1,001 SYMMETRICAL PATTERNS

A Complete Resource of Pattern Designs Created by Evolving Symmetrical Shapes

Jay Friedenberg and Jacob Roesch
1,001 SYMMETRICAL PATTERNS
A Complete Resource of Pattern Designs Created by Evolving Symmetrical Shapes

Jay Friedenberg and Jacob Roesch
Contents

Introduction .. 6
The Patterns ... 8
Footnotes .. 206
About the Authors 207
Acknowledgments 208
Visual symmetry in a broad sense refers to self-similarity. A pattern is symmetric if, after some operation, the pattern remains unchanged. There are three primary symmetry operations. A *translation* takes a pattern and simply moves it to a new location. We see the effect of translation in architecture, where columns repeat across the front of a building. In *reflection* a pattern is mirror-imaged or made bilateral with an axis defining the two opposite halves. Reflectional symmetry can be found in faces or bodies where one side corresponds to the other. Finally, there is *rotation*, where a pattern is spun about a point. Flower petals and wheel spokes are examples of rotational symmetry, since both are rotated about their centers.

Symmetry patterns are classified according to their dimensionality. A point or *finite symmetry* is a coherent single shape or object that is dimensionless because it is defined by its center. *One-dimensional symmetries* extend in a single direction only. Examples of these are decorative friezes or bands. There are a total of seven one-dimensional symmetry types, each defined by the number and kind of symmetry operation applied. *Two-dimensional symmetries* extend outward in two directions and can
completely cover a planar surface. There are seventeen of these, again
determined by the application of the number and kind of operation. Rugs and
wallpaper are examples.

Symmetry is ubiquitous in the natural and artifactual world. Bilateral
symmetry is found in biological organisms including most plants and animals,
but we also see it in many human-constructed forms such as cars, airplanes,
and furniture.\(^3\) It appears in the art of all human cultures, including weaving,
baskets, pottery, tapestries, textiles, embroidery, tiles, and jewelry.\(^4\) Many of
the plane symmetries can also be found as decorative art from around the
world. All seventeen two-dimensional symmetry patterns have been found in
the Alhambra.\(^5\)

What is the enduring appeal of symmetry, and why does it seem to be
regarded as universally aesthetic? There may be a biological basis. In psy-
chology experiments, faces with greater reflectional symmetry are rated
as more attractive.\(^6\) Some researchers argue that bilateral facial symmetry
signals resistance to parasitic infection because infections during develop-
ment disrupt the body’s normal symmetrical growth processes, and because
sexual selection of an immunocompetent partner would thus help to ensure
fit offspring.\(^7\) However, this hypothesis cannot account for the allure of trans-
lational and rotational symmetries.

The patterns in this book are all finite-point symmetries forming single
objects. The basis for each pattern is a motif that is translated, reflected, and
rotated to create a new version of the motif that is then aligned with or super-
imposed upon itself. The motifs can be geometric, as in the case of squares,
circles, and hexagons, or they can be representative of a shape such as a
mushroom, ice cream cone, or kite. A number of the motifs we utilize here
are inspired by existing designs from the history of decorative art and include
Egyptian, Greek, Roman, Arabic, Indian, Japanese, Chinese, and Celtic as well
as more modern computer-generated shapes.\(^8\)

For footnotes, see page 206.
Airplanes
Airplanes
Anchor Stem

17

18

19

20

21
Birds

55

56

57

58
Birds
Brackets
Bow Tie
Branches Crest

93

94

95

96

97

98
Bud

105

106

107

108

109

110
Bud

117

118

119

120

121

122
Candle Holders

153

154

155

156

157

158

159

160

1,001 Symmetrical Patterns
Chevrons 2

167

168

169

170

171

172
Circles
Circles & Curves
Circles Divided

199

200

201

202

203
Criss-Cross Curves
Crosses

229

230

231
Crowns
Diamonds
Double Horn

247

248

249

250

251

252
Double Horn
Down at Arms
Dragons

277

278

279

280

281

282
Dragons

289

290

291

292

293

294
Dreidels

299

300

301

302
Eagle Eyes
Eagle Eyes

319

320

321

322

323

324
Elbows 2

355

356

357

358

359

360
Fans

361

362

363

364

365

366
Figure 8
Fins

379

380

381

382

383

384
Fish

385

386

387

388

389

390
Fleur de lis

402

403

404

405
Fleur de lis 2

410

411

412

413
Floral

419

420

421
Filled Arcs

425

426

427

428

429

430
Fractures

431

432

433

434

435

436
Fret Patterns 2

445

446

447

448
Fret Patterns 2

449

450

451

452
Frogs

457 458

459 460

461 462
Frogs

469

470

471

472

473

474
Headphones

475

476

477

478

479

480
Hemispheres

481

482

483

484

485

486
Hexagons Divided

493

494

495

496

497

498
Holes

505

506

507

508

509

510
Ice Cream Cones

517

518

519

520

521

522

1,001 Symmetrical Patterns
Kinked Chevrons

526

527

528

529

530

531
Leaf Petal 2

548

549

550

551

552
Leaf Vine

577

578

579

580
Letter A

586
587
588
589
590
Letter A
Letter L

608

609

610

611

612

613
Letter N
Letter N

620

621

622

623

624

625
Lightning Bolt

626

627

628

629

630

631
Loop Heart

632

633

634

635
Loops

641

642

643
Maple Leaf

656

657

658
Moths
Mushrooms

670

671

672

673

674

675
Octagons
Octagons Divided

682

683

684

685
Octagons Divided
Paddles

700

701

702

703

704

705
Parallelograms

706

707

708
Parallelograms

709

710

711
Pentagons Divided

718

719

720

721

722

723
Pentagons Divided

730

731

732

733

734

735
Picnic Tables

742

743

744

745

746
Pine Trees

758

759

760

761
Pine Trees

762

763

764

765
Pound Signs

772

773

774
Question Shape

160 1,001 Symmetrical Patterns
Rectangles

787

788

789

790

791

792
Reticules

793

794

795

796

797
Reticules

798

799

800

801

802
Rounded Triangles
Saw Leaf

826

827

828

829
Shield Patterns

834

835

836

837

838

839
Sombrero
Spade
Spade 2

852
853
854
855
856
857
Squares
Squares Divided
Thorns

882

883

884

885

886

887
Top Dogs

892

893

894

895

1,001 Symmetrical Patterns
Trapezoids

896

897

898
Trapezoids
Triangles
Triangles Divided

908

909

910

911

912

913

914

915

916
Tulip

917

918

919

920

921
Tulip
Up at Arms

933

934

935

936
Vine Leaf
Waves

955

956

957

958

959
Wing 3
Wing 3
Zig Zags

982

983

984
Zig Zags

985

986

987
Ziggurat
Footnotes

About the Authors

Jay Friedenberg is professor of psychology and chair of the psychology department at Manhattan College. He founded and directs the Cognitive Science Program at the college, whose mission is to educate undergraduates in and prepare them for graduate study in the cognitive sciences and allied fields. He also currently serves as department chairperson.

Friedenberg's research interests are in vision and he has published numerous articles on symmetry detection, center of mass estimation, and art perception. In addition to focused publications in the above-mentioned areas, he has written a number of books on cross-disciplinary topics.

Jacob Roesch is an artist, designer, and educator whose work spans across many disciplines, from fine oil painting to children's book illustration. His work has appeared in numerous shows including ORG: Reaping the White Walls at the Macy Gallery, Ground Zero at the Detroit Museum of New Art, AGAST at the Gowanus Art Center, and Selected Works at the Carrie Haddad Gallery in Hudson, New York. Roesch currently teaches graphic design and digital drawing at Manhattan College and continues to hone his painting and design skills. He resides in Connecticut with wife, Diana, and his dog, Fergus.
Acknowledgments

We would like to thank those Manhattan College undergraduate research assistants who contributed their time and effort toward this project.