYONET
This bayonet was designed for the famous Chassepot breech-loading rifle that armed the French during the Franco-Prussian War of 1870–71, and which continued in service until the arrival of the 1874 model. The distinctive “Kataghan” recurved blade influenced designs throughout Europe and the United States.

BAYONET CHARGE
Prussian troops (left) attack French lines during a battle in the Napoleonic Wars, August 27, 1813. The bayonets charge was much beloved of military painters of the 19th century, although they were rare occurrences in practice.
ELCHO BAYONET
While the Martini-Henry rifle was undergoing acceptance trials for the British Army, Lord Elcho, in a private initiative, submitted this bayonet to go with the firearm. Elcho extended the bayonet’s range of tasks to include those of hacking down brush and sawing wood.

DATE 1870s
ORIGIN UK
WEIGHT 1½ lb (0.65 kg)
LENGTH 25 in (64 cm)

LATER ELCHO BAYONET
Despite initial success—and the arming of some infantry units—the Elcho bayonet was not taken up as an official model, being considered too expensive and too ungainly. Even this model with a more conventional blade failed to persuade the authorities in its favor.

DATE 1870s
ORIGIN UK
WEIGHT 1½ lb (0.65 kg)
LENGTH 25 in (64.2 cm)

MARTINI-HENRY SOCKET BAYONET
Lighter, cheaper, and as efficient as a sword bayonet, socket bayonets were issued for use with the Martini-Henry rifle (although senior NCOs were allowed their more prestigious sword bayonets). They were attached to the barrel muzzle and held in place with a mortise slot and locking ring.

DATE C.1876
ORIGIN UK
WEIGHT 1 lb (0.45 kg)
LENGTH 25½ in (64 cm)

TROWEL BAYONET
Designed to fit over the muzzle of the US 1873 “Trapdoor” Springfield rifle, this ingenious implement was intended as an entrenching or general digging tool, although it could also be used as a very broad-bladed bayonet. Constructed from metal, it has a blued finish.

DATE LATE 19TH CENTURY
ORIGIN US
WEIGHT 1 lb (0.50 kg)
LENGTH 14½ in (36.8 cm)
INDIAN STAFF WEAPONS

THE DOMINATION OF INDIA by British forces in the late 18th and 19th centuries, armed at first with muskets and later with rifles, rendered staff weapons increasingly obsolete on the subcontinent. To be effective, Indian armies had to deploy artillery and firearms. Traditional varieties of battle-ax and mace continued to be found in the armouries of Hindu and Muslim princes, and among the weaponry of tribal peoples. Many of these weapons were more ceremonial than practical, their elaborate decoration being an indicator of their owner’s wealth and status. They also proved attractive to European collectors of exotic weaponry.

ANKUS
This ankus, or elephant goad, is of traditional form, with the spike and hook designed for controlling the animal by pressure on the hide. The goad is so splendidly decorated, however, that it was probably intended for display rather than for practical use, being carried in a similar manner to a ceremonial mace.

DATE MID-19TH CENTURY
ORIGIN INDIA
WEIGHT 1½LB (0.59KG)
LENGTH 14½IN (37CM)

BHUI
The knife-like battle-ax known as a bhui was used from earliest times in tribal India and adopted by Hindu and Muslim armies. It is often called an “elephant’s head” because of the characteristic decoration between shaft and blade.

DATE 19TH CENTURY
ORIGIN INDIA
WEIGHT 2LB (0.87KG)
LENGTH 27¾IN (70.4CM)

TWO-POINTED TONGI
The two-pointed steel head of this ax, or tongi, bears traces of punched decorations but is otherwise unadorned. The nature of the head reflects an abiding Indian attraction toward elaborately shaped weaponry.

DATE 19TH CENTURY
ORIGIN INDIA
WEIGHT 1½LB (0.7KG)
LENGTH 33½IN (85CM)

FOUR-POINTED TONGI
Broadly similar to the two-pointed axe above, this tongi has a steel head that diverges into four points. This is a basic and functional weapon, possibly used by a member of the Dravidian Khond tribes.

DATE 19TH CENTURY
ORIGIN INDIA
WEIGHT 0.5KG (1LB)
LENGTH 95CM (37½IN)
TABAR
The carved wooden shaft of this battle-ax, or tabar, is covered in green velvet at the grip and tipped with carved ivory at each end. The broad steel blade would have been effective in combat, but the fine decoration suggests that display was its prime function.

SPIKED MACE
Bearing 118 individual spikes, this mace would have delivered a devastating blow to an opponent. This particular mace is a Maratha weapon. The Marathas' greatest triumph was the victory over the forces of the British East India Company at Wadgaon in 1779.
At the end of the 18th century, Europeans were an influence only at the coastal margins of Africa. African states and tribal societies carried on traditional forms of warfare, despite the presence of imported firearms. By 1900 European colonial powers had carved up the continent between them, but even then most Africans were still largely unaffected by European ideas and technology. Traditional forms of weaponry were being made well into the 20th century, with African metalworkers displaying their skills in the forging of blades and heads for missile weapons.

Rival Tribes in Ethiopia
This European engraver’s impression of tribes at war in southern Ethiopia was not based on any first-hand knowledge of their weaponry or fighting techniques. The sword has the look of an Islamic scimitar.

Congolese Ax
This is a ceremonial ax of a kind often carried by chiefs of the Songye people of southeastern Congo. The axes were made by the Nsapo subgroup, who were skilled at working iron and copper.

- **Date**: c.1900
- **Origin**: Dem. Rep. of Congo
- **Weight**: 3 lb (1.35 kg)
- **Length**: 16½ in (42.8 cm)

congoles AX
This is a ceremonial ax of a kind often carried by chiefs of the Songye people of southeastern Congo. The axes were made by the Nsapo subgroup, who were skilled at working iron and copper.
African spears
In tribal warfare, spears were almost always used as missile weapons, thrown in skirmishes where warriors avoided close combat. They might serve to finish off enemies wounded by arrows and unable to flee.

Sudanese arrows
Tribal warfare in Sudan consisted of rushing forward to discharge arrows at the enemy from some 165 ft (50 m) range, then retreating to avoid arrows fired in reply. The multiple barbs on the arrowheads made them very difficult to extract from a wound.

Fighting pick
This unusual fighting pick from West Africa has a barbed metal point with a tang inserted into a wooden shaft. The roughened skin of a monitor lizard has been used to improve the grip on the handle.

African spears
In tribal warfare, spears were almost always used as missile weapons, thrown in skirmishes where warriors avoided close combat. They might serve to finish off enemies wounded by arrows and unable to flee.

Ax club
This decorative, highly-polished ax club was probably made in the West African kingdom of Dahomey. The weapon's metal blade is blunt, perhaps because it was for ceremonial use. A powerful slave-trading state during the 18th and 19th centuries, Dahomey was conquered by France in the 1890s.
ZULU WARRIOR

THE ZULU OF SOUTHERN AFRICA, were transformed into a formidable military force under paramount chief Shaka from 1816 to 1828. Victories over neighboring peoples created an extensive Zulu empire that came into conflict with European settlers. Defeat by the British in 1879 brought Zulu ascendancy to an end, but not before allowing the Zulu warriors to display their fighting qualities against a modern European army.

DISCIPLINED FIGHTERS
The Zulu military system was based on the close bonding of unmarried men grouped by age. Brought together in a barracks when around 18 to 20 years old, they developed a strong identity as a “regiment” marked by a distinctive color of shield and details of ceremonial furs and feathers. They remained in service until the age of 40, when they were allowed to retire and marry. The Zulu warrior’s main equipment was the heavy stabbing spear and large cowhide shield. Zulu also carried throwing spears, clubs, and latterly firearms—although these they used poorly.

Moving barefoot across country without supplies, foraging for food, their army was preceded by scouts and skirmishers who provided intelligence and masked their movements. Their attack formation consisted of an encircling movement from both flanks—the “horns”—a “chest” directly confronting the enemy center, and a reserve force in the rear, the “loins.” Warriors advanced toward the enemy in loose order at a steady jog, taking full advantage of any cover. Once within range, they would loose their throwing spears or a volley from their firearms and then make a last rapid dash upon the enemy position, armed with stabbing spear and shield. If successful, they always sought to slaughter their enemy to the last man, taking no prisoners. Despite the use of magic potions to guarantee their safety, the Zulu were unable for long to sustain the heavy losses inflicted by British breech-loading rifles.

PHYSICAL PROWESS
Young Zulu warriors were extremely fit and hardy. When at war, they were expected to travel barefoot at around 20 miles (32 km) a day, twice the speed achieved by the British Army at that time.

SHAKA
Paramount chief Shaka (1787–1828) transformed Zulu warriors into a potent military machine. Before his day, warfare was conducted through the largely ineffectual use of throwing spears and ritual combat between individual warriors. Shaka initiated war to the death. In ten years, through a series of exterminatory campaigns known as the *mfecane* (“crushing”), he created a large empire, killing possibly as many as 2 million in the process. His cruelty was also turned upon his own people, with thousands killed in mass executions. Shaka was assassinated by his half-brothers in 1828, but the empire he had created lasted another half century.

BRITISH OFFICERS MEETING WITH CHIEFS UNDER SHAKA IN 1824
The Zulus' most impressive victory over the British occurred at Isandhlwana in January 1879. The British force, over 1,600 strong, was overtaken by a surprise Zulu attack at 8 a.m., although the Zulu also suffered heavy losses. Six whole companies of the British 24th Foot Regiment totaling 602 men, later known as the South Wales Borderers, were wiped out to a man.

“WE KILLED EVERY WHITE MAN LEFT IN THE CAMP AND THE HORSES AND CATTLE TOO.”

ZULU WARRIOR GUMPEGA KWABE ON MASSACRE OF BRITISH AT NTOMBE RIVER, MARCH 1879

DRESSED TO KILL
A Zulu warrior's war dress was a stripped-down version of the full regalia worn for tribal ceremonies, but could still make elaborate use of cow's tails and feathers. This warrior carries a selection of throwing spears as well as his principal weapon, the large-bladed stabbing spear.
OCEANIAN CLUBS AND DAGGERS

THE POLYNESIANS AND other peoples who occupied the islands of the Pacific before the arrival of Europeans in the 17th century, were much given to warfare. They engaged in forms of combat ranging from revenge raids and ritualized skirmishing, to wars of conquest and extermination. Their weaponry was limited, consisting largely of wooden clubs, cleavers, daggers, and spears, sometimes edged with sharpened bone, shell, coral, stone, or obsidian. Weapons were intricately decorated, and often held as objects of religious significance and valued as heirlooms.

TONGAN CLUB

This heavy club from Tonga is carved along its length with geometric patterns, human figures, animals, and fish. Holding the handle with both hands, a warrior could bring the diamond-shaped head down on an enemy’s skull in a crushing blow. The sharp corners would have been very effective on focusing the mass of the weapon at its point of impact.

DATE 19TH CENTURY
ORIGIN TONGA
WEIGHT 2 3/4 LB (1.3 KG)
LENGTH 32 1/4 IN (82 CM)

MELANESIAN CLUB

This highly polished wooden club comes from one of the islands of Vanuatu. It has a stylized human face carved on each side of the head, a form of decoration that is quite frequently found on clubs in various parts of Oceania. The eyes are picked out with red beads and white shells. The club’s cylindrical handle, ending in a circular butt, is quite long, but overall the club is relatively light in weight.

DATE 19TH CENTURY
ORIGIN VANUATU
WEIGHT 1 1/4 LB (0.6 KG)
LENGTH 32 IN (82 CM)

POLYNESIAN “CUTLASS”

The shape of this weapon, either a club or a cleaver, is most unusual, perhaps modeled on the cutlasses that were carried by European sailors. The Polynesian craftsman has blended that exotic shape with intricate indigenous carving—triangular sections and geometric motifs—that covers the head of the weapon.

DATE 19TH CENTURY
ORIGIN POLYNESIA
WEIGHT 3 3/4 LB (1.6 KG)
LENGTH 30 3/4 IN (77.5 CM)
MAORI PATUKI

The Maori, Polynesians who colonized New Zealand around 1000 BCE, were among the most warlike of Pacific peoples. This two-edged club, known as a *patuki*, comes from New Zealand’s North Island and may have been taken as plunder by the British after their victory in the Maori War of 1860–69. It is decorated with inlaid haliotis shells, as well as elaborate carvings.

DATE	c.1860
ORIGIN	New Zealand
WEIGHT	3/8 lb (0.33 kg)
LENGTH	37 1/3 in (95 cm)

OBSIDIAN SPEARHEAD

Like the dagger above, this spear was made by the Melanesian people of the Admiralty Islands. The obsidian has been flaked to make a spearhead with sharp edges and a point. The head is flat on one side and ridged on the other. Only part of the ochre-painted, decorated wooden shaft remains. It is fixed to the obsidian head with resin.

DATE	c.1900
ORIGIN	Papua New Guinea
WEIGHT	1/2 lb (0.22 kg)
LENGTH	38 in (97 cm)

DAGGER WITH OBSIDIAN BLADE

This dagger is from the Admiralty Islands, off New Guinea, where the volcanic glass obsidian occurs naturally. The Melanesians discovered how to flake obsidian to a razor-sharp edge. The blade of this dagger is flat on one side and raised to a ridge on the other. The pointed wooden handle is decorated with designs characteristic of this region.

DATE	c.1900
ORIGIN	Papua New Guinea
WEIGHT	2 oz (60 g)
LENGTH	28 in (71 cm)
NORTH AMERICAN KNIVES AND CLUBS

Although wood and stone implements remained in use, by the late 18th century Native Americans were employing edged weapons with metal blades or heads. They were major purchasers of European and Euro-American manufactured edged tools and weapons, which they often customized with decorative motifs. Most of the items shown here were not primarily designed for combat, having a range of practical or symbolic uses.

Knife and Rawhide Sheath
This knife was constructed by attaching a wooden handle to the head of a lance or spear—a common weapon for a Native American warrior. The rawhide sheath, finely stitched with beadwork, was probably used with this knife, but not specifically made for it, hence the difference in shape.

Knife and sheath
Many thousands of European-made knives were traded with Native Americans, mostly in exchange for furs. This iron blade, attached to a shaped handle, was a far more effective tool than traditional stone implements. The deerskin sheath has been stitched using softened and dyed porcupine quills. The decorative tassels hang on one side of the sheath only, indicating that it would have been worn on the left side of the body.

Tlingit Fighting Knife
The Tlingit people of the northwest Pacific coast were skilled metalworkers, producing good-quality copper and iron blades. The handle of this knife is wrapped in leather and topped with a fine totem carving, which is inlaid with abalone shell. Fighting in close combat, the Tlingit warrior would wrap the loose leather strap around his wrist to ensure a secure hold upon the weapon.
The idea of combining a peace pipe and a war axe was dreamed up by Euro-American traders, but taken on by Native Americans with enthusiasm. They bought large numbers, making them a part of their culture. Pipe tomahawks were carried by Native American chiefs as symbols of prestige, and exchanged as diplomatic gifts.

DATE c.1890
ORIGIN US

HAIDA CLUB
Living on islands off the northwest coast of North America, the Haida people fished from canoes. This wooden club, showing a stylized fish, would have been used in halibut fishing. Halibut weighing around 400 lb (180 kg) were caught by setting hooks close to the ocean bed. Once hauled to the surface, they had to be stunned immediately with clubs, before their struggles upset the canoe.

DATE 19TH CENTURY
ORIGIN US

PENOBSCOT STONE CLUB
The Penobscot Indian nation lives in Maine. Speaking an Algonquin language, they sided with the American rebels against the British and the Algonquins’ traditional enemies, the Iroquois, in the Revolutionary War of 1775–83. This stone club would typically have been used to finish off a wounded moose or deer, which had been brought down by an arrow or spear.

DATE 19TH CENTURY
ORIGIN US
Both bows and arrows and firearms (traded with the English) were used by the Native Americans in battle. Amos Bad Heart Buffalo (1869–1913), the artist who painted this picture, was a Native American warrior who joined the US army and made over 400 illustrations of his people.
NORTH AMERICAN HUNTING BOWS

BOWS WERE AMONG the most important weapons of the native peoples of North America, for hunting, warfare, and ceremonial use. They were “backed bows”—simple bows reinforced with sinew on the side facing away from the archer. The basic material was wood, although in some parts, horn or bone predominated. Arrows often had detachable foreshafts, which would stay embedded in the prey when the hunter pulled the shaft away. Unlike the longbowmen of Agincourt, who drew their bows with fingers on either side of the arrow, skilled North American Indian hunters used two fingers beneath the arrow to pull the string.

HOPI BOW AND ARROWS
The Hopi are Pueblo Indians living in northern Arizona. They used bows and arrows as part of their rich ceremonial life, especially as ritual gifts, as well as for hunting and war. Their arrows were traditionally tipped with shaped stone. The bow is reinforced with strips of sinew glued to the back.

THOMPSON BOW AND ARROWS
The Thompson are a plateau people of the northwest United States. This set of maplewood bow and unfletched arrows was specially made for ceremonial use. For a four-day period after the death of a tribe member, the arrows were shot at a rush figure of a deer suspended from a hut roof. The bow and arrows were never used again.

QUIVER AND BOWCASE
Plains Indians, who often fought and hunted on horseback, carried their bow and arrows in a combined quiver and bowcase. Made of animal hide, it was slung across the rider’s back, suspended on a strap. The quiver carried about 20 arrows, traditionally tipped with stone but later, under European influence, with iron.
THE BUFFALO HUNTER

A Plains Indian races a fleeing bison, aiming to shoot his arrow from point-blank range. The bows were mostly short—at most 3 ft (1 m) in length—for ease of use on horseback. American soldiers who fought the Indians in the Plains Wars (1860s–80s) testified to the accuracy and power of their shots, which were more effective than their erratic use of firearms.

COPPER INUIT BOW AND ARROW

The Inuit peoples of the Arctic used bows to hunt caribou and other game. This bow and arrow were made by the Copper Inuit of northwest Canada. As their name suggests, they made frequent use of copper, here employed for the arrow tip. Sinew cordage reinforces the back of the bow.

SOUTHAMPTON INUIT BOW AND ARROW

Unlike peoples further south, the Inuit did not glue strips of sinew to the backs of their bows. Instead they lashed a cable of sinew cordage to the bow, as in this example made by the Southampton Inuit of Hudson Bay. The arrow has a detachable foreshaft.

HORN ARROW STRAIGHTENER

Shafts for arrows were made from straight saplings which, once cut, were allowed to season before being trimmed of their bark and smoothed. The shafts were then greased with rendered fat and heated before being passed through an arrow straightener.
ALTHOUGH BOOMERangs ARE not unique to Australia, they are most associated with its indigenous peoples. A mix of aerodynamic and gyroscopic effects determines their curving flight. Aborigines used boomerangs, throwing sticks, spears, and stone axes for hunting and in skirmishes. Battles consisting of an exchange of missiles warded off by shields caused limited casualties. Once European settlers arrived with firearms, Aboriginal weaponry was redundant for warfare.

INDIGENous AUSTRALIAN

In the 1870s, Australian photographer John William Lindt made studio portraits of Aborigines from Clarence Valley, New South Wales. Intending to document a vanishing way of life, he posed them with their artefacts, including here a boomerang and shield.

Convex boomerang

This mulga-wood boomerang, similar to many used in the 19th century, was carved from the junction between a tree root and a trunk, exploiting the natural curve of the wood to create a strong hook. When the boomerang was used for fighting, the hook might catch on an enemy’s shield or club and swing round to strike him on the face or body.

hooked boomerang

This mulga-wood boomerang, similar to many used in the 19th century, was carved from the junction between a tree root and a trunk, exploiting the natural curve of the wood to create a strong hook. When the boomerang was used for fighting, the hook might catch on an enemy’s shield or club and swing round to strike him on the face or body.

Sharp-angled boomerang

This boomerang or club has been finely carved to form a sharp angle. It is decorated on both sides with a design in red ocher and white pipe clay. Abstract designs of this kind are often connected with the Aboriginal “dreamtime” myths that link the clan or tribe to its ancestors and its local territory.
Parrying Shield

Despite its elongated shape, a parrying shield of this kind was an effective defense against hostile missiles such as throwing sticks or boomerangs, if used deftly by an alert warrior to ward them off. The design of longitudinal and diagonal lines, picked out in red and white ochers, is typical of indigenous peoples in this area.

Banded Shield

This parrying shield is decorated with bands of red ocher and an intricate pattern of finely engraved lines. The markings at the ends may represent clan affiliations. Held by a grip at the back made of solid wood, the shield was robust enough to deflect a boomerang or other missile even if thrown with considerable force.

Carved Shield

This shield, known as a gidyar, originates from the Cairns District, and is similar to types used in the 19th century. It has been carved out of wood and painted in a bold design. Although it may have found multiple other uses, the shield was almost certainly employed primarily for purposes of display in ceremonial dances.

Ridged Shield

This shield from northern Queensland is made out of light ridged wood attached to a solid-wood handle at the back. It is a decorative work as well as a piece of defensive equipment. The meaning of the colorful design on the shield is uncertain, but it may refer to the achievements and status of the warrior who owned it.
FLINTLOCK PISTOLS FROM 1775

BY THE LAST QUARTER of the 18th century, before police forces were widely established, pistols were commonplace in the homes of the wealthy, and pocket models were often carried by gentlemen and villains alike. Several types of pistol designed for specific purposes had been developed, including the dueling, or target, pistol and the blunderbuss pistol. The flintlock pistol was virtually ubiquitous, more often than not in the semi-enclosed box-lock form. Only in Spain did the less efficient miquelet style of lock still occur with any regularity.

BLUNDERBUSS PISTOL
The blunderbuss (from the Dutch donderbus, or “thunder gun”) was a close-range weapon, its bell mouth aiding the loading and dispersal of the shot. This box-lock model was the work of John Waters of Birmingham, who held a patent on the pistol bayonet. Officers of the British Royal Navy often used such pistols during boarding operations.

DATE 1785
ORIGIN UK
WEIGHT 2LB (0.95kg)
BARREL 7½in (19cm)
CALIBRE 1in at muzzle

MIQUELET DUELLING PISTOL
Pistols specifically designed for dueling made their first appearance in Britain after 1780. They were invariably sold as a matched pair, cased, with all the accessories necessary for their use. “Saw handle” butts with pronounced prawns and steadying spurs on the trigger guard were later additions, as was the custom of stocking the pistols fully, to the muzzle.

DATE 1815
ORIGIN UK
WEIGHT 2½lb (0.68kg)
BARREL 5in (12.4cm)
CALIBRE .45

FLINTLOCK REVOLVER
Around 1680, John Dafte of London designed a pistol with a revolving, multichambered cylinder that was indexed (rotated) by the cocking action. Elisha Collier of Boston gained a British patent for an improved version in 1814, it was produced in London by John Evans in 1819. The indexing mechanism was unreliable, and the cylinder was usually turned by hand.

DATE c.1820
ORIGIN UK
WEIGHT 1½lb (0.68kg)
BARREL 9in (23cm)
CALIBRE .34

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaw clamp screw</td>
<td>A screw used to secure the jaw clamp mechanism.</td>
</tr>
<tr>
<td>Rear “trigger” releases bayonet</td>
<td>The mechanism that releases the bayonet.</td>
</tr>
<tr>
<td>Feather spring</td>
<td>A spring that aids in the cocking action.</td>
</tr>
<tr>
<td>Cock</td>
<td>The striker that ignites the flintlock.</td>
</tr>
<tr>
<td>Striking steel</td>
<td>The steel part of the cock that makes contact with the flint.</td>
</tr>
<tr>
<td>Smooth-bore barrel</td>
<td>A barrel designed for smoothbore firearms.</td>
</tr>
<tr>
<td>Fore stock extends to muzzle</td>
<td>The stock extends to the muzzle.</td>
</tr>
<tr>
<td>Bead foresight</td>
<td>A bead sight for improved accuracy.</td>
</tr>
<tr>
<td>Barrels unscrew for loading</td>
<td>The barrels can be unscrewed for loading.</td>
</tr>
<tr>
<td>Spring-loaded bayonet</td>
<td>A bayonet that is loaded by spring action.</td>
</tr>
<tr>
<td>Bell mouth ensures wide spread of shot at close range</td>
<td>The bell mouth disperses the shot widely at close range.</td>
</tr>
<tr>
<td>Cock</td>
<td>The mechanism for cocking the flintlock.</td>
</tr>
<tr>
<td>Jaw clamp screw</td>
<td>A screw used to secure the jaw clamp mechanism.</td>
</tr>
<tr>
<td>Rear “trigger” releases bayonet</td>
<td>The mechanism that releases the bayonet.</td>
</tr>
<tr>
<td>Feather spring</td>
<td>A spring that aids in the cocking action.</td>
</tr>
<tr>
<td>Cock</td>
<td>The striker that ignites the flintlock.</td>
</tr>
<tr>
<td>Striking steel</td>
<td>The steel part of the cock that makes contact with the flint.</td>
</tr>
<tr>
<td>Smooth-bore barrel</td>
<td>A barrel designed for smoothbore firearms.</td>
</tr>
<tr>
<td>Fore stock extends to muzzle</td>
<td>The stock extends to the muzzle.</td>
</tr>
<tr>
<td>Bead foresight</td>
<td>A bead sight for improved accuracy.</td>
</tr>
<tr>
<td>Barrels unscrew for loading</td>
<td>The barrels can be unscrewed for loading.</td>
</tr>
<tr>
<td>Spring-loaded bayonet</td>
<td>A bayonet that is loaded by spring action.</td>
</tr>
<tr>
<td>Bell mouth ensures wide spread of shot at close range</td>
<td>The bell mouth disperses the shot widely at close range.</td>
</tr>
</tbody>
</table>
FOUR-BARREL TAP-ACTION PISTOL
A simpler alternative to the cylinder revolver was to multiply the number of barrels; two, each with their own lock, were quite common, and four—and even six—became feasible with the invention of the tap. The taps, one for each vertical pair, presented priming for the second barrel when turned.

DATE 1780
ORIGIN UK
WEIGHT 1.94 lb (0.88 kg)
BARREL 2.95 in (7.5 cm)
CALIBRE .59 in

"QUEEN ANNE" PISTOL
The distinctive form of the Queen Anne pistol continued long after the eponymous lady’s death in 1714. The tapered “cannon” barrel screwed into a standing breech in which the lock plate, trigger plate, and butt strap were forged in one piece. This double-barrelled example is by Griffin and Tow.

DATE 1775
ORIGIN UK
WEIGHT 1 lb 6 oz (0.68 kg)
BARREL 2.5 in (6.35 cm)
CALIBRE .70 in

POCKET PISTOL
Short-barrelled pistols replaced the sword as the gentleman’s weapon of self-defence. Box-locks were preferred to side-locks, because they were less likely to catch in the clothing. Pistols often had a bayonet, which was released by pulling back the trigger guard.

DATE 1800
ORIGIN BELGIUM
WEIGHT 0.478 lb (0.21 kg)
BARREL 4.1 in (10.5 cm)
CALIBRE .59 in

Bayonet
FLINTLOCK PISTOLS TO 1850

MASS PRODUCTION WAS UNKNOWN before the 19th century. Until then, firearms had no interchangeable parts, because each element was made by hand for each individual weapon. Even relatively unsophisticated pistols were expensive, both to buy and to repair, despite the fact that demand was high and increasing. The decoration that had graced many earlier weapons was sacrificed to save money. Ultimately, quality too became a casualty—except at the top end of the market, where cost was no object.

HARPER’S FERRY PISTOL

The Model 1805 was the first pistol manufactured at the newly-established Federal Arsenal at Harper’s Ferry, in what is now West Virginia. Like all martial handguns of the period, it was robust enough to be reversed and used as a club, should the need arise.

DATE 1806
ORIGIN US
WEIGHT 2 lb (0.9 kg)
BARREL 10 in (25.4 cm)
CALIBER .54 in

FLEMISH POCKET PISTOL

This simple box-lock pocket pistol has an integral spring-loaded bayonet, operated by pulling back on the trigger guard. There is some engraving on the lock plates and the butt is finely carved. It is the work of A. Juliard, a Flemish gunmaker of some repute.

DATE 1805
ORIGIN NETHERLANDS
WEIGHT 1 lb (.5 kg)
BARREL 4¾ in (12.3 cm)
CALIBER .85 bore

ITALIAN POCKET PISTOL

Gunmaking flourished in post-Renaissance Italy (the English word “pistol” probably derives from Pistola, a city famous for gun manufacture). Although the industry was in decline by the 19th century, craftsmen like Lamberti, creator of this pistol, still thrived.

DATE 1810
ORIGIN ITALY
WEIGHT 1½ lb (0.62 kg)
BARREL 4¾ in (12.3 cm)
CALIBER .85 in

Internal box lock
Ramrod thimble

Jaw-clamp screw

Flashpan
Pulling trigger guard releases bayonet

Octagonal barrel
Spring-loaded bayonet

One-piece stock made of seasoned walnut

Heavy brass butt plate
Brass trigger guard

Safety catch locks pan closed

Flint
Striking steel

Curved walnut butt

Wooden ramrod with brass cap

Brass-bound butt

Round brass barrel

Ramrod thimble
TURN-OFF POCKET PISTOL

The screw-on barrel, which could be removed with a wrench or key, allowed this pistol to be loaded with a tighter-fitting ball and thus shoot both harder and straighter. Turn-off pistols were slow to reload, but their small size made them popular for self-defense.

DATE	1810
ORIGIN	FRANCE
WEIGHT	1 lb (0.45 kg)
BARREL	11/4 in (4 cm)
CALIBER	.71 in

SPANISH CAVALRY PISTOL

In 1839, the Spanish Army finally abandoned the miquelet lock, with its long, exposed mainspring, and introduced a new design of pistol—a bridled flintlock closely modeled on those in French service. A small boss on the barrel’s surface held the ramrod in place, rather than the swivel mount found on other martial pistols of this period.

DATE	1841
ORIGIN	SPAIN
WEIGHT	1 lb (0.45 kg)
BARREL	11/4 in (4 cm)
CALIBER	.71 in

NEW LAND-PATTERN PISTOL

The Land-Pattern Pistol was introduced in 1756, and was subsequently modified in very minor ways. It was a competent, sturdy design and was to remain in service until flintlocks gave way to percussion in the 1840s. A version with a flat butt and lanyard ring was produced for cavalry, and copies were made—by Ezekiel Baker—for issue to the East India Company’s forces.

DATE	1810
ORIGIN	UK
WEIGHT	1 lb (0.45 kg)
BARREL	11/4 in (4 cm)
CALIBER	.65 in
FULMINATE OF MERCURY was first used to ignite gunpowder in a gun barrel by Scotsman Alexander Forsyth, who took out a patent in 1807. It took some time to find a successful way of presenting the fulminate charge, or primer, to the breech. The solution, called the cap, consisted of primer sandwiched between two copper-foil sheets. The cap was shaped to fit over a pierced nipple set in what had been the touch-hole. It was struck by a hammer, rather than a cock and flint. Pistols using this system appeared around 1820.

BELGIAN DUELING/TARGET PISTOL
Percussion-cap pistols were more reliable than even the best flintlocks, and one of their earliest uses was as dueling pistols. This half-stocked pistol by Folville, one of a matched and boxed pair, is typical of those produced in Liège, in what is now Belgium.

DATE: 1830
ORIGIN: BELGIUM
WEIGHT: 2 LB (0.88 KG)
BARREL: 9¼ IN (23.8 CM)
CALIBER: 8 MM

ENGLISH DUELING/TARGET PISTOL
Despite their lack of overt decoration, dueling pistols were usually produced without regard to cost. This example, one of a pair, was the work of Isaac Riviere of London. Riviere had considerable influence over the design of percussion pistols, and patented his own lock in 1825.

DATE: c.1830
ORIGIN: UK
WEIGHT: 2½ LB (1.15 KG)
BARREL: 9½ IN (24.1 CM)
CALIBER: 44-BORE

FRENCH DUELING/TARGET PISTOL
Technically, there is little difference between dueling pistols and those used for shooting at paper targets. However, the latter, such as this example by the renowned Parisian gunmaker Gastinne-Renette, were often beautifully decorated.

DATE: 1839
ORIGIN: FRANCE
WEIGHT: 2 LB (0.95 KG)
BARREL: 11¼ IN (28.3 CM)
CALIBER: 12 MM
COOPER UNDER-HAMMER PISTOL

Joseph Rock Cooper was a prolific English firearms inventor. One of his patents was for this pistol, which has an under-hammer by a Belgian named Mariette. In effect it is a “double-action” pistol: pulling the trigger lifts and then releases the hammer.

DATE	1849
ORIGIN	UK
WEIGHT	½ LB (0.27 kg)
BARREL	4 IN (10 CM)
CALIBER	.45 IN

PATTERN 1842 COASTGUARD PISTOL

British pistols used by the coastguard, police, and other security agencies were similar in style to the Land- and Sea-Pattern pistols of the army and navy, but usually lighter and smaller. Revolvers replaced Pattern 1842 pistols in the 1850s.

DATE	1842
ORIGIN	UK
WEIGHT	2½ LB (1.05 kg)
BARREL	6 IN (15 CM)
CALIBER	.40-44

BAR-HAMMER “PEPPERBOX” PISTOL

Pepperbox pistols offered the advantage of multi-shot cylinder revolvers without their principle drawback—the leakage of propellant gas between chamber and barrel. Unfortunately, the type was generally inaccurate, except at point-blank range.

DATE	1849
ORIGIN	UK
WEIGHT	2½ LB (1.01 kg)
BARREL	3½ IN (9.1 CM)
CALIBER	.55 IN

SHARPS BREECH-LOADING PISTOL

Christian Sharps was famous for his breech-loading rifles and carbines for military and sporting use. He also made pistols based on the same principles as his early rifles. The falling breech cut off the rear of the linen cartridge when it was returned to battery.

DATE	c.1860
ORIGIN	US
WEIGHT	2 LB (0.96 KG)
BARREL	5 IN (12.7 CM)
CALIBER	.44 IN
SAMUEL COLT CLAIMED that the design of his cylinder revolver, patented in 1835, was inspired by the locking mechanism of a sailing ship's steering wheel. A pawl linked to the hammer breast engaged with a ratchet machined into the cylinder's rear face. As the hammer was pulled back, the pawl indexed the ratchet by one stop, bringing a fresh chamber into line with the barrel and its percussion cap under the hammer. The cylinder was locked in place at the moment of firing by a vertical bolt driven upward by the action of the trigger.

COLT MODEL 1849 POCKET PISTOL
Colt introduced a five-shot revolver in .31 in caliber in 1848 as the Baby Dragoon. The next year he produced a revised version, equipped with a standard compound rammer, a choice of three barrel lengths, and a five- or six-shot cylinder. It proved the company's best-selling percussion revolver, and 350,000 were sold before it was superseded by a brass-cartridge version in 1873.

DATE 1849
ORIGIN US
WEIGHT 1.5 LB (0.69 KG)
BARREL 4 IN (10.2 CM)
CALIBER .31 IN

COLT MODEL 1855 POCKET PISTOL
Such was the success of the Pocket Pistol that Colt launched another model in 1855, this one to the design of Elisha Root, the Works Superintendent, who did much to modernize manufacture. Root's pistol had a top strap—its first use in a Colt pistol—a side-mounted hammer, and a stud trigger. The latter was not popular, and though the pistol was produced in seven different models and both .28 in and .31 in caliber, only some 40,000 were sold before it was discontinued in 1870.

DATE 1855
ORIGIN US
WEIGHT 1 LB (0.5 KG)
BARREL 3½ IN (9.9 CM)
CALIBER .28 IN
COLT VINTAGE MODEL 1851

In 1851, Colt introduced a lighter pistol, the Navy Model, in .36 in rather than .44 in caliber. That same year, he traveled to London to show at the Great Exhibition, and obtained an order from the British government. The example shown here is one of the pistols produced at the factory the company established in London in 1853. Its cylinder is engraved with a naval scene.

COLT SECOND MODEL DRAGOON PISTOL

Colt’s mainstay during the first decade and a half of the percussion era was the Dragoon Pistol, so called because it was intended as a side-arm for cavalrymen. It first went into limited production at Whitneyville in 1847. Later that same year, Colt established a new factory at Hartford, expressly to produce the Dragoon Pistol to fulfill an army contract.

LE MAT PISTOL

Jean-Alexandre Le Mat’s revolver design was produced in both pistol and rifle form. The nine-chambered cylinder revolved around not a pin but a second, un rifled barrel, which was charged from the muzzle with pellets. The hammer had a hinged extension to its nose, which could be angled up or down to fire either barrel.

STARR SINGLE-ACTION ARMY MODEL

Nathan Starr was a pioneer of the break-open pistol, in which the barrel, top strap, and cylinder were hinged at the front of the frame before the trigger guard. The forked top strap passed over the hammer and was retained by a knurled screw. When broken open, the cylinder could be removed for reloading.
INFANTRY FIGHTING
From April 1861 to April 1865, 3 million men joined the forces of the Union and the Confederacy. Most were infantrymen who walked or marched everywhere, carrying equipment, ammunition, personal items, and a field pack. The main weapon was the muzzle-loaded rifle-musket, firing Minié bullets. Although an advance over the flintlock musket, it still required infantry to fire in volleys from a standing position. On the offensive, infantry had to advance steadily across open ground in the face of withering fire from rifle-muskets and artillery that decimated their ranks. Both sides used the same basic weaponry, but the North was far more successful in equipping its armies. Union infantrymen were well supplied with standard uniform, boots of the right size, bullets, and powder, while the Southern infantry were short of everything but courage. Around 620,000 soldiers lost their lives, more through disease than combat.

THE MAN WHO DOES NOT DREAD TO DIE OR TO BE MUTILATED IS A LUNATIC.

CIVIL WAR VETERAN
At the start of the Civil War, African Americans were excluded from combat by both sides. During 1862 Union officers advanced from using escaped slaves as laborers to arming them. The first regiments of black volunteers were officially raised in the North in 1863. Around 180,000 ex-slaves and free black men served in the Union forces, in segregated regiments and mostly under white officers. Many distinguished themselves in combat, the 54th Massachusetts regiment, for example, performed outstandingly in the storming of Fort Wagner in 1863. The black troops' contribution to victory helped win Union support for the abolition of slavery.
BRITISH PERCUSSION CAP REVOLVERS

ALTHOUGH LONDON GUNMAKERS, notably Robert Adams, were making revolvers by the mid-19th century, it was Samuel Colt’s display at the Great Exhibition of 1851 that ignited interest in such pistols. For some years, Colt had the British market almost to himself, but by the decade’s end, domestic gunmakers’ revolvers had overtaken American Colts in popularity. Adams’ pistols had double-action (“self-cocking”) locks—a characteristic of British revolvers from the outset. Later models could also function in single-action mode.

KERR DOUBLE-ACTION REVOLVER
To address doubts about the reliability of the revolver, James Kerr fitted his with a simple box-lock and a side-mounted hammer. The lock was retained by two screws, and could be easily removed. Should a component—the spring, for example—break, any gunsmith would have been able to repair it. Kerr’s five-chambered pistols came in either 54-bore or 90-bore caliber. They were manufactured until the mid-1870s.

JOSEPH LANG TRANSITIONAL REVOLVER
Open-framed “transitional” pistols combined elements of both the pepperbox pistols they superseded and the true revolvers. They continued to be produced, mostly in Europe, even after much more sophisticated designs had appeared. This example is of the type produced by one of the best known proponents, Joseph Lang of London. Lang was more successful than most gunmakers of the time in solving the problem of propellant gas leaking between chamber and barrel.
TRANSITIONAL REVOLVER
By the late 1850s, there was considerable demand in Britain for cylinder revolvers, but the best of them, by Colt, Deane, or Adams, were very expensive. Cheaper designs such as this example, with a bar hammer derived from a pepperbox revolver, were less satisfactory, with a tendency to discharge two cylinders at once because of the lack of partitions between the nipples.

ADAMS DOUBLE-ACTION REVOLVER MODEL 1851
This revolver—Robert Adams’ first—is also called the Deane, Adams & Deane Model (he was in partnership at the time). The entire frame, barrel, and butt were forged out of a single iron billet, making it extremely strong. Adams’ lock was later replaced by a superior design by a young army officer, F.B.E. Beaumont. The Beaumont-Adams was adopted by the British Army in 1855.

DEANE-HARDING ARMY MODEL
When Adams broke with his partners in 1853, the elder Deane, John, set up his own business. Later he began manufacturing a revolver designed by William Harding with a new, simpler type of double-action lock—the forerunner of modern actions. The two-piece frame could be dismantled by removing the pin located in the top strap in front of the hammer nose. Considered unreliable, the pistol never achieved lasting popularity.
SMITH & WESSON ACQUIRED the patent for a revolver with a bored-through cylinder to accept brass cartridges in 1856, from Rollin White. By the time their protection expired in 1869, the center-fire cartridge (with the primer located in the center, rather than in the rim, as in earlier examples) had been devised, and the world’s gunmakers were poised to begin manufacturing what would prove to be the cylinder revolver in its final form. Later refinements made it possible to charge and empty the chambers more rapidly.

REMINSTG DOUBLE DERRINGER
Henry Deringer was a Philadelphia gun maker who specialized in pocket pistols; his name was ascribed—with the mysterious addition of a second “r”—to a genre of such weapons. The best known of them was the rimfire Remington Double Derringer, a top-hinged, tip-up, over-and-under design that was to remain in production until 1935.

COLT MODEL 1873 SINGLE-ACTION ARMY
The Colt SAA married the single-action lock of the old Dragoon model to a bored-through cylinder in a solid frame, into which the barrel was screwed. It was loaded, and the spent case ejected, by way of the gate on the right of the frame, and a spring-loaded ejector was fitted. This is the long-barreled Cavalry model.
COLT NAVY CONVERSION
Colt replaced its angular 1851 Navy revolver with a new, streamlined version ten years later. This example has been converted to accept brass cartridges after the fashion of the Single-Action Army; many percussion revolvers were adapted in this way.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1861</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2½ lb (1.25 kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>7½ in (19 cm)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.36 in</td>
</tr>
</tbody>
</table>

LEFAUCHEUX PIN-FIRE REVOLVER
Casimir Lefaucheux invented the pin-fire cartridge in the mid-1830s, and his son Eugène later produced a six-shot, double-action revolver for it in 12 mm caliber. This is a Cavalry model of 1853. An Army model, without a steadying spur, was also produced.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1853</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>France</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2½ lb (0.95 kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>5½ in (13.5 cm)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.12 mm</td>
</tr>
</tbody>
</table>

WEBLEY-PRYSE POCKET PISTOL
In 1876, Charles Pryse designed a tip-down, break-open revolver with a rebounding-hammer action and simultaneous extraction of spent cartridges. This Fourth Model Webley-Pryse, recognizable by its fluted cylinder, was made in calibers ranging from .32 in to .577 in.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1877</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>UK</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2½ lb (1.3 kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>6½ in (16 cm)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.45 in</td>
</tr>
</tbody>
</table>

SMITH & WESSON NO. 3, RUSSIAN MODEL
Smith & Wesson’s early designs had been top-hinged, tip-up revolvers, but for the No. 3 revolver it utilized a single-action, bottom-hinged design with an automatic simultaneous extractor. It soon won a contract to supply the Russian Army with 20,000 of these pistols, chambered for a special cartridge (the second version is shown above). They were the most accurate revolvers of their day.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1871</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2½ lb (1.25 kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>8 in (20.3 cm)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.44 in</td>
</tr>
</tbody>
</table>

FULL VIEW
Percussion caps, so called because of their shape, were made of two layers of copper foil with a minute quantity of fulminate of mercury, oxidizer, and a sustaining agent sandwiched between them. They were first introduced in this form in about 1822. By 1861 the cylindro-ogival form had replaced the ball to become the standard shape for both rifle and pistol bullets. They were still being made from pure lead, without the addition of a hardening agent such as antimony.

AMMUNITION
The powder and projectile were made into simple cartridges with combustible cases made of fabric, rendered waterproof and rigid by an application of varnish. These were crushed when seated home in the chamber by the action of the compound rammer.

COLT NAVY MODEL 1861
Colt was a firm believer in standardization in manufacture. One of the factors that made Colt’s pistols so sought-after was the interchangeability of their components, which meant that replacements for broken parts could be bought off the shelf, and that improvements could be easily incorporated.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1861</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>254 LB (1.2 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>5 1/2 IN (19.1 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.36 IN</td>
</tr>
</tbody>
</table>

PERCUSSION CAPS
Percussion caps, so called because of their shape, were made of two layers of copper foil with a minute quantity of fulminate of mercury, oxidizer, and a sustaining agent sandwiched between them. They were first introduced in this form in about 1822.

LEAD BULLETS
By 1861 the cylindro-ogival form had replaced the ball to become the standard shape for both rifle and pistol bullets. They were still being made from pure lead, without the addition of a hardening agent such as antimony.

BULLET MOLD
Even though calibers had by now become standardized, it was still almost unheard-of to buy loose bullets. Instead, one bought a bar of lead and made one’s own bullets, using the mold supplied with the pistol.

BY 1861, his patent protection a thing of the past, Samuel Colt had to rely on the quality of his products to outsell his competitors at a time (during the American Civil War) when the demand for firearms in the United States was running at an all-time high. His Hartford factory was in full production, under the superintendence of Elisha King Root, and that year, he introduced a new, streamlined version of his .36-caliber Navy revolver, which had appeared a decade earlier. Some 38,843 examples of the Model 1861 Navy were produced before it was discontinued in 1873.

AMMUNITION
The powder and projectile were made into simple cartridges with combustible cases made of fabric, rendered waterproof and rigid by an application of varnish. These were crushed when seated home in the chamber by the action of the compound rammer.
By the 1860s, the traditional powder horn had given way to the flask, which incorporated a dispenser for a measured amount of powder as its spout. Most were ornamented with hunting or martial scenes.

LOADING THE REVOLVER

The procedure for loading a percussion revolver was straightforward. A cartridge was placed into the chamber as far as it would go, in the six o’clock position, via the cutaway in the front of the frame. Alternatively, loose powder (from a flask with an angled spout) and a loose bullet could be inserted. The lever of the compound rammer was then lowered, pushing the rammer proper against the nose of the bullet and forcing it into the chamber, where the fragile casing of the cartridge was broken open. When all six chambers were loaded, a percussion cap was placed on each nipple in turn by way of the cutaway at the rear of the cylinder.
THE GERMAN GUN MAKER AND ENGINEER Hugo Borchardt emigrated, in 1860, to the US, where he worked for Colt, Winchester, and other gun manufacturers. When he returned to his native Germany in 1892 to work for Waffenfabrik Loewe, the company was already producing Maxim guns, and that motivated him to experiment with a self-loading pistol. By 1893 he had produced a satisfactory if somewhat cumbersome design, and that in turn inspired others. By the end of the century, there were a dozen self-loading pistols on the market, all of which were designed and produced in Europe.

MAUSER C/96

Although complicated and slow to load due to its fixed magazine, the “Broomhandle” Mauser Selbstladepistole soon became popular in military circles thanks to its very powerful ammunition. It remained in manufacture until 1937 and was copied the world over. It was usually supplied with a holster-cum-shoulder stock. Fully automatic versions were also produced.

BORCHARDT C/93

In Borchardt’s pioneering design, a toggle joint locks the bolt in place. Recoil forces the toggle to break upward, the bolt travels to the rear against a coil spring, and the spent case is ejected. Rebounding, the bolt picks up a fresh round, chambers it, and leaves the action cocked for the next shot. The gun was a commercial failure; only 3,000 were produced, and it was discontinued in 1898 due to the competition from Mauser.

MAUSER ON FILM

British Prime Minister Winston Churchill carried a Mauser C/96 during the battle of Omdurman in 1898, a shoulder injury preventing him from using a saber. Here, Simon Ward plays the title role in the 1972 film *Young Winston*.
BROWNING MODEL 1900
John Moses Browning, probably the most prolific gun designer ever, moved to Belgium from his native USA in 1895. Here he produced an improved version of his first semi-automatic pistol – a simple, unlocked-breech, blowback design – that became known as the Model 1900. Small and light, it was hugely popular, and over 700,000 were sold before production ceased in 1911.

GABBETT-FAIRFAX “MARS”
Perhaps inspired by the Mauser’s success, Hugh Gabbett-Fairfax wanted to produce a super-powerful pistol; the result was the Mars. Described by users as “a nightmare,” it was complex, awkward, and unwieldy, with a vicious recoil.

WEBLEY-FOSBERY
In 1899, Colonel George Fosbery designed a self-cocking revolver in which recoil propelled the barrel and cylinder backwards within a slide, indexing the cylinder. It proved too fragile for battlefield conditions.
NAPOLEONIC WARS
Swords, bayonets, pistols, and muskets were widely used in the early 19th century for close fighting, with artillery and long-range rifles used to great effect over longer distances. The artillery caused most damage, with cannonballs being fired, and canisters and shells exploding near to, or amongst, the enemy’s ranks.
FLINTLOCK MUSKETS AND RIFLES

By the start of the 18th century, the flintlock mechanism, simple and robust, had almost reached its final form. It lacked only roller bearings and reinforcing bridles—metal straps holding interdependent parts in alignment—that virtually eliminated misfiring. It is a tribute to the flintlock's reliability that individual weapons such as the British Land Service Musket and the French Charleville were to be made in their hundreds of thousands, and remain in service for almost a century with only minor modifications.
HALL RIFLE
John Hancock Hall’s rifle, designed in 1811 and introduced into service in 1819, was the first regulation American rifle to incorporate an opening breech; hinged at the front, it tipped up at a 30-degree angle for loading. Hall rifles and carbines were eventually produced in percussion form, too, when the entire breech unit could be removed and used as a pistol.

PRUSSIAN 1809-PATTERN MUSKET
The Prussian equivalent of the British Brown Bess or the French Charleville, the 1809-Pattern musket was made at the Potsdam Armoury in Berlin. Unlike its competitors it was furnished with a (brass) flash guard around the pan as standard, but in other respects it was similar. The majority of these flintlocks were converted to percussion.

AUSTRIAN MODEL 1798 MUSKET
When Emperor Leopold of Austria and King Frederick William of Prussia declared their intention to restore Louis XVI of France to his throne in 1791, Austria found itself quite literally outgunned by the French. As a result a new musket, a copy of the French Model 1777, was commissioned, but with some improvements, notably in the way the ramrod was housed.

CHARLEVILLE MUSKET
The Charleville muskets were introduced in 1754 and, modified a number of times, remained in service until the 1840s. Large numbers of Model 1776 guns found their way to the US when a revised pattern was introduced the following year, they were the main armament of the Continental Army that defeated the British.

INDIA-PATTERN MUSKET
The Brown Bess in its final form differed from earlier models in the length of the barrel. It was reduced from 46 in (117 cm) to 42 in (106.5 cm) in the 1760s and finally to 39 in (99 cm). This modification was made for the East India Company and later adopted by the British Army which kept it in service until the 1840s.
IN FEBRUARY 1800, the Baker rifle won a competition organized by the Army's Board of Ordnance and became the first rifle officially adopted by the British Army. It was similar to weapons in use in Germany, and its novel feature lay in its barrel. With shallow or "slow" rifling—just a quarter-turn in the length of the barrel—it stayed clean, and thus usable, for longer. It was issued to select men at first, and was superseded in 1838.

RIFLE
Ezekiel Baker's rifle was a robust weapon, designed to keep on working even under the most difficult conditions, and several modifications to the original design reflected that. With its short barrel (30 inches instead of the more customary 39) it was not particularly accurate, but was still a great improvement over the smooth-bore musket then in general use.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1802–37</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ENGLAND</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>9 LB (4 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>30 IN (76 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.625 IN</td>
</tr>
</tbody>
</table>

RIFLEMAN OF THE 95TH REGIMENT
British rifle companies existed before the Baker was adopted, but a new regiment, the 95th (Rifle) Regiment, was raised specifically to exploit it. Dressed in green coats with black facings (and later known as the Green Jackets) they first saw action as marine infantry during the Battle of Copenhagen in 1801, but really came into their own during the Peninsular War of 1808–14.

MALLET
To begin with, small mallets were issued with Baker rifles, but were soon found to be unnecessary. Hand pressure alone was sufficient to ram down the ball.
SWORD BAYONET
The Baker rifle was supplied with a sword bayonet that could be used alone or mounted on the rifle. At 24 in (61 cm) long it was unwieldy, but it was necessary to compensate for the rifle being so much shorter than other weapons then in use.

RAMROD
The steel rod was used to ram the charge and projectile into the barrel.

PAPER-WRAPPED CARTRIDGE
These contained a charge of powder and the ball. They were torn open with the teeth, with the ball held in the mouth. A small portion of the charge was poured into the pan and the rest down the muzzle. The paper would then be rammed down to form a wad, and the ball, wrapped in a patch taken from the patchbox, rammed down on top.
PERCUSSION-CAP MUSKETS AND RIFLES

THE INVENTION, IN APPROXIMATELY 1820, of the fulminate of mercury percussion cap, revolutionized firearms, making them both simpler and more reliable. By the mid-19th century, all the world’s armies had switched to the system, and were adopting the expanding bullet—developed by Norton and brought to its final form by James Burton—which allowed a muzzle-loading rifle to be charged as rapidly as a musket.

SPRINGFIELD MODEL 1855
The first regulation American percussion rifle was the Model 1841 Mississippi Rifle, with a 33-in (83.8-cm) barrel. It was later given a longer barrel and modified to use Maynard’s patent tape primer fed from a roll housed inside the receiver (instead of individual copper caps placed over the nipple) and became the Model 1855.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1855</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>9½ Lb (4.2 Kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>40 IN (101.5 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>14.7 MM</td>
</tr>
</tbody>
</table>
SPRINGFIELD MODEL 1863 TYPE II
The Springfield M1855, with its tape primer system, was unsatisfactory and replaced by the M1861, which was itself not entirely free of faults, notably in the hammer and nipple. The Model 1863 saw the problems cured and other refinements made. The Type II was the last muzzle-loading weapon issued to the United States army.

FUSIL REGLAMENTAIRE MLE 1853
By the 1840s, steel had come to replace iron in the production of gun barrels. It was found to rust more easily, and a surface treatment known as blueing was introduced. Proof (i.e. prototype) weapons, like this one and the Modèle 1842, not intended for issue to troops, were often left unblued, and are said to be “in the bright.”

MOUSQUETON D’ARTILLERIE MLE 1842
First issued to the French Army 20 years earlier and subsequently modified to percussion ignition, the Modèle 1842 received improved rifling and detail changes to the design of the hammer and nipple. It was produced in a variety of forms, but those for issue to artillerymen were 34 in (86 cm), with two barrel bands.

WHITWORTH RIFLE
Sir Joseph Whitworth (who was best known for standardizing screw threads) produced a rifle for a British Army trial, with an hexagonal bore, which fired an hexagonal bullet. It proved to be accurate to well over 1,500 yards (1.4 km), but it was four times the price of an Enfield Model 1853, and never adopted by the army.
LE PAGE SPORT GUN

While the technical quality of the gun is excellent, its appeal lies in its decoration. The scrollwork on the small of the stock is enhanced with steel wire, while the metalwork is engraved with scenes from Napoleon’s life and the names of some of his battles.

PIERRE LE PAGE set up in business as arquebusier in Paris, perhaps as early as 1716, and was later appointed gun maker to the king. He was succeeded by his nephew Jean in 1782, who was retained by the Emperor Napoleon to refurbish weapons from the royal gun-room for his own use. Jean’s son Henri took over the firm in 1822, by which time Napoleon had died in exile on St. Helena. This sport gun was made to commemorate the return of his ashes to France in 1840.

LE PAGE SPORT GUN

<table>
<thead>
<tr>
<th>DATE</th>
<th>1840</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>FRANCE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>11lb (5kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>31½ in (80 cm)</td>
</tr>
<tr>
<td>CALIBRE</td>
<td>.35 bore</td>
</tr>
</tbody>
</table>

WAD PUNCH

Wadding, usually made of paper, was rammed into the barrels after the powder but before the bullets. As it was essential that the wads precisely fitted the barrels, a wad cutter was included with the gun’s tools.

BULLET MOULD

A percussion sport gun could be loaded with pellets, for use against birds and wildfowl, but also with balls for use against large game. This mold was used to make such balls.

HAMMER HEAD

Clenched in the hand, this was applied to the ramrod to assist with seating the balls in the barrels.
Ramrod

The gun’s ramrod doubled as a cleaning rod, and could be fitted with a “worm” to allow a dud charge to be drawn.

Forestock cap

Percussion cap dispenser

This dispenser was designed to present percussion caps direct to the nipples of the gun. The alternative (using a tin of loose caps) was both awkward and time-consuming.

Powder horn

It was customary to use animal horn to hold the powder, it being light and strong. The nozzle was fitted with a measuring device.

Top view of barrel

Hooks engage with a bar at the standing breech to secure barrels into stock.

Nipple for percussion cap

Rib engraved with Le Page’s name and those of Napoleon’s battles.

Barrel retained by pin

Lock plate engraved with depiction of the Battle of the Pyramids

Powder measure

Cut-off shutter lever

Sling attachment point

Perazzi’s name

Rib engraved with Le Page’s name and those of Napoleon’s battles

Barrel retained by pin

Lock plate engraved with depiction of the Battle of the Pyramids

Powder measure

Cut-off shutter lever

Sling attachment point

Ramrod

The gun’s ramrod doubled as a cleaning rod, and could be fitted with a “worm” to allow a dud charge to be drawn.

Forestock cap

Percussion cap dispenser

This dispenser was designed to present percussion caps direct to the nipples of the gun. The alternative (using a tin of loose caps) was both awkward and time-consuming.

Powder horn

It was customary to use animal horn to hold the powder, it being light and strong. The nozzle was fitted with a measuring device.
PERCUSSION CAP BREECH LOADERS

SHARPS CARBINE

Christian Sharps devised his breech-loading system in 1848. Pulling the trigger guard down and forward opened the breech, and the breech-block sheared off the rear portion of the linen cartridge as it closed. During the American Civil War, the Union Army bought over 80,000 Sharps’ carbines for its cavalry regiments. This rare slant-breech version from 1852 uses a Maynard tape primer.

DATE	1848
ORIGIN	US
WEIGHT	7 3/4 lb (3.5 kg)
BARREL	18 in (45.5 cm)
CALIBER	.52 in

19TH-CENTURY GUNMAKERS used ingenious methods to solve the problem of obturation—making an opening breech gas-tight. Though obturation would not be reliably achieved until the advent of the brass cartridge, some makers were successful enough that their guns found a sizeable market. Carbines were particularly popular among horsemen, because they were easier to manage, and breech loaders—in theory—could be reloaded in the saddle.
Cluster’s last stand

First used in the Civil War and then in the Indian Wars, the Sharps carbine was favored by US cavalrymen. However, its use at Little Bighorn against the Sioux and Cheyenne Indians could not prevent the defeat of the Seventh Cavalry.

Terry Bolt-Action Carbine

The Terry carbine was the first bolt-action weapon adopted by the British Army. Its paper cartridge included a greased felt wad, which remained in the breech after firing and was pushed into the barrel by the insertion of the next round, lubricating and cleaning the bore when it was fired. In a trial, one carbine fired 1,800 rounds without requiring additional cleaning.

Westley Richards “Monkey Tail” Carbine

Eminent Birmingham gunmakers, Westley Richards & Co. produced two types of carbine for the British Army. One had a falling-block action, the other (illustrated) had a front-hinged tilting breech with a long, curved actuating lever, which gave the weapon its nickname. Westley Richards' carbines required the percussion cap to be located at the mid-point of the cartridge.

Chassepot Percussion Carbine

In the mid-1850s, gunmakers at the French Imperial Armoires began experimenting with bolt-action, percussion cap breech loaders. Alphonse Chassepot produced a design using a rubber washer to seal the breech. He subsequently replaced the hammer with a needle striker within the bolt, which was accepted for use by the French Army as the Modèle 1866.

Greene Carbine

The Greene carbine, produced in small numbers for the British Army during the Crimean War, lost out to its rivals due to its cumbersome mechanism. The barrel had to be rotated through a quarter-turn: this unlocked the breech, which was then free to swing out so that a new cartridge could be introduced. The carbine used Maynard’s tape primer system, rather than individual percussion caps.

Custer’s Last Stand

First used in the Civil War and then in the Indian Wars, the Sharps carbine was favored by US cavalrymen. However, its use at Little Bighorn against the Sioux and Cheyenne Indians could not prevent the defeat of the Seventh Cavalry.
IN THE ERA OF musket-and-bayonet warfare, red-coated infantry formed the core of the British regular army. Recruited from the poor, landless, and unemployed, they took the “king’s shilling” after being plied with drink, or tempted by the glamour of army life, or even as an alternative to imprisonment for petty crime. Yet these “scum of the earth,” as the Duke of Wellington called them, were turned into resolute fighters who won many victories, notably over the French in the Napoleonic Wars.

DRILL AND DISCIPLINE
The Redcoat infantry were trained to fight as a unit, giving unhesitating obedience to orders and suppressing individual initiative. This was achieved through relentless drill, brutal discipline—with extensive use of flogging—and the cultivation of loyalty to the soldier’s regiment and his colleagues. The emphasis on drill and discipline was essential given the weapons and tactics of the period. The key British infantry arm, the Brown Bess musket, was wildly inaccurate and thus effective only if infantry were trained to fire in volleys. They had to learn to form lines or squares on the battlefield—the latter to resist cavalry—to advance unarmored into musket fire, or stand firm under artillery bombardment. Holding steady was the surest way to avoid casualties, presenting an unbroken line of bayonets as the last line of defense. The bright red coat made sense on battlefields where men had to identify friend and foe through the thick smoke of gunpowder.

BATTLE OF WATERLOO
British infantry squares fight off French cavalry in the last battle of the Napoleonic Wars at Waterloo in June 1815. Ably led by the Duke of Wellington, British soldiers proved a match for Napoleon’s forces throughout the later stages of the war, showing discipline and steadiness under fire.

“THEY WERE COMPLETELY BEATEN...BUT THEY DID NOT KNOW IT AND WOULD NOT RUN.”
MARSHAL SOULT AFTER BATTLE OF ALBUERA, MAY 1811
BATTLE OF YORKTOWN
A 19th-century painting shows British infantry engaging the American rebels at bayonet-point in the outer redoubts of Yorktown in 1781. Surrender to the Americans and their French allies at Yorktown brought the American War of Independence to a humiliating conclusion for British forces.

REDCOAT UNIFORM
This British infantryman wears early 19th-century uniform. The shako replaced the tricorn hat in 1801–02. By 1815 breeches and gaiters had been replaced by trousers and the “stovepipe” hat had given way to the “Belgic” shako with false front.

LEXINGTON AND CONCORD
At the outset of the American War of Independence, in Massachusetts in April 1775, British Redcoats were sent from Boston and Charleston to seize the arms and gunpowder of rebel Minutemen militia at Concord. There was an initial confrontation with militia at Lexington, in which eight Minutemen were killed. When the British reached Concord, they met stiff resistance. Obliged to retreat, the Redcoats were harassed by American snipers with rifles, using guerrilla tactics for which the British were unprepared. British losses numbered 273, compared with 95 on the Massachusetts rebel side. The encounter showed Redcoats at their worst. Trained to fight standing up in the open against European armies employing identical tactics, they were wrong-footed by opponents who used trees for cover and fired aimed shots instead of volleys.

BRITISH TROOPS MARCH ON CONCORD

TOOLS OF COMBAT

SWORD BAYONET FOR BAKER RIFLE

BAYONET FOR BROWN BESS MUSKET

PAPER-WRAPPED BAKER RIFLE CARTRIDGE

BROWN BESS MUSKET

BAKER RIFLE
SPORT GUNS

THE 19TH CENTURY WAS CHARACTERIZED by innovation and invention in many fields, and the gunmaker's trade was no exception. At the start of the period, even the most ordinary of guns had to be handcrafted from scratch, making them very expensive, not just to produce, but also to repair. Long before the end of the century, however, the majority of guns were being produced en masse, which not only made them more affordable, but brought to them the quality and reliability previously found only in the most prestigious guns.

ENGLISH PELLET-LOCK PERCUSSION GUN

Before the invention of the percussion cap, in 1822, the detonating material was made up in a variety of ways. One involved binding it with gum or varnish, and the pellets thus formed were contained in a rotating drum attached to the cock. Each revolution of the drum dispensed a single pellet to the anvil/nipple, where it was detonated by the hammer.

FRENCH PIN-FIRE SHOTGUN

Casimir Lefaucheux invented a breech-loading gun with a break-open action, locked by a turning lever in front of the trigger guard. He also invented a cartridge, incorporating a short metal pin protruding from the case that detonated a fulminate charge placed within the cartridge. This shotgun incorporated both developments.

GERMAN BREAK-OPEN DOUBLE RIFLE

Even after the perfection of the bolt-action magazine rifle, there were those who refused to embrace the new technology. Hunters, particularly of big and dangerous game, preferred to trust the simplicity of a break-open double-barreled design.
GERMAN BOLT-ACTION SPORTER

Waffenfabrik Mauser came to dominate the world market for bolt-action rifles for both civilian and military applications, and its hunting rifles set the standard for the type. This rifle employs the action of the Model 1888 infantry rifle as modified for the carbine, with the flattened, turned-down bolt handle. The five-round magazine is of the pattern developed by Mannlicher.

- **Date:** 1890
- **Origin:** Germany
- **Weight:** 7 lb (3.2 kg)
- **Barrel:** 25 in (63.5 cm)
- **Caliber:** 7.9 mm x 57

COLT PATTERSON REVOLVING RIFLE

Samuel Colt was awarded his first patent, for a six-shot revolver pistol, in London in October 1835, and set up his first factory, in Patterson, New Jersey. As well as pistols, he began turning out revolver rifles, but his facilities were limited and he soon went bankrupt. Patterson-built Colts, such as this first-pattern concealed-hammer eight-shot rifle, are extremely rare.

- **Date:** 1837
- **Origin:** US
- **Weight:** 81/2 lb (3.9 kg)
- **Barrel:** 32 in (81.3 cm)
- **Caliber:** .36 in

ENGLISH ROOK AND RABBIT RIFLE

Though unfashionable today, pies made from the common rook were often found on the Victorian cottage dinner table, and the type of simple small-bore rifle used to shoot both rooks and rabbits took their name as its own. This example is a break-open design, the breech locked by the lever in front of the trigger guard using a method patented by Frederick Prince in 1855.

- **Date:** 1860
- **Origin:** UK
- **Weight:** 3½ lb (1.63 kg)
- **Barrel:** 25 in (63.5 cm)
- **Caliber:** .37 in

ENGLISH PIN-FIRE SHOTGUN

Casimir Lefaucheux’s pin-fire system remained popular with shotgun-armed hunters (particularly in Britain and France) long after it had been outmoded by Joshua Shaw’s percussion caps. This example, with back-action locks and side-mounted breech-locking lever, is finely finished, but with little in the way of decoration. It was the work of Samuel and Charles Smith of London.

- **Date:** c.1860
- **Origin:** UK
- **Weight:** 6½ lb (3.07 kg)
- **Length:** 30 in (76.2 cm)
- **Caliber:** 12-Bore
OTTOMAN EMPIRE FIREARMS

FLINTLOCK PISTOL
A pistol such as this—stocked all the way to the muzzle, with its woodwork copiously inlaid, and its lock, barrel, and trigger guard decorated with silver and gold—would have graced any arms cabinet in the Ottoman world. The lock appears to be of European pattern.

FLINTLOCK PISTOL
With the gentle fall to the butt and the slim “lemon” pommel, this pistol is reminiscent of European pieces of a century or more earlier. This flintlock also displays the common trademark of Ottoman gunmakers: gilded decoration surrounding the muzzle.

FLINTLOCK PISTOL
The stocks and muzzle of this 18th-century, all-metal, ball-butt pistol (one of a pair) are covered with cast and chiseled silver gilt. The lock plate is inscribed “Rossi,” the maker’s name, suggesting that the lock, at least, was imported from Italy.

FLINTLOCK PISTOL
The shoulder stock is inlaid with brass and precious stones, and the lock is an exposed mainspring. The barrel is blued and inlaid with gold.

FLINTLOCK PISTOL
This flintlock also displays the common trademark of Ottoman gunmakers: gilded decoration surrounding the muzzle.

FLINTLOCK PISTOL
The stocks and muzzle of this 18th-century, all-metal, ball-butt pistol (one of a pair) are covered with cast and chiseled silver gilt. The lock plate is inscribed “Rossi,” the maker’s name, suggesting that the lock, at least, was imported from Italy.

FLINTLOCK PISTOL
The shoulder stock is inlaid with brass and precious stones, and the lock is an exposed mainspring. The barrel is blued and inlaid with gold.

FLINTLOCK PISTOL
This flintlock also displays the common trademark of Ottoman gunmakers: gilded decoration surrounding the muzzle.

FLINTLOCK PISTOL
The stocks and muzzle of this 18th-century, all-metal, ball-butt pistol (one of a pair) are covered with cast and chiseled silver gilt. The lock plate is inscribed “Rossi,” the maker’s name, suggesting that the lock, at least, was imported from Italy.

FLINTLOCK PISTOL
The shoulder stock is inlaid with brass and precious stones, and the lock is an exposed mainspring. The barrel is blued and inlaid with gold.

FLINTLOCK PISTOL
This flintlock also displays the common trademark of Ottoman gunmakers: gilded decoration surrounding the muzzle.

FLINTLOCK PISTOL
The stocks and muzzle of this 18th-century, all-metal, ball-butt pistol (one of a pair) are covered with cast and chiseled silver gilt. The lock plate is inscribed “Rossi,” the maker’s name, suggesting that the lock, at least, was imported from Italy.

FLINTLOCK PISTOL
The shoulder stock is inlaid with brass and precious stones, and the lock is an exposed mainspring. The barrel is blued and inlaid with gold.

FLINTLOCK PISTOL
This flintlock also displays the common trademark of Ottoman gunmakers: gilded decoration surrounding the muzzle.

FLINTLOCK PISTOL
The stocks and muzzle of this 18th-century, all-metal, ball-butt pistol (one of a pair) are covered with cast and chiseled silver gilt. The lock plate is inscribed “Rossi,” the maker’s name, suggesting that the lock, at least, was imported from Italy.

FLINTLOCK PISTOL
The shoulder stock is inlaid with brass and precious stones, and the lock is an exposed mainspring. The barrel is blued and inlaid with gold.

FLINTLOCK PISTOL
This flintlock also displays the common trademark of Ottoman gunmakers: gilded decoration surrounding the muzzle.

FLINTLOCK PISTOL
The stocks and muzzle of this 18th-century, all-metal, ball-butt pistol (one of a pair) are covered with cast and chiseled silver gilt. The lock plate is inscribed “Rossi,” the maker’s name, suggesting that the lock, at least, was imported from Italy.

FLINTLOCK PISTOL
The shoulder stock is inlaid with brass and precious stones, and the lock is an exposed mainspring. The barrel is blued and inlaid with gold.

FLINTLOCK PISTOL
This flintlock also displays the common trademark of Ottoman gunmakers: gilded decoration surrounding the muzzle.

FLINTLOCK PISTOL
The stocks and muzzle of this 18th-century, all-metal, ball-butt pistol (one of a pair) are covered with cast and chiseled silver gilt. The lock plate is inscribed “Rossi,” the maker’s name, suggesting that the lock, at least, was imported from Italy.

FLINTLOCK PISTOL
The shoulder stock is inlaid with brass and precious stones, and the lock is an exposed mainspring. The barrel is blued and inlaid with gold.

FLINTLOCK PISTOL
This flintlock also displays the common trademark of Ottoman gunmakers: gilded decoration surrounding the muzzle.
FLINTLOCK CARBINE

Despite its being furnished with a shoulder stock that is incised, carved, and inlaid with silver, this blunderbuss is actually a large horse pistol. The work of “the Dervish Amrullah,” according to an engraved inscription, it was clearly made for use by a cavalryman, as it has a bar and ring for suspension from a saddle.

DATE EARLY 18TH CENTURY
ORIGIN TURKEY
BARREL 13 3/4 in (34.3 cm)

SNAPHAUNCE TÜFENK

This smooth-bore musket, or tüfenk, is very similar both in overall form and the manner of its decoration to muskets produced in northern India. The pentagonal-section butt stock terminates at the breech in a pronounced prawl. The barrel is octagonal in section, and the lock is a snap-haunce, which had become obsolete in the west by the early 17th century.

DATE LATE 18TH CENTURY
ORIGIN TURKEY
BARREL 28 1/2 in (72.4 cm)

BALKAN MIQUELET TÜFENK

Like the snap-haunce tüfenk above, this early 19th-century piece is reminiscent of Indian muskets. The stock is entirely covered in ivory and further embellished with inlays of precious stones and brass. The miquelet lock, common in Spain and Italy, is thought to have made its way to the Ottoman Empire via North Africa.

DATE EARLY 19TH CENTURY
ORIGIN TURKEY
BARREL 11 3/4 in (46 cm)
AFTER THE INTRODUCTION of unitary cartridges, which could be loaded by way of the breech, the challenge to gun makers was to develop a gas-tight seal. In the event, the bolt action—as pioneered by von Dreyse and Antoine Chassepot and perfected by the Mauser brothers—was to win out, but in the interim, a variety of other solutions was trialed, some of them conversions, others, such as the Martini-Henry and the Remington Rolling Block, purpose-designed.
THE BATTLE OF KÖNIGGRÄTZ
At the battle of Königgrätz (Sadowa), on July 3, 1866, thanks largely to the superior firepower of its Dreyse needle guns over the muzzle-loaders of the rival Austrians, Prussia was victorious, and went on to become the dominant force in Central Europe.

MAUSER M/71
Waffenfabrik Mauser began modifying Dreyse guns to accept brass cartridges, but Peter Paul Mauser produced a new design, strong enough to handle much more powerful ammunition and effective out to a range of 0.5 miles (800 m). The Infanteriegewehr M/71 established Mauser’s pre-eminence among suppliers of military rifles.

DREYSE NEEDLE GUN, MODEL 1841
Dreyse produced a rifle with a simple turn-down bolt, terminating in a needle that penetrated the length of a (linen) cartridge to detonate a percussion cap in the base of a Minie bullet. The advent of the brass cartridge made the rifle obsolete, but still the Prussians used it to defeat the French in the Franco-German War in 1871.

SPRINGFIELD TRAPDOOR
The perfection of the unitary cartridge left the world’s armies with a dilemma: what to do with their millions of redundant muzzle-loaders. The US Army modified their rifled muskets by milling out the top of the barrel, creating a chamber for the cartridge, and installing a front-hinged breech cover incorporating a firing pin.

MARTINI-HENRY MK I
The British Army’s first purpose-designed breech-loading rifle, the Martini-Henry, incorporated a falling breech-block, lowering the under-lever opened the breech, and returning it both closed it and cocked the action. A skilled man could fire 20 aimed shots per minute.

REMINGTON ROLLING BLOCK
Remington’s purpose-designed breech-loader struggled to find a market at home, despite having been declared the best rifle in the world at the 1868 Imperial Exposition in Paris. The rifle’s rolling-block action, first introduced in 1863, was not as smooth in use as the falling breech-block of the Martini-Henry.
ENFIELD RIFLE-MUSKET

WITH THE PERFECTION of the expanding bullet, it became possible to issue rifles to all troops, not just to sharpshooters, for they could now be loaded as fast as a musket. The British Army adopted one such rifle in 1851, but it proved unsatisfactory; its replacement, produced by the Ordnance Factory at Enfield, was adopted in 1853. It remained in service until 1867, when work began on converting the rifles to breech-loaders, using the method devised by Jacob Snider of America. For all its apparent simplicity, the Pattern 1853 Rifle-Musket has a total of 56 parts.

AMMUNITION
The Pattern 1853 Rifle-Musket was loaded with 2½ drams (4.43g) of black powder and a 530-grain (34.35g) bullet of .568in caliber, which expanded to take the rifling of the barrel, which was .577in in diameter. Charge and ball were packed into cartridges and issued in packets of ten, with a dozen percussion caps.

PATTERN 1853 RIFLE-MUSKET
The rifle-musket was a highly successful weapon. In the hands of a competent infantryman it was effective beyond its sighted distance (820m/2,700ft), and at 90m (300ft) the bullet could pass through a dozen 1.5cm (½in) planks. A soldier was expected to maintain a firing rate of three to four rounds per minute.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1853</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>UK</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>4.05kg (9lbs)</td>
</tr>
<tr>
<td>BARREL</td>
<td>83.3cm (33in)</td>
</tr>
<tr>
<td>CALIBRE</td>
<td>.577in</td>
</tr>
</tbody>
</table>

SMALL OF STOCK
fits hand

TRIGGER
Attachment point for sling

HAMMER
Nipple pierced to allow flash from cap to enter breech

LOCK COVER
plate bears maker's name and insignia

AMMUNITION
The Pattern 1853 Rifle-Musket was loaded with 2½ drams (4.43g) of black powder and a 530-grain (34.35g) bullet of .568in caliber, which expanded to take the rifling of the barrel, which was .577in in diameter. Charge and ball were packed into cartridges and issued in packets of ten, with a dozen percussion caps.

BAYONET
The socket bayonet, with its triangular-section blade, protruded almost 46cm (18in) beyond the muzzle. It alone required 44 separate manufacturing operations.
CARTRIDGES
The cartridges were dipped in wax to lubricate the bore. Rumours that it was pig or cow fat was offensive to both Hindu and Muslim soldiers, who were forbidden to eat beef or pork respectively; this is one suggested cause of the Indian Mutiny of 1857.

COMBINATION TOOL
The combination tool included everything needed to care for the rifle in the field, including appropriately sized screwdrivers and spanners, and a pricker for the nipple. Also shown are accessories for the ramrod.

RAMROD
As well as being used to ram wadded cartridge paper onto the charge and ball, the ramrod served as a cleaning rod. It was threaded to take the double-helix “worm” used to extract dud charges.
Manually Loaded Repeater Rifles 1855–1880

There had been attempts to produce repeater rifles and muskets as early as the 16th century. Notwithstanding the success enjoyed by the “cap-and-ball” revolvers of Colt and others, it took the unitary cartridge containing priming, charge, and projectile in one package to make the repeater rifle a satisfactory reality. The breakthrough came midway through the 19th century, and within a decade repeating rifles had become commonplace. Contained in magazines, their ammunition was fed to the breech as part of the single action that cleared the chamber of a spent cartridge case, cocked the action, and readied the gun for firing.

Colt Revolving Rifle
The third model of Colt’s revolving rifles made a considerable impact, even though the loading procedure was cumbersome. The cylinder was removed, powder packed into the five chambers, a bullet packed on top, and the chambers sealed with wax. The cylinder was then covered with grease in order to protect against the possibility of loose powder igniting all the chambers at once.

<table>
<thead>
<tr>
<th>Date</th>
<th>1855</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>US</td>
</tr>
<tr>
<td>Weight</td>
<td>7½ lb (3.45 kg)</td>
</tr>
<tr>
<td>Barrel</td>
<td>27 in (68.2 cm)</td>
</tr>
<tr>
<td>Caliber</td>
<td>.56 in</td>
</tr>
</tbody>
</table>
WINCHESTER MODEL 1866 CARBINE
The principle shortcoming of Benjamin Tyler Henry's underlever rifle was the way its tubular magazine was charged. In 1866, Nelson King, Henry's successor, introduced an improvement that allowed reloading, even of a part-full magazine, via a port on the receiver. This doubled the rifle's rate of fire to 30 rounds a minute.

LE MAT REVOLVER RIFLE
Based on a similar pistol, the Le Mat Revolver Rifle was an oddity. It boasted two barrels; the lower, charged with shot, acted as the axis pin for the nine-chambered cylinder, which was charged with ball cartridges. It was equipped with a loading/ejection gate and rod, similar to those found on Colt's early brass-cartridge pistols.

HENRY MODEL 1862
When Oliver Winchester set up the New Haven Arms Co., he brought in Tyler Henry to run it. Henry's first act was to design a repeating rifle worked by an underlever that ejected the spent round, chambered a new one, and left the action cocked. To lock the action, he used a two-piece bolt joined by a toggle-joint. This same method was later used by Maxim in his machine gun, and by Borchardt and Luger in their pistols.

SPENCER RIFLE
Christopher Spencer developed this rifle in his spare time, and it was to become the world's first practical military repeater. Its tubular magazine, which held seven rounds, was located in the butt stock; a lever that formed the trigger guard opened the rolling breech and extracted the spent cartridge. Closing the breech pushed a fresh round into the chamber. The hammer was cocked by hand.

BEST OF BOTH WORLDS
The Non-Commissioned Officer (NCO) of the Union Army had one foot in the past and the other in the future. He carried a sword into battle, but also a carbine, the shortened form of the magazine repeater rifle Christopher Spencer patented in 1860.
The technological advances of the early 20th century—smokeless gunpowder, automatic handguns, machine-fed rifles, and machine guns—had an impact on the conflict between the British and the two Boer republics (1899–1902). Earlier weaponry, such as the bayonet, was also still in use.
The first generation of repeater rifles were mostly American underlever designs. Having been introduced to the bolt action by Von Dreyse and seduced into accepting it by Peter Paul Mauser and others in the single shot rifles of the 1870s, European users believed it to have clear advantages over the American rifles. Not only was the bolt action more secure—because it locked its action by means of lugs, which engaged with others in the receiver when the bolt was turned—but it was more practical when shooting from the prone position.

MAUSER MODEL 71/84

Peter Paul Mauser made many attempts to turn the single-shot bolt-action M1871 rifle into a repeater. Although obsolete almost immediately, the result was not superseded until 1888, even though its weaknesses in the design of its magazine, and its tendency to pull to the right, were well known.

SCHEMIDT-RUBIN M1889

In 1889 Colonel Rudolf Schmidt of the Swiss Army developed a straight-pull bolt-action rifle with a 12-round box magazine. It was accepted as the regulation rifle, and remained in service, only slightly modified, until 1931, when its bolt action was rejigged to operate in half the length. The modified version was only discarded in the late 1950s, and a sniper’s version was in use until 1987.
When it came to replacing the M71/84, the German Army set up a specification commission but the characteristics of new 7.92 mm ammunition had been misunderstood, leading to many burst barrels. In addition, the box magazine was a poor design; it was never rectified.

Many held that the M1888 was obsolete before it was adopted by the Danish Army, because its five-round magazine had to be hand-loaded, one round at a time, and its bolt’s single locking-lug limited it to low-velocity ammunition. It came as a surprise, even to its inventors, that it was also adopted by both the US and Norwegian Armies.

The British Army opened a competition to find a replacement for the single-shot Martini-Henry rifle in 1879; 11 years later, it adopted the .303 in rifle, Magazine, Mark I (the name was changed in 1891 to include those of its designers). It had an enclosed bolt action and a box magazine, the work of James Lee, and had anti-fouling rifling developed by William Metford.

Often known as the Mannlicher-Carcano, it used a modified version of the bolt-action Mauser developed for the M1889. It continued, in modified form, in Italian service until after World War II, and many were sold to dealers in the US; one found its way to Lee Harvey Oswald, who probably used it to kill President John F. Kennedy in 1963.
BY THE START OF THE LAST DECADE of the 1800s—a century that had seen firearms technology revolutionized, the world’s armies were finally accepting that repeater rifles were reliable enough to be safely adopted for general use. In fact, the genre had almost reached its final form by this time; once the box magazine had been taken up, remaining modifications were often little more than cosmetic, to reduce weight or to allow cheaper manufacturing methods to be used.

“3-LINE” RIFLE M1891

The M1891 is usually known as the Mosin-Nagant, after its designers. It was Imperial Russia’s first repeater rifle, and its first in a “modern” caliber (a “line” was a measure approximating to one-tenth of an inch, and refers to its caliber). It was issued in a variety of forms, including a semi-carbine and a true carbine, and was still in service as a sniper rifle with the Red Army until the 1960s.

MANLICHER M1895

The straight-pull bolt-action M1895 was the work of Ferdinand von Mannlicher, and used a rotating locking lug turned in a camming (spiraled) groove. Ammunition was fed from a fixed box magazine that Mannlicher also designed. It was used widely throughout the Austro-Hungarian empire.
MAUSER M1896

Waffenfabrik Mauser began exporting rifles, to China, in 1875; then came the Mauser-Koka, for Serbia, the Belgian M1889, the Turkish M1890, the Argentine M1891, and the Spanish M1893. The world’s armies seemed to be beating a path to Mauser’s door, and in 1895 it was Sweden’s turn. The design it adopted had a number of modifications, some of which found their way into later types.

ARISAKA MEIJI 30

At the conclusion of its war with China in 1895, the Japanese Army decided to adopt a modern weapon in a small caliber. This gun, designed by Arisaka, chambered for a 6.5 mm semi-rimmed round, with an enclosed five-round box magazine, was adopted. It used a turning bolt of the Mauser pattern with forward-locking lugs. It came into service in the 30th year of the Emperor Meiji.

LEBEL MLE 1886/93

In 1885 Boulanger was appointed to the Ministry of War in Paris. One of his first priorities was to introduce a modern rifle. The result was the first rifle firing a small-caliber, jacketed bullet propelled by smokeless powder (invented by Meille in 1884/5); despite being mechanically unsophisticated, it rendered every other rifle in the world obsolete. This modified version followed in 1893.

MAUSER INFANTERIEGEWEHR 98

By the time of the Gew98, Mauser had solved virtually every problem known to beset the bolt-action magazine rifle. It added a third rear-locking lug to reinforce the two forward-mounted lugs, as well as improving gas sealing and refining the magazine. If the rifle had a fault, it lay in the design of its bolt handle.
INDIAN FIREARMS

FIRESM WERE INTRODUCED to India from central Asia and Europe at the end of the 15th century. Well into the 19th century, indigenous craftsmen were still making matchlocks, rather than the more complicated wheellocks and flintlocks, because they were easier and cheaper to produce. However, Indian gunmakers were no strangers to intricate decoration, and produced some very ornate pieces using ivory, bone, and precious metals as inlays.

MATCHLOCK PISTOL
Matchlock pistols were a rarity in Europe, but were manufactured in small numbers in Asia. This example, from the end of the 18th century, was produced in northern India. The items below the pan are a holder for the prickers and a ring to which its chain was attached.
INDORE TORADOR
This simple matchlock shows some features commonly found on firearms of this period, notably the pentagonal cross-section of the butt stock and its pronounced recurve. The side plates at the lock are iron with crudely incised decoration that continues down the barrel; there are four leather thongs serving as barrel bands, but that closest to the breech is wire.

MATCHLOCK REVERSING MUSKET
Made near the start of the 19th century in the Indore region of northern India, this matchlock reversing musket is an ambitious attempt to marry the technologies of two periods using local materials and fabrication techniques. The cylinder is indexed manually; the vents in the barrel are there in case the charge in a chamber not aligned with the barrel is ignited by flash-over—a real possibility.

BUNDUKH TORADOR
Probably made in Gwalior at the beginning of the 19th century, this extremely ornate matchlock was almost certainly a presentation piece. Like all matchlocks, it was supplied with a touch-hole pricker, though since this, too, is gilded, it can hardly be considered to be entirely functional. Guns of this type were normally held beneath the arm, not against the shoulder.

PUNJABI FLINTLOCK PISTOL
This is one of a pair of superbly decorated pistols made in Lahore (now part of Pakistan) early in the 19th century. By this time, Sikh gunmakers were well able to fashion the components of a flintlock, though most of their energies were devoted to somewhat more workaday muskets known as jazails. This pistol has a “damascened” barrel, formed by coiling strips of steel around a mandrel and then heating and beating them to weld them together.
PORTUGUESE TRADERS INTRODUCED firearms to Japan when they first arrived there in 1543 ce, and indigenous craftsmen soon began to copy the new weapons. Less than a century later, all foreigners were expelled and the country was cut off from Western influences by imperial decree. As a result, later types of firearm were largely unknown in Japan, and Japanese gunsmiths almost exclusively produced matchlocks until the mid-19th century, using methods that were unlike those seen elsewhere.

CHINESE MATCHLOCK WALL GUN
Wall guns were designed to be fired from a rest, and were far too long and unwieldy to be used in any other way. This example originated in China; it is extremely simple in both design and execution, with a forward-acting snap-matchlock that was sprung by a long bar trigger. It is entirely functional, and devoid of decoration.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1830</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>CHINA</td>
</tr>
<tr>
<td>BARREL</td>
<td>63 in (160 cm)</td>
</tr>
</tbody>
</table>
JAPANESE PILL-LOCK CARBINE
Though Japan’s doors were closed to foreigners for more than 200 years, there were occasional illicit contacts, and it was probably through these that pill-lock technology, which had a brief currency in Europe around 1820, arrived in Japan. This carbine has a device that dispenses a fresh primer “pill” from a small magazine when the pan cover is lifted.

Specifications
- **Date:** c.1850
- **Origin:** Japan
- **Weight:** 8 lb (3.64 kg)
- **Barrel:** 26½ in (67 cm)
- **Caliber:** 12.5 mm

LARGE-BORE JAPANESE MATCHLOCK
This type of matchlock firearm was sometimes used to launch a primitive incendiary device, the fire arrow. It dates from toward the end of the Tokugawa shogunate, 1603–1867, as evinced by the mon that decorate the barrel. The lock and trigger are missing—the former has been replaced by a plain brass plate.

Specifications
- **Date:** c.1850
- **Origin:** Japan
- **Weight:** 9 lb (4.12 kg)
- **Barrel:** 27¼ in (69.3 cm)
- **Caliber:** 18.3 mm

JAPANESE TEPPO
Produced by Sakai’s eminent Enamiya family, gunmakers since 1560, this teppo displays their trademark features: the brass shapes inlaid into the stock, and the characteristic muzzle shape. It is decorated with kara kusa (vine motifs) and mon (family badges); the lacquerwork is probably a later addition. Its furniture is of brass, and the upper three flats of the octagonal barrel are decorated in silver, brass, and copper.

Specifications
- **Date:** c.1800
- **Origin:** Japan
- **Weight:** 6 lb (2.77 kg)
- **Barrel:** 39¼ in (100 cm)
- **Caliber:** 1.142 in

TIBETAN MEDA
While Tibet, like Japan, was largely isolated from the rest of the world until the mid-19th century, it was for geographic rather than political reasons. Trade did occur, however, with India and China, and this matchlock, or meda, shows considerable Chinese influence in both form and decoration. Attached to the fore stock is a rest, an unusual feature.

Specifications
- **Date:** c.1780
- **Origin:** Tibet
- **Weight:** 9¼ lb (4.15 kg)
- **Barrel:** 43.75 lb (111 cm)
- **Caliber:** 17 mm
MULTI-SHOT FIREARMS

THE MAIN SHORTCOMING OF THE MUZZLE-LOADER was the time it took to reload. As a result, gunmakers the world over endeavored to produce weapons that could fire more than a single shot. The typical approach was to use multiple barrels, but guns with more than two barrels tended to be so heavy as to render them impractical. It was not until the 1830s that the young Samuel Colt developed his revolver—the first successful multi-shot, single-barreled firearm. Colt obtained a patent to protect his invention until 1857, but many sought ways to evade it. Most produced firearms that, at best, were only marginally effective.

FLINTLOCK REVOLVING RIFLE
French gunmakers produced some of the finest sport guns of the 17th century. This example has three revolving chambers, each fitted with its own striker and spring. This type of multi-shot weapon risked a dangerous chain reaction, in which firing one chamber set off all of the others.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1670</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>FRANCE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>7½ lb (3.37 kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>31¼ in (79.5 cm)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>22-bore</td>
</tr>
</tbody>
</table>

FLINTLOCK DOUBLE-BARRELED GUN
This double-barreled sport gun bears the name of its maker, Bouillet of Paris. The firing mechanism, including the flint, is concealed in a box. The two levers in front of the trigger guard cocked the piece ready for discharging the barrels.

<table>
<thead>
<tr>
<th>DATE</th>
<th>c.1760</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>FRANCE</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>7½ lb (3.37 kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>32 in (81.3 cm)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>22-bore</td>
</tr>
</tbody>
</table>
VOLLEY GUN

London gunmaker Henry Knock produced seven-barreled volley-guns, the invention of James Wilson, for the Royal Navy from 1779 until about 1805. The central barrel fired normally, and the other six were set off by the detonation of its charge. Many were later converted from flintlock to percussion, like the example shown here.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1795</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>UK</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>9 lb (4.1 kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>29 in (73.7 cm)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.75-bore</td>
</tr>
</tbody>
</table>

UNDER-HAMMER TURRET RIFLE

The so-called turret gun, an attempt to evade Colt’s patent, appeared in the 1830s. Examples also exist in which the wheel of cylinders is set vertically. It soon became apparent that if flash-over from one cylinder to another occurred, the result would most likely be catastrophic to any bystanders, or even the shooter himself.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1839</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>UK</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>9 lb (4.1 kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>29 in (73.7 cm)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>14-bore</td>
</tr>
</tbody>
</table>

MARTINI-HENRY CONVERSION

This is a single-shot, breech-loading Martini-Henry rifle converted into a repeater by the addition of a box magazine and a spring-loaded finger. The finger, operated by the breech lever, pushed a cartridge into the breech as it closed. The British Army never adopted this modification.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1888</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>UK</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>10½ lb (4.76 kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>33¾ in (84.5 cm)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.45 in</td>
</tr>
</tbody>
</table>

ENCLOSED LOCK DETAIL

The flintlock sport gun often misfired, either because the flint had broken or the primer had become damp. When it did fire successfully, the flash and smoke from the pan could obscure the target from view or frighten the game. Enclosing the firing mechanism in a box (seen here with the cover removed), solved two of these problems, keeping the powder dry and minimizing disruption from the flash and smoke.
AMMUNITION
PRE-1900

A GUN IS nothing without a bullet. In early times, bullets were often made of iron, and could pierce armor, but later, lead was adopted because it was easier to mold. The bullet-shaped projectile was developed only in the 19th century, and so too was the cartridge.

The powder-and-ball era
To achieve any sort of accuracy, the ball fired from a smooth-bore gun had to be spherical and of an exact size. Rifling improved matters, but made the weapon slow to load; the problem was solved by the expanding bullet.

MUSKET/RIFLE BALLS
The size of the ball was expressed in "bore," being the number of balls of a set size that could be cast from 0.45 kg (1 lb) of lead.

BELTED BALLS
To improve accuracy, barrels were "rifled" with pairs of grooves into which the belt on the ball fitted.

EXPANDING BULLETS
These bullets had a hollow base. The force of the powder detonating caused the bullets’ skirts to expand and take the rifling.

LUBRICATION
The grooves around the bullet were greased to lubricate the barrel and make it easier to clean.

PERCUSSION CAPS
Fulminate, which explodes when struck, is sandwiched between two layers of thin copper foil, shaped to fit over a pierced nipple.

PAPER-WRAPPED CARTRIDGES
The first cartridges were nothing more than paper packages containing a measured charge of powder and a ball.

TRANSITIONAL CARTRIDGES
Nineteenth-century gunmakers experimented with cartridges containing both propellant and projectile, which could be loaded whole. Wrapped in paper, skin, or fabric, they posed a problem for breech-loading guns, whose breeches had to be sealed. The solution was to switch to cartridge cases made of brass, into which the primer was integrated. This meant that the empty case had to be removed, but that was a small price to pay for perfect obturation (breech-sealing).

TEAT-FIRE CARTRIDGE
These were produced as a way around Smith & Wesson’s monopoly of the bored-through cylinder. The bullet is entirely contained.

PIN-FIRE CARTRIDGE
The gun’s hammer falls vertically on the pin, driving it into the primer that is contained in the base of the cartridge case.

SHARPS’ CARTRIDGE
This case is made of linen. Its base was cut off by the edge of the breech-block when the action was closed.

BURNSIDE CARTRIDGE
Burnside’s breech-loading carbine incorporated a drop-down breech, loaded from the front. It was chambered for this unique tapering cartridge.

WESTLEY RICHARDS “MONKEY TAIL” CARTRIDGE
This paper-wrapped carbine cartridge incorporated a greased felt wad at the rear, which remained in the breech until expelled ahead of the following round.

SNIDER-ENFIELD CARTRIDGE
The cartridge developed by Colonel Boxer for the Snider-Enfield rifle had a perforated iron base and walls built up from coiled brass strips.
Rifle cartridges
For a rifle to fire accurately, its ammunition must be properly formulated. Bullet weight and caliber must be matched accurately with the weight of the propellant charge.

.450 MARTINI-HENRY
The Martini-Henry rifle’s cartridge was loaded with 95 grains (5.5 g) of black powder. The bullet weighed 480 grains (31 g).

.45-70 SPRINGFIELD
The cartridge devised for the Springfield rifle was loaded with 70 grains (4.53 g) of powder and a 405-grain (26.25 g) bullet.

.30-30 WINCHESTER
The .30-30 Winchester cartridge was the first “civilian” round to be charged with smokeless powder; it had 30 grains (1.94 g) of it.

.303 MK V
Until the 1890s, rifle bullets were blunt-nosed. The British Army’s Lee-Metfords and Lee-Enfields were chambered for the one shown.

.56-50 SPENCER
This is the rimfire black-powder round for which the Civil War-era Spencer carbine, the first effective repeater rifle, was chambered.

11MM CHASSEPO
After the Franco-Prussian War, the cartridge developed for the Mauser M/71 rifle was adapted for the Chassepot rifle, which was converted to take it.

5.2MM X 69 MONDAGRON
This early attempt at producing a high-velocity round in a miniature caliber was designed in Switzerland for the Mexican Mondragon rifle.

Pistol cartridges
In all cartridges, dimensional accuracy is essential. Cases that are even minutely undersize may split on firing, making them difficult to extract. This is easily rectified in a revolver, but less so with a self-loading pistol.

.44 HENRY
This rimfire round had primer arranged around the base of its case. It was soon superseded by the center-fire cartridge.

.44 ALLEN & WHEELOCK
Allen & Wheelock revolvers were chambered for “lip-fire” cartridges (similar to rimfire), chiefly in small calibers.

.45 COLT (BÉNÉT)
Colonel S.V. Bénét’s 1865 version of the center-fire cartridge formed the basis for Berdan’s later version.

.45 COLT (THUER)
Alexander Thuer developed a method of converting Colt “cap-and-ball” revolvers to fire this tapering brass cartridge.

.44 SMITH & WESSON AMERICAN
This first .44 in Smith & Wesson was unsatisfactory, as the projectile was “heel seated,” rather than crimped in the case.

.44 SMITH & WESSON RUSSIAN
The revolvers Smith & Wesson supplied to the Russian Army were chambered for a cartridge of different dimensions.

.577 WEBLEY
Many small caliber bullets lacked the power to stop a man. Webley addressed this with a .577 in caliber revolver.

Shotgun cartridges
Only the very largest shotgun cartridges were made entirely of brass. Others had cardboard bodies.

WILDFOWL CARTRIDGE
Large cartridges such as this were loaded with up to ¾ oz (20 g) of black powder and 3½ oz (100 g) of shot.

10-BORE PIN-FIRE
Pin-fire shotguns were still common long after other such guns had disappeared.
SEVERAL INDIAN STATES put up serious resistance to the British forces that were extending their rule over the subcontinent during the 18th and 19th centuries. They included the kingdom of Mysore, which held out from 1766 to 1799, and the Sikhs in the Punjab, who lost two wars against the British (1846–47 and 1848–49) but each time imposed heavy casualties. Indian armies used European muskets and artillery alongside traditional edged weapons and armor. As the disciplined use of firepower grew increasingly dominant in warfare, armor and shields were gradually relegated to a purely decorative role on the battlefield.

PETI AND CAP
Indian warriors often wore a peti, a girdlelike cuirass made of padded leather or cloth. This example is from the arsenal of Tipu Sultan in Mysore. Like the low-skulled cap, it would have offered only limited protection in battle.

- **DATE**: LATE 18TH CENTURY
- **ORIGIN**: MYSORE, INDIA
- **WEIGHT**: PETI 3 LB (1.4 KG)
- **LENGTH**: PETI 8 3/4 IN (22 CM)

TOP
This helmet, or top, is of a type worn by warriors across much of Asia from late medieval times onward. Characteristic features are the mail aventail and the spike and plume holders. The decoration includes a skull-and-crossed-bones motif, possibly a sign of European influence.

- **DATE**: LATE 18TH CENTURY
- **ORIGIN**: GWALIOR, INDIA
- **WEIGHT**: 2 1/6 LB (1.3 KG)
- **HEIGHT**: 35 3/8 IN (90 CM)

Sikh Armor
A Sikh warrior would have looked impressive in this mail shirt, plate cuirass, and plumed top (helmet). However, the iron-and-brass mail is “butted”—meaning that the rings are pressed against one another, rather than riveted or welded—so it could have been pierced by stabbing weapons and arrows.

- **DATE**: 18TH CENTURY
- **ORIGIN**: INDIA

HELMET DETAIL
The upper finial of the helmet’s sliding nasal bar is decorated with an image of the elephant-headed Hindu god Ganesh.

Indian Armor and Shields
- **Mail shirt**
- **Low-skulled cap**
- **Skull and crossed bones**
- **Quilted fabric cuirass**
- **Plume holders**
- **Aventail of iron and brass mail**
SIKH DHAL

This round shield, or dhal, dates from the wars between the Sikhs and the British East India Company. The intricate decoration in gold damascene includes Persian inscriptions, so perhaps the shield was not the work of an Indian craftsman.

DATE 1847
ORIGIN INDIA
WEIGHT 8 1/2 lb (3.8 kg)
WIDTH 22 1/4 in (59 cm)

SIKH QUIT TURBAN

The sharp-edged quoit, or chakram, is a weapon particularly associated with the Sikhs. This tall turban carries six quots of different sizes, ready to be lifted off and thrown at enemies. There are also three small knives in the turban armory.

DATE 18TH CENTURY
ORIGIN INDIA
WEIGHT 2 1/2 lb (1.2 kg)
HEIGHT 18 3/4 in (47 cm)

HOLY WARRIORS

The Sikh Akali sect combined religious asceticism with fearless fighting spirit. The chakram was the Akalis’ favored weapon, launched either by whirling around the forefinger or held between thumb and forefinger and thrown underarm. The position of the quoits on an Akali’s turban showed his spiritual status in the sect.

PISTOL SHIELD

This shield has a hidden offensive capacity. Each of the four golden bosses has a hinged flap that opens to reveal the short barrel of a small percussion pistol. The pistols, firing mechanisms, and hinged bosses have been fitted to a pre-existing conventional lacquered shield.

DATE MID-19TH CENTURY
ORIGIN RAJASTHAN, INDIA
WEIGHT 7 1/2 lb (3.4 kg)
WIDTH 21 3/4 in (55.5 cm)

GUN MECHANISM DETAIL

On the back of the pistol shield, there is a single central grip, which is attached to the mechanisms of the four pistols. Each pistol can be cocked individually, but they are all fired by a single trigger, operated by the fingers of the hand holding the shield grip.
AFRICAN SHIELDS

IN TRADITIONAL AFRICAN SOCIETIES, where body armor was not used, shields were the sole protection in warfare, aside from charms and amulets. Shields also played a prominent part in ceremonies and were decorated to show status or allegiance. Wood, animal hide, woven wicker, or cane made suitable materials for a shield to ward off arrows or blows from throwing knives, clubs, or spears. Shields could also be used offensively; for example, the sharpened lower tip of a Zulu shield stick might stab an opponent’s foot or ankle.

ZULU WAR SHIELD
The Zulu warrior’s oval shield was made of cowhide that had been prepared by scraping, cleaning, and several days’ burial in soil or manure. The shield face was bound to the shield stick by two rows of hide strips that ran vertically from top to bottom of the shield. When advancing to attack, warriors would sometimes beat their shields with the butts of their spears.

DATE 19TH CENTURY
ORIGIN SOUTH AFRICA
LENGTH 48 IN (122 CM)

RECTANGULAR SUDANESE SHIELD
Peoples of southern Sudan and northern Kenya—such as the Turkana, Larim, and Pokot—traditionally made symmetrical rectangular shields from animal hides, including buffalo, giraffe, rhinoceros, and hippopotamus. The central wooden shaft doubles as a grip.

DATE LATE 19TH/EARLY 20TH CENTURY
ORIGIN SUDAN
LENGTH 32 5/8 IN (82.5 CM)

WICKERWORK SHIELD
Craftsmen of the Zande people of north central Africa made lightweight wickerwork shields into the early 20th century. A Zande warrior carried the shield in his left hand, along with any spare weapons, while holding his spear or throwing knife in his right hand.

DATE c. 1900
ORIGIN DEM. REP. OF CONGO
LENGTH 51 IN (130 CM)
ROUND SUDANESE SHIELD
This round shield from Sudan is constructed of concentric cane hoops covered in colored cotton, with an iron outer frame, boss, and reinforcing bars. On the other side of the shield, there are hand grips of braided leather.

KIKUYU CEREMONIAL SHIELD
This wooden dance shield, or ndome, is of a type made by the Kikuyu people of Kenya. It was worn on the upper left arm by young warriors during elaborate Kikuyu initiation rights. The serrated design on the inside of the shield was always the same, but the outer design varied to indicate the age group and local origin of the warrior.

ORNATE ETHIOPIAN SHIELD
Shields were still in military use in the kingdom of Ethiopia in the early 20th century. They were typically round, made of animal hide, and mounted in silver clasps. As well as serving him in combat, an Ethiopian warrior’s shield announced his status. Shields were often decorated with the mane, tail, or paw of a lion, all symbols of Ethiopian royalty.
OCEANIAN SHIELDS

WARFARE WAS COMMON among the peoples of New Guinea and Melanesia, until largely stopped by colonial authorities during the 20th century. Wooden or wicker shields provided defense against weapons such as bone- or bamboo-tipped arrows, wooden spears, stone axes, and bone knives. The shields varied in size from large planks that could shelter the warrior's whole body to smaller parrying shields and breastplates. Many of the shields shown here date from the 20th century, but are identical to those in use before.

ASMAT WAR SHIELD
Warfare was central to the lives of the Asmat people, living on the south coast of the island of New Guinea. Their shields were not only a means of defense, but also psychological weapons, their decorative designs calculated to inspire terror. The flying fox fruit bat, represented on this shield, was symbolically associated with headhunting, since it took fruit from trees as a headhunter took a head from a body.

DATE: POST-1950
ORIGIN: IRIAN JAYA
LENGTH: 31 IN (83 CM)

MELPA CHEST-PLATE
This chest-plate shield, or moka ḱina, was made by the Melpa people of the Upper Sepik region of Papua New Guinea. Worn as body armor, it has shell and bamboo decoration.

DATE: 1950
ORIGIN: PAPUA NEW GUINEA
LENGTH: 35 IN (90 CM)

BASKET-WEAVE WAR SHIELD
This elegant elliptical shield is typical of those used on headhunting raids in the Solomon Islands until the late 19th century. Its closely woven coiled-cane wicker was an effective block, even against spears. Too small for passive defensive tactics, it was manipulated actively to parry blows and missiles.

DATE: 19TH CENTURY
ORIGIN: NEW GEORGIA
LENGTH: 32½ IN (83 CM)
MENDI WAR SHIELD
This Mendi shield is made of hardwood and decorated with a bold geometric pattern of opposing triangles known as a "butterfly wing" design. Unusually, highland shields were not used in ceremonies, but were purely for warfare. In combat, the shield was supported on a rope shoulder sling.

DATE POST-1950
ORIGIN PAPUA NEW GUINEA
LENGTH 48 IN (122 CM)

ASMAT WAR SHIELD
Each Asmat shield was named after an ancestor and this, along with the design motif, gave the warrior spiritual power and protection. Shields were made of wood and carved with stone, bone, or shell tools. The colors used in the decoration had symbolic significance, red representing power and beauty.

DATE 19TH CENTURY
ORIGIN IRISAN JAVA
LENGTH 78¼ IN (199 CM)

MENDE WAR SHIELD
This shield is from Biwat village on the Yuat River in Papua New Guinea. Although narrow, it is a tall shield that would have offered full body protection. It is boldly decorated with a central panel and geometric shapes around the edge.

DATE POST-1950
ORIGIN PAPUA NEW GUINEA
LENGTH 67¾ IN (171 CM)

ARAWE WAR SHIELD
This shield, from the Kandrian area of New Britain, is typical of those produced by the Arawe people. Made of three oval-section, vertical planks of wood joined with split cane strips, it is incised with distinctive zigzag and coiled motifs. Natural black, white, and red ocher are the only colors used.

DATE POST-1950
ORIGIN PAPUA NEW GUINEA
LENGTH 49¼ IN (125 CM)
The 20th century saw the outbreak of warfare on a truly global scale. Two world wars caused mass casualties and economic dislocation, as armies bigger than ever before fought continent-wide campaigns. New weapons systems ushered in an age of mechanized warfare, with tanks, aircrafts, and missiles replacing infantry as the arbiters of victory. The invention of nuclear weapons, moreover, complicated strategists’ calculations with a destructive power that, for the superpowers, made their possession essential, and their use unimaginable.

RUSSO-JAPANESE WAR
In February 1904, Japanese torpedo boats attacked the Russian fleet at anchor in Port Arthur. Outside observers drew the lessons that firepower would dominate any future conflict in Europe, and that the strategic imperative should be to strike fast, and hard.

AT THE START OF THE 20TH CENTURY, Europe lay in a state of uneasy calm, as countries shifted alliances in an attempt to gain advantage in the coming war, a conflict made ever more likely by their maneuvers. All had learned the lessons of Prussia’s victories in the 1860s and 1870s, and by 1914, Europe’s leaders had their fingers on a hair-trigger, believing that slowness to mobilize would lead to disaster. In the event, it was the very speed of their reaction to the assassination of Archduke Franz Ferdinand by Serbian nationalists in June 1914 that precipitated catastrophe.

Once Russia, fearful of Austrian plans, mobilized, the Austrians did so too, followed within a week by the Germans and French. Germany, desperate to knock France out of the war quickly, embarked on the Schlieffen Plan, which envisaged hooking its army around through Belgium and enveloping Paris from the north. The German General Staff, which throughout the war displayed great tactical ability, but strategic myopia, failed to realize the infringement of Belgian neutrality would bring Britain into the war. Even so, the German knock-out blow almost worked, as the French barely succeeded in halting the invaders in August at the Battle of the Marne.

The war stabilized into a confrontation along a 500-mile (800-km) front stretching from Switzerland to the Channel ports, a line from which it was barely to shift in four years of bitter and bloody fighting. Dug into trenches, each side’s infantry forces proved almost impossible to dislodge, as machine guns, such as the air-cooled Hotchkiss, which fired 400–600 rounds per minute, made any attempt at assault a form of mass suicide.

ARTILLERY BOMBARDMENTS
Both sides struggled to find a means to break the deadlock. At Verdun in 1916, the Germans sought to bleed the French army dry by sucking it into holding a position where their artillery would inflict heavy casualties. The French defended Verdun tenaciously and did,
indeed, lose 120,000 men, but the German effort cost an equally damaging 100,000 dead. The use of artillery bombardments to precede assaults often turned the terrain into a morass—notably at Passchendaele in 1917—where forward progress was next to impossible and the floundering infantry made enticing targets for machine gun nests.

GAS AND TANKS

New weaponry was adopted to try to end the stalemate. Poison gas was first used on a large scale at Ypres in April 1915, and although the Germans then punched a 4-mile (6-km) hole in the French line, their advance was as much hindered as assisted by their fear of the chlorine gas’s effect. Similarly, tanks first appeared at the Somme in September 1916, but did not really play a major operational role until Cambrai a few months later. Planes were at first used for reconnaissance, and from 1915, Zeppelin airships and then Gotha bombers made raids on British cities, but to little real strategic effect. At sea, the German U-boat submarine fleet threatened for a while to throttle British trade, but the introduction of the convoy system in 1917 stifled the losses.

Despite a temporary German breakthrough in spring 1918, their resources were overstretched, their manpower dwindling, and industry struggling to keep up with the army’s demands. When the Allies pushed back, it was against an open door, and, on the point of military, economic, and social collapse, Germany accepted an armistice in November.

German nationalist leaders felt betrayed by the armistice, which they portrayed as a political rather than a military capitulation. The economic crisis of the Great Depression, and helped boosted the rise of Fascism in Italy and Germany and cemented the rule of Communism in the new Soviet Union. Throughout the late 1930s, Hitler rearmed Germany, intimidated or annexed his weaker neighbors, and cowed France and Britain into acceptance. Hitler’s failure to perceive that Britain was not fully acquiescent led to a strategic blunder—the invasion of Poland in 1939—which precipitated World War II. During 1940, German armies smashed through the Low Countries, Scandinavia, and France in a form of combat dubbed “Blitzkrieg.” Armored formations moved far ahead of the infantry in France, wrong-footing the French high command who had expected the Germans to revisit the Schlieffen Plan from the previous war.

AERIAL BATTLE

Hitler’s army, having outstripped their supplies, allowed the bulk of British forces to escape from Dunkirk. Hitler thus committed himself to the world’s first purely aerial campaign, the Battle of Britain, in the summer of 1940, attempting to defeat the Royal Air Force and so clear the way for the invasion of the British Isles. The British had, however, developed radar to detect attacking aircraft, and the German Luftwaffe, already depleted in the campaign for France, suffered irreplaceable losses to a new generation of British fighter aircraft such as the Spitfire. Stretched to the limit, the Germans switched to night-bombing of cities from
September and the invasion was indefinitely postponed. Strategic bombing was later employed by the British against Germany on a massive scale in an effort to destroy strategic industries, and—controversially—to undermine the enemy’s morale. Dresden was virtually destroyed in February 1945 in a firestorm that engulfed it after an Allied bombing attack.

German troops were well-equipped, mostly with versions of the Mauser Gewehr 98 bolt-action rifle, and ably led by Europe’s most professional officer corps. But at a higher level, strategic greed and overstretch bedevilled Germany’s war. The invasion of the Soviet Union in June 1941 showed Hitler had not learned the lessons of Napoleon’s 1812 campaign—Russia’s vast size meant it could absorb huge losses of territory and manpower. Although the Germans reached the outskirts of Moscow in December 1941, their tanks could not operate in the cold, their infantry was not equipped for the freezing conditions, and they had no manpower in reserve, while the Russians had fresh divisions from the Siberian hinterland.

Germany was short of oil, too, which played a part in Hitler’s decision to push southward to the oil fields of the Caucasus. At Stalingrad in 1942, the Germans were sucked into a bitter house-by-house struggle, the first real example of modern urban warfare. The Soviet counter-stroke that November trapped more than 200,000 troops in the city, a loss from which the German army never really recovered.

In the West, Allied armies made the largest amphibious landing in history in Normandy in 1944 and then thrust toward the German border. Germany developed a series of innovative weapons in a bid to turn the tide, including jet fighters (the V-2 rockets) and long-range missile systems, but could not prevent the fall of Berlin in May 1945.

NAVAL CAMPAIGN IN JAPAN

In the Pacific, the United States and its allies fought a parallel war against Japan from 1941. Precipitated by the unprovoked attack on Pearl Harbor in 1941, the war saw Japanese forces sweep through the Malay Peninsula, the Philippines, and a string of Pacific islands. The United States fought a naval-based campaign that left Japan’s acquisitions isolated. At Midway in June 1942, the Japanese lost four aircraft carriers—a blow from which they never really recovered. Although Japanese resistance was tenacious, and the conquest of Okinawa alone in 1945 cost 65,000 American lives, the question became whether the United States had the stomach to invade Japan itself. America’s response came with the first use of nuclear weapons on Hiroshima and Nagasaki in August 1945, which forced Japan’s surrender and transformed the calculations of military strategists. For the next 45 years, the world experienced a “Cold War” where a balance of terror kept the peace. The United States established the NATO alliance in 1949 to confront the Soviet Union in Europe, and the Soviets responded with the formation of the Warsaw Pact in 1955. NATO never had sufficient ground forces in western Europe to hold back a serious Soviet land offensive. Paradoxically, this weakness helped keep the peace, as any such attack would have unleashed a nuclear strike against the Soviet Union.

CONFLICT IN KOREA AND VIETNAM

Potentially dangerous confrontations between the superpowers did emerge, most especially in Asia. In Korea from 1950–53, the United States fought a war to prevent the peninsula falling into communist hands, part of a strategy of containment that also led it into a fatal entanglement in Vietnam in the 1960s. Fearful of communist movement into South Vietnam, the United States was sucked into the provision, first of military aid and advisers, and then hundreds of thousands of ground troops. The war saw the first large-scale use of helicopters in a military role, and strategic bombing on a massive scale, but the United States was consistently wrong-footed in what was essentially a guerrilla war. With the pull-out of American combat forces in 1973, the South Vietnamese army were soon defeated.

MODERN WARFARE

The Middle East was historically an area of chronic tension, with a series of wars between Israel and its Arab neighbors (in 1948, 1967, and 1973). The superpowers did not become directly involved in conflicts in the region, except for funding proxies or diplomatic

FACTORY FIGHT

Russian soldiers advance during the 1942 Battle for Stalingrad. The Red Army’s tenacious resistance in the city made the German’s fight—and take casualties—for every city block and building. Total German losses were over 500,000.
Although guerrilla tactics are almost as old as warfare itself—the Bar Kochba revolt of the Jews against Rome (132–35 ce) is but one example—in the 20th century, they have become identified with national liberation and revolutionary movements. When the Soviet Union invaded Afghanistan in 1979, it rapidly overran the cities, but found itself facing a disparate coalition of Afghan mujahidin guerrillas who dominated most of the countryside and received military aid, including Stinger anti-aircraft missiles, from the West. Eventually, the Soviets moved away from conventional armored tactics until the 1990s. It was the oppressive Iraqi regime of Saddam Hussein, with ambitions for regional dominance and —it was claimed—to develop nuclear weapons—that precipitated two American-led campaigns in 1991 and 2003. The first war saw the first combat use of cruise missiles and “smart” bombs, which, with laser-guidance, were less likely to fall off-target.

The 2003 Iraq campaign, which caused the fall of Saddam Hussein, featured a similar array of advanced weaponry. Yet American ground forces still had to fight their way to Baghdad, a task that proved that for all the advances in aircraft, missile, and communications technology, it still took troops on the ground to command a battlefield. Similarly, the United States’ failure to deal with a growing insurgency movement in Iraq showed that the possession of nearly unlimited logistical support, battlefield weaponry of a power almost unimaginable a century earlier, and an arsenal of nuclear weapons, meant little where this power could not be brought to bear. Terrorism, religious fanaticism, failed states, and genocidal civil wars were the new challenges, with death as often dealt by the machete as the M16. As throughout history, the possession of the most advanced weapons was never enough by itself to shape the political landscape.

GUERRILLA WARFARE

Although guerrilla tactics are almost as old as warfare itself—the Bar Kochba revolt of the Jews against Rome (132–35 ce) is but one example—in the 20th century, they have become identified with national liberation and revolutionary movements. When the Soviet Union invaded Afghanistan in 1979, it rapidly overran the cities, but found itself facing a disparate coalition of Afghan mujahidin guerrillas who dominated most of the countryside and received military aid, including Stinger anti-aircraft missiles, from the West. Eventually, the Soviets moved away from conventional armored tactics and mounted combined helicopter-infantry sweeps of the mujahidin’s mountain strongholds. But, as with many guerrilla wars, they found it difficult to differentiate civilians from combatants and could not prevent the guerrillas from reinfilitrating areas they had just been driven from. Guerrilla warfare’s aim is to undermine the political will of an occupier to remain by inflicting unacceptable losses. Finding itself at the wrong side of this equation, the USSR withdrew its forces from Afghanistan in 1989.
THE TRADITIONAL WEAPONRY found in Africa reflects the continent’s ethnic and cultural diversity. North of the Sahara and along the East African coast, under Arab and Ottoman Turkish influence, weapons broadly resembled those found across the Islamic world. South of the Sahara the prevailing traditions produced edged weapons such as throwing knives, fighting bracelets, and “execution” knives that were often highly original in design. Many of these were in use long after the European colonial powers took over parts of Africa.

AFRICAN EDGED WEAPONS

WOODEN-HILTED DAGGER
The “peacock” style of this dagger’s pommel is functional as well as decorative, providing protection for the back of the hand. The pommel is typical of a Moroccan koummya knife. The elaborate sheath, overlaid with silver on one side, would have hung from a baldric (silk or leather sash) by its wearer’s left hip.

DATE 19TH CENTURY
ORIGIN NORTH AFRICA
WEIGHT ½ LB (0.23 KG)
LENGTH 14 ¾ IN (37 CM)

Brass sheeting covers hilt
Carved wooden handle
Peacock tail pommel
Two-edged blade
Attachment for baldric (sash)
Silver overlay on scabbard
Metal binding

FLYSSA
Although the origin of this knife is uncertain, in shape and decoration it resembles the flyssa saber used by the Kabyle Berbers of northeastern Algeria. The octagonal grip is covered in decoratively incised brass sheeting, which suggests this is a cut-down flyssa.

DATE 19TH/20TH CENTURY
ORIGIN NORTH AFRICA
WEIGHT ¼ LB (0.16 KG)
LENGTH 14 ½ IN (37 CM)
LARIM FIGHTING BRACELET
Known to the Larim people of southern Sudan as a nyepel, this unusual weapon is a two-pointed knife worn on the wrist. Before entering a fight, a Larim man would remove the outer sheath, uncovering the sharp edge and slightly rounded tips of the hammered iron blade. Similar fighting bracelets and sheaths were used by other Sudanese peoples.

DATE 20TH CENTURY
ORIGIN SUDAN
WEIGHT 2 1/2 oz (70 g)
LENGTH 3 3/4 in (9.5 cm)

CEREMONIAL KNIFE
This elaborately shaped implement, from what is now the Democratic Republic of the Congo in central Africa, is of a kind historically known as an "execution" knife. Such knives were, however, also used for broader ceremonial purposes in cults and rituals. They were highly valued trade items and functioned on occasions as money—iron was a common form of currency in Africa.

DATE c.1900
ORIGIN DEM. REP. OF CONGO
WEIGHT 1 1/4 lb (0.61 kg)
LENGTH 24 3/4 in (63 cm)

FINGER KNIFE
This small, broad-bladed knife probably comes from the Labwor people of northeastern Uganda. Made of iron, it was worn on a finger, and could be used for everyday purposes such as cutting meat, as well as for fighting. Its advantage as a weapon was that, because of its diminutive size, it could be concealed in the hand.

DATE c.1890–1950
ORIGIN UGANDA
WEIGHT 1 3/4 oz (50 g)
LENGTH 3 3/4 in (9.5 cm)
African Edged Weapons

Curved Sudanese Knife
Made by the Zande of southern Sudan, this "sickle knife"—so-called because of its curved blade—may have been used in war as a throwing knife, but could equally have served as a tool, or been carried as an emblem of power.

- **DATE**: Early 20th century
- **ORIGIN**: Sudan
- **WEIGHT**: 1¼ lb (0.55 kg)
- **LENGTH**: 18¼ in (46.5 cm)

Kasai Copper Dagger
Originating from the Kasai region of what is now the Democratic Republic of Congo, the distinctive style of this copper-bladed dagger seems potentially influenced by models from the Islamic world. The hilt is well shaped to form a comfortable grip.

- **DATE**: C. 1900
- **ORIGIN**: DR Congo

Benin Ceremonial Sword
Known as an eben, this sword is from the West African kingdom of Benin. Traditionally made of iron by Benin's blacksmiths' guilds, eben were carried by the Oba, the state's sacred ruler, and by his chief warriors.

- **DATE**: C. 1900
- **ORIGIN**: Benin
- **LENGTH**: 17¾ in (45 cm)

ORNATE CEREMONIAL SWORD
This sword belonged to Kofi Karikari, ruler of the West African Asante kingdom from 1867 to 1874. It was an object of prestige rather than a weapon—its iron blade is unsharpened. The golden balls, representing seeds, are symbols of wealth and fertility.

- **DATE**: C. 1870
- **ORIGIN**: Ashanti
BENIN CHIEF WITH EBEN
The kingdom of Benin flourished from the 15th to the 19th century. This bronze panel, produced by Benin craftsmen, shows a chief with an *eben*, the ceremonial sword raised in his right hand, which is a gesture of allegiance to the authority of the Oba, or king. The Oba himself carried an *eben* in ceremonial dances honoring his ancestors, touching it to the ground in front of his father’s tomb. *Eben* continued to be made into the 20th century.

THROWING KNIFE
Eccentrically shaped multi-bladed throwing knives are found in many parts of Africa. This example is from the Congo. When the knife is thrown it turns about its center of gravity, making the blades scythe dangerously through the air. It will inflict a wound on an opponent whatever its point of impact.

DATE LATE 19th/EARLY 20th CENTURY
ORIGIN DEM REP CONGO
Bayonets and Knives, 1914–1945

European armies entered World War I with faith in the bayonet charge as the key to victory in infantry combat. Reality proved different: troops advancing with bayonets fixed were mown down by machine guns and rifle fire. Soldiers cynically claimed that bayonets were more use for opening cans than for combat. However, bayonets have remained in use since, typically with shorter blades. Fighting knives, which proved their worth in the trenches in 1914–18, were used by special forces in World War II, and as a close-combat arm for infantry lacking bayonets.

German Knife Bayonet

Used on the Western Front toward the end of World War I, this short, double-edged bayonet was fitted to the Mauser Gewehr 1898 rifle, attaching to the barrel by a press stud. The knife bayonet was not official German army equipment, but troops were permitted to buy it. Many did, since it also doubled as a highly effective trench knife.

- **Date**: 1914–18
- **Origin**: Germany
- **Weight**: ½ lb (0.22 kg)
- **Length**: 10 ¼ in (26.1 cm)

British 1907-Pattern Sword Bayonet

Designed for the Short Magazine Lee-Enfield rifle, the 1907-Pattern was based on the Japanese Arisaka bayonet. Its long blade was meant to give a soldier extra reach, but in the trench warfare of 1914–18 it proved unusable when detached as a sword, and less apt as a bayonet than shorter blades.

- **Date**: 1914–18
- **Origin**: UK
- **Weight**: 1 ¼ lb (0.51 kg)
- **Length**: 22 in (56 cm)

British Knuckle-Duster Knife

This knife was used by British special forces in the Mediterranean theater during World War II. Cast from a single piece of brass, the hilt has four protruding studs that form a knuckle-duster for punching. The blade has a single cutting edge that sweeps upwards to the point. The shape of the grip makes this a knife for upward stabbing, rather than slashing.

- **Date**: c. 1943
- **Origin**: UK
- **Weight**: 1 lb (0.45 kg)
- **Length**: 11 ¾ in (30 cm)

American Knuckle-Duster Trench Knife

The US Mark 1 1918 knuckle knife was intended as a World War I "trench-clearing tool," but arrived too late for use on the Western Front. Winning fame as a World War II paratroop weapon, it had three attack modes: striking an opponent's skull with the pommel nut, punching him with the knuckle-duster, and stabbing upward with the blade.

- **Date**: 1940s
- **Origin**: US
- **Weight**: 1 ½ lb (0.5 kg)
- **Length**: 22 in (56 cm)
US M1 KNIFE BAYONET

In April 1943, the US Army decided to adopt a shorter bayonet for the M1 Garand rifle. Thus the M1 knife bayonet, with its 10 in (25.4 cm) blade, replaced the 16 in (40.6 cm) blade M1905 and M1942 models. The bayonet’s M7 scabbard was manufactured by Victory Plastics.

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin</th>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1944</td>
<td>US</td>
<td>1.1</td>
<td>14 1/2</td>
</tr>
</tbody>
</table>

GERMAN S84/98 BAYONET

This bayonet was introduced in 1915 as a cheap and sturdy attachment for the Mauser Gewehr 1898 rifle. It has no muzzle ring, being held to the rifle solely by a long groove in the pommel. S84/98’s continued to be produced up to World War II, which is when this example was made.

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin</th>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940s</td>
<td>Germany</td>
<td>1.1</td>
<td>15</td>
</tr>
</tbody>
</table>

AMERICAN MK 3 FIGHTING KNIFE

In 1943 the US Army introduced the Mk 3 knife for hand-to-hand fighting. It was rapidly put into mass production, with 2.5 million manufactured by 1944. The hilt and blade were influenced by the British Fairbairn-Sykes fighting knife (below). The US Marines instead adopted the Ka-Bar combat knife.

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin</th>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.1950</td>
<td>US</td>
<td>0.5</td>
<td>11</td>
</tr>
</tbody>
</table>

FAIRBAIRN-SYKES FIGHTING KNIFE

Modeled on daggers used by Chinese gangsters, this knife was developed in the 1930s by Shanghai police chief William Fairbairn and his colleague Eric Sykes. In World War II, it was used by Allied special forces such as Commandos, who were also trained by Fairbairn and Sykes in hand-to-hand combat.

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin</th>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1941–45</td>
<td>UK</td>
<td>1.2</td>
<td>12</td>
</tr>
</tbody>
</table>

US M1 KNIFE BAYONET

In April 1943, the US Army decided to adopt a shorter bayonet for the M1 Garand rifle. Thus the M1 knife bayonet, with its 10 in (25.4 cm) blade, replaced the 16 in (40.6 cm) blade M1905 and M1942 models. The bayonet’s M7 scabbard was manufactured by Victory Plastics.

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin</th>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1944</td>
<td>US</td>
<td>1.1</td>
<td>14 1/2</td>
</tr>
</tbody>
</table>

GERMAN S84/98 BAYONET

This bayonet was introduced in 1915 as a cheap and sturdy attachment for the Mauser Gewehr 1898 rifle. It has no muzzle ring, being held to the rifle solely by a long groove in the pommel. S84/98’s continued to be produced up to World War II, which is when this example was made.

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin</th>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940s</td>
<td>Germany</td>
<td>1.1</td>
<td>15</td>
</tr>
</tbody>
</table>

AMERICAN MK 3 FIGHTING KNIFE

In 1943 the US Army introduced the Mk 3 knife for hand-to-hand fighting. It was rapidly put into mass production, with 2.5 million manufactured by 1944. The hilt and blade were influenced by the British Fairbairn-Sykes fighting knife (below). The US Marines instead adopted the Ka-Bar combat knife.

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin</th>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.1950</td>
<td>US</td>
<td>0.5</td>
<td>11</td>
</tr>
</tbody>
</table>

FAIRBAIRN-SYKES FIGHTING KNIFE

Modeled on daggers used by Chinese gangsters, this knife was developed in the 1930s by Shanghai police chief William Fairbairn and his colleague Eric Sykes. In World War II, it was used by Allied special forces such as Commandos, who were also trained by Fairbairn and Sykes in hand-to-hand combat.

<table>
<thead>
<tr>
<th>Date</th>
<th>Origin</th>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1941–45</td>
<td>UK</td>
<td>1.2</td>
<td>12</td>
</tr>
</tbody>
</table>
The opposing lines on the Western Front during World War I stretched from the Swiss border to the North Sea. These troops from the Kriegsmarine (German navy), armed with Mauser Gew98 rifles, occupied defensive positions at its northern extremity.
FRENCH WWI INFANTRYMAN

THE FRENCH CONSCRIPT infantryman who fought on the Western Front in World War I (1914–18) was a citizen-soldier, taught to regard service in the army as his duty to the republic and a source of patriotic pride. Despite immense losses and the demoralizing attrition of trench warfare, which reduced parts of the French army to mutiny in 1917, the “poilu” (French slang for “hairy one”) held firm in the great battles of the Marne and Verdun.

CITIZEN ARMY

Before the war, every young Frenchman was obliged to undertake national service lasting two years (raised to three in 1913), after which he passed into the reserve for the rest of his adult life. As a result, France could theoretically regard all of its male population as trained soldiers. More than 8 million served at some time in the war with, at the peak, 1.5 million Frenchmen in service. The French army began the war with an antiquated rifle, inadequate machine guns, little heavy artillery, and bright uniforms that made perfect targets. Thus equipped, soldiers were committed to the offensive against overwhelming German firepower. Approximately 1 million French casualties were suffered in the first three months of the war, although the defeat of the Germans at the First Battle of the Marne ensured France’s survival. Trench warfare followed, a natural consequence of the defensive superiority that rapid-fire rifles and machine guns gave to entrenched troops. French infantry suffered even worse conditions than their British allies, subjected to artillery bombardment and poison gas in generally poor quality trenches. Morale survived the slaughter at Verdun, but futile offensives in early 1917 brought widespread unrest. The authorities were forced to improve food and leave, and be less wasteful of men’s lives. Morale recovered sufficiently for the French infantry to make a major contribution to victory in 1918.

COST OF THE WAR

Out of 8.3 million French soldiers who served in the Great War, almost 1.4 million were killed. Another 3 million were wounded, around three-quarters of a million suffering permanent or long-term disability. More than one in five of all Frenchmen was a casualty and the percentage of men between 18 and 35 who died was high enough to justify talk of a “lost generation.” The terrible losses at Verdun were memorialized by the Ossuary at Douaumont, which contains the remains of hundreds of thousands of unidentified French and German soldiers.

OSTUARIO AT DOUAUMONT

In February 1916 the Germans attacked the fortified city of Verdun, aiming to “bleed the French army white.” Pound by German heavy artillery, French infantry held the front through months of desperate defensive fighting at a cost of around 400,000 casualties.

MACHINE GUN CREW

French infantry operate a Hotchkiss machine gun in 1915. France’s guns were generally of inferior performance—this Hotchkiss is being fed with 25-round strips of ammunition, rather than having a more efficient belt feed.

TRENCH UNIFORM

The French infantry’s original blue overcoats, bright red pants, and cloth kepis were replaced in 1915 by this more discreet blue-gray uniform and steel helmet.
“HUMANITY IS MAD! WHAT SCENES OF HORROR AND CARNAGE! HELL CANNOT BE SO TERRIBLE. MEN ARE MAD!”

SECOND LIEUTENANT ALFRED JOUBERT, DIARY ENTRY MAY 23, 1916. VERDUN
THE BORCHARDT AND THE MAUSER C/96 demonstrated that self-loading pistols worked reliably; however, they were expensive to produce and rather unwieldy. The next generation of such guns became simpler, and thus cheaper to manufacture. The best of the weapons from the early years of the 20th century, such as John Moses Browning’s Colt M1911 and Georg Luger’s P’08, are still in demand, while originals are eagerly sought by collectors.

COLT M1911A1
Browning designed the Colt M1911 (the year it was accepted as the US Army’s official side-arm) in response to a demand by soldiers fighting Moro rebels in the Philippines for a pistol firing the heavy .45 round in place of the less-effective .38-caliber revolvers with which they were issued. The example shown here is a later M1911A1.

DATE 1909 ONWARD

ORIGIN US

WEIGHT 2 Lb (1.1 Kg)

BARREL 5 in (12.7 cm)

CALIBER .45 in ACP

COLT M1902
As well as the Model 1900 pocket pistol, Browning designed a series of military self-loading pistols in .38 ACP caliber, with an unsatisfactory double-link locking system that produced a jerky action. That, and the light rounds they fired, disqualified them in the eyes of the US Army.

DATE 1902

ORIGIN US

WEIGHT 2 1/4 Lb (1.02 Kg)

BARREL 6 in (15.2 cm)

CALIBER .38 in ACP

ASTRA M901
A direct copy of the Schnellfeuer (“Rapidfire”) version of the Mauser C/96, the Astra was produced in Spain. It has an automatic-fire capability, but is impossible to control in that mode.

DATE 1920s

ORIGIN SPAIN

WEIGHT 4 Lb (2.1 Kg)

BARREL 6 1/4 in (16 cm)

CALIBER 7.63 mm MAUSER
WEBLEY MODEL 1910

Webley of Birmingham produced a range of locked-breech self-loading pistols from about 1904. They were all designed by J.H. Whiting, who collaborated with Hugh Gabbett-Fairfax on the Mars, and were taken up by some police forces.

DATE 1910
ORIGIN UNITED KINGDOM
WEIGHT 2½ LB (0.9 KG)
BARREL 5 IN (12.7 CM)
CALIBER 9 MM SHORT

LUGER P'08

One of the best-known guns in the world, with almost iconic status, the Pistole '08 was designed by Georg Luger in 1900. He copied many features of Borchardt's gun of seven years earlier, but adopted a leaf recoil spring and moved it into the butt, improving the overall balance considerably. Luger also produced improved ammunition for his pistol, the "Parabellum" round, which was to become the world standard.

DATE 1908
ORIGIN GERMANY
WEIGHT 2 LB (0.8 KG)
BARREL 4 IN (10 CM)
CALIBER 9 MM PARABELLUM

NAMBU TAISHO 14

The first Nambu pistols appeared in 1909. Although they were clearly influenced by the Luger P'08, they have nothing in common with it internally, the unlocking of the bolt from the barrel being achieved by the rotation of a linking block.

DATE 1925
ORIGIN JAPAN
WEIGHT 2½ LB (0.9 KG)
BARREL 4 IN (12 CM)
CALIBER 8 MM NAMBU
IF THERE WERE ANY LINGERING DOUBTS as to the reliability of the self-loading pistol, they were largely dispelled during World War I, when officers of four of the major participating armies (Austria-Hungary, Germany, Turkey, and the United States) all carried them. Poorly designed models were still being produced, but few of these found their way into military service (the Japanese Type 94 was an exception). The new types generally proved to be worthy successors to masterpieces like the Luger and the Colt M1911.

BROWNING GP35

The High Power (Grand Puissance) model, the last Browning design, was taken up by the Belgian Army, and during World War II, plans for it were smuggled to Britain, and it was put into production in Canada. Its basic principle was the same swinging link at the rear of the barrel seen in the M1911, but detailed changes made manufacture cheaper and maintenance easier. It was the first self-loading pistol adopted by the British Army, in 1954.

STAR MODEL M

Manufactured by Echeverria in Eibar, the Star was one of the best of many copies of the Colt M1911, though it lacked the grip safety that the Colt had acquired by the mid-1920s. It was produced in a variety of models and calibers until the mid-1980s.

TOKAREV TT MODEL 1933

The Tokarev TT was the first self-loading pistol on general issue to the Red Army. In design, it was similar to the Browning GP35, with a single swinging-link locking system. It was simple and could be field-stripped without tools; it lacked a safety catch, but could be put at half-cock.
RADO M1935
Wiliniewczyc and Skrzypinski’s design for the Radom factory, executed in the early 1930s, was similar in concept to the Browning High Power, but it was more compact and had extra security features. These included a grip safety, plus a device that dropped the hammer and retracted the firing pin, allowing the pistol to be fired safely with one hand.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1935</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>POLAND</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2 LB (1.05 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>4 IN (11.5 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>9 MM PARABELLUM</td>
</tr>
</tbody>
</table>

BERETTA MODEL 1934
Pietro Beretta SpA is one of the world’s longest-established gunmakers, with a history spanning four centuries, and a tradition of supplying its nation’s army with weapons. Its M1934 was to become the official Italian officer’s side-arm during World War II. The design evolved from one executed two decades earlier. Blowback-operated and without any form of locking mechanism, it was restricted to firing a reduced-power round, originally in 7.65 mm caliber.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1934</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ITALY</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>1 LB (0.65 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>6 IN (15.2 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>9 MM SHORT</td>
</tr>
</tbody>
</table>

STECHKIN APS
The Stechkin was an unsuccessful attempt to produce a fully-automatic pistol for use by security forces. Like the Makarov, it was an unlocked blowback design based on the American Walther PP. In automatic mode it was practically uncontrollable.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1960s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>USSR</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2 LB (1.03 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>5 IN (12.7 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>9 MM MAKAROV</td>
</tr>
</tbody>
</table>

MAKAROV PM
The Tokarev’s replacement as the standard Red Army side-arm was a copy of the American Walther PP, with double-action and a two-stage safety device. Its ammunition was about as powerful as could safely be used in a blowback design at that time.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1950s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>USSR</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>1 LB (0.7 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>3 IN (7.7 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>9 MM MAKAROV</td>
</tr>
</tbody>
</table>
THE DUKE OF WELLINGTON questioned the value of the pistol as a weapon of war as long ago as the early 19th century, and as soon as we entered an era of mechanized warfare, the answer became clear: it was of little value except as personal protection and therefore, perhaps, for bolstering morale. Where pistols did prove to be of lasting value, however, was in the field of security and police operations, and a new generation was developed with these applications in mind.
The Glock 17’s frame was fabricated entirely from plastic, with four steel rails to act as guides for the metal reciprocating parts. Uniquely, its rifling was hexagonal: a series of six flats linked by small arcs. It used Browning’s single swinging-link/tipping-barrel locking system.

GLOCK 17
- **DATE:** 1982
- **ORIGIN:** AUSTRIA
- **WEIGHT:** 1 lb (0.6 kg)
- **BARREL:** 4 in (10.7 cm)
- **CALIBER:** 9 mm Parabellum

The Universal Service Pistol was Heckler & Koch’s answer to the Glock, and it, too, was largely made of plastic and employed the tried-and-tested Browning locking system. The USP was designed to facilitate modification, and could be configured in nine different ways.

HECKLER & KOCH USP
- **DATE:** 1993
- **ORIGIN:** GERMANY
- **WEIGHT:** 1 lb (0.75 kg)
- **BARREL:** 4 in (10.7 cm)
- **CALIBER:** 9 mm Parabellum

As befitting a pistol capable of handling the most powerful ammunition, everything about the Desert Eagle was made on a massive scale. Unlike almost all other self-loading pistols, it was gas operated, and of modular design. Its standard frame was able to accept sets of components for different ammunition, from .357 Magnum to .50 Action Express, and barrels of different lengths.

DESERT EAGLE
- **DATE:** 1983
- **ORIGIN:** ISRAEL
- **WEIGHT:** 5 lb (2.66 kg)
- **BARREL:** 10 in (24.5 cm)
- **CALIBER:** .44 Magnum
REVOLVERS 1900 – 1950

MOST OF THE DEVELOPMENT work on the revolver had been completed by the 1890s, and all that remained was for the design to be refined. There was little to be done to improve the reliability of such a simple design, but there were potential economies to be achieved in the production process, and this meant lower prices for the end user. In a very competitive marketplace, this often meant the difference between success and failure.

WELEY & SCOTT MK VI
The last in a long line of service revolvers produced by the famous Birmingham partnership, the Mark VI was introduced early in World War I. It retained many of the features of its predecessors, and was renowned for its sturdy reliability.

DATE 1915
ORIGIN UK
WEIGHT 2 lb (1.05 kg)
BARREL 6 in (15.2 cm)
CALIBER .455 ELEY

SMITH & WESSON MILITARY AND POLICE
Having championed the hinged-frame revolver, Smith & Wesson, with the advent of more powerful ammunition, was obliged to switch to a solid frame with a swing-out cylinder for its Military and Police pistol. This was chambered for the long .38 Special round.

DATE 1900
ORIGIN US
WEIGHT 1 lb (0.85 kg)
BARREL 5 in (12.7 cm)
CALIBER .38 SPECIAL

COLT POLICE POSITIVE
In 1905 Colt modified its Official Police revolver, fitting the Positive lock with an intercepting safety device. In various forms, the Police Positive stayed in production for well over half a century.

DATE 1905
ORIGIN US
WEIGHT 1 lb (0.6 kg)
BARREL 4 in (10.2 cm)
CALIBER .38 Win
ENFIELD No.2 MK 1
After World War I, the British Army decided to adopt a lighter caliber for its service side-arm. The revolver it chose was almost a copy of the Webley Mark VI. The version shown was issued to tank crews, and lacks a hammer spur.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1938</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>UK</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>1 LB (0.76 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>5 IN (12.7 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.38</td>
</tr>
</tbody>
</table>

SMITH & WESSON M1917
During World War I, Smith & Wesson was commissioned to produce a revolver that chambered the rimless .45 ACP round. The model was a success, but had extraction problems unless flat half-moon clips, each carrying three rounds, were used.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1917</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>2 LB (0.96 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>5 IN (12.7 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.45 ACP</td>
</tr>
</tbody>
</table>

ENFIELD NO.2 Mk1

SMITH & WESSON M1917

COLT NEW SERVICE
The Colt New Service was the last standard-issue service revolver produced by Colt for the US Army. Unbreakable under normal conditions, it had a solid-frame design with a swing-out cylinder. The British Army also bought them in great numbers, chambered, like this example, for the .455 Eley round.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1907</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>1 LB (0.76 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>5 IN (12.7 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.38</td>
</tr>
</tbody>
</table>

THE ICONIC REVOLVER
From the earliest Hollywood westerns to the latest TV cop shows, the revolver has become an icon of civilian law enforcement.

THE ICONIC REVOLVER

ENFIELD NO.2 MK 1

SMITH & WESSON M1917

COLT NEW SERVICE
REVOLVERS FROM 1950

BY THE 1950S it was widely accepted that the self-loading pistol, with its ease of operation and much greater capacity, had finally rendered the revolver obsolete. Around the same time, however, new and much more powerful ammunition types (the so-called Magnum rounds) were being produced. The trouble was that the Magnum used almost twice the energy of a traditional round, and this was far more than a self-loading pistol could handle safely. For this reason, the revolver was given a new lease on life.

SMITH & WESSON MODEL 27
Smith & Wesson produced a huge variety of pistols chambered for the various Magnum calibers—.357 and .44 are only the most common—on light, intermediate, and heavy frames. The heavy Model 27, in .357 caliber, was the most popular model, and was produced with 4 in (10.2 cm), 6 in (15.2 cm), and 8 in (21.3 cm) barrels. The Model 29, in .44 caliber, was almost identical, but was produced with a 10 in (27 cm) barrel.

SMITH & WESSON AIRWEIGHT
As well as the giant Magnums, most gunmakers produced “pocket” revolvers. These were lighter in weight than semi-automatic pistols chambered for the same ammunition, and were easier to conceal. Smith & Wesson’s Centennial range, which included the Airweight, carried five rounds and had shrouded hammers.

MAGNUM PISTOLS
Pistols chambered for Magnum rounds are widely used among police forces. From here they have made their way into popular culture via such movies as Magnum Force (1973).

1900—2006
CHARTER ARMS
Charter Arms began trading in 1964, and the Undercover was its first product. It was intended to be easily concealed, and it chambered for .38 Special ammunition, it had plenty of stopping power.

DATE 1964
ORIGIN US
WEIGHT 1 LB (0.45 KG)
BARREL 2 IN (5 CM)
CALIBER .38 SPECIAL

RUGER GP-100
Sturm, Ruger & Co. was a latecomer to the world of gun manufacture, opening for business in 1949. Initially, the company produced a range of traditional single-action revolvers, but later added designs incorporating the full range of modern ergonomic and safety features.

DATE 1987
ORIGIN US
WEIGHT 2 LB (1.05 KG)
BARREL 4 IN (10.2 CM)
CALIBER .357 MAGNUM

COLT PYTHON
Colt lost no time in producing its own Magnum pistols, based on the tried-and-tested New Service and Single-Action Army models, but it was the 1950s before it produced an all-new purpose-designed Magnum revolver, the Python. Other Magnum “snakes” (the Cobra, the King Cobra, and the Anaconda, the latter in .44 caliber) were to follow, and all have been kept to date. The vented barrel rib has become a feature of these heavy revolvers.

DATE 1953 ONWARD
ORIGIN US
WEIGHT 3 LB (1.4 KG)
BARREL 8 IN (20.3 CM)
CALIBER .357 MAGNUM

CHARTER ARMS POLICE BULLDOG
Built on a heavier frame than the Undercover, the Police Bulldog was also available with a 2 in (6.5 cm) barrel, chambered for .357 Magnum or .44 Special ammunition. The molded rubber grips helped reduce the “felt” recoil.

DATE 1971
ORIGIN US
WEIGHT 1 LB (0.6 KG)
BARREL 4 IN (10.1 CM)
CALIBER .357 MAGNUM
the modern world
1900—2006

MANUALLY LOADED REPEATER RIFLES

THE MAIN DIFFERENCE between the rifles used during the Boer War and those used in World War I lay in the length of their barrels. At the turn of the century, the barrels of infantry rifles were 29½ in (75 cm) long. By 1914, some had been shortened by 4 in (10 cm), and the rest were soon to follow. The exception was France, where the barrel of the Berthier rifle, introduced into service in 1916, had actually increased in length.

SPRINGFIELD M1903
Impressed by the Mauser rifles US troops encountered during the war against Spain, the United States Ordnance Department looked to replace its Krag rifles. Negotiating a license to build a Mauser design of its own, the result was the .30 in Rifle, Magazine, M1903. The example shown here has an experimental 25-round magazine.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1903</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>8½ LB (4 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>24 IN (61 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.30-06 (LATER .30-06)</td>
</tr>
</tbody>
</table>

PATTERN 1914
At the start of World War I, manufacturing problems with the new Pattern 1913 rifle resulted in a change of caliber from 0.276 in to the standard 0.303 in chambering, and the weapon's redesignation as the Pattern 1914. The Model 1917, a 0.30 in-caliber version of the Pattern 1914, was later adopted by the US Army.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1914</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>UK</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>8½ LB (4 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>26 IN (66 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>7 MM MAUSER (.30-06)</td>
</tr>
</tbody>
</table>
BERTHIER MLE 1916
The shortcomings of the Lebel rifle led to a revised design being issued to French colonial troops in 1902. Though it continued to use the bolt action of the Lebel, and was outmoded in appearance (due to the length of its barrel), its only serious defect lay in its magazine capacity—just three rounds. A modified version with a five-round magazine was issued from 1916.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>BARREL</th>
<th>CALIBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1916</td>
<td>France</td>
<td>9 lb (4.15 kg)</td>
<td>31¼ in (79.8 cm)</td>
<td>8 mm x 50R</td>
</tr>
</tbody>
</table>

MOSIN-NAGANT CARBINE M1944
In 1910, the 3-line Mosin-Nagant rifle was modified to produce a carbine by shortening its barrel. In 1938 it was revamped, largely to make it cheaper to manufacture, and in 1944 it attained its final form with the addition of a folding cruciform bayonet. Though it was obsolete by that time, the People’s Republic of China began manufacturing copies in 1953.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>BARREL</th>
<th>CALIBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1944</td>
<td>USSR</td>
<td>8½ lb (3.9 kg)</td>
<td>20¼ in (51.7 cm)</td>
<td>7.62 mm x 54R</td>
</tr>
</tbody>
</table>

MAUSER KAR98K
The “Karabiner” 98K embodied improvements to the Mauser Gewehr 98 rifle, and became the standard German service rifle of World War II. More than 14 million were manufactured between 1935 and 1945. A number of variations were produced, including those for mountain troops, paratroops, and snipers. During the war, the original design was simplified to speed up production.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>BARREL</th>
<th>CALIBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1935</td>
<td>Germany</td>
<td>8½ lb (3.9 kg)</td>
<td>23½ in (60 cm)</td>
<td>7.92 mm x 57</td>
</tr>
</tbody>
</table>

LEE-ENFIELD RIFLE NUMBER 4 MARK I
The new Lee-Enfield, which appeared late in 1939, differed very little from the model it replaced. The bolt and receiver were modified, the rear sight was a new design, and was placed on the receiver; the fore stock was shortened, exposing the muzzle, and its cap was redesigned. The Number 4 remained in service until 1954.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>LENGTH</th>
<th>CALIBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1939</td>
<td>UK</td>
<td>9 lb (4.1 kg)</td>
<td>25 in (64 cm)</td>
<td>.303 in</td>
</tr>
</tbody>
</table>
RED ARMY INFANTRYMAN

When they invaded the Soviet Union in June 1941, the Germans planned for a swift victory—completely underrating the endurance and resilience of the Soviet conscript soldier. The Soviet way of making war was immensely wasteful of men’s lives, thrown away in ill-considered offensives or committed to “no retreat” when on the defensive. Yet the Red Army infantryman remained firmly committed to the struggle, either as a dedicated communist or as a patriot fighting in defense of the homeland.

HARSH DISCIPLINE

The Red Army infantryman was subject to harsh discipline by his officers, who themselves were under surveillance by political commissars and Soviet dictator Joseph Stalin’s secret police, the NKVD. Officers and men alike were subject to arbitrary arrest. Men accused of political dissent or cowardice were put in the forefront of battle in suicide squads.

The Red Army suffered an average of 8,000 casualties a day through nearly four years of war—heavier losses per day than the Russian Empire had experienced in World War I. Yet after the initial disasters of 1941, morale never seriously wavered. The scale of early losses meant that the Red Army became largely a mix of the young, arriving at military age from 1941 onward, and those initially considered too old for service. But they held firm in front of Moscow in the bitterly cold winter of 1941–42 and, after further costly defeats, carried off the victory at Stalingrad that turned the tide. In the later stages of the war, better equipped and well led, the Soviet infantry showed initiative in mobile offensives, rolling the Germans all the way back to Berlin.

TOOLS OF COMBAT

Infantry Action

Soviet infantry advance as one of their number loads a mortar. Early in the war, Red Army soldiers were frequently ordered forward with bayonets fixed in the face of machine gun or artillery fire that made attack suicidal. From 1943 better equipment and more sensible leadership cut losses sharply.
The epic struggle for the Soviet city of Stalingrad was one of the turning points of World War II. From September 1942, heavily outnumbered Red Army soldiers resisted the German capture of the city, fighting house by house and street by street, until a counter-offensive in late November left the German forces encircled. After two agonizing, bitterly cold winter months under siege by the Red Army, the German commander finally surrendered on January 30, 1943.

SOVIET SOLDIERS AT STALINGRAD

SOVIET SNIPER
A young Red Army marksman peers through the sight of his 7.62 mm Mosin-Nagant M91/30 sniper rifle. This was simply the Soviets’ standard bolt-action rifle accuratized and fitted with a telescopic sight. The Red Army made extensive use of snipers during World War II and “top guns” such as Vasili Zaitsev—credited with killing more than 149 German soldiers—were lauded as Soviet heroes.

SOVIET UNIFORM
Like all World War II infantry uniforms, Red Army outfits were drab for camouflage purposes and distinguished Soviet soldiers from others only by an accumulation of details. Soviet infantry helmets, for example, broadly resembled the American M1 helmet in shape.

"**OUR AIM IS TO DEFEND SOMETHING GREATER THAN MILLIONS OF LIVES... THE MOTHERLAND.**"

SOVIET SOLDIER, DIARY ENTRY, JULY 1941

"Our aim is to defend something greater than millions of lives... the motherland."

SOVIET SNIPER

MOSIN-NAGANT 1891/30 RIFLE

TOKAREV SVT40 RIFLE

OVERHANGING SHIRT SECURED BY BELT

RED GUARD BADGE

PPSH SUBMACHINE GUN

SSch-40 STEEL HELMET
THE FIRST SUCCESSFUL self-loading rifle was developed by a Mexican, Manuel Mondragon, as early as 1890. Taken up by the Mexican Army in 1908, it proved too fragile for general use. Next, in 1918, came John Browning’s Automatic Rifle, but this came to be used as a light machine gun instead because of its excessive weight. It was not until 1936 that a truly practical self-loading rifle, the M1, was adopted by the US Army. Further breakthroughs in self-loading rifles came in World War II. The best of these was the Sturmgewehr G44, but it was some time before the “intermediate” ammunition round, its most important design aspect, achieved universal acceptance.

TOKAREV SVT40
Fedor Tokarev designed a self-loading rifle with a tilting bolt locking into the floor of the receiver, and had it accepted by the Red Army in 1938. Two years later, he produced a more robust weapon that was cheaper and quicker to manufacture. The Samozaryadnaya Vintovka Tokarev 40 was issued to non-commissioned officers, though some were employed as sniper rifles.
M1 CARBINE
Designed as a replacement for the pistol and rifle, the M1 was issued from 1942. It was chambered for an intermediate round developed by Winchester, and had an action similar to that of the Garand, except it had a short-stroke gas piston. It was also produced with a folding butt, for issue to paratroopers.

GEWEHR 43
Soon after the start of World War II, the German army began demanding a self-loading rifle. Walther’s original design employed a cup at the muzzle that unlocked the bolt and cycled the action. In 1943 a modified version, using the same action but with a conventional gas cylinder and piston mounted above the barrel, was introduced as the Gewehr 43.

M1 GARAND RIFLE
John Garand opted for a rotating bolt design for his self-loading rifle. The piston in a cylinder below the barrel has a camming (spiraled) groove on its rear end, in which is located a stud on the bolt. As the piston is driven back, it causes the bolt to rotate and then drives it back against a spring that returns and relocks it, having picked up a fresh round from the magazine on the way.

STURMGeweHR 44
In 1940 work began on a selective-fire rifle chambered for a new intermediate 7.92 mm x 33 round. The result was a gas-operated weapon with a tipping bolt, which was put into production as the Maschinengewehr 43 and later renamed the Sturmgewehr 44. Small numbers were fitted with the Krummlauf, a barrel extension that turned the bullet through 30°, for use by tank crews against infantry.
AK47 ASSAULT RIFLE

DESIGNED BY MIKHAIL KALASHNIKOV, a young tank commander with little formal training, the assault rifle that bears his name was to achieve iconic status due to its rugged simplicity. Kalashnikov’s first successful design, the AK47 was simple, handled well, and operated satisfactorily under virtually any conditions. It was adopted by the Soviet Army in 1949, and since then, between 50 and 70 million Kalashnikov-type rifles and light machine guns have been manufactured all over the world.

Early AK47s were made largely from welded components, stampings, and pressed metal parts. However, problems arose, and from 1951, sturdier receivers machined from forged steel billets were introduced. The modified AKM was not only much lighter than the original AK47, but it also had a reduced cyclic rate of full automatic fire, which improved its accuracy. The AKM can be distinguished from the AK47 by the strengthening ribs in the top surface of the receiver.

AK47

<table>
<thead>
<tr>
<th>Date</th>
<th>1951</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>USSR</td>
</tr>
<tr>
<td>Weight</td>
<td>9.5 lb (4.3 kg)</td>
</tr>
<tr>
<td>Barrel</td>
<td>16.5 in (41.5 cm)</td>
</tr>
<tr>
<td>Caliber</td>
<td>7.62 mm x 39</td>
</tr>
</tbody>
</table>

Butt plate

30-round detachable magazine also used on the RPK LMG

Strengthening rib in receiver

Change lever selects single-shot or automatic fire

Strengthening rib

Stock folds along each side of receiver

trigger

Magazine catch

Pistol grip

Rear sight

Butt plate

30-round detachable magazine also used on the RPK LMG
It is generally believed that the design for the 7.62 mm x 39 cartridge was based on an examination of the ammunition used by the German MP43/MP44 in World War II. But Soviet designers had also been looking into the problems of producing their own intermediate cartridge to increase the combat efficiency of their submachine guns. The result was the 7.72 mm x 39 M43, a rimless, bottle-necked cartridge with a copper-washed steel case that remains practically unchanged in use around the world today.

Now mass-produced on a global scale, the AK47 has become the most popular gun in the world. Here it is seen in the hands of a Mujahideen warrior in Afghanistan.
ONE VITAL TACTICAL LESSON learned during World War II was the importance of firepower in the final phase of an assault. As a result, bolt-action weapons soon fell out of use, except as a sniper’s arm, and the self-loading rifle became ubiquitous. Following the lead of the Sturmgewehr 44, introduced in 1943, the new weapons of the post-war era were capable of fully-automatic fire. The Sturmgewehr 44 also embodied another key development: the use of lighter, smaller, “intermediate” ammunition rounds, which eventually replaced those that had been in use since the start of the 20th century.

M14

In 1953, the North Atlantic Treaty Organization’s (NATO) armies adopted a new full-power rifle cartridge, in 7.62 mm caliber. To accommodate it, the US developed a version of Garand’s 20-year-old M1, endowed with a fully automatic fire capability and a larger magazine.

L1A1

The L1A1 was introduced in 1954, and was the standard British service rifle until its replacement by the L85As in 1988. It was adapted from the Belgian FN FAL, but with minor changes to the specifications to facilitate manufacture in the UK.
HECKLER & KOCH G41
The G41 was an updated version of the G3, and shared its roller-delayed blowback action. The modifications were necessary to accommodate the 5.56 mm round, and other standard NATO features such as the universal sight mounting and magazine.

STONER M63
This M63 by Eugene Stoner is a modular design, and its 15 basic sub-assemblies can be put together in six different ways to produce a submachine gun, a carbine, an assault rifle (shown here), an automatic rifle, a light machine gun, and a general-purpose machine gun.

GALIL ASSAULT RIFLE
After the 1967 war, Israeli Military Industries was ordered to produce something similar to the AK47. It chose a design by Israel Galil, a near-copy of the Finnish Valmet M62, itself an AK47 derivative, but opted for the American 5.56 mm x 45 round.

STONER M16A1
Stoner’s Armalite AR-15 was accepted by the US Air Force in the early 1960s, and subsequently taken into service as the M16. The M16A1 was fitted with a bolt-closing device and a revised flash hider. The later M16A2 acquired a three-round burst, and a heavier barrel with modified rifling better suited to the SS109 5.56 mm round, instead of the M193 for which it was designed.
L85A1
The L85A1 was the last weapon system to be developed and produced at the Royal Smallarms Factory, Enfield, UK, before it closed in 1988. It was dogged with problems during the development stage, and trials continued even after its adoption in 1985. It was designed from the start to use an optical sight. The body and many other parts are steel samplings. All the furniture is high-impact plastic.

DATE 1985
ORIGIN UK
WEIGHT 11lb (4.98kg)
BARREL 20½in (52.1cm)
CALIBRZ 5.56mm x 45 NATO

30-round detachable magazine compatible with other NATO weapons
SA80 ASSAULT RIFLE

DURING THE LAST QUARTER of the 20th century, a new type of assault rifle, the “bullpup,” began to enter service with the world’s armies. The bullpup configuration places the action in the butt, with the magazine behind the trigger, allowing a full-length barrel to be accommodated in a much shorter weapon. Three bullpup rifles have been adopted so far: the French FAMAS, the Austrian AUG, and the British L85 Individual Weapon (shown here), part of the SA80 weapon family, which also includes the L86 Light Support Weapon and the L98 Cadet Rifle.

AMMUNITION
The SA80 weapon family was designed around the NATO-standard SS109 5.56mm round, which has a steel-tipped projectile weighing 61.7 grains (4g) and achieves a muzzle velocity of 3,085 feet per second (940m/s).

BAYONET
The bayonet supplied with the L85 is unusual in that its shaft fits over the flash hider at the muzzle. A lug on its scabbard fits the slot in the blade and the ensemble becomes a pair of wire cutters, an idea borrowed from the Soviet AKM.
BY THE LAST DECADE of the 19th century, most of the technology found in modern firearms was already present. Later developments addressed concerns over safety (particularly in respect to the more powerful ammunition made possible by new formulations of propellant) and economy of manufacture. There was another, and this time quite new, element coming into consideration: during the previous century, little thought had been given to the ergonomic design of firearms, but this was now being addressed in some quarters, particularly in the design of sport guns.

WINCHESTER MODEL 1894
A young gunmaker named John Browning began working for Winchester in 1883. His first task was to revamp the action of the company’s under-lever rifle to allow it to use new types of ammunition, and he supplemented Tyler Henry’s toggle-jointed bolt with additional vertical locking bars. The system was perfected in the Model 1894.

DATE 1894
ORIGIN US
WEIGHT 7 lb (3.18 kg)
BARREL 20 in (50.8 cm)
CALIBER .30-30

WESTLEY RICHARDS HAMMERLESS EJECTOR GUN
Master gunmakers Westley Richards produced various notable and highly innovative sporting guns and rifles. This example of a double-barreled hammerless ejector gun has a patent one-striker mechanism and locks that can be detached by hand. A press-button mechanism enables each barrel to be fired independently. Available in a choice of finishes, the gun could be tailored to suit the individual tastes of purchasers.

DATE c.1930
ORIGIN UK
WEIGHT 6 lb (2.76 kg)
LENGTH 26 in (66.5 cm)
CALIBER 12-BORE
RIGBY MAUSER RIFLE
Rigby’s began making guns in Dublin, Ireland, in the 18th century. In 1900, now in London, the company was appointed Mauser’s UK agent, and began producing bolt-action rifles to its design in a variety of calibers. John Rigby, the company’s head, oversaw the design of the British Army’s bolt-action rifles.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>BARREL</th>
<th>CALIBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1925</td>
<td>UK</td>
<td>6 lb (2.8 kg)</td>
<td>27 ½ in (70 cm)</td>
<td>.375 in h & h magnum</td>
</tr>
</tbody>
</table>

DARNE ROTARY-BREACH DOUBLE-BARREL SHOTGUN
Made by Darne, this shotgun has a patented breech action. Freed by means of the lever on top of the butt stock behind the breech, the entire lock rotates through a quarter turn to expose the chambers. Returning it to battery cocks the gun. The lever on the side of the breech-block is a cross-bolt safety.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>BARREL</th>
<th>CALIBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>France</td>
<td>5 lb (2.4 kg)</td>
<td>25 in (65 cm)</td>
<td>16-bore</td>
</tr>
</tbody>
</table>

BERETTA DOUBLE-BARREL SHOTGUN
Pietro Beretta is the longest-established gun maker in the world, having been in business since 1526. Its over-and-under double-barreled shotguns, like this Model S-686, have been the most popular configuration for both hunting and trapshooting. Over-and-under guns have the advantage of a single sight line. Most are fitted with single-trigger locks.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>BARREL</th>
<th>CALIBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>Italy</td>
<td>6 lb (3.08 kg)</td>
<td>28 in (71 cm)</td>
<td>12-bore</td>
</tr>
</tbody>
</table>

REMEINGTON 1100 AUTOMATIC SHOTGUN
John Browning produced the first design for a gas-operated, self-loading shotgun while working for Winchester, but it was not put into production. Modern automatics can be either gas- or recoil-operated. This Remington 1100 is gas-operated, and was produced in a variety of barrel lengths and calibers.

<table>
<thead>
<tr>
<th>DATE</th>
<th>ORIGIN</th>
<th>WEIGHT</th>
<th>BARREL</th>
<th>CALIBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>US</td>
<td>8 lb (3.6 kg)</td>
<td>28 in (71 cm)</td>
<td>12-bore</td>
</tr>
</tbody>
</table>
SHOTGUNS

THE SHOTGUN HAS ALWAYS BEEN an effective close-quarters weapon, and its value was recognized by infantrymen in World War I. As well as sport guns, usually with their barrels cut down, they used purpose-built guns like Winchester’s six-shot pump-action Model 1897, which became known as the “trench sweeper.” More recently, developments centered on increasing the capacity of the magazine and on new types of ammunition for both military and civilian security operations.

FRANCHI SPAS 12
Developed as a close-combat weapon for both police and military use, the SPAS (Special-Purpose Automatic Shotgun) is gas-operated by an annular piston around the under-barrel magazine tube, acting on a tilting bolt. It can be switched over to pump action when required. They were expensive to manufacture, but reliable.
GREENER-MARTINI POLICE SHOTGUN
Developed after World War I for use by British colonial police forces, this gun was unconventional in that it had a Martini falling-block action. Furthermore, it accepted only cartridges of an unusual form, to prevent stolen guns from being used by civilians.

WINCHESTER MODEL 1887
Another action unique in a shotgun is the lever-action rolling block of the Winchester Model 1887, designed by John Browning. Produced in 10-bore and 12-bore chamberings (and a very few to accommodate .70 in bulleted cartridges), the lever action proved unsuitable for shotgun cartridges, and was discontinued in favor of pump-action guns.

USAS-12
Designed in the United States, and manufactured in South Korea by Daewoo, the USAS-12 is unusual in two respects. Firstly, it is a selective-fire weapon, with the option for single-shot or automatic operation; secondly, it can be set up for either right- or left-handed operation.

WINCHESTER MODEL 1897
Browning’s first pump-action gun for Winchester, the Model 1897, was a rare failure. Browning strengthened and modified the action, and the Model 1897 proved to be everything that its predecessor was not, and remained in production until the 1950s. The military version, shown here, was produced up to 1945.
Australian forces fought alongside the US army and Marine Corps in Vietnam. The men of this patrol, disembarking from a CH-47 Chinook helicopter, are armed with the self-loading FN FAL rifle, which was also issued to British troops at the time, and the American M60 general-purpose machine gun.
BY THE TIME OF THE CIVIL WAR in the United States, weapons technology had progressed to the point where it was possible to shoot an identified individual at very long ranges. By World War I, the sniper had already become a very important figure on the battlefield, but it was only in World War II that he (and often, particularly in the Red Army, she) really made his or her mark. At that time, sniping was perhaps best described as a 'black art', but more recently, technological advances have turned it into more of a science.

MAUSER GEW 98

Specially selected examples of the Mauser Infanteriegewehr 98, the German Army’s standard rifle of World War I, continued to be used as snipers’ weapons throughout World War II. The rifles were fitted initially with a 2.75x telescopic sight produced commercially as the Visar by Emil Busch AG. The sight was graduated from 100 to 1,000 m, and matched to a particular rifle.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1900 ONWARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>GERMANY</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>9½ LB (4.15 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>21¼ IN (75 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>7.92 MM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Busch Visar telescope sight</th>
<th>Elevation adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye piece</td>
<td>Objective</td>
</tr>
<tr>
<td>Safety catch</td>
<td>Leaf sight</td>
</tr>
<tr>
<td>Bolt</td>
<td>Bolt handle</td>
</tr>
<tr>
<td>Cleaning rod</td>
<td>Combined forestock cap and barrel band</td>
</tr>
<tr>
<td>Leaf sight</td>
<td>Busch Visar telescope sight</td>
</tr>
<tr>
<td>Objective</td>
<td>Eye piece</td>
</tr>
<tr>
<td>Elevation adjustment</td>
<td>Safety catch</td>
</tr>
<tr>
<td>Objective</td>
<td>Eye piece</td>
</tr>
<tr>
<td>Combined forestock cap and barrel band</td>
<td>Leaf sight</td>
</tr>
<tr>
<td>Cleaning rod</td>
<td>Safety catch</td>
</tr>
<tr>
<td>Busch Visar telescope sight</td>
<td>Eye piece</td>
</tr>
<tr>
<td>Objective</td>
<td>Eye piece</td>
</tr>
<tr>
<td>Elevation adjustment</td>
<td>Safety catch</td>
</tr>
<tr>
<td>Objective</td>
<td>Eye piece</td>
</tr>
<tr>
<td>Combined forestock cap and barrel band</td>
<td>Leaf sight</td>
</tr>
<tr>
<td>Cleaning rod</td>
<td>Safety catch</td>
</tr>
<tr>
<td>Busch Visar telescope sight</td>
<td>Eye piece</td>
</tr>
<tr>
<td>Objective</td>
<td>Eye piece</td>
</tr>
<tr>
<td>Elevation adjustment</td>
<td>Safety catch</td>
</tr>
<tr>
<td>Objective</td>
<td>Eye piece</td>
</tr>
<tr>
<td>Combined forestock cap and barrel band</td>
<td>Leaf sight</td>
</tr>
<tr>
<td>Cleaning rod</td>
<td>Safety catch</td>
</tr>
</tbody>
</table>
MOSIN-NAGANT M1891/30PU
In the 1930s the Red Army began issuing specially selected Model 1891/30 Mosin-Nagant rifles, fitted with Type PE telescopic sights, to its most accomplished marksmen. The sight was replaced with the 3.5-power PU. Some 730,000 M1891/30PU sniper rifles were produced during World War II, and it was widely accepted to have been the most accurate in use.

DATE	1941
ORIGIN	USSR
WEIGHT	11¼ lb (5.15 kg)
BARREL	28¼ in (71 CM)
CALIBER	7.62 MM x 54R

DRAGUNOV SVD
The Sniperskaya Vintovka Dragunova (chambered for the rimmed 7.62 mm round developed for the “3-line” Mosin-Nagant rifle in 1891) was adopted by the Soviet bloc armies in 1963. Its PSO-1 telescopic sight has a limited infrared capability.

DATE	1963 ONWARD
ORIGIN	USSR
WEIGHT	9½ lb (4.3 kg)
BARREL	24 in (61 CM)
CALIBER	7.62 MM x 54R

HECKLER & KOCH PSG-1
Intended as a police sniper rifle, the PSG-1 was essentially a heavily modified G3, as issued to the German Army, with the same roller-delayed blowback action. The most significant differences lie in the cold-forged, hexagonally rifled barrel and the Hensoldt 6x42 fixed-power sight, which has an illuminated reticle.

DATE	1985
ORIGIN	GERMANY
WEIGHT	17¼ lb (8.1 kg)
BARREL	25½ in (65 CM)
CALIBER	7.62 MM x 51 NATO
UNTIL THE 1990S, SNIPER RIFLES used conventional ammunition. Some new models then adopted more powerful ammunition that gave both a flatter trajectory and increased the “point-blank” range to several hundred feet. It also allowed them to reach out to greater distances. Others changed their nature more substantially, adopting the “bullpup” configuration that allowed their overall size to be much reduced, while retaining the all-important long barrel.

WALTHER WA2000
Developed for police use, most were produced in .300 Winchester Magnum caliber. The example shown here is the experimental Series 1 version: the operational Series 2 had an upgraded gas system and an unfluted barrel, which improved accuracy. Both types were fitted with variable-power Schmidt & Bender telescopic sights.

DATE 1978–88
ORIGIN GERMANY
WEIGHT 15 lb (6.95 kg)
BARREL 25½ in (65 cm)
CALIBER 7.62 mm NATO
The British Army's L96A1 sniper rifle, in service since 1986, was the first to be developed specifically for sniping; earlier versions had been based on various models of the Lee-Enfield. It has an aluminum frame to which its components are attached. Each rifle is individually fitted with a Schmidt & Bender 6x telescopic sight.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1986 ONWARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>UK</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>14 LB (6.5 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>25¾ IN (65.5 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>7.62 MM NATO</td>
</tr>
</tbody>
</table>

Barrett Mod. 90
In 1982, 20-year-old Ronnie Barrett designed a .50-caliber sniper rifle as a bet. The gas-operated Model 82 (adopted by the US Army as the M107) revolutionized the field, and was followed by the lighter, bolt-action, bullpup Model 90, and an upgraded version, the Model 99. The heavy .50-caliber round makes the rifle an effective anti-material weapon to a range of 5,900 ft (1,800 m).

<table>
<thead>
<tr>
<th>DATE</th>
<th>1990–95</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>US</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>22LB (10 KG; LESS OPTICS)</td>
</tr>
<tr>
<td>BARREL</td>
<td>29 IN (73.7 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>.50 IN</td>
</tr>
</tbody>
</table>
UNTIL THE SECOND DECADE of the 20th century, Maxim’s method of harnessing a gun’s recoil was ubiquitous; the British Vickers, incorporating only minor modifications, was the only newcomer. Then John Moses Browning, who had previously gone to great lengths to disguise the fact that he had violated Maxim’s patents in his Colt M1895, came up with a new way of harnessing the same force.

VICKERS MK 1
Adopted by the British Army as a replacement for the Maxim in November, 1912, the MK 1 differed from its predecessor in that its locking toggle-joint broke upward rather than downward, reducing the size of the receiver. Thanks to the use of steel throughout, it was 30 lb (13.6 kg) lighter than the Maxim. Its rate of fire was unchanged, at around 450 rounds per minute (rpm). It was declared obsolete only in April 1968.

DATE 1912
ORIGIN UK
LENGTH 43 5/4 in (110 cm)
CALIBER .303 in
MG42
Germany was prohibited from developing new weapons by the Treaty of Versailles, but it did so in secret, abroad. In 1934 the Maschinengewehr 34 was officially adopted as the MG08’s replacement. At just 26.6 lb (12 kg), it was light, yet robust enough to deliver sustained fire at up to 900 rpm, but it was expensive to produce, and was superseded by the MG42, far and away the best automatic weapon of its day, capable of 1,200 rpm.

DATE 1943
ORIGIN Germany
LENGTH 48 in (122 cm)
CALIBER 7.92 mm Mauser

BROWNING M2 HB
The US Army was pleased with Browning’s M1917 (below), but wanted a heavier weapon too, and Browning obliged with the water-cooled M1921. Like the rifle-caliber gun, its water jacket was later removed, and it metamorphosed into the M2. The only important later modification was the provision of a heavy barrel. It remained in service into the 21st century, and formed the basis for other, more sophisticated weapons.

DATE 1936
ORIGIN US
LENGTH 64½ in (164 cm)
CALIBER 12.7 mm

BROWNING M1917
John Browning first produced a design for a machine gun in 1895, and when he had finished work on the M1911 pistol, he returned to the subject, and came up with a simpler method of locking breech-block and barrel than Maxim had used. His new gun was adopted by the US Army as the M1917. It soon lost its water jacket and became the air-cooled M1919, and remained in service in that form until the 1960s.

DATE 1912
ORIGIN US
LENGTH 38½ in (98 cm)
CALIBER .30-06 in
WHEN MAXIM BUILT HIS FIRST machine gun, there was no question of using propellant gases to cycle the action because they carried too much particulate residue, but by the 1890s, the introduction of smokeless propellants had changed that. In 1893 an Austrian cavalryman, Odkolek von Augezd, sold a design for just such a gun to the Hotchkiss company in Paris. Since then, gas operation has become commonplace.

GAS-OPERATED MACHINE GUNS

GORYUNOV SGM
The Red Army used its Maxims well into World War II, but by 1942, it desperately needed a cheaper replacement. Goryunov mated elements of an earlier unsuccessful design with Holek’s locking system. His original SG43 underwent modification, post-war, and became the SGM.

FN MAG (GPMG)
The MAG (Mitrailleuse à Gaz), produced by FN, used a modified form of the locking system developed by John Browning for his Automatic Rifle; this was mated to the feed mechanism of the MG42. The gun was adopted by the British Army as the General-Purpose Machine Gun.

ZB 53 (VZ/37 OR BESA)
Machine gun designer Vaclav Holek was one of the stars of the 1930s. He used similar locking methods on both the Bren gun and the ZB 53. The latter was known as the VZ/37 by the Czechs and Besa by the British, who used it in their tanks.

** specifications **

<table>
<thead>
<tr>
<th>Model</th>
<th>Date</th>
<th>Origin</th>
<th>Barrel Length</th>
<th>Caliber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goryunov SGM</td>
<td>1943</td>
<td>USSR</td>
<td>44 in (112 cm)</td>
<td>7.62 mm x 54</td>
</tr>
<tr>
<td>FN MAG</td>
<td>1958</td>
<td>Belgium</td>
<td>40.5 in (104 cm)</td>
<td>7.62 mm NATO</td>
</tr>
<tr>
<td>ZB 53</td>
<td>1937</td>
<td>Czechoslovakia</td>
<td>26.7 in (67.8 cm)</td>
<td>7.92 mm Mauser</td>
</tr>
</tbody>
</table>

** specifications **

<table>
<thead>
<tr>
<th>Model</th>
<th>Date</th>
<th>Origin</th>
<th>Barrel Length</th>
<th>Caliber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goryunov SGM</td>
<td>1943</td>
<td>USSR</td>
<td>44 in (112 cm)</td>
<td>7.62 mm x 54</td>
</tr>
<tr>
<td>FN MAG</td>
<td>1958</td>
<td>Belgium</td>
<td>40.5 in (104 cm)</td>
<td>7.62 mm NATO</td>
</tr>
<tr>
<td>ZB 53</td>
<td>1937</td>
<td>Czechoslovakia</td>
<td>26.7 in (67.8 cm)</td>
<td>7.92 mm Mauser</td>
</tr>
</tbody>
</table>
The US Army replaced its Browning M1917 derivatives with a new, gas-operated, general-purpose machine gun in the early 1960s. The M60 used the feed system of the MG42 and the locking system of the German FG42 assault rifle. It was unsatisfactory to begin with, but a series of modifications over two decades corrected most of its faults.

HOTCHKISS MLE 1914

The original design Baron von Augezd sold to Hotchkiss in 1893 was robust and simple, the bolt being locked against the barrel by means of a pivoting flap until pushed aside by gas tapped off the barrel at its mid-point. Its major weakness was a tendency to overheat. Between 1897 and 1914, it underwent a series of modifications aimed at correcting this fault, and also to make it cheaper to produce and to improve its feed mechanism, which employed metallic strips holding 24 rounds, rather than fabric belts. The M1914 remained in use until World War II.

DATE 1914

ORIGIN FRANCE

LENGTH 50 in (127 cm)

CALIBER 8 mm Lebel

M60

The US Army replaced its Browning M1917 derivatives with a new, gas-operated, general-purpose machine gun in the early 1960s. The M60 used the feed system of the MG42 and the locking system of the German FG42 assault rifle. It was unsatisfactory to begin with, but a series of modifications over two decades corrected most of its faults.

DATE 1963

ORIGIN US

LENGTH 43.5 in (110 cm)

CALIBER 7.62 mm NATO
HECKLER & KOCH’S ANSWER to FN’s Minimi Squad Automatic Weapon, the MG43 is a conventional gas-operated light machine gun with an action based on a rotating, rather than the roller-locked, bolt employed in H&K’s other contemporary weapons. It is simpler in design than the Minimi, being belt-fed only, and is consequently cheaper to manufacture. Like virtually all modern firearms, it makes use of molded glass-reinforced polymers wherever possible. It has an integral bipod, plus mounting points for the M2 tripod, as well as a Picatinny rail (named after a US Army Research and Devolopment establishment) on the receiver that will accept all NATO-standard optical sighting units as well as a basic aperture rear sight.

MG43 MACHINE GUN

The MG43 is one of a new range of light support weapons chambered for the NATO-standard 5.56 mm round. It is light enough to be handled in the LMG role and rugged enough to function as a sustained-fire weapon at a cyclical rate of 750 rpm. The barrel can be changed in seconds, its handle folding to lie along the receiver just in front of the cocking handle. This example is a trial produced for the UK, not a standard model.

Specifications

- **DATE**: 2001
- **ORIGIN**: GERMANY
- **WEIGHT**: 18.85 lb (8.55 kg)
- **BARREL**: 19 in (48 cm)
- **CALIBER**: 5.56 mm x 45 NATO

5.56 mm ammunition supplied in 200-round disintegrating-link belts.
SUSAT sight with four-power magnification and low-light capability

Safety catch with provision for fully automatic fire only

Molded plastic pistol grip

Plastic butt stock hinged here to fold to left

Trigger
LIGHT MACHINE GUNS 1914–1945

BROWNING AUTOMATIC RIFLE

John Browning set out to design a self-loading rifle, but it was soon obvious that the weapon he produced was better suited to the role of light support weapon. Though it had a fixed barrel and poor magazine capacity, it remained in front-line service with the US Army and Marine Corps until the mid-1950s.

- **DATE**: 1918
- **ORIGIN**: US
- **WEIGHT**: 16 lb (7.3 kg)
- **BARREL**: 24 in (61 cm)
- **CALIBER**: .30-60

MG08/15

Germany's first, hurried attempt to produce a light machine gun saw the Maxim MG08 fitted with a butt stock, a pistol grip, and a conventional trigger. It also had an integral bipod, with a shortened ammunition belt contained in a drumlike container. It was far too heavy, but around 130,000 were produced, and it became the principle support weapon for the Reichswehr's stormtroopers.

- **DATE**: 1917
- **ORIGIN**: Germany
- **WEIGHT**: 48½ lb (22 kg)
- **BARREL**: 28¼ in (72 cm)
- **CALIBER**: 7.92 mm x 57

THE FIRST GENERATION of machine guns were too cumbersome to be used in anything but fixed positions, so there was also a need for a lighter, portable weapon capable of putting down sustained fire. The barrels of early light machine guns tended to overheat. This problem was solved by the development of systems that enabled the barrels to be changed quickly and easily, even under combat conditions.
DEGTYAREV RP46
The Red Army adopted the Degtyarev DP in 1928. It was modified in 1945, and the following year, it received a heavier barrel and was adapted to take belts as well as drum magazines. The RP46 was still not entirely satisfactory, however, and was soon replaced by the RPD.

BREN
Developed at Brno and modified at Enfield (hence its name) the Bren gun was the British Army’s principle light support weapon from its introduction until the 1970s, latterly in 7.62 mm NATO chambering. If it had a deficiency, it lay in its (rimmed) ammunition, not in the gun itself.

LEWIS
The British Army adopted the air-cooled, gas-operated Lewis gun in 1915, and it remained its standard light support weapon until it was superseded by the Bren. The original design was the work of Samuel MacLean, but it was modified by Colonel Isaac Lewis of the US Army, who went on to market it aggressively. The US Army Air Corps adopted it as a flexibly mounted weapon.
During World War II engagements took place at shorter ranges than previously. This had two consequences: the barrels of rifles and light machine guns became shorter, and the rounds they fired became lower-powered and lighter. For the individual soldier, this meant a welcome reduction in the load he had to carry. More recently, weapons became even lighter when plastic replaced wood and bullpup configurations were introduced.

NEGEV
Israel Military Industries’ Negev is one of the breed of lightweight automatic weapons that has blurred the distinction between LMG and GPMG. Chambered for the 5.56 mm NATO round, it can deliver automatic fire at 700 or 900 rounds per minute (rpm).

<table>
<thead>
<tr>
<th>DATE</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>ISRAEL</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>15 ¾ LB (7.2 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>18 IN (46 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>5.56 MM X 45 NATO</td>
</tr>
</tbody>
</table>

FN MINIMI
FN’s gas-operated, air-cooled Minimi accepts the NATO STANAG magazine or disintegrating-link belts, without modification. It was adopted by the US Army as its M249 Squad Automatic Weapon, and by the British Army as the L108A1.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1975</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>BELGIUM</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>15 LB (6.8 KG)</td>
</tr>
<tr>
<td>BARREL</td>
<td>18½ IN (46.5 CM)</td>
</tr>
<tr>
<td>CALIBER</td>
<td>5.56 MM X 45 NATO</td>
</tr>
</tbody>
</table>
The introduction of the L85A1 Individual Weapon into British service meant that a new support weapon had to be developed with the same caliber ammunition. The result was the L86A1, which replaced the L484 Bren gun. It has a heavier and larger barrel than the L85A1, and a rear grip to aid sustained firing. There is no quick-change barrel, so the gun must be fired in short, controlled bursts to prevent overheating.
SUBMACHINE GUNS 1920–1945

EARLY ATTEMPTS TO PRODUCE a light, rapid-fire weapon centered on pistols, but it soon became obvious that these were difficult to control, and that something more akin to a carbine, but firing a reduced-power round suitable for a handgun, was more likely to be effective. It was not until World War II that it became clear that the butt stock was superfluous to a submachine gun (SMG) and could be eliminated without negative effects.

MP40
In 1938, the German Army adopted a new, handier design for a SMG, but it was still uneconomical to produce. Two years later, it was re-engineered to replace expensive machining with pressed and welded construction. This later design set the trend for an entire generation of SMGs.

DATE 1940
ORIGIN GERMANY
WEIGHT 9 LB (4.03 KG)
BARREL 9 IN (24.8 CM)
CALIBER 9 MM PARABELLUM

VILLAR PEROSA
The first SMG was manufactured in 1915 as a double gun, paired in a simple mounting and fitted with spade grips, a single trigger bar, and a bipod. Later, these were revamped as carbines, with butt stocks and conventional triggers.

DATE 1920s
ORIGIN ITALY
WEIGHT 6 LB (3.06 KG)
BARREL 11 IN (28 CM)
CALIBER 9 MM GLISENTI

THOMPSON M1921
US General John Tagliaferro Thompson began by designing an unsatisfactory self-loading rifle in 1916, but by 1919, he had produced an early version of what would be known universally as the Tommy Gun. The M1921 was the first to come to the market, but it was not until 1928 that the US Government adopted it, in small numbers, for the Marine Corps.

DATE 1921
ORIGIN US
WEIGHT 10 LB (4.50 KG)
BARREL 10 IN (26.7 CM)
CALIBER .45 ACP
Shapgin’s “Peh-Peh-Sheh,” reliable and simple both to manufacture and to maintain, was to become the mainstay of the Red Army after it stopped the German advance into the Soviet Union. At least five million had been produced by 1945, and infantry tactics were modified to make the best use of them.

BERGMANN MP18/I

The Hugo Schmeisser-designed MP18/I can lay claim to being the first effective submachine gun. It was produced in response to a request from the German Army’s storm troopers for a handier weapon than the heavy, cut-down MG08/15s they were using when assaulting defended positions.

DATE 1918
ORIGIN Germany
WEIGHT 11 lb (5.25 kg)
BARREL 35 in (91 cm)
CALIBER 9 mm Parabellum

STEN MARK 2 (SILENCED)

The Sten cost less than a good pair of shoes to buy, but if one ignored its more obvious shortcomings, it was an effective way of putting devastating short-range firepower into the hands of inexperienced combatants. This version had an integrated noise- and flash-suppressor, and was produced only in small numbers.

DATE 1941
ORIGIN UK
WEIGHT 7 lb (3.4 kg)
BARREL 35 in (91 cm)
CALIBER 9 mm Parabellum

GANGLAND FAVORITE

If the Thompson was slow to find favor with the US Army, it received a warm welcome from the criminal fraternity defying Prohibition Laws in the US during the Roaring Twenties. It soon became a firm favorite.
HECKLER & KOCH’S MP5 is the submachine-gun of choice for most of the Western world’s police and special forces units. Mechanically it is very similar to the company’s range of assault rifles, with a roller-locked delayed-blowback action. Firing from a closed bolt (most SMGs hold the bolt back when they are cocked) makes it considerably more accurate than others, and also improves controllability in the automatic mode, when it fires at a cyclical rate of 800 rpm. Laser target designators are often fitted, and a powerful torch can be mounted in place of the grenade launcher shown on this example.

AMMUNITION

The MP5 is chambered for the 9mm x 19 round Georg Luger developed for his eponymous pistol in 1908. Between 1996 and 2000 it was also offered in .40S&W and 10mm calibers.
MP5A5

The MP5 is also available with a rigid plastic stock. The trigger group (this example has safe/single/three-round/full-auto options) is also from the HK33, but it can be exchanged for one of a different configuration. A version with an integral silencer is also available, as is one with a short barrel.

<table>
<thead>
<tr>
<th>DATE</th>
<th>1966</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>GERMANY</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>6½LB (2.82Kg)</td>
</tr>
<tr>
<td>BARREL</td>
<td>8½IN (22.5CM)</td>
</tr>
<tr>
<td>CALIBRE</td>
<td>9MM PARABELLUM</td>
</tr>
</tbody>
</table>

Rear sight

Mounting for standard NATO sights

Recess for telescoping butt

Butt locking pin

Magazine release catch

Rate-of-fire icons: single-shot, three-round burst (above), and automatic (top)

15-round magazine can be exchanged for one holding 30 rounds

Safety catch and rate-of-fire selector

Moulded plastic pistol grip
THE SECOND GENERATION of submachine guns, introduced during and just after World War II, were unsophisticated weapons, designed for mass-production. They produced devastating short-range firepower and a great deal of noise, but were notoriously inaccurate and difficult to control, and were of limited military value as a result. More recently, developments have concentrated on applications for security and police.

UZI
The secret of the Uzi’s legendary stability lies in its bolt being wrapped around its barrel; this brings the center of gravity forward, and helps to cure the tendency for the barrel to rise during automatic fire. Heavy moving parts keep its rate of fire to a manageable level.

M3/M3A1 (“GREASE GUN”)
The Grease Gun was cheap to produce and simple to strip, clean, and maintain. It fired the same heavy round as the Colt automatic pistol.

MAT 49
The MAT 49’s distinctive feature is its pivoting magazine housing; as well as making the weapon easier to conceal, it’s a very positive safety device.
The first attempt to produce an entirely new compact automatic weapon, the P90 uses a “miniature” caliber round designed with damage limitation in mind. All its non-mechanical components are molded from plastic, and its unique horizontal ammunition feed mechanism allows the magazine to be incorporated into the receiver.

DATE 1990s
ORIGIN BELGIUM
WEIGHT 6 LB (2.7 KG)
BARREL 11 IN (300 MM)
CALIBER 5.7 MM

INGRAM MAC-10
A telescoping bolt and a magazine incorporated into the pistol grip allowed Ingram to reduce the overall size of the MAC-10 to little more than that of an automatic pistol. With a cyclical rate of fire of well over a thousand rounds per minute, it can empty its 32-round magazine in little more than a second.

DATE 1970s
ORIGIN US
WEIGHT 7 LB (3.4 KG)
BARREL 5 IN (146 MM)
CALIBER 9 MM PARABELLUM

VZ/68 SKORPION MOD 83
The Skorpion was designed as a close-protection weapon that could be carried in a holster and used with one hand. Its unlocked blowback action and lightweight moving parts would give a very high rate of fire, but a clever counterweight mechanism in the butt reduces the rate.

DATE 1960s
ORIGIN CZECHOSLOVAKIA
WEIGHT 3 LB (1.34 KG)
BARREL 4 IN (115 MM)
CALIBER 9 MM PARABELLUM
AMMUNITION SINCE 1900

FOLLOWING THE DEVELOPMENT of the unitary brass cartridge, which combined all three essential elements (primer, propellant, and projectile) in one package, it only remained for the nature of those elements to be improved. Primers became more effective and bullets more aerodynamic, but the most important developments were in propellant. These took place in the last decade of the 19th century, first with the advent of smokeless powder and later of a nitroglycerine-based mixture generally known as cordite; this replaced gunpowder entirely.

Rifle cartridges

Rifle bullets acquired a sharply pointed nose and a taper toward the tail, which almost doubled their effective range and improved their accuracy. In these examples, both velocity (feet per second) and energy (foot-pounds) are measured at the muzzle.

.470 NITRO EXPRESS
"Nitro" refers to the propellant, while "Express" refers to the bullet, which is hollow at the tip. Muzzle velocity is 2,150 fps, with 5,130 ft-lb of energy.

.458 WINCHESTER MAGNUM
Developed in 1956 as a "big game" round, with a 500-grain (32.4-g) bullet, it gives a muzzle velocity of 2,040 fps and 4,620 ft-lb of energy.

.416 REMINGTON MAGNUM
A development of a cartridge produced by Rigby in 1911, the .416 Remington produces a muzzle velocity of 2,400 fps and 5,115 ft-lb of energy.

.30-06 SPRINGFIELD
The .30-06 remained in US service from 1906 until 1954. Its 152-grain (9.85-g) bullet leaves the muzzle at 2,910 fps with 2,820 ft-lb of energy.

7.92 MM X 57 MAUSER
The SmK cartridge, as it was known, was loaded with a steel-jacketed 177-grain (11.5-g) boat-tailed bullet that left the muzzle at 2,745 fps.

.50/12.7 MM M2
Developed for the M2 machine gun and adopted as a rifle round, the M2 has a 710-grain (46-g) bullet and a muzzle velocity of 2,800 fps.

7.62 MM X 54R RUSSIAN
The "3-line" cartridge developed in 1891 was loaded with a 150-grain (9.65-g) bullet that left the muzzle at 2,855 fps.

7.7 MM X 56R JAPANESE
The fully rimmed version of the round for which the Arisaka rifle was chambered had a 175-grain (11.35-g) bullet and a smaller charge that produced 2,035 fps.

7.7 MM X 56R ITALIAN
Almost identical to the above, the Italian 7.7 mm cartridge had a 175-grain (11.35-g) bullet and a smaller charge that produced 2,035 fps.

.303 MKVII
This version of the Lee-Enfield cartridge, with a 180-grain (11.66-g) bullet, developed a muzzle velocity of 2,460 fps and 2,420 ft-lb of energy.

8 MM X 58 Krag
This is an alternative chambering for the Norwegian Krag rifle, which the Danish Army adopted. A 195-grain (12.7-g) bullet left the muzzle at 2,525 fps.
The NATO-standard SS109 5.56 mm round has a steel-tipped projectile weighing 61.7 grains (4 g) and achieves a muzzle velocity of 3,085 fps.

Developed for large North American game, this cartridge can be loaded with a variety of projectiles from 175 to 300 grains (11.34 to 19.44 g) in weight.

The only significant change in the character of pistol ammunition after 1900 was the introduction of the high-performance Magnum load.

.338 WINCHESTER MAGNUM
This short-case round delivers less power than a normal cartridge: a 100-grain (.648-g) bullet leaves the muzzle at 2,960 fps with 1,945 ft-lb of energy.

.22 HORNET
One of very few high-velocity miniature rounds, the .22 Hornet was developed in the 1920s. Its 45-grain (2.9-g) bullet leaves the muzzle at 2,690 fps.

.38 S&W
This is the least powerful .38 cartridge; it gives the 145-grain (.94-g) bullet a muzzle velocity of 685 fps and 150 ft-lb of energy.

.380 WEBLEY
Made for the Enfield Mk 1 revolver, this 200-grain (12.96-g) bullet was almost as powerful as the .455 it replaced.

.32 AUTO
A popular caliber for small self-loading pistols, the .32 has a 60-grain (3.89-g) bullet and produces 125 ft-lb of energy.

.8 MM NAMBU
The Japanese officer's pistols issued from 1909 onward were the only weapons ever made for this powerful round.

.357 MAGNUM
Developed in 1935, this has since been produced in many varieties. Average muzzle velocity is around 1,300 fps.

.45 ACP
Another iconic pistol cartridge, the .45 Automatic Colt Pistol round was developed for the John Browning-designed M1911.

.44 MAGNUM
This round was developed in 1954. A 240-grain (15.55-g) bullet leaves the muzzle at 1,500 fps with 1,200 ft-lb of energy.

.320 LONG
Though a popular caliber for revolvers, the original .32 cartridge was low on power. A longer version was produced in 1896.
DURING WORLD WAR I, the only weapon capable of engaging a tank was a field artillery piece. Over the next two decades, dedicated anti-tank guns came into service, but there was a need for a lighter weapon that an infantryman could use, and anti-tank rifles were developed to meet it. These were of questionable effectiveness, and were soon abandoned, to be replaced by launchers for rocket-propelled bombs. The latter used a new technology, the shaped charge, which burned through armor like a blowtorch.

PIAT 1.36 kg (3lb) bomb

DURING WORLD WAR I, the only weapon capable of engaging a tank was a field artillery piece. Over the next two decades, dedicated anti-tank guns came into service, but there was a need for a lighter weapon that an infantryman could use, and anti-tank rifles were developed to meet it. These were of questionable effectiveness, and were soon abandoned, to be replaced by launchers for rocket-propelled bombs. The latter used a new technology, the shaped charge, which burned through armor like a blowtorch.

MANN-PORTRATE ANTI-TANK WEAPONS

BOYS ANTI-TANK RIFLE

Birmingham Small Arms produced the Boys rifles in the mid-1930s. They were bolt-action weapons firing a heavy tungsten-steel round. Even though the barrel recoiled into the stock, the effect on the firer was fearsome. It was abandoned as ineffective in 1941 and replaced by the PIAT.

PIAT 1.36 KG (3LB) BOMB

PROJECTOR, INFANTRY, ANTI-TANK

The PIAT, like the Sten, was a wartime expedient design that put function before form. It was actually a spigot mortar, firing a bomb with a shape-charge warhead. The spigot’s spring was very powerful and ignited the bomb’s propellant charge after it had hurtled it from the weapon.
SOLOTHURN S18-100 ANTI-TANK RIFLE

The Solothurn anti-tank rifle fired a base-fused shell (an artillery round in miniature) that gave acceptable results against light armor. An upgraded version, the S18-1000, saw service with the German Army as the PzB41.

Date: 1910
Origin: Switzerland
Weight: 99 ¼ lb (45 kg)
Barrel: 35 ½ in (90 cm)
Caliber: 20 mm

PTRD ANTI-TANK RIFLE

The PTRD was a more complicated weapon than it appeared. It had a barrel that recoiled into the stock and unlocked the bolt in the process; this was held back when the barrel returned to battery, opening the breech and ejecting the spent round. A fresh round was then introduced and the bolt closed by hand.

Date: 1941
Origin: USSR
Weight: 38 ¼ lb (17.3 kg)
Barrel: 48 ¼ in (122.7 cm)
Caliber: 14.5 mm

M1A1 “BAZOOKA”

The Bazooka was the forerunner of the German Raketenpanzerbüchse and the Soviet RPG rocket launchers. It was no more than a tube from which a solid fuel rocket, with a shaped-charge warhead, was launched. It was operated by two men, one to fire, the other to load.

Date: 1942
Origin: US
Weight: 13 ¼ lb (6 kg)
Length: 54 in (137 cm)
Projectile: 3½ lb (1.54 kg)
RIFLE-MOUNTED GRENADE LAUNCHERS

UNTIL THE DEVELOPMENT OF the percussion cap, which could also be used to detonate explosive devices, grenades had slow-match fuses, and were so unreliable that they went out of use during the 19th century. By 1915, however, William Mills had invented a safe, reliable, primer-detonated grenade, which the British Army adopted as the No. 36. Soon after, a device that allowed it to be launched from a standard infantry rifle was introduced.

SMLE WITH MILLS BOMB LAUNCHER

The Mills bomb was adapted for rifle-use by the addition of a rod to the base cap. The rifle itself was fitted with a ring or cup, mounted at the bayonet lug, to retain the grenade’s arming lever. To fire the grenade, a specially formulated blank cartridge was used.

NO. 4 RIFLE WITH AT-GRENADE LAUNCHER

With the introduction of the No. 4 Rifle, with its exposed muzzle, the British Army was able to develop a new style of tubular launcher. Mounted over the muzzle on the bayonet lugs, the No. 4 launched a fin-stabilized anti-tank grenade. Using an overpowered blank cartridge, it was fired with the butt of the rifle grounded. This example is fitted with a later model L1A1 practice grenade.
M59/66 WITH AT-GRENADE LAUNCHER

This was the Red Army’s standard anti-tank grenade launcher during the 1950s. Mounted on the self-loading M59/66 assault rifle, it employed an overpowered blank cartridge. While effective, it proved unpopular due to the disastrous effect of mistakenly chambering a regular live round.

DATE 1949
ORIGIN USSR
GRENADE ANTI-TANK
CALIBER 7.62 mm x 39
RANGE 330 ft (100 m)

AK74 WITH GP25

The barrel-mounted grenade launcher was slow to use. The answer was to fit the grenade with its own propellant charge. The Red Army adopted one with the charge in the body of the grenade. Nothing remained in the launcher’s barrel after it had been discharged. This AK74 lacks the recoil pad that is normally fitted to grenade launcher rifles.

DATE 1978
ORIGIN USSR
GRENADE ANTI-PERSONNEL
CALIBER 40 mm
RANGE 490 ft (150 m)

M16A1 WITH M203

The US Army’s version of the assault rifle-mounted grenade launcher, the M203, employs a grenade mated to a cartridge case containing the propellant charge. The empty case remains in the chamber after the round has been fired and needs to be ejected. The M203 was developed to replace the stand-alone M79 grenade launcher.

DATE 1972
ORIGIN US
GRENADE ANTI-PERSONNEL
CALIBER 40 mm
RANGE 490 ft (150 m)
STAND-ALONE GRENADE LAUNCHERS

AGS-17 “PLAMYA”
The Soviet equivalent of the American 40 mm M79 that was first used in the Vietnam war. It is a belt-fed, blowback-operated launcher with a maximum range of 1 mile (1.61 km). Such weapons are commonly mounted in ground vehicles, boats, and hovercraft, and aboard helicopters and fixed-wing aircraft.

- **DATE**: 1975
- **ORIGIN**: USSR
- **WEIGHT**: 48½ lb (22 kg)
- **BARREL**: 11¾ in (30 cm)
- **CALIBER**: 30 mm

My9 “BLOOPER”
Developed as a stand-alone grenade launcher during the 1950s, the My9 became known as the Blooper to the troops issued with it. It is a simple break-open design, a bit like a giant shotgun. Opening the breech ejects the spent casing, a fresh round is loaded, and closing the breech cocks the action.

- **DATE**: 1960
- **ORIGIN**: US
- **WEIGHT**: 6 lb (2.75 kg)
- **BARREL**: 12 in (30.5 cm)
- **CALIBER**: 40 mm

M79 40MM GRENADE

THERE ARE TIMES WHEN a rifle-mounted launcher is not what is required; for example, non-lethal 40 mm grenades are available for riot control purposes, when rifles would not normally be issued. On the battlefield, rapid-fire launchers have come to supersede light mortars, since not only can they be used in the direct- and indirect-fire role (i.e. against visible and invisible targets, the latter on a compass bearing) they can also put down a greater weight of bombs.
A scaled-up version of a shotgun of similar design, the MGL MK 1 is a six-shot revolver grenade launcher. Indexing is performed by a spring, wound by rotating the cylinder manually when it is swung out of the frame for loading. Its maximum range is around 1,150 ft (350 m).

- **Date:** 1990
- **Origin:** South Africa
- **Weight:** 12 lb (5.6 kg)
- **Barrel:** 12 in (30.5 cm)
- **Caliber:** 40 mm

MECHEM/MILKOR MGL MK 1

The shoulder-launched RPG-7 is a much-improved version of the RPG-2. Its projectiles have a two-stage launcher/sustainer propellant charge, and a range of up to 500 m (1640 ft). A wide variety of grenades is available, including anti-personnel, fuel-air explosive, and high-explosive anti-tank projectiles.

- **Date:** 1962
- **Origin:** USSR
- **Weight:** 34 lb (6.3 kg)
- **Barrel:** 37¼ in (95 cm)
- **Caliber:** 40 mm
US NAVY SEAL

ESTABLISHED IN 1962, the US Navy SEAL (Sea-Air-Land) teams have built a reputation as the most impressive of American special operations forces. SEAL training is widely considered the most rigorous of any military force. It includes a strong emphasis on physical and mental fitness, including a week where students have less than four hours’ sleep. Skills in which SEALs need to become proficient range from scuba diving and parachuting to close-quarters combat and demolition.

SPECIAL FORCES
The SEALs were created as part of President John F. Kennedy’s drive to prepare US armed forces to meet the threat of guerrilla warfare. They were first sent into combat against communist forces in Vietnam in 1966, specializing in riverine operations. Since 1987 the SEALs have been grouped with all other American special forces under US Special Operations Command.

Deployed in landlocked Afghanistan after the American intervention in 2001, the SEALs fought in a role effectively indistinguishable from other special forces. Although the invasion of Iraq in 2003 gave SEALs a chance to exploit their waterborne role, for example capturing offshore oil terminals, once again their “Air-Land” element was much more prominent. SEALs led the way in the fast-moving campaign that destroyed the Iraqi army. US conventional forces were regularly called in to support them, rather than the other way around.

In 2006 the US Defense Department announced future war plans that envisaged a starring role for special forces in meeting the threat of global terrorist networks, described as “new and elusive foes.” The Pentagon envisaged in particular that terrorists would be “found, fixed, and finished” by special forces calling in air strikes. If these plans are implemented, the future of the SEALs seems assured.

MULTI-TASKING
The many tasks potentially assigned to the 2,450 SEALs include recovering downed pilots, locating and freeing hostages, sabotage, reconnaissance, counterterrorism, and counter-drug operations. Such wide-ranging tasks require a wide variety of clothing, weapons, and equipment.

ARMED RIVER PATROL
Special Boat Units (SBUs) are, like the SEALs, a part of Special Naval Warfare Command. They are trained to carry out special operations in small surface craft, including river or sea patrols, and clandestine waterborne infiltration of commandos. SEAL seaborne or riverine operations are supported by teams of Special Warfare Combat-Craft Crewmen (SWCC).
FIGHTING IN AFGHANISTAN

In October 2001 the United States invaded Afghanistan, to overthrow the Taliban regime and destroy al-Qaeda terrorist bases. SEAL commandos participated as part of a Combined Joint Special Operation Task Force. Dropped by helicopter in hostile terrain, they searched caves and houses believed to be used by the enemy, located and directed air strikes against enemy fighters, and sought to capture or kill al-Qaeda leaders. A SEAL was among seven US special forces personnel killed at Takur Ghar in March 2002, when an attempt to establish a mountain-top reconnaissance post was resisted by guerrilla forces.

TOOLS OF COMBAT

SEAL PROTECTION

In action SEALs normally wear personal body armor, considered essential for survival in special operations. They often complement their standard-issue kit by purchasing high-quality specialist gear that is available on the market.

"READY TO LEAD, READY TO FOLLOW, NEVER QUIT."

FROM THE SEAL CODE

"Ready to lead, ready to follow, never quit."

"Great warriors, ready to lead, ready to follow, never quit."

FROM THE SEAL CODE
WHEN AMMUNITION IS AT HAND, there is sometimes a temptation to fashion a weapon capable of firing it. In its simplest and crudest form, this need be no more than a piece of tubing of roughly the right diameter, a nail to act as a striker, and a means of propelling it with enough force to detonate the primer in the cartridge. Discharging such a device is likely to be at least as dangerous to the person holding the weapon as to the intended victim.

MAU-MAU CARBINE

Somewhat more sophisticated than many of its type, this short-barreled, bolt-action, single shot carbine was made in Kenya during the time of the “Mau-Mau” insurrection against British rule in the 1950s. Most of the improvised weapons made by the rebels, the majority of whom were from the Kikuyu tribe, exploded when they were fired.

DATE: 1950s
ORIGIN: KENYA
WEIGHT: 3½ LB (1.6 KG)
BARREL: 20¼ IN (51.2 CM)
CALIBER: .303 IN

EOKA PISTOL

This “gun” is so crudely fashioned that it barely qualifies for the name. The barrel is a spent 20 mm-caliber cartridge case, secured to the rough-hewn wooden frame by means of wire. For it to have been at all effective, the “muzzle” would have needed to be virtually in contact with the victim’s body before the gun was discharged.

DATE: 1950s
ORIGIN: CYPRUS
WEIGHT: ½ LB (0.23 KG)
BARREL: 4½ IN (11 CM)
CALIBER: UNKNOWN

SOUTH AFRICAN PISTOL

This homemade pistol, recovered in South Africa, is a bit more sophisticated than it appears at first sight. It boasts a simple, single-action lock linking trigger and hammer, perhaps derived from a child’s toy pistol, and can thus be used single-handedly. It would have been so inaccurate as to render the rudimentary sights redundant.

DATE: 1980s
ORIGIN: SOUTH AFRICA
WEIGHT: 2½ LB (1 KG)
BARREL: 8¼ IN (22 CM)
LOYALIST SUBMACHINE GUN

Modeled on the World War II-vintage Sten gun, this homemade machine pistol was produced by loyalist paramilitaries in Northern Ireland. The barrel shroud and receiver have been fashioned from square-framed tubing, while the magazine appears to be that of an L2 Sterling SMG, as issued to British troops stationed in Northern Ireland at that time.

DATE 1970s
ORIGIN UK
WEIGHT 5½ lb (2.6 kg)
BARREL 7¼ in (20 cm)
CALIBER 9 MM

EOKA SHOTPISTOL

EOKA (Ethniki Organosis Kyprion Agoniston—National Organization of Cypriot Fighters) fought a guerrilla campaign against British colonial rule on the Mediterranean island of Cyprus from 1955 until 1959. During that time, small numbers of crude guns were fashioned. This all-metal gun has a simple break-open action. It fires a shotgun cartridge by means of a spring-loaded plunger.

DATE 1950s
ORIGIN CYPRUS
WEIGHT 2½ lb (1.25 kg)
BARREL 4½ in (11 cm)
CALIBER 12-BORE

EOKA (Ethniki Organosis Kyprion Agoniston—National Organization of Cypriot Fighters)

A.C. 1924 (standing) and E. Papageorgiou (seated) in Nicosia, the capital of Cyprus, 1956.
HAVING BEEN LARGELY ABANDONED by European armies in the 1680s, metal helmets made a swift comeback amid the carnage of World War I. Although all combatants started that conflict wearing cloth or leather headgear, in 1915 they began adopting steel helmets to reduce casualties suffered through head wounds, especially from shrapnel. Broadly speaking, the same types of helmet developed during World War I served, with modifications, up to the 1980s, when all body armor was revolutionized by the introduction of synthetic Kevlar as a lightweight substitute for steel.
BRITISH BRODIE HELMET
Designed by John L. Brodie, the “tin hat” was first used by the British army in September 1915. Made of hardened manganese steel, it was cheap to produce but offered little protection for the neck or lower head. Brodie-pattern helmets continued in use with British and Commonwealth forces throughout World War II.

DATE 1939
ORIGIN UK
WEIGHT 2½ lb (1.6 kg)

US AIRCREW HELMET
Steel flak helmets were adopted by US bomber crews in response to heavy casualties sustained on daylight raids over Germany in World War II. Colonel Malcolm C. Grow developed this M4 helmet in 1944. The M4 proved too bulky to wear in the gun turrets of bombers. He also developed light body armor, called “flak suits.”

DATE c.1944
ORIGIN USA
WEIGHT 9½ lb (4.28 kg)

US M1 HELMET
The US Army’s M1 helmet was first used in combat in 1942. It consisted of an outer steel shell with a flimsier liner inside. The shell could be separated from the liner to serve as anything from a shovel to a latrine. Evolved forms of the M1 remained in use with the US Army until the 1980s.

DATE 1940s
ORIGIN USA
WEIGHT 2¼ lb (0.99 kg)

NORTH VIETNAMESE HELMET
During the Vietnam War, the soldiers of the North Vietnamese Army wore varieties of headgear, including this kind of sun helmet, or pith helmet. Such helmets were made of pressed paper or, less often, of plastic. Not surprisingly, they offered no protection against the firepower of US and South Vietnamese weapons.

DATE c.1970
ORIGIN NORTH VIETNAM
WEIGHT 1 lb (0.5 kg)

BRITISH KEVLAR HELMET
Until the 1980s, British Army soldiers continued to wear Brodie-pattern steel helmets, similar in style to those worn in the two World Wars. These were replaced by helmets made of Kevlar – a synthetic material that, weight-for-weight, is stronger than steel, and is also heat-resistant. The shape of the new helmet also provides protection to more of the head. The helmet is often covered with DPM (Disruptive Pattern Material) for camouflage.

DATE 1990
ORIGIN UK
WEIGHT 3 lb (1.36 kg)

GERMAN HELMET WITH BROW PLATE
Having entered World War I in spiked leather Pickelhaube helmets, the German army adopted the steel Stahlhelm in 1916. Soldiers believed to be at special risk, such as machine-gunners, were also issued with the Stirnpanzer, a 4mm (¼in) thick steel plate to protect the front of the head. Since these plates weighed around 4kg (9lb), they were donned for short periods only.

DATE 1916
ORIGIN GERMANY
WEIGHT 1.95 kg (4½ lb)

UN SOLDIERS IN MOGADISHU, SOMALIA
United Nations peacekeeping forces are often referred to as the “blue helmets” because of their distinctively coloured headgear. These helmets thus perform a dual function, offering the soldier protection but also identifying him clearly as a peacekeeper.
crowd control

Bolivian riot policemen shoot rubber bullets during a strike in downtown La Paz, 2004. These are often used to aid crowd control because although they can pierce the skin, they do not cause permanent injury unless fired at short range.
Lee-Enfield rifle, 18, 300-1
Lee-Metford rifle, 257
Lefaucheux, Casimir, 225, 244
Lefaucheux, Caspar, 245
Lefaucheux, Eugène, 225
Lefaucheux percussion-cap
revolver, 16
Leipzig, Battle of, 177
Leopold, Emperor, 233
Lepanto, Battle of, 98
Leuthen, Battle of, 99, 101
Lewis, Col. Isaac, 329
Lewis machine-gun, 20, 329
Lexington, 176, 243
Loewe, Ludwig, 19
Lombard League, 58
long gun, Dutch combination,
149
matchlock and flintlock, 148-9
sporting, 312-13
longbow, at Agincourt, 8, 59, 208
development of, 8, 60, 78
early use of, 59
English, 78-9
Lorenzoni, Michele, 153
Louis XIV, 99, 101
Louis XVI, 177, 233
Luger, Georg, 19, 253, 290, 334
Luger, pistol, 19, 290, 339

m

M1 (Garand) carbine, 21, 285,
304-5
M1 helmet, 23
M1A1 Bazooka anti-tank rifle,
341
M2 machine-gun, 323
M3 submachine-gun, 336
M14 rifle, 308
M16 rifle, 309, 310, 347
M16A2 assault rifle, 21
with grenade launcher, 343
M18/1 Bergmann submachinegun, 333
M19 grenade launcher, 344
M60 Browning machine-gun,
325
M63 Stoner rifle, 309
M71 Mauser rifle, 17, 18, 249
M79 Blooper grenade launcher,
344
M91/30 Mosin-Nagant rifle, 303
M107 sniper rifle, 321
M203 grenade launcher, 343, 347
M901 Astra pistol, 290
M1863 Springfield rifle, 17
M1871 Mauser rifle, 256
M1888 rifle designs, 257
M1889 Schmidt-Rubin rifle, 256
M1891 Mosin-Nagant rifle, 258,
319
M1895 Colt, 322
M1895 Mannlicher rifle, 258
M1896 Mauser rifle, 259
M1902 Colt pistol, 290
M1903 Springfield rifle, 18, 300
M1905 Steyr-Mannlicher pistol,
291
M1911 Colt, 19, 290, 323, 339
M1911 Steyr ‘Hahn’, 291
M1914 Hotchkiss machine-gun,
325
M1917 Browning designs, 323,
325
M1917 Enfield rifle, 300
M1921 machine-gun, 323, 332
M1935 Radom pistol, 293
M1944 Carbine, 301
MAC-10 submachine-gun, 337
mace, Asian, 74-5

Chinese, 60, 74
European, 136-7
flanged, 12
foliate, 137
Indian, 142
Mongol, 76
Ottoman gurz, 75
spiked, 73, 142, 197
stone, 26
Turkish, 13
wheellock, 158
machete, 11
machine-gun, AK47, 306-7, 331,
343
AK74, 331
ammunition, 338
Bergmann, 21
in Boer War, 254
definition, 17, 19
first use of, 177
gas-operated, 324-5
Gatling, 17, 179
heavy, 19
Hotchkiss, 20, 289, 324-5
light, 308, 328-31
Maxim, 19, 20, 177, 228, 322,
323, 324, 328
MG43, 326-7
recoil-operated, 322-3
Russo-Japanese War, 276
Vickers, 20
World War I, 20, 276-7, 286,
289, 328
World War II, 20, 21, 330, 336,
349
MacLean, Samuel, 329
madu (parrying stick), 193
magari yari (trident), 13
magazine, design, 18
Magnum, 298, 339
Maiano, Giovanni, 167
mail, aventail, 23, 87, 93, 268
failings of, 11, 170
Indian, 170, 268
Roman, 22
shirt, 23, 52, 91, 92, 93
maingauche (dagger), 130
Makarov pistol, 293
Maldon, Battle of, 51
Malibar Coast sword, 129
Mannlicher rifle, 258
Mannlicher-Berthier rifle, 289
Mannlicher-Carcano rifle, 257
Maori War, 203
maquahuitl (club), 83
Marathon, Battle of, 26, 28, 42
Marengo, Battle of, 177
Marignano, Battle of, 114-5
Marlborough, Duke of, 99, 101
Marne, Battle of, 276, 288
Mars pistol, 229, 291, 339
Martini-Henry rifle, 17, 194,
249, 265
Maschinen Pistole 43, 305
MAT 49 submachine-gun, 336
matchlock, arquebus, 61
British, 14, 149
Chinese, 262
English, 148
incendiary launcher, 263
Indian, 260-1
Japanese, 14
long gun, 148-9
mechanism, 14-15
pistol, 108, 150-1, 156-7, 160,
260
revolving musket, 261
teppo, 263
wall gun, 262
Mau-Mau carbine, 348
Maurice of Nassau, 99

Mauser, Peter-Paul, 256
Mauser, bolt-action rifle, 245
breech-action rifle, 248-9
Broomhandle, 228
infanteriegewehr (Gewehr) 98
rifle, 259, 278
KAR98K carbine, 301
M71 rifle, 17
pistols, 290
repeater rifle, 18, 256, 258-9
sniper rifle, 318
UK agent, 313
Maxim, Hiram, 20, 177
Maxim, machine-gun, 19, 20,
177, 228, 322, 323, 324, 328
Maximilian I, Emperor, 108
Mechem/Milkor grenade
launcher, 345
meda (matchlock rifle), 263
MEIJI 30 Arisaka rifle, 259
Melanesia, shields, 272
Melsa, Sir John, 87
mempo (mask), 23
mercenary fighters, hoplites, 42-3
Landsknecht, 102, 108-9, 114
Mescalam-Dug, helmet, 32
Mesopotamia, 26-7, 32-3
Metford, William, 257
MG08 machine-gun, 20, 328
MG42 machine-gun, 323
MG43 machine-gun, 326-7
MGL Mk1 grenade launcher, 345
Middle East, modern warfare, 278-9
Midway, Battle of, 278
Miller, Gen. William, 185
millile, cruise, 277
Mills, William, 342
Mills bomb, 342
Minié, Claude-Étienne, 178
Minié (bullet), 178, 220
Minimi, FN machine-gun, 330
Squad Automatic Weapon, 326
Minoa, swords, 10
miquelet lock, invention, 15
musket, 155, 247
pistol, 162, 163, 215
missile, cruise, 279
Mississippi rifle, 236
Miyamoto, Musashi, 127
MLE, 1842 Mousqueton
D’Artillerie rifle, 237
1853 Fusil Reglementaire rifle,
237
1886/93 Lebel rifle, 259
1916 Berthier, 301
MOD.90 Barrett sniper rifle, 321
Modin-Nagant rifle, 258
Mondragon, Manuel, 304
Mongol, armour, 22
bow, 8
dagger, 77
helmet, 23
tactics and warfare, 59, 60-1
warriors, 76-7
Monkey Tail (carbine), 241, 266
Monte Varino, castle of, 14
Montgomery, Gabriel, 169
Morgarten, Battle of, 72
morning star, 141, 142
mortar, 302
Moscow, 278
Mosin-Nagant rifle, 258, 301, 303
Mosin-Nogant sniper rifle, 319
Mototada, Torii, 127
Mousqueton D’Artillerie rifle,
237
MP5 submachine-guns, 21, 3345, 347
MP18/1 Bergmann machinegun, 21
MP40 submachine-gun, 332

Mughal, armour, 22
mujahidin, 279, 307, 347
multi-shot weapons, 264-5
Murten, Battle of, 108
musket, Brown Bess, 149, 153,
233, 243
drill, 100
English flintlock, 148
English matchlock, 14, 153
flintlock, 15, 101, 148, 149,
232-3
German, 14
introduction of, 14, 98
Japanese, 14, 100, 157
long land-pattern flintlock,
149
matchlock, 14-15, 108, 150-1,
153, 156-7
miquelet lock, 155
muzzle-loaded rifle-, 220
Ottoman tüfenk, 247
percussion-cap, 236-7
revolving, 261
rifling barrels, 99
short land-pattern flintlock,
149
tactical use, 99
teppo matchlock (Japanese), 157
Mycena, swords, 10

nO

Nadir Shah, 99
Naga people, club, 9
Nagasaki, 277, 278
Nagashino, Battle of, 100, 101,
127
naginata (staff weapon), 13, 75
Nambu Taisho pistol, 219
Namibia, invaded, 178
Nancy, Battle of, 61, 108
Napoleon III (Bonaparte), 101,
177, 178, 238
Napoleonic Wars, 107, 180, 181,
182-3, 194, 230, 242
Narmer, Palette of, 12
NATO alliance, 278, 308
Navy SEAL, 347
needle-gun, Dreyse, 178, 249
Negev machine-gun, 330
Nepal, daggers, 192-3
Netherlands, civil war, 99
pocket pistol, 215
New Britain, shields, 273
New Zealand, Maori, 203
Nicopolis, Battle of, 59
Nine Years’ War, 101
Nitro Express bullet, 338
Nobunaga, Oda, 100, 101, 127
Norman Conquest, 58, 92
Normandy landings, 278
North America, bayonets, 194-5
Harper’s Ferry pistol, 214
Indian Wars, 177, 206, 241
knives and clubs, 204-5
Massachusetts Indians, 99
revolvers, 218-19
War of Independence, 107,
176-7, 233, 243
see also USA
North Vietnam, helmet, 351
Northern Ireland, submachinegun, 349
Norway, repeater rifle, 257
Novara, Battle of, 98
obsidian, edged weapons,
10, 82, 203
Oceania, clubs and daggers,
202-3
shields, 272-3
Okinawa, 278

Omdurman, Battle of, 177, 179
Onin Wars, 100
Opium War, 176
Oswald, Lee Harvey, 257
Otto I, 58
Ottoman Empire, firearms, 246-7
swords, 186-7
tactics, 61, 99-100

P

P’08 Luger pistol, 19, 290-1
P90 submachine-gun, 337
Palestine, Knights Templar, 90
Panipat, Battle of, 98
Papua New Guinea, shields,
272-3
parang, 11
parrying weapons, 193
partisan (staff weapon), 13
Passchendaele, 277
patuki (club), 203
pauldrons, 95
Pavia, Battle of, 98, 108, 138-9
Peacemaker, 18
Pearl Harbor, 278
pellet-lock gun, 244
Peloponnesian Wars, 42
Pembridge, Sir Richard, 86
Penobscot people, stone club, 205
pepperbox pistol, 16, 217
percussion-cap, mechanism, 16
pistol, 216-17
revolver, 218-19, 222-3
percussion lock, pistol, 162
Permjakov, Ivan, 154
Persia, Alexander defeats, 28
cavalry, 27
empire, 27-8
mace, 75
swords, 128, 186
Peru, civil war, 99
phalanx, 12, 28, 42-3
Philip II of Spain, 99
Philippines, Japanese invasion,
278
US occupation, 177
Phillipsburg, Siege of, 99, 101
pichangatti (knife), 193
pick, fighting, 199
Pickett’s Charge, 178
Pietro Beretta SpA, 293
piha kaetta (dagger), 135
pike, demise of, 101
Japanese, 101
Landsknecht, 108, 109
overview, 12, 13
at Pavia, 98, 138
sarissa, 12, 28
spontoon, 13
Swiss, 13, 114
tactical use of, 98-9
pill-lock carbine, 263
pilum (spear), 8, 28, 47
pin-fire shotgun, 244, 245
pistol, ammunition, 16, 224-5,
267
Astra, 290
Beretta, 293, 294
Bergmann, 229, 267
Borchardt, 19, 290
brass cartridge, 224-5
breech-loading, 163, 217
Browning, 229, 292
cavalry, 215, 219
coastguard, 217
Colt, 18, 290, 292
Cooper brass cartridge, 16
Desert Eagle, 20, 295
Dragoon, 219
duelling/target, 15, 17, 212, 216

357


pistol, (cont.)
European, 17, 160-3, 212-17
flintlock, 15, 212-15, 246, 261
four-barrel tap-action, 213
Gabbett-Fairfax Mars, 229, 291
Glock, 299
Harper’s Ferry, 214
Heckler & Koch, 294, 295
horse, 247
improved, 348-9
Luger, 19, 290-1
Makarov, 293
matchlock, 108, 150-1, 156-7, 160, 260
Munser designs, 290
Nakatsu Tashio, 219
Peacemaker, 18
pepperbox, 16, 217
percussion-cap, 17, 216-17
plastic manufacture, 294
pocket, 213, 214-15, 224
Queen Anne, 213
Radom, 293
self-loading, 228-9, 290-5
shield, 269
Star, 292
Stechkin, 293
Steyr “Hahn,” 291
Steyr-Mannlicher, 291
under-gunner pistol, 217
Walther PP, 293
Webley, 267, 291
Webley-Fosbery, 229
see also revolver
Pius Indian, weapons, 208-9
Plamya grenade launcher, 344
Polynesia, cleaver, 9
police, revolvers, 296, 298-9
poleaxe, 13, 72, 140
Post-1900, 290-99
revolver’s, 16, 245, 252-3
Smith & Wesson, 296-8
Webley & Scott, 296
Richard I, King, 58
ricochet, used in combat, 99
rifle, 3-14
line, 258
anti-tank, 340-1
Arisaka, 259
assault, 21, 309, 310-11
automatic, 21, 347
Baker, 234-5, 243
Berthier, 300-1
bluing, 237
bolt-action, 17, 19, 245
break-open, 244
breech-loader, 178, 194, 248-9
Browning Automatic, 304
carbine M1941, 304
chassepot, 267
Colt Patterson revolving, 245
Dreyse needle, 178, 249
Enfield, 178, 237-50, 261, 267, 300-1
flintlock, 152-3, 232-3, 264-5
folding butt, 305
Galil, 309
GEW43, 305
Hall, 233
Heckler & Koch G41, 309
Henry, 253
improved range of, 178
infanteriegewehr, 257
Kalashnikov, 298-306, 331
Krag, 18, 300
Krag-Jørgensen, 257
Le Mat, 253
Lebel, 259
Lee-Enfield, 18, 221, 267, 284, 300-1
Lee-Enfield, 257, 267
long guns, 312-13
magazine, 305, 304, 308-9

erifle (cont.)
Mannlicher, 258
Mannlicher-Berthier, 289
Mannlicher-Carcano, 257
Maruni-Henry, 17, 195, 249, 265, 267
Maus designs, 19, 245, 298
Maus, 289, 295-9, 284-9, 285-9, 278, 285, 318
Mosin-Nagant, 258, 301, 303
Mousqueton D’Arrerrillie, 237
multi-shot, 264-5
percussion-cap, 17, 221, 236-7
pins, 178
Remington rolling block, 249
repeating-action, 18, 252-3, 256-9, 289, 300-1
self-loading, 304-5, 308-9
revolving, 19, 245, 252-3
riding, 21
Right Mauser, 313
rook and rabbit, 245
Schmidt, 19
Schmidt-Rubin, 256
short, 303, 310, 318, 326
sniper, 21, 302-3, 304, 318-21
Spencer, 253, 267
sport guns, 238-9, 244-5, 312-13
Springfield designs, 17, 178, 236-7, 249, 267, 300
Sturmgeschwehr STG44, 305
Takorev, 304
under-hammer turret, 267
Westley Richards, 312
Winchester, 178, 253, 267, 312
World War I German, 286
see also ammunition and bayonet and carbine and musket
right-musket, 220
Rigby, John, 313
Rigby Mauser rifle, 313
Rivera, Diego, 84
Riviere, Isaac, 216
rocket, invented, 176
V-2, 278
Cocoro, Battle of, 99
Romans, 22, 23, 44-5, 46, 181
auxiliaries, 46, 181
edged weapons, 11, 27, 44-5, 46
empire, 28, 27-9
chasen, 10, 23, 45, 46-7, 181
helmet, 23
legions, 46-7
pikes, 99
plum, 8, 28, 47
punishments, 46
Rome sacked, 48, 109
scramas (dagger), 11, 50
sawed-off shotgun, 28, 44, 46
schiere, 12
seax, 50
Sedan, Battle of, 178
Serapine, 14
Sevastopol, 177, 178
Seven Pines, Battle of, 177
Seven Years War, 99, 101, 149
SMG Goryunov machine gun, 318
SMG Maksymov machine gun, 324
Shaka (Zulu chief), 200
shotgun, 212
SMLE rifle with grenade launcher, 342
snaphance, 15, 153, 160, 162, 247
Snider, Jacob, 250
niper American War of
Independence, 243
rifles, 21, 302-3, 304, 318-21
spear, 75
spandrell, 8
Somme, Battle of the, 277
sword, 191
Soul, Marsh, 242
South Africa, club, 9
granate, 28
Solomon Islands, shield, 272
Southafrica, shotgun manufacture, 315
South Korea, shotgun
manufacture, 315
US action in, 277, 278
Spain, Astra pistol, 290
Spanish, 215
conquistadors, 84, 99
Granada falls, 59
machine gun, 331
miquet lock, 15
pistol, 292
Spanish-American War, 177, 178
tercio, 13
War of Succession, 101
spanishm(helm), 25, 50, 51, 86
Spanish-American War, 177, 178
Spanish War of Succession, 101
Sparta, 42
The epic 4,000-year illustrated story of weaponry. Discover the innovative design, broad range, lethal function, and brutal history of arms, from stone axes to heavy machine guns and grenades, crossbows and arrows to samurai swords. Warriors—from Roman legionaries, Mongol horsemen, Aztecs and Plains Indians, through the French infantrymen of World War I and US Navy Seals—are portrayed with the weapons they developed and wielded.

"THE DISCHARGE OF EVERY GUN WAS FOLLOWED BY A FALL OF MEN AND HORSES LIKE GRASS BEFORE THE MOWER’S SCYTHE."

CAPTAIN ALEXANDER MERCER, JOURNAL OF THE WATERLOO CAMPAIGN, 1815