A Sociology Of Traffic: Driving, Cycling, Walking
Jim Conley
(forthcoming in Phillip Vannini, ed., Technologies of Mobility in the Americas.
Oxford & Bern: Peter Lang)

In 1968, Norbert Schmidt-Reelenberg (1968/1986, p. 121) wrote that “an analysis of traffic can enrich sociological theory.” Little became of his hope, but in the interim, the “mobility turn” in the social sciences has transformed our understanding of all forms of movement, including automobility. This chapter develops a sociology of pedestrian, bicycle and automobile traffic by considering driving, cycling and walking as socially interactive mobilities. The complex coordination of movements between the multiple independent units that make up car, bike and foot traffic are performed by and between the mobile units themselves, largely through looking at each other. In contrast to the “eye in the sky” view of traffic planners and engineers, for whom traffic movements are akin to flows of particles (Lynch, 1993), and to studies of the physical, emotional and aesthetic experiences of individual drivers, cyclists and pedestrians, the relational approach developed here shows how the the material characteristics and speed of these pedestrian, bicycle, and automotive assemblages provide opportunities for and limitations on visual contact and social interaction between them.

Starting from Simmel’s reflections on the “sociological eye,” I develop a typology of mobile looking. Turning then to Goffman, I extend his understanding of traffic as a social order by examining in detail at how walking, driving, and cycling as forms of mobile interaction are affected by the material characteristics and speed of the mobile units.

Simmel: The Sociological Eye

In his influential essays “The stranger” and “The metropolis and mental life” Georg Simmel (1903/1971a, 1908/1971b) examined how urbanization and modern mobilities affected social life in the nineteenth century. In this context, his remarks on the sociological function of the eye have often been cited in the mobilities literature, notably by John Urry (2004, p. 30, 2006, p. 21, 2007, p. 24). Their significance has not been fully explored, however. Simmel (1908/1969, p. 148) stated:

Of the special sense-organs, the eye has a uniquely sociological function. The union and interaction of individuals is based on mutual glances […] This mutual glance between persons, in distinction from the simple sight or observation of the other, signifies a wholly new and unique union between them. The limits of this relation are to be determined by the significant fact that the glance by which one seeks to perceive the other is itself expressive.
By the glance which reveals the other, one discloses himself […]

What occurs in this direct mutual glance represents the most perfect reciprocity in the entire field of human relationships.

As a way of “knowing” others, sight predominated over hearing in the city, Simmel argued. He explained this in part by “the development of public means of transportation” which put people in “a situation where for periods of minutes or hours they could or must look at each other without talking to one another.” This, he claimed, put “social attitudes and feelings upon an entirely changed basis,” creating problems of “the lack of orientation to the collective life, the sense of utter lonesomeness, and the feeling that the individual is surrounded on all sides by closed doors.” (Simmel 1908/1969, pp. 150-151)

Simmel’s examples of modern means of urban mobility were mass, public forms such as buses, trains, and street cars, not independent, self-directed forms such as automobiles and bicycles, and he took walking for granted. But the interactional order produced amongst seated passengers in public transport, assiduously avoiding eye contact (Levine, Vinson & Wood, 1973), is not the same as the mobile independent coordination of action that goes on in car, bicycle, or pedestrian traffic. Walking, driving and cycling also differ from each other, and the task here is to describe those differences and their implications. Although Simmel considered mutual glances within moving vehicles such as train cars rather than between moving “vehicles,” his emphasis on looks exchanged between strangers points in the right direction. To explore his question of how the experience of mobility in the modern city affects social interaction and collective life, I look more closely at forms of mobile looking.

Mobile Looking

Drawing on work by Harvey Sacks (1989), David Sudnow (1972) and Erving Goffman (1963, 1971), four types of glances or looks used in traffic between unacquainted persons differ in their timing and duration on the one hand, and their focus, on the other: identifying scans, focused looks, sanctioning looks, and integrating glances. This typology will provide a framework for exploring the implications of the speed and material characteristics of mobile assemblages for social interaction.

An *identifying scan* tells us whether what we are seeing is—in its practical relevancy for our current situated course of action—an expected, “normal,” or coherent combination of setting, appearance and manner, or an incongruent, “abnormal” one (Goffman, 1959, pp. 24-25, Sudnow, 1972, p. 276). Sacks uses the example of the incongruence of a “flashy” car driven by someone “who looks like a bum” (Sacks, 1989, pp. 342-343). An identifying scan is brief and unfocused, taking in human and non-human parts of a scene, as “a flick or a shadow of concern” is
sufficient to determine whether the observed scene is a “normal appearance” (Goffman, 1971, pp. 238-239). Co-present in spaces of mutual visibility, people make classifications “on the fly” (Joseph, 1998, p. 46) in order to orient their activity by attributing intentions, seeing situations as normal or cause for alarm, perceiving coalitions and collusions, avoiding collisions, and so forth. An incongruent configuration calls for an explanation (Hester & Francis, 2003), and requires a focused look at its incongruous parts.

A focused look interrupts an identifying scan, and settles, however momentarily, on an element—actor, action, or arrangement—in the situation that is noticeably relevant to the observer’s current actions (Sudnow, 1972). Goffman (1971) limits these to features of the situation that might be threatening, but there seems no reason to do so; puzzling or aesthetically pleasing features may also attract focused looks.

Because they are, as it were, “one-way,” the first two types of looking are not in themselves social interaction, but they are still consequential for mobile action in public places. The production of appearances in public depends on the kind of look which is expected. Where only a momentary look is possible or permissible, actors will tend to act in ways that are interpretable in a glance by a stranger (Sudnow, 1972). An example might be how a pedestrian positions her body so as to signal that she is intending to cross the street, as opposed to waiting on the street corner. Likewise, acts that might appear to the anticipated audience as “occult” or subject to negative attributions will be modified to avoid such interpretations (Goffman, 1963). In the next two types, looks are exchanged and are thus directly a form of social interaction.

A sanctioning look conveys disapproval to its recipient, as when one driver stares disapprovingly at another who has crossed an intersection out of turn. Such a look requires getting the offender’s attention in order to deliver the sanction, and can be evaded by the intended recipient knowingly avoiding the other’s gaze. As Simmel (1908/1969, p. 148) noted: “shame causes a person to look to the ground to avoid the glance of the other,” preventing the sanction from being received. A distinguishing feature of both the sanctioning look and the averted gaze is their temporality, both being held longer than a mere glance. An overly long look can also be aggressive, threatening or hostile; thus avoiding the appearance of staring is a central component of civil inattention (Goffman, 1963).

Finally, an integrating glance is the mutual glance that “signifies a wholly new and unique union” between persons (Simmel 1908/1969, p. 148), creating “a fantastic kind of social integration” (Sacks, 1989, p. 347). This is the momentary glance in which one person catches another’s eye to indicate a shared assessment of the situation. In the example above, the offended driver might exchange looks with another witness to
the offence, and without a word being spoken, a temporary bond is formed. This collusion or communion of looks (Goffman, 1959) may be only a momentary form of social solidarity, but when prolonged, it can mobilize the other person for joint action (Goffman, 1971, Joseph, 1998). Integrating glances facilitate coordinated action; by ignoring them, a person can evade cooperative claims (Goffman, 1963).

This typology of mobile looking practices raises two issues that will be the focus of this chapter. First, how is mobile looking by drivers, walkers, or cyclists affected by characteristics of their motion, especially its speed? Second, how it is affected by material characteristics of their vehicle, especially its shell? Before turning to these issues, Goffman’s contribution to a sociological theory of traffic warrants more consideration.

Traffic and the Interaction Order

What kind of social thing is traffic? For there to be “traffic” there must be at least two “vehicular units” that encounter each other and are obliged to take each other into account, even if only to avoid a collision. However much they perform for an absent but potential audience, solitary walkers, cyclists, or drivers are not in or part of traffic. It takes two to traffic.

Goffman’s (1963, 1971) analyses of fleeting, mobile encounters between strangers in public makes the norms, conventions, and manoeuvres of situated mobile interaction an object of study, and reveals the distinctiveness of its different forms. Automobile, bicycle, and pedestrian traffic can each be considered as both a social order and a diffuse social occasion, composed of unfocused gatherings and unfocused interactions. For Goffman (1963, p. 8),

> a social order may be defined as a consequence of any set of moral norms that regulates the way in which persons pursue objectives. The set of norms does not specify the objectives the participants are to seek, nor the pattern formed by and through the coordination or integration of these ends, but merely the modes of seeking them. Traffic rules and the consequent traffic order provide an obvious example.

Conformity to rules is supplemented with “by-passings, secret deviations, excusable infractions, flagrant violations, and the like” (Goffman, 1971, p. x), so a social order is a product of both the rules—the traffic code—and the manoeuvrings of actors within and beyond its constraints. Much of Goffman’s work is thus about the ways in which rules, rituals, and frames are vulnerable to violation, exploitation, or game-playing (Goffman, 1961, 1969, 1983).
In this sense, traffic can be considered a *diffuse social occasion* in which mobile actors come into each other’s presence as part of “a wider social affair, undertaking, or event … [that] provides the structuring social context in which many situations and their gatherings are likely to form, dissolve, and re-form” (Goffman, 1963, p. 18). “Tuesday afternoon rush hour” would be a diffuse social occasion, within which temporary moving ensembles of pedestrians, cyclists, and automobiles form, gain and lose members, and break up. In such unfocused mobile gatherings, participants manage “sheer and mere copresence” (Goffman 1963) mainly through identifying scans and the exchange of fleeting focused glances, punctuated by the occasional sanctioning look or integrating glance. As we will see, however, the possibilities for each kind of look, and thus for social interaction is shaped by characteristics of traffic’s “vehicular units.”

Vehicular Units

Like his metaphors of game, theatre, ritual, and frame (Jacobsen, 2010), traffic plays a central role in Goffman’s analysis of the interaction order (Quéré, 1989). Nowhere is this more so than in *Relations in Public*, where Goffman (1971) treats pedestrians as “vehicular units,” that is, as shells controlled by human pilots or navigators (see Jensen, 2006, pp. 153-154 for a brief discussion). This trick enables Goffman to roughly sketch some important similarities and differences between automobile traffic and pedestrian traffic in mid-twentieth century American settings.

Goffman (1971, pp. 6-7) identifies several similarities between car and foot traffic that also apply to bicycle traffic. They are governed by traffic codes or rules that allow vehicular units independent use of spaces for movement without collision or mutual obstruction. Participants need not be acquainted, so strangers are able to coordinate their passages with some level of mutual trust. As ethnomethodological studies have shown, they are ongoing, collectively produced orders (Ryave & Schenkein, 1974, Livingston, 1987, Hester & Francis, 2003).

Beyond the similarities lie important differences between automobile and pedestrian traffic, according to Goffman (1971, pp. 7-9). Automobile traffic is generally more about getting from point A to point B than is foot traffic, which has more varied purposes. Automobile traffic is typically more linear (Lynch, 1993) than the fluid chaos of pedestrian traffic. The consequences of collision are more serious in automobile traffic than on foot, and the manoeuvres to avoid it are more flexible for pedestrians than for cars (Wolff, 1973), making foot traffic more “permeable” (Demerath & Levinger, 2003). Informal understandings are important in both, but automobile traffic relies more on formal rules than does foot traffic. Automobile traffic is more competitive than pedestrian traffic, in part because drivers can more easily avoid the
sanctioning looks of other drivers and more easily escape confrontations. Finally, automobile traffic lacks the “richness of information flow and facilitation of feedback” of face-to-face interaction (Goffman, 1963, p. 17).

Goffman’s insights into automobile and pedestrian traffic provide a base for a sociology of traffic. In the remainder of this chapter I extend it by introducing a third type of vehicle and its traffic—bicycles—and by paying more attention than did Goffman to how the speed of vehicular units and the material qualities of their shells afford or constrain interaction with others. This extension will contribute to understanding the differences between walking, driving and cycling as forms of social life, and also to understanding situational variations within each form of mobility, and in their combinations with other forms of mobility, that will help break down Goffman’s categorical distinctions between car and pedestrian traffic.

Pedemobility²: The View from the Sidewalk

Walking has recently attracted increasing social scientific interest. Some of it builds on Mauss (1936/1979) by considering walking techniques (e.g. Ingold, 2004, Edensor, 2000, 2010, Vergunst, 2008); other topics include style and identity (Michael, 2000, Edensor, 2000), technologies, especially footwear (Michael, 2000), and embodied experiences (e.g., Edensor, 2008, 2010; Vergunst, 2008). However, little attention has been paid to pedestrian traffic as such. While Goffman has been criticized for emphasizing “visual experience” to the neglect of “experiences of tactile, feet-first, engagement with the world” (Ingold & Vergunst 2008, 3), too much attention to the latter leads to neglect of social interaction on foot, where vision is critical.

If we are to understand pedestrian traffic we need to consider the interaction of unacquainted persons as they encounter each other on paths and sidewalks. The circulation of passers-by is a “succession of thoroughly ritualized arrangements of visibility” (Joseph, 1998, p. 36, my translation). The physical arrangement of bodies and the body language of persons indicate their intentions and relationships, such as “withs” (Jensen, 2010).

The typical sequence of pedestrians passing one another begins with identifying scans, brief glances acknowledging the other and enabling mutual avoidance of collision by reading the other’s “routing signals,” ending with a mutually averted glances to “disattend” the other (Goffman, 1963, p. 84). Considerable efforts can be made to perform identifying scans and focused looks, as Wolff (1973) shows: pedestrians position themselves so as to see beyond the person in front of them, move their heads slightly to monitor whatever is behind them out of the corner of their eyes, and use the expressions of oncoming pedestrians as a rearview mirror to indicate what
is going on behind them. A social order arises from conventions and manoeuvres used by pedestrians to avoid “mutual intrusions” on territories of the self, such as not walking beside an unacquainted other and not following someone too closely (Wolff, 1973). Differential speeds force pedestrians (like drivers and cyclists) to focus on “pace management” to avoid such intrusions (Hester & Francis, 2003, p. 43). When they do occur, violations of pedestrian conventions arouse sanctioning looks and hostile comments (Wolff, 1973, Edensor, 2008), perhaps followed by a remedial interchange as accounts and apologies are offered and received (Goffman, 1971).

Observational interchanges can also follow from pedestrian visibility rituals. In the presence of others, a focused look can become a focusing look, as others follow a person’s gaze to see what she is looking at (Sacks, 1989). The scene before them can then form a common referent for talk between the observers (Demerath & Levinger 2003). Pedestrian environments often provide sights that provide opportunities for aesthetic pleasures (Lofland, 1998) or “the surprise and pleasure of small, unexpected discoveries” (Lavadinho & Winkin, 2008, p. 161) that are occasions for focused interactions.

Remedial and observational interchanges are made possible by the the speed of pedestrians as vehicular units. Speed affects what Demerath & Levinger (2003) call “pausability.” The ease of stopping and starting when moving at a walking pace makes it possible to quickly switch from unfocused interactions to focused face-to-face interactions. The normative constraint of civil inattention limits initiation of interaction, as do mobile involvement shields such as iPods and mobile phones, but the possibility remains.

Yet even at a walking pace, the speed and proximity of fast-moving automobiles, and frequent crossings of vehicle spaces (such as driveways, parking lot entrances, and intersections) limits interactional possibilities between pedestrians by forcing them to scan for vehicles rather than other features of the scene. Characteristics of the built environment, such as the width of sidewalks or passageways, may force pedestrian traffic into the more linear pattern characteristic of car traffic, but even in such places, a busker or informal vendor can be accommodated by the manoeuvrability of people on foot.

Despite its neglect of pedestrian traffic, the attention paid to the materiality of technologies and terrain in recent literature on walking raises the question of how the vehicular shell affects possibilities for social interaction. Goffman (1971, p. 7) considers “the individual as pedestrian” as “a pilot encased in a soft and exposing shell” of skin and clothing, but he limits his attention to the expressive, symbolic aspects of the latter. It may be unimportant indoors or in mild weather, but on a cold, windy, winter day, the
pedestrian’s shell of boots, coat, scarf and hat or hood can restrict all forms of looking. Eyes on the ground, watching for ice or feeling for footing on uneven snow, peripheral vision obscured, does the pedestrian even notice others, and if she does, are they identifiable behind their own warm layers? In other seasons and climates, umbrellas and rain limit what pedestrians can see, although the interactional dance of umbrellas being moved up, down, and sideways to avoid collision with faces or other umbrellas shows that scanning and avoidance of intrusions is usually maintained. Attending to the constraints imposed on pedestrian interaction by the vulnerability of the pedestrian “shell” to its environment would enlarge ethnographic studies of walking. While they do not eliminate the ritual attention paid and received while passing others, material conditions such as terrain, weather conditions and darkness constrain and modify the identifying scans and focused looks performed by pedestrians. At the same time, because of the pausability of movement on foot, they can also afford topics for conversation and social interaction (Demerath & Levinger, 2003).

The slow speed and the flexible movement of pedestrian vehicular units make possible the features of walking identified by Goffman. Its fluidity, flexibility, and mostly cooperative character, the prevalence of ritual rather than physical damage from collisions, and the dominance of informal negotiated understandings (Wolff, 1973) can occur because glances, and supportive and remedial remarks are easily exchanged between relatively slow-moving, relatively open pedestrian shells. Travel on foot thus provides a baseline for the other forms, whose speed and material shells place more limits on the exchange of glances.

Automobility: The Windshield Perspective

In their pioneering work on automobility, Peter Freund and George Martin (1993, pp. 4-5) refer to the “windshield perspective” of traffic planners and engineers, who historically designed roads with automobiles in mind, treating pedestrians and cyclists as at best an afterthought. The windshield perspective is also an apt term for the visual experience of driving. It is through the windshield (and to a lesser extent the rearview mirror) that drivers engage in unfocused monitoring or identifying scans, and depending on what they reveal, more or less frequent focused looks (Laurier, 2001). As in walking, there is more to the sensory experience of driving than sight, such as the kinaesthetic experience of motion (Sheller, 2004), the sounds of the engine and the tires on the road, and the occasional smell. Nonetheless, driving in traffic is above all a matter of looking and seeing at speed (Edensor, 2003).

The speed of car travel limits opportunities for mutual glances and social interaction. At low speeds or when stopped, eye contact with others is possible, enabling cooperative and ritual courtesies (Goffman, 1967, Jonasson, 1999, Jørgensen,
As speeds rise above 40 or 50 km/h, eye contact becomes less feasible, and the attention of drivers becomes more focused on the road ahead (Jensen, 2006, Laurier, 2001). At higher speeds, social interaction is increasingly unlikely, as “we come close to perceiving the occupants of motor vehicles as not even human, because all we see is a moving object” (Taylor, 2003, p. 1620). The asymmetrical linearity of highway traffic, which is face-to-tail rather than face-to-face contributes to this (Katz, 1999). In ordinary face-to-face interaction, where sanctioning looks or integrating glances are exchanged, “each giver [of embodied messages] is himself a receiver and each receiver is a giver,” each can see how she is being received by the other, and can be seen to be seeing this (Goffman, 1963, p. 16). In contrast, in ordinary face-to-tail driving, a driver observes vehicles ahead primarily as if they were physical objects (especially because all we usually see of their drivers is the back of their heads, which may even be hidden by headrests). But because they are not just physical objects, we are capable of rapidly shifting into awareness that the vehicle is being piloted by a human, especially whenever our visual scanning detects the absence of normal appearances. At such times movements of other vehicles are morally evaluated as expressions of intention or of involvement (Goffman, 1963) rather than just physical movements, and drivers often become angry at “that idiot” who did such and such deviant act.

The shift from treating other vehicles as physical objects to treating them as expressions of attention occurs abruptly when vehicles rapidly overtake from behind, and the normal scanning of the rearview mirror becomes a focused look. This switch from the forward-looking windshield perspective to the backward-looking “rearview mirror perspective” inverts the ordinary exchange of glances of face-to-face interaction. A vehicle in front is seen mainly as a moving physical object, albeit one piloted by a human. A vehicle behind, especially when it is following closely so that the faces of its occupants are visible, is more readily seen as a social object. Thus instead of the situation in face-to-face interaction, where observer and observed are mutually visible as social beings, the face-to-tail linearity of car traffic can create a string of observers who are observed as physical objects by those they are observing as social objects, but are themselves observed as social objects by those they are observing as physical objects.

All this is not to deny that social interaction between drivers moving at high speed is impossible, but rather that it is severely constrained. Integrating glances and sanctioning looks are scarcely possible and the visual orientation of drivers is mostly limited to identifying scans and focused looks. The mutual glance, this “most perfect reciprocity in the entire field of human relationships,” becomes almost impossible and the situation is dominated by the mere management of co-presence in which “car-
drivers are excused from the normal etiquette and social co-ordination of face-to-face interactions” (Sheller and Urry 2000, 745).

Unlike walking, when we are driving we are indeed in the situation Simmel described as being-“surrounded on all sides by closed doors” and therefore encased in what have been variously called “cyborg bodies” (Lupton 1999), “car-driver hybrids” (Sheller and Urry 2000, Thrift 2004), and “car-driver assemblages” (Dant 2004). Cars, as Urry (2006) has put it, are “inhabited.” The automobile shell affects possibilities for looking and social interaction through its role as a backstage (Goffman, 1959) and the effects of height and size. Although “the car functions as a visibility device that makes certain groups recognizable and surveyable to those who are looking in from outside and in particular ways to those gathered together inside” (Laurier et al., 2008, p. 9), occupants tend to treat cars as “invisibility cloaks” by acting in ways which seem to assume that they are not in public (drivers at red lights picking their noses is the classic example). The glass and steel shell of the automobile and the windshield perspective detaches occupants from the exterior scene (unless they are deliberately putting on a performance for an audience outside the vehicle), and they forget that they are in public. Thus Sudnow’s (1972) claim that appearances are produced in public knowing that they are observable does not seem to apply to in-car appearances. More than simply relying on the ordinary civil inattention practiced in buses or train cars, occupants of the “living room on wheels” seem to expect the same privacy as in their homes, where passersby are not expected to give more than a passing glance into their windows.4

The asymmetry of observing and being observed is complicated by the effect of the differential height and size of vehicles. Larger vehicles block the forward view of smaller vehicles; drivers in higher vehicles can literally look down on others; drivers of heavier vehicles can intimidate smaller ones. This can lead to strategic interaction in which eye contact or its avoidance plays a central role. For example, there are chicken games (Goffman, 1967), as in Kathmandu, where by pointedly not noticing larger vehicles, drivers of smaller ones force the former to yield to them to avoid a collision (Gray, 1994, see also Jørgensen, 2008, Vanderbilt, 2008). Integrating glances facilitate cooperative action; avoiding eye contact is a way of dominating the other in an interaction through what game theory considers the effective, but risky strategy of “asymmetry in communication” (Schelling, 1984, p. 214).

Goffman observed that compared to foot traffic, automobile traffic is more instrumental, linear, competitive and formally regulated, collisions are more serious, the units in motion less manoeuvrable, and communication between them is more difficult.
This section has indicated how these differences depend on the extent to which speed and hard clumsy shells limit the possibilities for social interaction in automobile traffic.

Velomobility: The View from the Saddle

Like walking, cycling has recently attracted growing interest from social scientists. Unlike walking, that interest has been directed more toward distinctive cycling cultures of mobility and identity (Aldred, 2010; Skinner & Rosen, 2007), especially of bike messengers or couriers (Fincham, 2006, 2007; Kidder, 2009), and to cycling as a form of resistance to automobility (Furness, 2007, Pesses, 2010). There has been little attention to the issues with which this paper is concerned, although the literature contains enough discussion of practices of riding that it is useful for my purposes. In terms of looking, speed and shells, cyclists are somewhere in between pedestrians and automobiles.

Like drivers, cyclists can move more quickly than pedestrians, creating an obstacle to interaction and the possibility of escape to avoid sanctioning looks and comments in case of transgressions (Jones, 2005). They are generally not as fast as cars however, except in congested traffic, where they may be faster (Kidder 2009).

Also like automobiles, bicycles are machine-human assemblages, but they lack the protective shell of the former: “the bike is in itself a small object, an object that is embodied and not a space that is inhabited, like a car” (Augé, 2008, pp. 67-68, cf. Aldred, 2010). Consequently, when we are on the saddle, “the external world imposes itself on us concretely in all its most physical dimensions” (Augé, 2008, p. 89), including the muscular effort required to ascend hills that might not even be noticed in an automobile (Wray, 2008) as well as more substantial ones (Spinney, 2006). Inclement weather, treacherous terrain, and car traffic constrain the cyclist as much as the pedestrian, focusing attention on the road ahead, rather than on interactional possibilities.

Because of the bicycle’s small size, lightness and manoeuvrability, cycling has the pausability and permeability of walking: “the cyclist can stop, chat, and divert from her planned course with relative ease,” and cyclists can easily pick up or push their bikes, turning themselves into pedestrians (Adler, 2010, p. 50, Jones, 2005). They can also form “mobile withs” (Jensen, 2010), such as a couple I saw riding abreast on Boulevard St-Michel in Paris one sunny October afternoon, taking up a lane as they chatted.

Speed also makes a difference for what a cyclist sees, and thus for pausability and the exchange of integrating glances. Slower riders on upright city bikes, above the eye level of car drivers and pedestrians, are more open to the sights and sounds around them and to interaction possibilities (Aldred 2010) than are fast riders of road or racing
bikes, who must be focused on scanning the road ahead, especially when riding hard (Spinney 2006, 2007). But because of their size and manoeuvrability, more speed variation is possible in cycle traffic than in car traffic: fast riders do not tailgate slower ones to get them to speed up; they go around.

As they frequently move in the same spaces as automobiles, and have vulnerable shells, cyclists are even more open to physical and ritual intrusion by automobiles than are pedestrians. In highly automobile-dominated places, such as North America, cyclists are less visible to drivers, who do not expect them, but at the same time their lack of protective shell gives cyclists both the incentive and the ability to be very aware of the vehicles surrounding them. To gain their cooperation, and to ensure that they have been seen, cyclists are often advised to “catch the eye” of drivers. Cyclists (including motorcyclists) are also advised to ride as if they are invisible, that is to not take for granted that drivers will see them. In short, they should ride as if they are not part of normal traffic. But the speed and manoeuvrability of bikes can make automobile traffic permeable for them. When cyclists like the bike messengers studied by Kidder (2009) take advantage of this and do ride as if they were invisible, routinely ignoring red lights, riding against one-way streets, and zipping between moving vehicles, they become all too visible to drivers, evoking hostility and anger because they contradict “normal appearances” and their intentions are not apparent. Although not threatening in themselves, opaque intentions may “leave the witness not knowing where the mind of the performer is, or what his purpose, and therefore not trustful of him” (Goffman, 1971, p. 306). (Even though I cycle, as a driver I often find the behavior of some cyclists to be unpredictable and inexplicable.)
Although “fundamental differences between the needs and experiences of walkers and cyclists” have been claimed (Middleton, 2011, p. 92), I have tried to show here that the differences are a matter of degree, the shells and speed of bicycles putting them somewhere between automobile and pedestrian traffic.

Conclusion

Despite the “mixed status” of its evidence—a fault shared with Goffman’s work (1959, p. xi) without the compensation of his style and originality—I hope that the argument presented in this paper can convince the reader that there are benefits to closely examining the conditions enabling and constraining practices of looking in traffic. Starting from Simmel’s remarks on the sociological significance of mutual glances, a typology of looks was developed from Goffman and from ethnomethodologists such as Sacks and Sudnow. Goffman’s analysis of social orders and diffuse social occasions was then used to further understand the interactional role of looking for vehicular units in traffic. Byremedying Goffman’s neglect of two qualities of these vehicular units—their shells and speed of movement—I have been able to sketch some of the significant differences between pedestrian, bicycle, and automobile traffic. In comparing these types, much subtlety has been sacrificed, but I hope that enough has been done to show that such comparisons are productive. Comparisons involving mobilities—which, like velomobility, are in-between automobility and pedemobility should also be productive. For example, studies of the mobilities of rollerblades, skateboards, motorized wheelchairs, and other hard-to-classify technologies (Cox, 2007) will further help in understanding limits and possibilities of co-presence and interaction in urban spaces.

In making such comparisons between mobilities, we must be careful not to ignore different cultures of mobility in different places and situations, in order to avoid overgeneralizing. For example, Wolff’s (1973) observation, made in Manhattan in the 3rd quarter of the twentieth century, of children being dragged along by their parents like baggage is reported by Ingold (2004, p. 328) as if true of “city parents” in general. My observations on streets in Paris in the autumn of 2010 contradict this: much like Batek hunter-gatherers in Malaysia (Ingold & Vergunst 2008), in the daytime at least, parents there often trailed behind their children or allowed their children to trail behind them.

Cultural and situational variations raise more than just methodological issues. They also raise theoretical ones concerning the relative importance of dispositional and situational explanations of action. On the one hand, it appears that people are capable of switching quickly from one form of mobility to another and from one mode of interaction to another. For example, drivers getting out of their cars are immediately capable of interacting like pedestrians, and cyclists can become pedestrians by picking
up their bikes. Switching from one means of mobility to another is a switch into a different situation, with different traffic codes and social conventions, and different material conditions for the exercise of vision, speech, and other senses (nicely illustrated in Vannini & Vannini, 2008). Thus it is not habitus but the situation, and both its social or ritual conventions and its physical conditions—speed and shells—that explain interactions.

Switching is important in another sense. The metaphors of ritual, theatre, game, and frame that Goffman uses are not just metaphors, they are ever-present possibilities in all forms of human traffic. Pedestrians, cyclists, and drivers can and do switch from exchanging ritual care for each other’s sacred selves, to performing for a real or imagined audience, engaging in contests for fun or profit, or exploiting the myriad vulnerabilities and layerings of frames (Goffman, 1974). Exploring how traffic codes and the speeds and shells of the interacting vehicular units affect these possibilities promises theoretical benefits.

On the other hand, dispositions or habitus are often seen as determining action. Does the predominance of one form of mobility lead its practitioners to extend its modes of interaction to another? Does the tendency of male cyclists to ride as fast as they can (a practice of which the author of this paper is guilty) dispose them to drive as fast as they can (the author pleads innocent in this case). Do the automobile identities of “fast driver” and “slow driver” (Sacks, 1992) created in the linearity and instrumentality of driving leak into pedestrian behavior? Reports of “pedestrian rage” between “fast walkers” and “slow walkers” suggest that they have, although the existence of an “I hate slow walkers” Facebook group, or the comments of anonymous posters on a newspaper website who assert that foot traffic should follow the same rules as car traffic only hint at what might be involved (Anderssen, 2011).

Use of Goffman and ethnomethodology in this paper indicates where the author’s theoretical dispositions lie, but the debate is not over. Although they may not have the cachet of aeromobilities or current forms of mediated electronic and virtual mobility, foot, bike and car traffic have much to teach us still.

Notes

For helpful comments on previous versions of this chapter, I thank Pradeep Bandyopadhyay, Jim Cosgrave, Arlene McLaren, Phillip Vannini, and the anonymous reviewer for this publication. As usual, they are not responsible for my errors and infelicities, especially as I did not always take their advice.
Because of space limitations, the combination of pedestrian, driver and cyclist mobilities will only be partially explored here.

"Véломобильность" is used by Furness (2007) and Pesses (2010). Like "aeromobility," it does not otherwise seem to exist in English, so at the risk of further degrading the language I add the neologism "pedemobility" for the sake of symmetry. "Pedomobility" sounds better, but use of the term "pedomobile" as slang for a car driven by a pedophile rules it out.

Above 30 km/h, collisions become lethal for pedestrians (Vanderbilt 2008, pp. 194-5); 50 km/h is the usual speed limit on city streets in Canada. A colleague who was first learning how to drive in her 50s told me it was difficult to unlearn habits acquired as a passenger, such as looking all around, instead of scanning the road ahead.

This paragraph is indebted to past students in my sociology of the automobile class at Trent University: one who called cars invisibility cloaks; another who (unbeknownst to me) had a friend drive him on a local freeway, where he peered into the interiors of cars as they drew alongside, to see what occupants were doing. For this breach of privacy (and research ethics), he reported frequently being given “the finger.”

The experience of driving down a steep, long and winding hill in Normandy, as fast as I considered safe—about 80-90 km/h—with 2 cyclists right behind me all the way is why I add the qualifier “generally.”
References

