Романова Г.А., Шакова Ф.М., Парфёнов А.Л.

Моделирование черепно-мозговой травмы

— ФГБНУ «НИИ общей патологии и патофизиологии», 125315, Балтийская ул., 8
— ФГБНУ «Госпиталь для инкубационных больных — лечебно-реабилитационный центр», 109028, Москва, ул. Солнечная, 14, стр. 3

Обзор современной литературы по экспериментальному моделированию черепно-мозговой травмы (ЧМТ). Данные характеристики различных экспериментальных методов создания моделей ЧМТ. Представляется наиболее адекватной — ударная модель, позволяющая выявить зависимость степени повреждения коры головного мозга крыс от силы травмирующего воздействия.

Ключевые слова: черепно-мозговая травма, типы моделей, ударная модель, крысы

Romanova G.A., Shakova F.M., Parfennov A.L.

Modeling of traumatic brain injury

— FGBNU III General pathology and pathophysiology, Moscow, 125315, Baltijskaya str., 8
— FSBI «Hospital for Incurable Patient — the Scientific Medical and Rehabilitation Center», Solijnka str., 14, bld. 3, Moscow

Contemporary approaches to experimental traumatic brain injury modeling, the principles of functioning and technical characteristics of appropriate equipment are reviewed. The methods describing traumatic brain injury modeling and assessment of brain structural and functional changes caused by the weight drop method are given.

Key words: modeling of experimental traumatic brain injury, pattern of models, weight drop method, rats

Проблема диагностики и эффективного лечения черепно-мозговой травмы (ЧМТ) является одной из важнейших в современной медицинской науке. В последние десятилетия происходит широкое распространение ЧМТ в связи с повышением темпа жизни, увеличением количества скоростных транспортных средств, индустриализацией, а также такими явлениями, как терроризм, локальные военные конфликты. По данным статистики в мире ежегодно погибают вследствие ЧМТ около 5 млн человек.

Смертность от ЧМТ составляет 26—82%. ЧМТ — главная причина гибели и нетрудоспособности в посттравматический период для людей моложе 50 лет, причем мужчины страдают в 2,5 раза чаще, чем женщины.

ЧМТ приводит к тяжелой инвалидизации и значительному снижению качества жизни [1—3].

Степень этих нарушений определяется характером траumaticного воздействия на мозг и могут привести к временному или постоянному ухудшению познавательного, физического и психосоциального состояния.

ЧМТ — сложная траumaticная болезнь, которая на- носит структурный ущерб и вызывает функциональные дефекты, происходящие как из-за основного механического, так и вторичного результата непосредственного разрушения мозговой ткани. ЧМТ происходит во время воздействия внешней силы и включает контузию, по-
ПАТОЛОГИЧЕСКАЯ ФИЗИОЛОГИЯ И ЭКСПЕРИМЕНТАЛЬНАЯ ТЕРАПИЯ. — 2015. — Т.59, №2

ляя. Таким образом, любая экспериментальная модель не может полностью отразить все аспекты вторичного повреждения при ЧМТ у человека. Несомненно, моделирование ЧМТ у животных важно для изучения биохимических, клеточных и молекулярных аспектов ЧМТ, которые не могут быть исследованы при лечении тяжелой боевой раны человека, но необходимы при разработке новых терапевтических подходов.

Новые и уже существующие модели ЧМТ должны быть созданы для заполнения терапевтического окна между доклиническими исследованиями и адекватным медицинским лечением, а также прогнозированием спонтанного восстановления.

Любая модель ЧМТ должна отвечать ряду критериев [2, 3, 6]: точная локализация повреждения и строгая определенная тяжесть травмы, которая должна соответствовать прилагаемой к черепу животного (закрытая — ЗЧМТ) или непосредственно к головному мозгу (открытая — ОЧМТ) механической силе и пропорционально возрастает при ее увеличении. Вместе с тем моделирование тяжелого нейрологического дефекта всегда связано с высоким показателем гибели животных.

ЧМТ возникает вследствие удара по голове движущимся объектом или столкновения головы с неподвижным препятствием, обусловливающим смещение головного мозга внутри черепа. В большинстве моделей ЧМТ механическое воздействие на головной мозг животного предусматривает однородность степени повреждения и контроль за возникающими функциональными нарушениями для получения репродуктивных результатов.

В настоящее время разработаны и используются несколько различных моделей ЧМТ в эксперименте: жидкостно-перкуссионная травма мозга, модель контролируемого коркового повреждения, модель ЧМТ в результате падения груза, модель ударного ускорения. Предложено [2, 3, 5—9] классифицировать модели ЧМТ в зависимости от способа воздействия на головной мозг: ударные, инъекционные и с непосредственной деформацией мозга. Принципиальное значение имеет выбор области коры для создания ЧМТ.

Ударные модели [2, 3, 5, 6, 9, 10] предусматривают непосредственный удар по голове животного свободно падающим грузом с различными пружинными устройствами или калиброванным мячиком. При этом происходит локальная деформация головного мозга от удара. В этих моделях голова животного может быть жестко фиксирована или нет, и в зависимости от этого морфофункциональные последствия значительно различаются.

Наиболее распространенной моделью ЧМТ считаются ударную модель, при которой удар по фиксированной голове животного осуществляется свободно падающим грузом (weight drop method). ЧМТ наложен под общей анестезией, после разреза скальпа и обнажения поверхности черепа. Такая модель предполагает воздействие твердым ударником непосредственно по черепу крысы (3ЧМТ) [9—13] или через окно в черепе на твердую мозговую оболочку (ОЧМТ) [14—17]. При таких способах моделирования ЧМТ, у крыс наблюдаются различные повреждения мозга: от легких, моделирующих сотрясение головного мозга, до очаговых ушибов (в месте падения груза на череп), сопровождающихся вторичной гибелью нервных клеток и отдаленные синдромы. Также при этом отмечаются нарушения двигательной и когнитивной функций.

Травма крыс головного мозга с помощью падающего груза позволяет исследовать изменения в поведении животных, так как в течение первых минут после повреждения и приводит к повреждению и гибели нейронов в коре уже через 12 часов, а через 7 дней повреждения и дальнейшее развитие повреждения увеличивается, развиваются прогрессивные геометрические процессы в наиболее уязвимых областях головного мозга, что приводит к поведенческим и когнитивным расстройствам. Эта модель отвечает высокая вероятность по сравнению с другими, вероятно, в связи с повреждением стволовых структур мозга [20, 21].

Для воспроизводства модели контролируемого коркового удара (CCI) используется пневматическое или электромагнитное устройство, при этом наносится травма на открытую неповрежденную твердую мозговую оболочку, что вызывает повреждение корковой ткани, сопровождающееся острой субдуральной гематомой, апоплектистой травмой, сотрясением мозга, остеклением, деструкцией гематомафазического барьера (ГЭБ) и даже комой [22]. Воздействие, оказываемое на неповрежденную твердую мозговую оболочку через одностороннюю крашетомину в области теменной коры, вызывает деформацию коркового вещества, может диффузно распространиться и привести к гипокампальной и таламической дегенерации.

Преимущества этой модели ЧМТ перед другими моделями — возможность управлять такими факторами, как время, скорость и глубина воздействия. В зависимости от степени повреждения функциональные нарушения сохраняются длительное время, вплоть до 1 года, спонтанное восстановление полностью невозможно.

Метод криолизированной травмы у крыс [23-25] ведет к диффузному мозговому повреждению. Травма головного мозга в этой модели обычно производится с помощью помещения на твердую мозговую оболочку мед-
нога цилиндра, заполненного смесью ацетона и сухого льда (-78°С) или парика льда. У крыса при такой ЧМТ происходит повреждение мозговой ткани, причем первичное повреждение окружено областью пуллеты, где вторичные процессы приводят к расширению размеров повреждения, сопровождаемого нейропилом некрозом, цитосемяческим и сосудистым отеком, активацией астроцитов и воспалением. Эта модель только условно воспроизводит клиническую картину ЧМТ и наиболее подходит для исследования нарушений ГЭБ и отека мозга.

Однако один тип модели не может воспроизводить весь спектр функциональных расстройств, возникающих при ЧМТ, поэтому выбор модели определяется поставленными экспериментальными задачами.

Цель данного исследования — создание модели до- зированной открытой черепно-мозговой травмы в эксперименте на крысах, исследование неврологических рас- стройств, дискордации движений и морфофункциональ- ных изменений головного мозга в разные сроки после ЧМТ. Для выполнения этой задачи создана установка, которая позволяет использовать градуированное по высоте падение груза весом 50—60 г на мозг крысы с целью создания локальной или диффузной ЧМТ разной степени тяжести. Травматическое воздействие осуществляется через черепное окно при сохранной мозговой оболочке.

Голова животного, находящегося под наркозом, закреплена в стереотаксическом приборе и с помощью стереотаксического атласа мозга крысы определяются координаты области повреждения мозга.

Функциональные показатели двигательных, координа- ционных и других нарушений, вызванных ЧМТ разной степени тяжести, предполагается анализировать в разные сроки после ЧМТ при длительном наблюдении.

Морфологический анализ повреждения мозга при ЧМТ разной степени тяжести оценивается на серий- ных окрашенных гистологических срезах и выборочно с помощью МРТ анализа. С помощью световой микроскопии будет дано описание повреждения ткани мозга в зависимости от тяжести ЧМТ.

В настоящем исследовании используются неврологи- ческие тесты, которые наиболее эффективно показали себя в оценке долгосрочного сенсорного дефицита у крыс: тест «Цилиндр» для оценки асимметрии использования передних конечностей, тест «Сушающая дорога», выявляющий опорно-двигательный дефицит, также используется система балльной оценки неврологического дефицита — тест «Постановка конечности на опору». Все процессы оценки неврологических показателей фиксируется на видеокамеру и полученные функциональные показатели соотносятся со степенью тяжести ЧМТ, подвергаются статистической обработке и графическому оформлению.

Сопоставление функциональных и морфологических показателей позволит прогнозировать реабили-
References

Поступила 06.04.15

Сведения об авторах:
Шакова Фатима Мухамедовна, к.м.н., вед. науч. сотр. лаб. общей патологии нервной системы ФГБНУ НИИ ОГП "Парфёнов А.Л., к.м.н., гл. реаниматолог, ФГБИ "Госпиталь для инкурабельных больных — научный лечебно-реабилитационный центр"