THE VALUE OF
ENSURING AN
UNDERSEA ADVANTAGE
KNOWS NO BORDERS.

Mines don’t recognize borders, nor should the most advanced mine hunting solutions. Only Northrop Grumman’s advanced AQS-24 family of sensors deliver unparalleled performance with complete adaptability. From hardware versatility (deployable from helicopter or unmanned surface vessel) to increased speed in mission execution, the AQS-24 is the future of mine warfare. That’s why we’re a leader in advanced undersea technology.
A pair of Royal Singapore air force AH-64 Apache helicopters launch from Gila Bend Air Force Auxiliary Field to conduct a Forging Sabre 2013 live-fire mission at the Barry M. Goldwater Range.

As 2017 drew to a close, the Singaporean Armed Forces completed its biennial overseas exercise, Forging Sabre, in Arizona, USA. JR Huang reports on the advances that the Force has made in command and control of air assets including UAVs.

David Oliver examines how users of medium- and high-altitude long-endurance (MALE/HALE) are broadening their scope to include communications intelligence (COMINT) and electronic support measures/electronic intelligence.

“TANK!!” THE PSYCHOLOGICAL IMPACT OF ARMOUR

Stephen W. Miller explains why main battle tanks are still valued as the heavyweight punch, but more manoeuvrability may be just around the corner.

Dr. Joetey Attariwala takes a look at how Man-Portable Air Defence Systems (MANPADS) work and industry’s latest developments to defeat the threat.

Big is not necessarily the best when it comes to protecting maritime areas of economic importance or ensuring territorial integrity is maintained. Dr Lee Willett reports.

AMR welcomes new columnist Veerle Nouwens who begins her regular column with a look at why Australia, Japan, the United States and India are looking to reopen the Quadrilateral Security Dialogue (the Quad).
Congratulations are in order to Bell Helicopter for the first flight of its tiltrotor V-280 Valor, which took to the air around 2pm on Monday 18 December, 2017 at the Bell plant where it has been under construction in Amarillo, Texas.

This is an important moment for the next generation of smaller military rotorcraft. Although its rival in the U.S. Army’s Joint Multi-Role Technology Demonstrator (JMR TD) initiative, the joint Sikorsky/Lockheed Martin/Boeing SB.1 Defiant, has been delayed and is now predicted to take its first flight during the first half of 2018, both are vital to the continuing development of rotorcraft technology.

Both programmes are ensuring that the aviation industry, and its tier supply chain, are engaged in a long term programme that is keeping their own rotorcraft related specialties current so that those development skills are not lost. Bell Helicopter’s Team Valor reads like a who’s who of aviation engineering and systems designers: Lockheed Martin (with a foot in both camps), GE, Moog, IAI, TRU Simulation & Training, Astronics, Eaton, GKN Aerospace, Lord, Meggitt and Spirit AeroSystems.

Yes, Bell Helicopter first flew the XV-15 small tiltrotor back in 1977. No, a pusher prop at the rear is not new either - witness the Lockheed AH-56 Cheyenne which first flew in 1967. But having long reported on these JMR TD developments since the conception of the Future Vertical Lift (FVL) programme in 2004, and whatever is said about the ideas behind the designs not being new, this is most certainly new technology with all the advances in materials, avionics, digitisation and fly-by-wire that have burst through since those early days.

While the JMR TD is not a programme of record, the point to be made is that the development is breaking new ground as the designs mature. Whether or not these actual models will go into production on these JMR TD developments ideas behind the designs not being new either - witness the Lockheed Martin/Boeing SB.1 Defiant, has been delayed and is now predicted to take its first flight during the first half of 2018, both are vital to the continuing development of rotorcraft technology.

As an endnote, I would like to introduce Veerle Nouwens who will be writing an Analyst Column for AMR from this issue onward. She is a research analyst, Asia Studies at the International Security Studies Department of the Royal United Services Institute, Whitehall, London. Her first comments concern the return of the Quadrilateral Security Dialogue (the Quad).

Andrew Drwiega, Editor
Aerial persistence is now a reality

HERON RPAS -
The most-advanced multi-mission, multi-sensor ISTAR solution for aerial persistence

Backed by over 1,600,000 RPAS flight hours, the HERON Family features:
- Multi-sensor capability for air, land and sea
- Accurately tracking hundreds of diverse targets neously
- Operational in all weather conditions, day & night
- Combined automated multi-Int. processing in real time

www.iai.co.il • info.malat@iai.co.il

SEE US AT
SINGAPORE AIRSHOW 2018
Israel Pavilion, Booth N41
at the dawn of the New Year, tensions in the Asia-Pacific region remain at a high level. With North Korea’s leader announcing the continued development of its nuclear and ballistic missile programmes and concerns about the situation in the East and South China Seas remaining, an increasing number of countries are enhancing their intelligence, surveillance, target acquisition, and reconnaissance (ISTAR) capabilities with medium-altitude long-endurance (MALE) unmanned aerial vehicles (UAV).

Singapore was one of the first countries in the region to acquire state-of-the-art MALE UAV when it took delivery of Elbit Systems Hermes 450s in May 2007. However, it was not until March 2015 that the H-450s operated by the Republic of Singapore Air Force’s (RSAF) 116 Squadron at Murai Camp, achieved Full Operational Capability (FOC) status. The UAV pilots, air force engineers and maintenance crew had undergone intensive training to operate and maintain the aircraft, as well as integrating the capability to support the RSAF’s operations.

The RSAF also took delivery of Israeli Aerospace Industries (IAI) Heron 1 MALE UAVs in 2012 which achieved FOC status with the RSAF’s 119 and 128 Squadrons in March 2017. The Heron 1s are capable of being deployed alongside RSAF fighter aircraft and attack helicopters.

The Heron 1 MALE has a wingspan of around 16m (54ft) and can carry a 250kg (550lb) payload to an operating altitude of 9,145m (30,000ft) for up to 52 hours. It can be equipped with an Elta EL/M-2055 SAR/GMTI or EL/M-2022U maritime surveillance radar in a large ventral radome, which allows multi-target track-while-scan of up to 32 targets. Other payloads can include communications intelligence (COMINT), electronic support measures/electronic intelligence (ESM/ELINT) Ku-band SATCOM or other customer-furnished sensors.

In December 2014, the Republic of Korea Army (ROKA) selected the Heron 1 and after tests over South Korea’s West Sea islands, a small number were issued to an army aviation unit in August 2016. The Heron 1s are being deployed on the Northern Limit Line (NLL), the de facto maritime border between the two Koreas in the Yellow Sea, and there are plans to eventually form a UAV squadron. The NLL has been frequently breached by North Korea which does not recognise it as a legitimate border.

The Indian Navy (IN) also acquired the Heron 1 UAV and in 2016 the Indian defense ministry approved the purchase of 10 Heron TP all-weather MALE multi-mission systems with the Israeli manufacturer. However, the imposition of technology transfer restrictions by the Israeli defense ministry put a halt to any firm contract and in June 2017 the United States approved a $3 billion Foreign Military Sale (FMS) of 22 non-weaponised General Atomics Aeronautical Systems...
The prototype TAPAS 201, Rustom II, made (GA-ASI) Sea Guardian maritime UAVs (DRDO) has been developing an (Global)' category of the MoD's Defence RFI for the UAVs. The acquisition variant of the Predator B, is fitted with the Indian armed forces. The TAPAS 201 has Range (ATR) near Challakere in November 2016 after a three-year delay. DRDO plans to develop 10 TAPAS 201 prototypes in different variants for all branches of the Indian armed forces. The TAPAS 201 has a 21m (68ft) wingspan, a capacity payload of 350kg (858lb), an endurance of over 24 hours, and an operational ceiling of 10,607m (34,776ft). It can carry medium- and long-range optic sensors, synthetic aperture radar (SAR), ELINT, COMINT and situational awareness payloads for round-the-clock operations.

In December 2017 Bangladesh’s procurement agency, the Directorate General Defence Purchase (DGDP), issued a Request for Proposal (RFP) to procure a MALE UAV for the Bangladesh Air Force (BAF). In its notice, the DGDP said the procured UAV will be used for intelligence, surveillance, armed reconnaissance and targeting operations and will fulfil requirements highlighted by the Bangladesh military’s Forces Goal 2030 modernisation plan. The procurement will consist of a UAV system that has a maximum speed of 108kts (200km/h) or higher, a minimum loiter speed of 75kts (140 km/h) or lower, a maximum range of 1,000km (620 miles), and a maximum ceiling of 6,000m (20,000ft).

Bangladesh’s close relationship with China could mean that bidders include China Aerospace Science and Technology Corporation (CASC) with its CH-4 or Aviation Industry Corporation of China’s (AVIC) Wing Loong II.

MALE market

At the top end of the MALE technological spectrum is the Northrop Grumman RQ-4 Global Hawk High-Altitude, Long Endurance (HALE) Unmanned Aerial System (UAS) and its maritime variant, the MQ-4C Triton. In December 2014 Northrop Grumman was awarded a $657.4 million hybrid contract for four RQ-4B Block 30 Global Hawk aircraft, two spare engines and ground control equipment for the Republic of Korea Air Force (ROKAF). Each aircraft will contain an Enhanced Integrated Sensor Suite (EISS). The first Global Hawk is scheduled to be delivered in 2018.

An memorandum of understanding (MoU) was signed between Northrop Grumman and Korean companies Firstec and Korean Jig and Fixture (KJF) in 2013 to support the Global Hawk with the manufacture of components for the ROK Global Hawk programme, the first of which were delivered in 2016.

In November 2015 the US State Department made a determination approving a possible FMS to the Government of Japan for three RQ-4B Block 30 (I) Global Hawk remotely piloted aircraft with EISS, eight Kearfott Inertial Navigation System/Global Positioning System (INS/GPS) units, eight LN-251 INS/GPS units and logistical support for an estimated cost of $1.2 billion.

The proposed sale of the RQ-4 will significantly enhance Japan’s ISR capabilities and help ensure that Japan is able to continue to monitor regional threats. The Japanese Air Self-Defense Force (JASDF) plans to introduce the three drones beginning in 2020. The Japanese Global Hawk system is tentatively planned to be deployed at Misawa Air Base, where United States Air Force (USAF) Global Hawks have been deployed since May 2014.

A USAF RQ-4B Global Hawk was deployed Yokota Air Base in May 2017, starting a five-month operational tour in Tokyo, to survey ballistic missiles and nuclear facilities in North Korea. The aircraft is part of the 69th Reconnaissance Group Detachment 1 and provides near real-time aerial imagery reconnaissance support to United States and partner nations. Four more USAF Global Hawks were deployed to the base along with a total of 110 personnel including mechanics while maintenance and repair facilities were carried out at Misawa Air Base. The USAF RQ-4Bs were controlled from Yokota during takeoff and landing, and then from the US mainland once they reach a sufficient altitude.

In 2001, the Australian Defence Science and Technology Organisation (DSTO) collaborated with the USAF and Northrop Grumman in developing and testing a maritime surveillance mode for the Global Hawk’s synthetic aperture radar (SAR) in order to evaluate the UAS’s suitability to meet the Royal Australian Air Force (RAAF) Project Air 7000 multi-mission maritime HALE UAV requirement.

The DSTO awarded Northrop Power...
Grumman an $3.5 million (AUD$4.7m) contract for a virtual trial in October 2006 at Northrop Grumman’s Cyber Warfare Integration Network in San Diego, California, to examine how the UAS would perform in the Australian environment. Subject to US export approval, the RAAF planned to seek funding for at least six Global Hawks by 2012 but due to cuts in the defence budget, the plan was abandoned.

However, the Australian Government confirmed in its 2016 Defence White Paper that the RAAF was to acquire seven MQ-4C Triton aircraft as part of Plan Jericho, the Chief of Air Force’s plan to transform the RAAF into a fighting force that capitalises on the high technology systems that are being introduced in the next few years. Under Plan Jericho, the RAAF will develop and evolve new operating concepts, support arrangements and sustainment processes to best exploit the P-8As capabilities when operated with the MQ-4C Triton UAS as part of an integrated maritime ISR family of systems.

The MQ-4C Triton is a maritime variant of the Global Hawk that the US Navy selected to meet its requirement for Broad Area Maritime Surveillance (BAMS) project. First flown on 22 May, 2013, the MQ-4C Triton is equipped with an AN/ZPY-3 Multi-Function Active Sensor (MFAS) X-band AESA radar that provides a 360-degree view of its surroundings, for over 2,000 nautical miles, and incorporates a reinforced airframe for increased payload, and wing along with de-icing and lightning protection systems. These features allow the UAS to ascend and descend rapidly in harsh maritime weather environments. The 40m (131ft) wingspan Triton can fly for up to 30 hours at over 16,750m (55,000ft) with an operational range of 8,200 nautical miles. The first of a US Navy requirement for 68 operational Tritons was delivered to the US Navy facility at Point Mugu, California in 10 November, 2017.

Triton would be part of the Australian Defence Forces Project Air 7000 two-phase AP-3C Orion replacement programme. Phase 1B entails procuring the Triton UAS, and Phase 2B was the acquisition of 12-15 manned P-8A Poseidon maritime patrol aircraft (MPA) between 2016-2020. RAAF Tritons and Poseidons would be used in a similar complementary fashion to the proposed US Navy operation, where the MQ-4C performs high-altitude broad area surveillance missions, allowing the P-8A to be more dedicated to anti-submarine and anti-surface warfare, search and rescue response, and electronic intelligence missions.

The Triton would be home based at RAAF Edinburgh, although many missions will be launched and recovered from RAAF Tindal. The Triton will be capable of supporting missions of over 24 hours while covering an area of over one million square nautical miles - an area larger than Western Australia. Initial Operating Capability (IOC) for the RAAF MQ-4C Triton is expected in 2023-24.

Like other RAAF aircraft, the Triton will be flown by a qualified RAAF pilots, experienced in complex airspace. The Triton will be flown from a ground station with a pilot supported by a co-pilot while the information gathered will be analysed and disseminated by operational staff that may include aircrew, intelligence, operations and administration officers, engineers and logisticians, depending on the training or mission requirements.

Australia is interested in the multi-intelligence (Multi-INT), also known as Integration Functional Capability 4 (IFC-4) configuration that will have significant enhancements over the baseline aircraft now entering service with the US Navy, including signals intelligence (SIGINT).

The Australian Department of Defence is negotiating an MoU with the US Navy to establish a co-operative programme which would include the development, production, and sustainment of the Triton capability. The Defence Department expects to enter into this formal agreement pending government approval in early 2018.

If approved the Triton will be acquired through a United States Navy contract to Northrop Grumman Corporation Opportunities for Australian Industry participation exist on a competitive contracting basis throughout the lifecycle of MQ-4C Triton, including facilities construction, deep maintenance, training system operation and support, mission planning system support, logistics support and component repair. An Australian-developed ground control station for the RAAF would also be created.

While there is no doubt that the deployment of increasing numbers of highly capable MALE UAVs to monitor disputed islands in the South and East China Seas and activities by North Korea, it will be several years before the Australian, Japanese and South Korean HALE UASs will be operational.
The A400M is the most modern airlifter in the world offering game changing capabilities for military airlift. It delivers heavy and outsize loads almost anywhere, thanks to its ability to fly far, fast and high, and land on short and unpaved airstrips. And its unique versatility means it can carry out a range of missions – be it strategic lift, tactical delivery or air refueling. Versatility. We make it fly.
The Republic of Singapore Air Force deployed six AH-64D Apache attack helicopters to conduct airborne reconnaissance and strike missions as part of an integrated force with other air and land combat assets.
The long-endurance, multi-mission UAV system

The new Patroller™ UAS from Safran carries a wide array of sensors to address all your surveillance requirements, from real-time intelligence to homeland security. Selected in 2016 by the French forces, Patroller™ is a quiet platform with 24-hour endurance, an EASA-certified airframe and payload capacity exceeding 250 kg. “Safran’s new long-endurance UAV carries the payload that matches your needs, for extra sensory perceptions!”

safran-electronics-defense.com

@SafranElecDef
The air force’s latest weapon is the 2000-lb GBU-31 Joint Direct Attack Munition, which complements the in-service GBU-10 Paveway II Laser Guided Bomb for attacks on heavily fortified or large targets.

Sales 9FMS) programme along with associated parts, logistical support, as well as training under a $63 million deal approved by the US government in 2014.

As one of the largest air-launched precision guided munitions in the RSAF’s arsenal, the GBU-31 enhances the ability of the service’s Boeing F-15SG and Lockheed Martin F-16C/D combat aircraft to destroy large or heavily fortified structures. Other known precision munitions employed by Singapore include the GBU-10 Paveway II Laser Guided Bomb (LGB), GBU-12 Paveway II LGB units, and GBU-38 JDAM.

New C2 system

The SAF also took the opportunity at Forging Sabre 2017 to test out new enhancements to the networked command and control (C2) system that had been developed specifically to support the exercise series. The bespoke C2 system is a joint effort between the armed forces and the country’s Defence Science and Technology Agency (DSTA), and is also used as a platform to trial new technologies that could eventually be applied to its operational systems. Development of the system was initiated in 2009 and it has continuously improved inputs from operators and technological advancements in software and military hardware.

Acting as the central command node for the exercise, the C2 system supplies an integrated battlefield picture to commanders. By fusing information from disparate sources – such as special forces troops, army reconnaissance teams known as the STrike ObserveRs Mission (STORM), as well as aerial assets such as the Heron 1 UAVs – the C2 system is designed to reduce the overall sensor-to-shooter loop for SAF units on the field.

For example, the system provides real-time updates of the ground situation picture by overlaying high-definition video feeds from the Heron 1 UAVs onto an augmented reality display. Using advanced graphics rendering techniques, geographical data such as landmarks, roads, buildings, and vegetation are superimposed on the feed, which is then exploited using video analytics technology to automatically derive target locations onto the display. This reduces the cognitive load of operators, enabling them to quickly orientate to the latest ground situation picture for timely decision making, as well as improving their ability to monitor multiple targets.

DSTA also highlighted that the set-up time for the C2 system was also cut down from weeks to just days by incorporating new server virtualisation technology. This enabled its engineers to replace bulky physical servers with virtual systems, which reduced the overall server footprint and space requirements. With its modular architecture, the C2 system can also be expanded with other training systems such as the Army Warfare Simulation System, which allows exercise planners to incorporate ground-based scenarios and assets into training scenarios without requiring actual troops or vehicles.

Singapore Army update

The Singapore Army’s STORM teams, which comprise of specially trained reconnaissance troops who direct the action of SAF air or artillery assets from forward positions, have benefited from a new ground designator that replaces the venerable Laser Target Marker (LTM-91).

Supplied by local electro-optics firm STELOP and introduced in late 2016, the new Target Acquisition Designation System (TADS) integrates the high-definition Day Night Ranging System (DNRS) with Elbit Systems’ PLDR III long-range portable lightweight designator/rangefinder.

The DNRS features a Class 1 laser rangefinder as well as a high-definition thermal imager, which is affixed on the PLDR-III and enables STORM troopers to acquire target ranging information at distances of up to 5 km at night, while the latter is equipped with a Class 4 laser target designator/rangefinder that has an effective range of 10 km, double the range of the LTM-91. TADS weighs around 10 kg as a complete system – which is about 40 percent lighter than the LTM-91 – and also offers a 20 percent increase in runtime.

The army’s artillery formation also unveiled the new Battery Command Post, which has been specifically developed to improve the effectiveness of its Lockheed Martin-built M142 227 mm High Mobility Artillery Rocket System (HIMARS) platforms on the field. The new command post is based on a 4x4 MAN truck chassis and is operated by a crew of eight personnel. It is equipped with an on-board power supply that supports a suite of software-defined radios as well as an optional satellite communication (SATCOM) capability, which when combined with its automated antenna masts, enables its crew to perform on-the-move command and control.

According to media reports, the battery command post is networked to platoon-level command posts and their respective launcher units via the Army Battlefield Internet (ABI). The ABI is a system connecting all computers used by ground forces and forms the backbone of the army’s battlefield communications network. It was also reported that the indigenously developed Battlefield Management System (BMS) – which enables blue-force and red-force tracking as well as receive real-time situational...
awareness and targeting updates from reconnaissance assets – is also expected to be integrated in the near future.

The command post is outfitted with two integral power generators, which can provide continuous power for up to 48 hours, and four deployable antennas that are electronically raised or lowered from within the command cabin. Set up and tear-down is fully automated and does not require the vehicle to come to a halt. Previously, personnel had to dismount to unload and set up a portable power generator which would have taken as long as seven minutes to complete. In contrast, the new command post can be fully deployed within four minutes, increasing the crew’s survivability.

“The new battery command post enables us to process information and shoot faster,” said Colonel Michael Ma, the army’s chief artillery officer and the land director for the exercise.

“One of the advantages that it brings is that it enables us to command on the move…this means that I don’t need to stop; I can fight as I move and ensure that my range is continuously maximised and that we keep up with forces that need our support,” he added.

The Singapore Army also field tested upgraded HIMARS launcher units which have been enhanced with Lockheed Martin’s Universal Fire Control System (UFCS). First delivered to the service in 2010 and operationalized in September 2011, the service’s HIMARS is operated by the 23rd Battalion Singapore Artillery.

Each launcher – which is operated by a three-man crew comprising a detachment commander, a gunner and a driver – is armed with the M31 GMLRS pod, which carries high explosive unitary rockets that have a maximum range of 70 km, and feature GPS-aided inertial guidance that enables the rockets to achieve a hit probability of around 15 m circular error probable (CEP) from their aimpoints.

Singapore’s HIMARS launchers are also equipped with BMS and is fully connected to the platoon and battery level command posts as well as STORM teams that have been deployed.

Lieutenant Colonel Jackson Tong, commanding officer of 23rd Battalion, told reporters that HIMARS operators were previously required to recalculate firing orders and lay on the target separately for each of the launcher’s complement of six rockets.

However, with the installation of UFCS, the operators can now input specific aimpoints for each rocket, which effectively enables each launcher to engage six targets simultaneously. According to Lockheed Martin, the UFCS is an evolutionary block upgrade that enhances the existing MLRS Fire Control System and enables the use of Guided Multiple Launch Rocket System (GMLRS) munitions that incorporate anti-jamming technology.

In a first for the Forging Sabre series, the army’s HIMARS operated in the same battlespace with the RSAF’s Heron 1 UAVs, exploiting the latter’s persistent surveillance as well as laser targeting capabilities for greater effects.
While China’s shadow continues to loom large over most of the 25 states in Asia, many of the region’s military have pinned their colours to the USA mast. Leading air forces in Australia, Japan, Singapore, South Korea, Republic of Korea (Taiwan) and increasingly, India continue to build their capabilities, allied with the United States. Their inventories are dominated by US built aircraft, allowing interoperability between the nations. Working with the Washington government allows these countries a lot of military support, particularly useful during tense times. China’s expansion is enduring, but North Korea emerged during 2017 as the biggest threat to peace in the region, if not globally through its threat of intercontinental nuclear armed missiles.

Firing 15 ballistic missiles, has meant that the North Korea’s Dictator, Kim Jongun has hardly been out of the news. His actions have sparked an outrage throughout the world, with Japan, South Korea and the USA being among the most vocal. Japan is alarmed at seeing these missiles fly through their air space, while South Korea is extremely concerned at a pre-emptive strike. The fact that several were inter-continental ballistic missiles (ICBMs) is particularly worrying to the US Government, because as the latest launch (at time of press) on November 28, of a Hwasong-15 missile showed, it has an extremely long range. Jong-Un even boasted during his New Year speech that North Korea could now hit the mainland USA, and that he always had the nuclear-button on his desk. Experts believe that Hwasong-15 has a range of more than 8,000 miles (13,000kms) placing the continental USA within striking reach. While Japan and South Korea have been cautious with their rhetoric, to ensure the tension with the North Korean dictator does not spiral out of control, the same cannot be said of the USA. President Donald Trump has been outspoken in terms of rhetoric (and tweets) in his criticism of the Pyongyang Government and has deployed Rockwell B-1, Boeing B-52 bombers and assorted fighters and aircraft carriers to the region as a show of strength. Russia and China are also being dragged into the war of words over North Korea, as both sides

China’s role as main protagonist involved in raising tension in the Asia-Pacific region has been overshadowed by North Korean leader Kim Jong-Un’s deadly game of (verbal, for now) brinkmanship with American President Donald Trump. Yet China continues to expand its military reach, largely unchecked.

by Alan Warnes
continue, allegedly, to break sanctions.

North Korea and China are now posing a real conundrum to the likes of Japan. In a press briefing on December 3, Japan’s Defence Minister Itsunori Onodera summed up the current situation facing his country, as well as others in the region: “Looking back at the past year, I have the sense that the current security environment is severer than when I became defense minister the first time three years ago. Since last year, North Korea has conducted three nuclear tests, including an explosion with the largest-ever maximum force that is estimated to be 10 times as powerful as the force of a Hiroshima-type bomb, and launched as many as 40 ballistic missiles, including ones which flew over Japan or which had an ICBM-class long range. North Korea’s nuclear and missile development is posing a more serious and imminent threat than ever, a new level of threat to Japan’s security.”

“Meanwhile, China is bolstering its non-transparent military build-up, and it is also continuing attempts to unilaterally change the status quo in the maritime areas and airspace over the East and South China Seas by force, based on its own arguments that are in conflict with the existing international order.

“Furthermore, global security challenges are becoming more and more wide-ranging and diverse, as indicated by the proliferation of weapons of mass destruction, the deepening problem of international terrorism, and the emergence of challenges in new fields such as cyber-space and outer space. It is not too much to say that the current security environment surrounding Japan, as I understand it, is the severest in the post-war period. The MOD will continue to deal with this harsh reality head on and fulfill the most important responsibility of the government, which is to protect the Japanese people’s lives and peaceful living, by developing full preparedness to appropriately respond to changes in the security environment.”

According to some reports, the Japanese MOD has been studying the possibility of deploying Lockheed Martin F-35s to its two Izumo flat-top helicopter destroyers. The vessel can carry up to 14 helicopters, but they do not have a catapult or a ski-jump, so a lot of modification work would be required.

However, the Japanese Defence Minister has stated that under the country’s strictly defence-oriented policy, Japan cannot possess ‘attack aircraft carriers,’ saying that they are among what can be deemed as offensive weapons exceeding the minimum necessary capacity for self-defence.

Japan plans to purchase 42 conventional take-off and landing F-35As for the Japanese Air Self-Defense Force (JASDF), but the Defense Ministry has considered acquiring short-take-off and landing (STOVL) F-35Bs as part of any purchase, purchase, or buying some F-35Bs in addition to 42 F-35As.

Deploying fighters to the two flat-tops could trigger a backlash from China and other neighbouring countries, because they could perceive it as contradicting Japan’s so-called “exclusively defense-oriented policy” under the country’s pacifist constitution. Chinese bombers are also regularly intercepted by Japanese air defence fighters, with the most recent stand-off coming on November 20 when four Xian H-6 bombers flew through international air space in the East China Sea. At the time, the US and Japan were involved in a joint exercise, which isn’t uncommon, as are US and South Korea manoeuvres. All three allies regularly test their military’s state of readiness. One of the most obvious moves by South Korea to resist any attack from North Korea has been the deployment of US Army Terminal High-Altitude Area Defence (THAAD) which is designed to shoot down missiles in the terminal phase of their approach to a target. In early September, the latest system was deployed to Seongju, 200 miles (300kms) south of the capital Seoul.

Tensions over North Korea has meant that China’s assertiveness in the South China Sea has slipped from the headlines. During 2017, the Beijing Government has continued to build up its presence having dredged up 2,000 acres of new land in the Spratley Islands, creating seven new islands with three new airfields. The most advanced facility, on Fiery Cross Reef which was the most obvious move by South Korea to resist any attack from North Korea has been the deployment of US Army Terminal High-Altitude Area Defence (THAAD) which is designed to shoot down missiles in the terminal phase of their approach to a target. In early September, the latest system was deployed to Seongju, 200 miles (300kms) south of the capital Seoul.

Tensions over North Korea has meant that China’s assertiveness in the South China Sea has slipped from the headlines. During 2017, the Beijing Government has continued to build up its presence having dredged up 2,000 acres of new land in the Spratley Islands, creating seven new islands with three new airfields. The most advanced facility, on Fiery Cross Reef which has an airstrip which can handle military aircraft, has seen 27 acres of new construction. According to the US Government’s latest National Security Strategy released just before Christmas, the new construction includes underground bunkers, hangars and shelters for missile emplacements.

The document also signals that the US considers the Indo-Pacific region as the most strategically important geographical area, ahead of the Middle East which has dominated previous US administrations strategic thinking.

AFGHANISTAN

AFGHAN AIR FORCE

19+6 on order

EMB-314 (A-29) Super Tucano ground attack aircraft. One aircraft lost during training on March 6, 2017 while operating from Moody AFB, Georgia. Six more aircraft were ordered on October 25, 2017. Cessna 208B Caravan, transport. One aircraft lost on Octo-ber 12, 2015 and another damaged on October 3, 2017.

4 Lockheed Martin C-130H Hercules

9 Mil Mi-17-V5 medium-lift utility helicopter

16 Mi-24/25 attack helicopter

27 SA-315B Cheetah light attack helicopter

Airbus KC-30A multi-role tanker transport (FOC) in December 2012.

4 + 8 on order

McDonnell Douglas/Boeing F/A-18A Hornet, multi-role combat aircraft.

First one delivered in November 2016 and the rest are following at a rate of one every four months. An order for more air-craft was announced in April 2017.

16 Lockheed Martin AP-3C Orion maritime patrol aircraft.

To be replaced by the P-8A Poseidon, with retirement due in 2019.

Boeing C-17 Globemaster III strategic turbofan freighter.

Lockheed Martin C-130J Hercules turboprop freighter. To undergo capability upgrades.

Airbus KC-30A multi-role tanker transport. Two A330-200s were ordered in mid-2015, to be upgraded to MRTT at Air-bus’ Getafe facility. One was delivered in August 2017 and second will be delivered in early-2018. The latter will be fitted with a partial VIP interior. The Australian
government predicts a need for two more KC-30s in the second half of next decade.

2 accepted 72 planned
Lockheed Martin F-35A Lightning-II multi-role combat air-craft. Australia has committed to acquire 72 F-35A conventional take-off and landing aircraft at a cost of more than $12bn to replace RAAF’s aging F/A-18A/B Hornet fleet (see above). The Australian Government approved a $2.5 billion procurement of 14 F-35A Lightning II on 25 November, 2009. The first two aircraft are now at Luke AFB, Arizona where they are being used for aircrew training. 100 F-35A’s were originally planned. First deliveries to Australia expected in December 2018.

16 Hawker Beechcraft King Air 300/350 turboprop transport. Five Beech 300s have been obtained via a lease contract for training and support.

61 Pilatus PC-9A, turboprop training aircraft. Four converted for FAC training platforms.

8 + 2 under conversion
Alenia Aermacchi C-27J Spartan turboprop freighter. The Australian Defence Minister announced the purchase of ten C-27J Spartans in May 2012. All ten have now been delivered to L3 at Waco, Texas where they are fitted with the RAAF’s preferred self protection system.

33 BAE Systems Hawk 127 lead in jet trainer. Capability up-grade underway.

6 Boeing E-7A Wedgetail (737-700) AEW&C (Airborne Early Warning and Control)

2 Boeing 737 BBJ turbofan transport leased from industry.

3 Bombardier Challenger 604
2 of 49 delivered
PC-21 turboprop trainer. Will replace PC-9/A for fixed wing training run by industry.

Up to 5
Gulfstream G550 SR&EW. During June 2017 it was announced that the RAAF was to acquire five highly modified Gulfstream G550 under a $US1.3bn deal that will see them delivered in the early 2020s. Waco-based L3 will modernise the green airframes. They are being acquired under Project AIR 555 and will be assigned to the RAAF Surveillance and Response Group based at RAAF Edinburgh.

Up to 7
MQ-4C Triton Unmanned Aerial Vehicle (UAV). If purchase sanctioned deliveries will start in early 2020s.

ROYAL AUSTRALIAN NAVY

1 Dash 8-Q202 is a uniquely configured aircraft operated under contract of the RAN’s Laser Airborne Depth Sounder Flight for coastal survey duties.

23 Sikorsky MH-60R Seahawk maritime support helicopter. Selected in June 2011 and all delivered between 2014-16. One of the aircraft suffered significant damage during bad weather while deployed aboard HMAS Warramunga on 20 October, 2017 and maybe beyond repair.

7 Airbus Helicopters AS-350BA Squirrel light utility helicopter.

4 NH Industries MRH-90 maritime support helicopter. Rotat-ed with Army aircraft.

ROYAL AUSTRALIAN ARMY AVIATION CORPS

10 Bell Helicopter 206B-1 Kiowa multipurpose utility helicopter. Used mainly for helicopter flying training. Will be increasingly withdrawn from use now EC135T2s delivered.

6+10 Boeing CH-47D/F heavy-lift helicopter. Seven CH-47F were delivered in 2015 and a further three in a separate Dec 2015 contract in 2016. With no dedicated CSAR capability, the Australian Defence Force will upgrade the Chinooks to improve their ability to conduct medevac. In the longer-term, options will be investigated to enable CSAR tasks to be carried out much faster and at long range.

22 Airbus Helicopters Tiger EC-665 ARH. The Feb 2016 White Paper, revealed that from the mid-2020s, the Tigers will be replaced with a new armed reconnaissance capability. This could involve either manned or unmanned systems, or a combination of both.

35 Sikorsky SA-70A Black Hawks/1H-60L medium-lift utility helicopter. Were originally going to be retired during 2011-13, however with delays to the NH90s and the CSAR configuration not yet finalised, this has now been extended to 2021. Eighteen equip the 6th Aviation Regiment at Hobbs-worthy on the western outskirts of Sydney and two others at the Oakey Army Aviation Centre.

41 NH Industries NH90 medium-lift utility helicopter. Total of 45 MRH-90s on order, including four for the Royal Australian Navy, to replace the retired AgustaWestland Sea King Mk-50.

Airbus EC135T2 training helicopter. Shared with Navy under the Australian Defence Force (ADF) Helicopter Aircrew Training System (HATS). Last six were handed over on 22 November, 2016.

ROYAL AUSTRALIAN NAVY

15 Airbus EC135T2 training helicopter. Shared with Navy under the Australian Defence Force (ADF) Helicopter Aircrew Training System (HATS). Last six were handed over on 22 November, 2016.

18 RQ-7B Shadow 200. Four systems comprising 18 aircraft

BANGLADESH

BANGLADESH AIR FORCE

6/2 MiG-29SE/UB MRCA. The Russian Aircraft Corporation announced the beginning of negotiations with the Bangla-desh government for the upgrade of the current MiG-29 fleet to MiG-29MT status in April 2013.

48 Chengdu F-7 MRCA. 13 F-7BG and four FT-/BG received in 2006. 12 F-7BG along with four FT-7BG were received in 2013 as replacement of the Nanchang A-5C ground-attack aircraft fleet which were retired in November 2014. Approximately eight F-7MBs and seven FT-7MBs survive.

7 Aero L-39ZA Albatros lead-in jet trainer. Total of eight delivered, one aircraft crashed in 2012.

3 Antonov AN-32 turboprop freighter. The aircraft are being upgraded with the first one returning in late-2017.

4+4 planned
Lockheed Martin C-130B/E Hercules turboprop freighter. Bangladesh Air Force was negotiating the acquisition of four C-130Es but its unclear what happened to deal. Its increasingly likely that two ex-RAF C-130Js will be sold to the BAF.
BRING A MISSILE TO A GUNFIGHT

With long-range, high definition imagery and class-leading precision laser designation in a compact package, the Star SAFIRE 380-HLDc can turn almost any light attack helo into a stand-off shooter.

www.flir.com/380HLDc
2	AgustaWestland AW119Kx training helicopter in service from November 2017.
2	AgustaWestland AW-139 maritime support helicopter. Inducted Dec 6, 2015. For maritime and SAR roles.
3	Bell Helicopter 206 light utility helicopter
9	Bell Helicopter 212 medium-lift utility helicopter
27	13 Mi-17-1 and 4 Mi-17 medium-lift utility helicopter
16	Mi-171Sh transport helicopter. Original 13 delivered in 1998, followed by another four and orders for another five for UN service.
30	Nanchang CJ-6/FT-6 primary training aircraft. A batch of 16 believed to have been delivered in 2016 augment survivors of original 40.
15	Yakovlev Yak-130 advanced jet trainer/light attack aircraft. All 16 were delivered in 2016. One aircraft crashed on July 11, 2017.
9	Hongdu K-8 lead-in jet trainer. First four arrived 27 September 2014.

BANGLADESH ARMY

1. C295W tactical transport. ADS announced order in November 2016 and aircraft was delivered in November 2017.
2. Cessna 208B turboprop transport
3. Airspeeders AS365N3+ medium-lift utility helicopter
4. Bell 206L utility helicopters. Special Forces.

BANGLADESH NAVY

2+2 on order
- Dornier Do 228 NC maritime patrol aircraft, delivered June 2013. A further two aircraft were ordered during October 2017.
- AgustaWestland AW-109E Power maritime support helicopter
- Harbin Z-9 medium-lift utility helicopter

BRUNEI

There is little coverage of the Royal Brunei Air Force, but aside from regular sightings of the large VIP Flight, which comprises two Boeing 747s, an Airbus A340 and a Boeing 767, the following is believed to be correct.

- Royal Brunei Air Force
 - Airbus CN-235M-110 tactical airlifter
 - Pilatus PC-7 Turbo Trainer turboprop trainer
 - Airbus Helicopters BO-105CB light utility helicopter
 - Sikorsky S-70i medium-lift utility helicopter. Twelve S-70is delivered from 2011 onwards. Original four S-70As delivered to Malaysia.
 - Bell Helicopter 206B JetRanger light utility helicopter

CAMBODIA

ROYAL CAMBODIAN AIR FORCE

- Aero L-39C Albatros lead-in jet trainer but all are believed to be withdrawn from use.
- Xian MA-60, turboprop transport
- Harbin Y-12 turboprop transport
- Tecnam P92 Echo. Six aircraft were delivered in 1994, but only two are believed to be current.
- Airbus Helicopters AS-355 Squirrel light utility helicopter
- Airbus A320-214(CJ)
- Mil Mi-8 medium-lift utility helicopter
- Mil Mi-17 medium-lift utility helicopter. Overhauled by AIROD in 2013/14

CHINA

PEOPLE’S LIBERATION ARMY AIR FORCE

130 - Xian H-6 strategic bomber
388 - Chengdu J-7 air superiority fighter
96 - Shenyang J-8 air superiority fighter
300+ - Chengdu J-10A/J05/B MRCA
300+ - Shenyang J-11A/B. Chinese built 4.5-generation MRCA. The J-11A is based on the Sukhoi Su-27 MRCA, while the J-11B is an upgraded Chinese variant.
72 - Xian JH-7 MRCA
118 - Nanchang Q-5 ground attack aircraft
19 - Ilyushin Il-76/KJ2000 airborne early warning and control
9 - Xian MA-60 turboprop transport
11 - Tupolev Tu-154 turbopan, including eight passen-ger Tu-154M and three reconnaissance variants
61 - Shaanxi Y-8 turboprop transport
7 - Shaanxi Y-8/KJ200 airborne early warning and control
NEW RUSSIAN AIRCRAFT

Su-35

www.uaacrussia.ru
office@uaacrussia.ru
PEOPLE’S LIBERATION ARMY GROUND FORCE

7 Xian Y-7 turboprop freighter
8 Shaanxi Y-8 turboprop freighter
22+20 ordered Mil Mi-8/17/171 medium-lift utility helicopter
52 Mil Mi-17E medium lift helicopter. Last four delivered Ju-ly 2014.
20 Sikorsky S-70 medium-lift utility helicopter
53 Changhe Z-8 heavy-lift helicopter
70 Harbin Z-9 medium-lift utility helicopter
121 Changhe Z-10 attack helicopter
120 Changhe Z-19 attack helicopter
46 Changhe Z-11 light utility helicopter
1 Airbus Helicopters AS-350 light utility helicopter
150 Airbus Helicopters EC-120 light utility helicopter

PEOPLE’S LIBERATION ARMY NAVAL (PLAN) AIR FORCE

14 Xian H-6 strategic bomber
30 Xian Y-7 turboprop freighter
16 Shaanxi Y-8/KJ-200 airborne early warning and control
3 Shaanxi Y-8 maritime patrol aircraft
14 Shaanxi Y-8 reconnaissance aircraft
18 Chengdu J-7 air superiority fighter
47 Shenyang J-8 air superiority fighter
6 Chengdu J-10 MRCA
34 Xian JH-7 MRCA
240+72 outstanding
27+50 planned Sukhoi Su-30/33 MRCA
51 Dassault Mirage 2000H/TH MRCA.
4 Xian J-10 MRCA
14 Xian H-6D attack helicopter
9 Xian Y-8/KJ-200 medium-lift utility helicopter
27 Changhe Z-8 search and rescue helicopter
28 Harbin Z-9 medium-lift utility helicopter
5 Changhe Z-18 medium-lift utility helicopter
14 Shenyang J-16 lead-in jet trainer
11 Hongdu JL-8 (K-8) lead-in jet trainer/light attack aircraft
8 Mil Mi-8 medium-lift utility helicopter
6 Airbus Helicopter AS-365 medium-lift utility helicopter
1 Kamov Ka-27 marine support helicopter
5 Xian Y-7 turboprop freighter

NOTES: The Shenyang J-31 Gyrfalcon is one of China’s two prototype fifth-generation MRCA, along with the Chengdu J-20, and is currently under development by Shenyang Air-craft Corporation. The second J-31 prototype flew in late December 2016. CATIC believe it has a strong chance of domestic sales to the PLAAF and PLANAF. The J-31 has the potential to become a variant for China’s air force and navy. While the export market is also a distinct possibility with Pakistan, the Democratic People’s Republic of Korea and Iran being potential customers. A further possibility is the development of two different versions of the aircraft: China may, in fact, sell a variant abroad under its ‘F-60’ designation, while maintaining a fleet of domestic J-31s for the People’s Liberation Army Air Force.

INDIA

INDIAN AIR FORCE

36 on order Dassault Rafale MMRA. A firm contract for the purchase of 36 Dassault Rafales was signed on 23 September, 2016. The order will comprise 28 single-seat and eight twin-seat aircraft. The first aircraft is scheduled for delivery within 36 months of contract signature, with the remainder to follow within 60 months. The estimated total cost of the deal is around $9.3 billion, including weapons and equipment. Part of the acquisition also includes five years of performance based logistics (PBL). The aircraft are expected to be based at Ambala and Hasimara air bases. Indian defence officials said the terms of the contract include a requirement that France must ensure that 75 percent of the fleet (27 aircraft) are operational at any one time. There is also a penalty clause for late deliveries. Although details of the weapons being ordered have not been announced, they are expected to include the MBDA Meteor BVRAAM, Mica short and medium range air to air missile and Scalp stand-off cruise missile.

Sukhoi Su-30/30MKI MRCA. The IAF has ordered 312 Su-30MKIs, the first 50 were delivered by Russia, while 262 have been either built or are being built at HAL Nasik. Seven have been lost. They are based at Bareilly (8 Sqn and 24 Sqn), Bhatinda (17 Sqn), Chabua (102 Sqn), Halwara (220 and 221 Sqn), Jodhpur (31 Sqn), Pune-Lohegaon (20 Sqn and 30 Sqn), Biju (15 Sqn), Tezpur (2 Sqn), Gwalior (TACDE), Sirsa (21 Sqn). Meanwhile, Irkutsk which is the Su-30 OEM has proposed major upgrades to the Su-30MKIs, with reports that the IAF is looking at an initial batch of 80 Super Sukhois, in a contract worth up to $8 billion. MiG-29B/UPG MRCA. Fifteen aircraft lost to crashes between 1994 and 2013. To be upgraded to MiG-29UPG status.

Dassault Mirage 2000H/TH MRCA. Of the aircraft acquired, ten have been lost to crashes. The current fleet of 51 aircraft is currently being upgraded to Mirage 2000-5 MLH standard known locally as the Mirage 2000H Vajra. The process is to be completed within a ten-year time frame by HAL Bangalore. The first upgraded Mirage 2000H/TH un-dervent its maiden flight in October 2013. The first two aircraft, Mirage 2000I KF107 and 2000TI KT201, were delivered to Jamnagar Air Force Station on 22 April, 2015, after a ferry flight from Istres, France. They were delivered to the TACDE (Tactical Development and Evaluation) at Gwalior two days later. MiG-21 Bis/Bisons/M/MF MRCA. To be phased out by 2019. Fifteen aircraft were involved in crashes in the past three years. 110 upgraded MiG-21 Bisons are likely to fly until 2025. MiG-27ML MRCA.
Rosoboronexport is the sole state company in Russia authorized to export the full range of defense and dual-use products, technologies and services. Rosoboronexport accounts for over 85% of Russia’s annual arms sales and maintains military-technical cooperation with over 70 countries worldwide.
Regional Air Forces Directory

Russia. Delays mean requirement reduction from 220 to 130-145 aircraft. Dropped requirement for 45-50 twin-seat FGFA.

| 5 plus another |
| 35 on order |

HAL Tejas Light Combat Aircraft (LCA). The supersonic aircraft received the Initial Operational Clearance in December 2013. To date Hindustan Aeronautics Ltd (HAL) at Bangalore has built 16 Tejas light combat aircraft comprising: two technology demonstrators (TD-1/2), three single-seat prototype vehicles (PV-1/2/3), a dual seat prototype vehicle (PV-5), seven Limited Series Production (LSP-1/2/3/4/5/6/7), dual seat Naval Prototype (NP-1) and single seat NP-2. The Indian Air Force has 40 Tejas Mark 1s on order, in two batches of 20 with deliveries of the first batch of 20 delivered ‘before 2019’. A further 83 MK1As are being built for the IAF, which will feature enhanced indigenous self-projection electronic warfare system and AESA radar. The first two examples SP-01 and SP-02 were handed over to 45 Sqn on 1 July, 2016. They will operate from Bangalore for nearly two years before moving to their permanent base at Sulur, near Coimbatore in Tamil Nadu. It is planned to have total complement of six Tejas squadrons by 2022. However, with HAL currently only having the capability to produce eight Tejas per year, it must double production to meet this requirement.

The naval version of Tejas, has an arrestor hook installed for aircraft carrier deck operations. A modification to the control surface in the wing apex, will allow the pilot to reduce the approach speed for carrier landings, when deflect-ed up. The first navy prototype NP-1 made its maiden flight on 27 April, 2012 followed by NP-2 on 7 February, 2015. However the project was cancelled in December 2016 because it was too heavy for carrier ops.

| 100 |
| SEPECAT Jaguar IM/5 MRCA |
| 3 |
| Gulfstream Aerospace G-IV SRA-4 turboprop transport |
| 17 |
| Ilyushin Il-76MD strategic turboprop freighter |
| 3+2 planned |
| Beriev A-50Ehl airborne early warning and control |
| 7 |
| Ilyushin Il-78 tanker |
| 10+1 replacement |
| Boeing C-17A Globemaster-III strategic airlifter |
| Lockheed Martin C-130J Hercules turboprop freighter. Lost a C-130J on 28 March, 2014 and \[...\] |
| 49 |
| 2 |
| 3 |
| Gulfstream G100 reconnaissance aircraft |
| 2 |
| 6 planned |
| Ilyushin Il-78 tanker |
| 10 |
| F5+ planned |
| Airbus C295W turboprop airlifter. At a meeting of India’s Defence Acquisition Council (DAC) on 13 May, 2015, approval was granted for the proposal to purchase 56 C295W aircraft, to replace the IAF’s Avro HS748 fleet. If the contract which was still being negotiated in mid-2017 is successfully concluded, the C295Ws will be produced jointly by Airbus Defence & Space (ADS) in conjunction with local partner, Tata Advanced Systems Ltd (TASL), which will establish an indigenous assembly line. The first 14 aircraft will then be manufactured by ADS at its premises in Seville, Spain, after which the remaining 42 will be produced locally in India by TASL. The Border Security Force (BSF) is also expected to order four which will push the contract up to 60 aircraft. |
| 56 planned |

Antonov An-32 turboprop freighter. Upgrade of the aircraft under a contract signed on 15 June, 2009 is continuing. An initial 40 were worked on in Ukraine, while a further 64 An-52s are undergoing similar upgrade work in-country at the IAF’s No 1 Base Repair Depot at Kanpur-Chakeri Air Force Station. Completion will see all 104 surviving IAF An-32s modified to An-32RERs. BAE Systems/Hawker-Siddeley HS 748-100 turboprop transport. To be replaced by C295W – see above.

Boeing 707 reconnaissance aircraft

Boeing 777 VIP transports. The 777-300ERs will be used for long-range international flights. These dedicated aircraft will replace the current system, which involves requisitioning Air India Boeing 747s as required for such VIP flights.

Embraer EMB-145 airborne early warning and control

Gulfstream G100 reconnaissance aircraft

Airbus A330 MRTT multi-role tanker transport. On January 7, 2013, the military announced that the IAF had selected the A330MRTT as its preferred option to meet the IAF’s requirement for six new tanker aircraft. However the tender was then withdrawn in August 2016.

Airbus A330 AWACS. India’s Defence Acquisition Council (DAC) gave approval on March 28, 2015 for development of a next generation airborne warning and control system (AWACS) aircraft that will be based on the Airbus A330 airframe. It calls for the production of an initial two aircraft, fitted with an indigenously-designed active electronically scanned array (AEWA) radar that will give 360° coverage. The development programme, led by India’s Defence Re-search and Development Organisation (DRDO), has been allocated $817.85 million and is eventually planned to produce four more of these aircraft for the Indian Air Force. It is expected to be between five and seven years before the first two are ready for delivery with the remaining four ordered about half-way through the project, according to India media reports. However, its likely that deal has been put on hold after Airbus withdrew its A330MRTT tender in August 2016.

Dornier Do 228-201/202 turboprop transport

Bombardier Global 5000 special mission aircraft. Took delivery of the second of its two Global 5000 in February 2015. They are operated by the Aviation Research Centre (ARC), which is part of India’s external intelligence agency, the Research and Analysis Wing, under the control of the Cabinet Secretariat.

SEPECAT Jaguar T lead-in jet trainer

BAE Systems Hawk 132 lead-in jet trainer. BAE Systems Hawk 132s are being produced under licence in India by HAL, following manufacture of an initial batch of 24 in the UK, the first of the latter being delivered in November 2007. They were followed by a batch of 42 HAL-assembled Hawks, the first of which was handed over on August 14, 2008, with the last being delivered in 2012. There have been three losses to date – April 30, 2008, June 3, 2015 and August 4, 2016. A further contract was signed in July 2010 for an additional 40 Hawks for the IAF, of which HAL should deliver all 40 by 2017. A further 20 have been ordered to equip the ‘Surya Kiran’ aerobatic team. HAL signed a MoU with BAE Systems UK, announced on May 26, 2015 for upgrade of the Indian Air Force (IAF) Hawk Mk 132s, plus development of a combat Hawk for both the
IAF and export markets. In addition, the HAL announcement on May 26 stated that the MoU also covers maintenance solutions for supporting the Indian Hawk and Jaguar fleets.

22 on order
Boeing AH-64E attack helicopter. Contract signed on Sept 28, 2015 and deliveries will continue after 36 months, completed after 48.

15 on order
Boeing CH-47F heavy-lift helicopter. Contract signed on Sept 28, 2015 and deliveries will continue after 36 months, completed after 48.

80
Hindustan Aeronautics HJT-16 Kiran basic trainer

12 ordered but canx
Hindustan Aeronautics HJT-36 sitara intermediate trainer. Project terminated in March 2017 after three limited series production (LSP) and two prototypes. One of the latter was destroyed and the other damaged.

75
Pilatus PC-7 Mk II turboprop trainer. The last was handed over on November 10, 2015.

74
Hindustan Aeronautics Dhruv ALH light utility helicopter

65 ordered
Hindustan Aeronautics LCH attack helicopter. To date four technology demonstrators have flown.

2 prototypes
Hindustan Aeronautics Light Utility Helicopter.

1
Mil Mi-26 heavy-lift helicopter

22+34 ordered
Mil Mi-8/Mi-17 medium-lift utility helicopter. One Mi-17V5 crashed June 2013.

20+
Mil Mi-35P Hind-E attack helicopter

14+1
Airbus Helicopters SA-315 light utility helicopter

74
Airbus Helicopters SA-316/319 light utility helicopter

194
Pipistrel Virus SW80 advanced microlight aircraft. The manufacturer announced on 12 October, 2015 that it would supply the carbon fibre two seat aircraft to the Indian Air Force (IAF), Indian Navy (IN) and National Cadet Corps (NCC). The contract specifies that all 194 aircraft must be delivered within a period of 30 months after the first aircraft arrived. As it will be used for training of Flight Safety and Air Wing Cadets, for additional safety Pipistrel has equipped it with a special Ballistic Parachute Rescue System which saves the entire aircraft and both pilots in the case of accident. The aircraft also have several other safety-enhancing features, such as energy attenuation seats and a Kevlar-reinforced cockpit cell.

INDIAN ARMY AVIATION

73+22 ordered
Hindustan Aeronautics Dhruv ALH light utility helicopter. Five have been lost, while a contract for an additional 22 was place in September 2017.

20
HAL Cheetal. A contract for 20 was signed on 22 February, 2013.

100+
Airbus Helicopters SA-315 Cheetah light utility helicopter

32+18 on order
HAL Rudra (armed Dhruv). An additional 18 were ordered in September 2017.

200
Kamov Ka-226T sergel light utility helicopter. India and Russia finalised a joint venture agreement on 15 October, 2016 for the manufacture of 200 Kamov Ka-226T helicopters for the Indian Army and Indian Air Force. The first 40 helicopters will be procured ‘off-the-shelf’ from Russian Helicopters’ Kumerua Aviation Production Enterprise. The remaining 160 will be produced locally by HAL over a period of eight-to-ten years under the ‘Make in India’ initiative.

INDIAN NAVAL AIR ARM

45
MiG-29K/KUB MRCA

17
BAE Systems Hawk 132 lead-in jet trainer. A contract was signed in July 2010 for 17 Hawks for the Indian Navy, with all expected to be delivered in 2017.

8+4 ordered
Boeing P-8I maritime patrol aircraft. Eight delivered and four more ordered on 1 July, 2016.

8+ 4 ordered
Sukhoi Su-27/30MK/MK2/Su-35 MRCA. The final two of six Su-30MKs ordered in 2011 were delivered in September 2013. The TNI-AU plans to acquire eight Su-35 to replace its F-5s.

16+8 planned
General Dynamics/Lockheed Martin F-16A/B
23 Indonesia formally requested to buy 19 second hand F-16C and five F-16D Block-25 MRCA from the United States in 2011. The last six were delivered by the end of 2017. One of the F-16Cs had an accident in April 2016 and is believed to be a write-off.

23 BAE Systems Hawk 209 lead-in jet trainer. At least eight lost.

3 Boeing 737 Surveiller maritime patrol aircraft.

4 Obsolete and desperate need of replacement.

12 Boeing 737 VIP aircraft

24 Lockheed Martin C-130B/H, and L-100 turboprop freighters. A separate transfer contract for an additional five C-130Js was signed with Australia on 26 July 2013.

2 Airbus CN-235 maritime patrol aircraft

9+7 ordered

5+27 planned

4+27 on order

1 Airbus/PTDI C-295

2 Airbus/PTDI C-295 turboprop freighter

Airbus and PT Dirgantara Indonesia have signed an agreement (part of the contract signed in October 2011) to jointly manufacture and launch an upgraded variant of the C-212-400. The aircraft will be equipped with new digital avionics and autopilot systems and will feature 28 seats.

1 Lockheed Martin KC-130B tanker

12 Airbus Helicopters EC-120 light utility helicopter

6 Airbus H225M CSAR. The helicopters handed over in November 2016 are in combat search and rescue configuration. They are the first of six of the type ordered for the TNI-AU under a contract signed in 2013. They are armed with FN Herstal Minimi 7.62 Mk 3.76 x 51mm calibre machine guns, pintle-mounted in the cabin doorways. The cockpit is armour-plated for crew protection, while the helicopters as-so have weather radar and a forward-looking infrared (FLIR) turret under the nose. Emergency flotation gear is also fitted.

7 Airbus Helicopters BO-105 light utility helicopter. SAR - Boeing CN-235 turboprop freighter, 10+7 ordered, 5+27 planned, 14*7 on order

14 KAI KT-1B trainer/light attack aircraft. Three have been lost.

15 Korea Aerospace Industries T-50 lead-in jet trainer. $400 million contract signed in May 2011. This aircraft replaced the BAE Systems Hawk Mk 53s.

15 One has been lost.

7 BAE Systems Hawk 109 lead-in jet trainer

26 Grob G120TP trainer aircraft. Order placed in September 2011. Aircraft replaced the Hawk.

16 Airbus/PTDI Helicopters NAS-332 medium-lift utility helicopter. 14 search-and-rescue/transport, two for VIP use.

6 Airbus EC 725. First was handed over in mid-2014

3 Airbus NAS332 VIP built in France

6 Airbus Helicopters SA-330J light utility helicopter

6 Soloy Bell 47G light training helicopter. Five are also stored.

5 Cessna 172/182

6 DG Flugzeugbau 1001 motorised glider

INDEFINITE ARMY

8 ordered

Boeing AH-64E Apache attack helicopter. On 26th January 2015 the US DoD announced the award of an FMS contract to Boeing, for the manufacture of 8 AH-64E Apache Guardian attack helicopters for Indonesia. The $295 million deal has an estimated completion date of 28 February 2018. First examples undergoing flight testing in the US during May 2017.

6 Airbus Helicopters AS555 Fennec 2

Airbus Helicopters AS550C3 Fennec light utility helicopter

Airbus EC 120 Colibri training helicopter

PTDI NC-212 turboprop freighter

Bell Helicopter 412 medium-lift utility helicopter. Ten Bell Helicopter 412 enhanced performance rotorcraft ordered under a $65 million purchase contract in March 2012 and received in March 2013.

Bell Helicopter 205 medium-lift utility helicopter

Airbus Helicopters BO-105 light utility helicopter

Mii Mi-8/17 medium-lift utility helicopter. One lost to crash in November 2013.

Mi-35P attack helicopter

Schweizer 369/TH-300C light utility helicopter

INDONESIAN NAVY

4+7 on order

Airbus AS565MB Panther maritime support helicopter. 11 ordered on 23 November, 2016. First two were delivered to PTDI in March 2017, for fitting with ASW and sonar system. They were due to be delivered in mid-2017.

Airbus/PTDI C-212 turboprop freighter

Airbus/PTDI C-212 maritime patrol aircraft

CN235MPA maritime patrol aircraft

Bell Helicopter 412EP/SP maritime support helicopter

Airbus Helicopters BO-105 maritime support helicopter

Airbus Helicopters EC-120 maritime support helicopter

Beech Bonanza G36 turbo prop training aircraft. Delivered in two batches of four.

Beech G38 Baron. In service from December 2015

Socata TB-10 Tobago GT training aircraft. Replaced by G-367.

Socata TB-9 Tampico training aircraft. Replaced by G-367.

JAPAN AIR SELF DEFENCE FORCE

64/21 Mitsubishi F-2A/B MRCA

74 McDonnell Douglas/Boeing F/EF/RF-4EJ multirole com-bat aircraft. Being phased out to be replaced by existing Boeing F-15DJ/Js and new Lockheed Martin F-35As Light-ning-II (see below)

MRCA.

Lockheed Martin F-35A Lightning-II MRCA. The Japan MOD announced on June 29, 2012 that it had signed an initial LOA (Letter of Offer & Acceptance), for four aircraft, with the Japanese Ministry of Defence stating that the cost of each F-35A amounts to approximately $128 million.

The total requirement for the type currently is for 42 aircraft. The initial $40.2 million advance-acquisition contract for the first four JASDF aircraft was awarded to Lockheed Martin Corp. (via the US Naval Air Systems Command) on 25 March, 2013, which accounts for the long lead-time parts, materials and components required to commence construction. Following assembly of the first four (AX-1 to AX-4) in the US, the remaining 38 will be assembled at Nagoya in Japan by Mitsubishi Heavy Industries. Mating of the major components of the first of the latter, AX-5, began at Nagoya on 15 December, 2015. The first US-built aircraft, AX-1 was completed and rolled out of the paint shop at Fort Worth on 15 August, 2016. It was flown to Luke AFB, Arizona on 29 November, 2016 and is being

NOTES: The Indonesian Air Force plans to focus on the introduction of new MRCA and the implementation of new training programmes for its pilots. After the delivery of the final two Russian-made Sukhoi Su-30MKII, part of an order for six aircraft, in September 2013, Indo-nesia intends to create eight new fast jet squadrons by 2024, each consisting of 16 aircraft.
used along with another three (AX-2 to AX-4) that have subsequently been delivered.

156/45 McDonnell Douglas/Boeing F-15J/DJ MRCA 12 have been lost.

4 Boeing E-767 airborne early warning and control on order

26 Hawker-Siddeley/BAE Systems 125 search and rescue aircraft

3 Hawker-Siddeley/BAE Systems 125 ILS calibration

13 Northrop Grumman E-2C airborne early warning and control

4 (1 ordered, 3 planned) Northrop Grumman E-2D airborne early warning and control. On June 1, 2015 the DSCA notified US Congress of the possible sale to Japan of four E-2D Advanced Hawkeye AEW&C aircraft, plus associated equipment, spares & logistical support. The overall sale will be a reported $1.7 billion. On 12 November, 2015, Northrop Grumman was awarded an $151.3 million contract for the first JASDF E-2D, with contract close-out date in March 2018. The first aircraft flew on 13 November, 2017.

14 Lockheed Martin C-130H turboprop freighter

2 Lockheed Martin KC-130H air to air refueller

25 Kawasaki C-1A tactical transport aircraft

1 Kawasaki EC-1 reconnaissance aircraft

5+6 on order

Kawasaki C-2 turbofan freighter

5 Gulfstream IV U-4 transport aircraft

10 Nihon Aircraft YS-11/YS-11 reconnaissance aircraft

? Cessna 680 Citation Sovereign. ‘Some’ ordered to take over from YS-11 for flight checking.

1 Lockheed Martin KC-130H tanker

4 Boeing KC-767 tanker

1 on order

13 Hawker Beechcraft T-400 turboprop transport

14 Mitsubishi F-2B MRCA

45 Boeing F-15DJ MRCA

49 Fuji T-7 primary trainer

199 Kawasaki T-4 intermediate trainer

16 Boeing CH-47A heavy-lift helicopter

33+40 ordered

Sikorsky S-70/1UH-60J medium-lift utility helicopter. On December 8, 2010 Sikorsky announced that Mitsubishi Heavy Industries’ proposal to build an additional 40 ‘new generation’ UH-60J helicopters had been accepted, with deliveries taking place over the next 20 years. Deliveries are underway.

3 RQ-4B Global Hawk. Deliveries are expected to be completed by 27 July, 2018.

JAPAN GROUND SELF DEFENCE FORCE

130 Bell Helicopter UH-1H/J medium-lift utility helicopter

31/34 Boeing CH-47J/1A heavy-lift helicopter

105 MD Helicopters MD-500 reconnaissance helicopter

69 Bell Helicopter AH-1S attack helicopter

13 Boeing AH-64DJ attack helicopter

80? Kawasaki OH-1 reconnaissance aircraft.

112 on order

Kawasaki OH-6D scout helicopter.

7 Hawker Beechcraft King Air 350 turboprop transport

4 Mitsubishi MU-2 turboprop transport

40 Sikorsky UH-60A medium-lift utility helicopter

30 Enstrom TH-480 light utility helicopter

3 Airbus EC225LP Super Puma Mk II VIP

5+4 (all on order)

Airbus H225 Osprey tilt-rotor transport helicopter. An FMS contract, for an initial buy of 5 MV-22 Ospreys, valued at $332 million, was lodged with the Bell-Boeing Joint Project Office, on 14 July, 2015. The contract constitutes the first FMS sale of the Osprey and is for the Block C version known in the US as the MV-22. It was followed up on 19 July, 2016 by a further contract valued at $545 million for an additional four aircraft. It comes after the US Congress agreed a sale for 17 MV-22Bs in April 2015.

JAPAN MARITIME SELF DEFENCE FORCE

83 Lockheed Martin P-3C/OP-3C/UP-3C/UP-3D Orion maritime patrol aircraft

2 Kawasaki XP-1 maritime patrol aircraft. The first prototype was handed-over to the Japanese Ministry of Defence on 29th August 2008 to continue its programme of test flights. The second prototype performed its maiden flight on 19th June 2008. The aircraft will both be reconfigured, one to become a standard, operational P-1 & the other to utility-specification UP-1.

11 (+ 60 planned)

Kawasaki P-1 maritime patrol aircraft. An order for four production aircraft was announced on 31st August 2007, with a further announcement in November 2010 that ten would be procured over the next five years. The aircraft is the long-term replacement for the JMSDF’s P-3C Orions, with an in-service date originally scheduled for 2011. The total requirement could be as high as 80. Included in the number in the 13 operational aircraft is a UP-1 converted from a prototype.

ShinMaywa US-1A search and rescue helicopter

1 NAMC YS-11 turboprop transport

4 Learjet 36 reconnaissance aircraft

4 Lockheed EP-3E Aries SIGINT aircraft

186 Sikorsky SH-60J/K maritime support helicopter

136 Airbus Helicopters EC-135/TH-135 maritime support heli-copter. Last one delivered in December 2015.

Sikorsky MH-53E maritime support helicopter

8 MD Helicopters MD-500 reconnaissance helicopter

20/1 Hawker Beechcraft King Air 90 (TC-90/UC-90) turboprop transport. On 30 October, 2016 Japan and Philippines finalised an agreement under which five TC-90s will be transferred to the Philippines Navy in the maritime patrol.

Fuji T-5 primary trainer

Lockheed C-130R Hercules transport aircraft. Ex US Navy LC-130Rs converted at Hill AFB, Utah. They were delivered between November 2015 - 9 July, 2016.

4 MDHI OH-6DA scout helicopter

■ NOTES: Despite its record as one of Asia’s most technologically advanced air forces, the Japan Air Self Defence Force (JASDF) is now facing the technological improvement of China’s People’s Liberation Army Air Force (PLAAF). The advanced MRCA that China is developing represent a significant challenge to Japan. Japan’s answer to the Chengdu J-20 MRCA came in December 2011, when it selected the Lockheed F-35A Lightning-II over the Boeing F/A-18E/F and Eurofighter Typhoon MRCA.

LAOS

■ LAO PEOPLE’S LIBERATION ARMY AIR FORCE

4 Xian MA60 turboprop transport

2 Airbus EC155B

1 Kamov Ka-32T Helix-C.

12 Mi-171V1/5 Hip medium lift utility helicopter

3 Shijazhuang Aircraft Le 500 Eaglet

6 Harbin Y-12 turbopop transport/transport aircraft

7 Sukhoi Su-30MKM MRCA

MALAYSIA

■ ROYAL MALAYSIAN AIR FORCE

18 Sukhoi Su-30MKM MRCA
12 retired

Mig-29N MRCA. RMAF continues to look at Eurofighter Typhoon, Dassault Rafale-B/C/M, Boeing F/A-18E/F/Super Hornet, Saab JAS-39C/D/E Gripen and Sukhoi Su-35 MRCA to fulfil this requirement but unlikely to be a contract award for several years.

8 Boeing F/A-18D MRCA

12 BAe Systems Hawk 208 lead-in jet trainer

1 Northrop Grumman F-5E/F MRCA

1 Northrop Grumman RF-5E reconnaissance aircraft

4 Airbus A400M strategic turboprop transport aircraft.

5 Lockheed Martin KC-130H tanker

4 Hawker Beechcraft King Air 200 maritime patrol aircraft

9 Lockheed Martin C-130H turboprop transport

6/1 Airbus CN-235 turboprop freighter/VIP aircraft

6/8 Alenia Aermacchi MB-339AM/CM trainer/light attack aircraft

6 BAe Systems Hawk 108 lead-in jet trainer

33 Pilatus PC-7 turboprop trainer. In service from January 1985, gradually being phased out and now in store.

21 Pilatus PC-7/PC-7 Mk II turboprop trainer

10 Sikorsky S-61 Nuri medium-lift utility helicopter

4 Sikorsky S-70 medium lift ex Royal Brunei Air Force

2 AS61N Sea King medium lift VIP helicopter

10 MD3-160 AeroTiga training aircraft

8 Airbus Helicopters SA-316 light utility helicopter

1 Bombardier Global Express VIP aircraft

1 Falcon 900 VIP aircraft

9 Cessna 402 utility/training aircraft

■ NOTES: The search for an maritime patrol aircraft continues, and despite the lessons learnt from the loss of MH370 in March 2014, the Malaysian Government doesn’t seem to be in any rush to make a decision. Both the Royal Australian Air Force and Japanese Maritime Self-Defence Force has offered surplus P-3C Orions.

ROYAL MALAYSIAN NAVY

6 AgustaWestland AW-109 light utility helicopter

6 AgustaWestland Super Lynx 300 maritime support helicopter

6 Airbus Helicopters AS555S5 Fennec maritime support helicopter

NEW ZEALAND

■ ROYAL NEW ZEALAND AIR FORCE

6 Lockheed Martin P-3K2 maritime patrol aircraft. The RNZAF is now looking at replacements now, with the US State Department Boeing P-8 Poseidon approving a possible sale of four valued at $1.46bn. Japan has also offered the Kawasaki P-1.

8 Boeing 757-200 turbopas transport

6 AgustaWestland AW-109 light utility helicopter.

4 Hawker Beechcraft King Air 200 turboprop transport

3 Lockheed Martin C-130H turboprop freighter

9 NH Industries NH-90 medium-lift utility helicopter

8 Bell Helicopter UH-1H medium-lift utility helicopter

11 Hawker Beechcraft T-6C Texan II training aircraft

ROYAL NEW ZEALAND NAVY

10 Kaman SH-2G maritime support helicopter. The decision to buy ten ex-Australian SH-2G Super Seasprites was announced on 19 April 2013. Eight of the new aircraft will replace the five existing SH-2G.

DEMOCRATIC PEOPLE’S REPUBLIC OF KOREA

■ KOREAN PEOPLE’S ARMY AIR FORCE

20+ MIG-29 MRCA

56 MIG-23 MRCA

50? MIG-21 MRCA

106 Shenyang F-5 MRCA

97 Shenyang F-6 MRCA

120 Chengdu F-7 interceptor aircraft

80 Harbin H-5 medium bomber

36/4 Sukhoi Su-25K/UB MRCA

1 Antonov An-24 turboprop freighter

20 Mil Mi-24 attack helicopter

4 Mil Mi-26 heavy-lift helicopter

8 Mil Mi-14 maritime support helicopter

84 MD Helicopters MD500 light utility helicopter

46 Mil Mi-2 light utility helicopter

40 Mil Mi-8 light utility helicopter

1007 Shenyang FT-5 trainer aircraft

307 Nanchang CJ-6 training aircraft

2 Tu-134B airliner

3 Tu-54B airliner

2 Tu-204 airliner

PAKISTAN

■ PAKISTAN AIR FORCE

100 of 112 on contract

Chengdu JF-17 Thunder MRCA. All current aircraft are Block-1. The next 50 JF-17 will be Block-II and the third 50, Block III. A total of 150 aircraft are planned to be re-engined. All will eventually be upgraded to Block 3. The Block 1s are being upgraded to Block 2s. An additional 12 Block 2s were ordered in early 2017.

General Dynamics/Lockheed Martin F-16A/B MRCA, comprising 58 Block-A/B and 18 Block-C/D.

Dassault Mirage-IIIIEP/OF/RP MRCA. Expected

ROYAL MALAYSIAN ARMY

2 of 12 S-61A Nuri medium lift helicopter. A batch of 12 Nuris are being transferred from the Royal Malaysia Air Force, with the first two examples officially accepted into service on 20 March, 2015. All 12 will are being subjected to an upgrade before delivery, to resolve obsolescence issues, including replacement of old analogue instruments with a new glass cockpit. Although they had been in TUDM service since 1967, these elderly helicopters have only accumulated an average of 14,000 flight hours each and the Army says that they will be good for another 15 years of service. The Nuris are also being fitted with door-mounted 12.7mm guns to provide support for ground troops.

76

50
to remain in service until 2017. Dassault Mirage-5EF/F/PA MRCA. The fleet will be replaced with the Chengdu JF-17 by 2017 (see above).

12 Dassault Mirage-IIIIBE/D/DP MRCA
2 Dassault Mirage-5DPA MRCA
8 Chengdu FT-7 combat/trainer aircraft
36 Chengdu F-7P
35 Chengdu F-7PG MRCA.
39 Hongdu K-8 Karakorum light attack/lead-in jet trainer
2 Dassault Falcon 20/200 reconnaissance aircraft
3/1 Saab 2000 AEW&C aircraft, plus a utility aircraft.
4 Saab S-90 Y-8/ZDK-03 transport/airborne early warning and control
4 Ilyushin II-78 tanker
3/1 Airbus CN-235 turboprop freighter/VIP
16 Lockheed Martin C-130B/E and L-100 turboprop freighter
6 Mil Mi-8/171 medium-lift utility helicopter
10 Airbus Helicopters SA-316 light utility helicopter
8 Leonardo AW139. Deliveries commenced in mid-2017
10 Aerospatiale SE-3160 light utility helicopter
40 Cessna T-37B/C trainer aircraft. Recently acquired a batch from Turkish Air Force
40 MFI-17 Super Mushshak primary trainer/comms aircraft. Four have been upgraded with glass cockpit, unsure how many on contract.

PakISTAN ARmY

48 Bell Helicopter AH-1F attack helicopter
12 Bell AH-1Z. An initial three were delivered in 2017 and an other nine will follow in 2018.
19 Bell Helicopter 206 medium-lift utility helicopter
45 Bell Helicopter 412 medium-lift utility helicopter.
45 Mil Mi-8 and Mil-171 medium-lift utility helicopter
8 Bell Helicopter UH-1H medium-lift utility helicopter
14 Airbus Helicopters SA-315 light utility helicopter
10 Airbus Helicopters SA-316 light utility helicopter
31 Airbus Helicopters SA-330 medium-lift utility helicopter
22 Airbus Helicopters AS-550 U2 medium-lift utility helicopter
30 Schweizer 260/TH-300 training helicopter
1 Citation Bravo turboprop transport
4 Hawker Beechcraft King Air 350 turboprop transport
4 Harbin Y-12 turboprop transport
100 MFI-17 Mushshak training aircraft

PakISTAN NAVY

6 Lockheed Martin P-3C maritime patrol aircraft. Two new aircraft delivered in February 2012 following the attack by armed militants on the Mehran Naval Airbase, southern Pakistan in May 2011. Two upgraded P-3C were destroyed on that occasion and two additional aircraft were delivered in February 2012.
7 Airbus Helicopters SA-316 maritime support helicopter
6 AgustaWestland Sea King 45 maritime support helicopter. All upgraded with Selex Seaspray 7300 radar
6 Harbin Z-9EC medium-lift utility helicopter
6 ATR 42 utility aircraft

PHILIPPINES

PHILIPPINE AIR FORCE

12 Korean Aerospace Industries (KAI) FA-50F/P lead in fighter trainer/light attack. Of the 12 ordered, two were delivered by end of 2015, two on December 1, 2016 and the remaining eight arrived in May 2017. A-29 Super Tucano. An order was announced on 30 November, 2017 for six aircraft that will be used in the air support, light attack, surveillance, air to air interception and counter-insurgency. They will be delivered from 2019 and operated by the 15th Strike Wing.

North American Aviation OV-10 light attack turboprop
Lockheed Martin C-130H/B turboprop transport
Lockheed Martin C-130T turboprop transport. Ex USMC first delivered April 5, 2016 and second, 9 October, 2016
Airbus C295M turboprop transport. Delivered between March-December 2015
Fokker F-27 turboprop transport
Fokker F-28 Fellowship VIP transport
GAF Nomad 22 turboprop transport
Cessna 208 Grand Caravan EX light transport aircraft con-verted into ISR aircraft. In service from July 2017.
Cessna R172 utility aircraft operated by weather unit
Cessna T41 training aircraft. 15 ex ROKAF aircraft were delivered in 2008/09
SIAI-Marchetti S.211 trainer aircraft
AgustaWestland AW-109AH Power light utility helicopter. Contract signed in November 2013 and first two officially inducted into service on 17 August, 2013. They are being used to support of homeland security, in armed reconnaissance & close support tasks, for which they are fitted with a pair of 0.50in calibre machine guns and rocket launchers. The value of the acquisition package, which also includes initial training for aircrew & technicians, was declared at $56.4 million.
Airbus Helicopters AS550 medium-lift utility helicopter
PLZ W-3 Sol light utility helicopter. Two lost.
MD Helicopters MD-520MG light utility helicopter. Lost 11 and around seven are stored.
Sikorsky S-76A/ AUh-76A medium-lift utility helicopter. 5 lost
Bell Helicopter UH-1H medium-lift utility helicopter. 33 are beyond economical repair, 25 recoverable but need a budget for repair, 21 are operational. Bidding for 21 refurb-bished ex German Air Force / Army UH-1H helicopters failed for the third time in September 2013 as it fell short of requirements. Nine were eventually delivered before the contract was terminated. One was lost on 4 June, 2017. Four have been converted to Huey II standard.
PHILIPPINE NAVY AVIATION

5
Britten Norman BN-2 maritime patrol aircraft. Will be replaced by King Airs.
2+3 on order
Beech TC-90 King Air. In service from March 2017, final three are due for delivery in March 2018
6/10
Cessna 172F/N/177B/A152
?
Airbus Helicopters BO-105 light utility helicopter
4
AgustaWestland AW-109E Power maritime support helicopter.
18
AW159 Wildcat. After the Philippine Navy selected the AW159 Lynx Wildcat as its preferred option for two new anti-submarine warfare (ASW) helicopters, on March 17, 2014 the Department of National Defence (DND) confirmed that $120.479 million had been approved for the acquisition. A formal contract was finally signed on 29 March, 2016, with deliveries scheduled to take place in 2018.

5

PHILIPPINE ARMY AVIATION

4/2
Cessna 172/206
6+2 on order

SINGAPORE

40
Boeing F-15SG MRCA. Declared combat-ready by Singapore Defence Minister in September 2013.
Lockheed Martin F-16C/D MRCA. Aircraft due for upgrade. Lockheed Martin was awarded a $914 million Foreign Military Sales contract by the US Air Force on 1 December, 2015 to upgrade RSAF F-16s. The work will be carried out at the company’s plant in Fort Worth, Texas, where it is expected to be completed by 30 June, 2023. Plans for modernising the RSAF’s 60 F-16C/D Block 52s had first been revealed publicly by Defence Minister Ng Eng Hen in response to a question in parliament in September 2013. A subsequent announcement by the Singapore Ministry of Defence on 30 June, 2015 said a $27 million deal exercising four options on a previous contract to upgrade Republic of Singapore Air Force aircraft. No details of the work were revealed, but it is expected to be complete by 30 June, 2023. The work will include a new AN/APG-83 active electronically scanned array radar, together with more capable precision weapons, including the Laser Joint Direct Attack Munition (Laser JDAM) and new advanced air-to-air weapons. A datalink capability and advanced helmet-mounted display will also be included. It was also stated that the modernisation will commence in 2016 and be carried out in phases. On 23 November, another announcement saw Lockheed Martin awarded an additional contract worth $27 million after the RSAF exercised four options of which no details were given.
Boeing CH-47D/SD heavy-lift helicopter
Boeing CH-47F Chinook heavy-lift helicopter.
Order announced on 7 November, 2016 but no numbers disclosed they will replace CH-47SD
Airbus Helicopters AS332M1 Super Puma medium lift/SAR
Airbus AS532UL medium-lift utility helicopter
Airbus H225M Caracal medium-lift utility helicopter. Order announced on 7 November, 2016 but no numbers dis-closed they will replace AS332/AS532
Boeing AH-64D attack helicopter
Airbus Helicopters H120 Colibri light utility helicopter. All are owned by ST Aero, but are used for training by RSAF under a performance based logistics support programme.
Sikorsky S-70B maritime support helicopter.
Operated from Singapore Navy frigates. The two on order will be delivered in early 2018.
Fokker F-50 MPA maritime patrol aircraft and UTA utility transport (4)
Gulfstream G550 CAEW airborne early warning and control
Lockheed Martin C-130H turboprop transport
Lockheed Martin KC-130B/H tanker
Boeing KC-135R tanker
Alenia Aermacchi M346 lead-in jet trainer. Deliveries completed in September 2014 and 150 Squadron activated, based at Cazaux Air Base near Bordeaux
Pilatus PC-21 turboprop transport
Airbus A330MRTT multi role tanker transport aircraft. On 6 March, 2014 MinDef announced that the A330 MRTT had been selected over the Boeing KC-46 Pegasus, although gave no details of the quantity involved, nor a timescale for conclusion of the contract details, or deliveries. On 7 March, 2014 it was officially confirmed by Airbus Military that the RSAF has ordered six aircraft, to replace the four existing KC-135R Stratotankers in the aerial refuelling role. The first aircraft, Airbus A330-243 emerged from the conversion line at Getafe, near Madrid, Spain, after completion and was noted performing its first test flight on 30 September, 2016. This aircraft is the first to incorporate a number of enhancements introduced on the basic A330 as well as upgraded military systems as part of Airbus Defence and Space’s continuous product improvement programme. The new
Republic of Korea Air Force (ROKAF) KF-16 fleet. Life Cycle Management Center to upgrade the contract on 18 November, by the US Air Force fixed-price-incentive-fee Foreign Military Sales Lockheed Martin was awarded a $1.2 billion is a requirement for 60 F-35As. Deliveries for 10 aircraft will begin in 2018. There is a requirement for 60 F-35As.

Korea Aerospace Industries FA-50 MRCA. The new FA-50s will replace the Northrop Grumman F-5E/F MRCA fleet which will be retired by 2019.

Lockheed Martin F-35A Lightning-II MRCA. Deliveries for 10 aircraft will begin in 2018. There is a requirement for 60 F-35As.

McDonnell Douglas/Boeing F-4E MRCA
Northrop Grumman K/F-5E MRCA
Northrop Grumman K/F-5F MRCA
Lockheed Martin K/F-16C/D MRCA.

Lockheed Martin was awarded a $1.2 billion fixed-price-incentive-fee Foreign Military Sales contract on 18 November, by the US Air Force Life Cycle Management Center to upgrade the Republic of Korea Air Force (ROKAF) KF-16 fleet. Work will be undertaken in Fort Worth, Texas, with contract completion expected by 15 November, 2025. The brief announcement by the US Department of Defense gave no further details. However, the Defense Security Cooperation Agency revealed more on the upgrade when it notified Congress of the planned deal on 14 July, 2015. It will involve all 134 ROKAF KF-16C/D Block 52 aircraft and is valued in total at an estimated $2.5 billion including weapons, associated equipment and logistical support. It will include the Northrop Grumman AN/APG-83 scalable agile beam radar (SABR).

Lockheed Martin F-16C/D. Deliveries commenced in 1986 prior to the KF-16 kits supplied to Samsung (now KAI).

Korea Aerospace Industries FTA-50 lead-in jet trainer: Boeing 737 airborne early warning and control Airbus A330MRTT multi role tanker transport aircraft. South Korea’s Defense Acquisition Program Administration (DAPA) announced on 30 June, 2015, that the A330 MRTT had been selected to meet the country’s KC-X requirement for four air refuelling tanker aircraft. The first aircraft which flew from Toulouse to Getafe for MRTT conversion in May 2017 is expected to be delivered in 2018 and the last before the end of 2019. On 16 November, 2016 the US State Department granted a possible Foreign Military Sale to the Republic of Korea, for AN/AAQ-24(V) Large Air-craft Infrared Countermeasures (LAIRCM) systems, equipment, training and support, at an estimated cost of $411 million. Which will be integrated into the A330MRTTs. Dassault Falcon 2000S SIGINT reconnaissance aircraft Northrop Grumman RQ-4B Global Hawk. On 4 November, 2013 the Republic of Korea’s Defence Acquisition Programme Administration (DAPA) confirmed that plans to adopt Global Hawks in 2017 had been formalised, with the signing of a contract for 4 air vehicles, plus associated equipment & logistical support, anticipated to take place during early 2014. This was duly completed when an order was placed with Northrop Grumman on 16 December, 2014, for manufacture of the four aircraft. Hawker-Siddley BAE Systems 125-800RA/-800SIG SIGINT reconnaissance aircraft The four -800SIGs are configured for ISR and SIGINT tasks, under Lockheed Martin ‘Peace Krypton’ programme. Lockheed Martin C-130H turboprop transport aircraft Lockheed Martin C-130J turboprop transport aircraft Airbus/PTDI CN-235 turboprop transport aircraft including four Coast Guard KAI KC-100 T-103 piston-engine basic trainer Airbus Helicopters AS332 medium-lift utility helicopter Two lost Bell Helicopter 412 medium-lift utility helicopter Boeing HH-47D heavy-lift helicopter Five operated by Army Kamov Ka-32 maritime support helicopter MD Helicopters MD500 light utility helicopter Sikorsky S-70/HH/USH-60 medium-lift utility helicopter Sikorsky VH-60P VIP medium lift helicopter Sikorsky VCH-92. Used for Presidential and VIP transport Korea Aerospace Industries KT-1 basic trainer aircraft Korea Aerospace Industries KA-1 light attack aircraft Korea Aerospace Industries KT-100. Development is underway for the training aircraft which will replace the Ilyushin T-103s. First aircraft flew on 5 October, 2015. Ilyushin T-103 training aircraft. 1 lost Korea Aerospace Industries T-50/B/TA-50 lead-in jet trainer Antonov An-2. Used for special operations. Two lost.
REPUBLIC OF KOREA ARMY

60+ Bell Helicopter AH-1F/S attack helicopter
36 Boeing AH-64E attack helicopter. On 17 April, 2013 it was officially announced, by Korea’s Defense Acquisition Program Administration (DAPA), that the AH-64E Guardian had been selected to meet the requirement for new attack helicopters, beating off competition from Bell’s AH-1Z Vi-per & TAI’s T-129 ATAK. Although no details were disclosed regarding the number of Guardians being acquired, the $1.790 billion deal is confirmed to account for 36 examples. On 23 August, 2013, Boeing was awarded a production contract for these helicopters. After being shipped by sea, the first four were unloaded at the port of Busan on 25 May, 2016. All are now believed to have been delivered.

12 Airbus Helicopters/KAI BO-105 light utility helicopter
35? Boeing CH-47D/SD heavy-lift helicopter
180 MD Helicopters MD500 light utility helicopter
60 Bell Helicopter UH-1H medium-lift utility helicopter
130+ Sikorsky S-70/5/UH-60L/P medium-lift utility helicopter
70+ Korea Aerospace Industries Surion KUH/1 medium-lift util-ity helicopter. Requirement for 245.

214 on order Airbus Helicopters H155. Airbus Helicopters signed a contract on March 16, 2015 in Seoul with Korea Aerospace Industries (KAI) for the development and production of 214 military Light Armed Helicopters (LAH) and around 100 Light Civil Helicopters (LCH). Both designs will be based on the Airbus Helicopters H155, the new designation for the EC135B1 Dauphin. Initial helicopters will be produced at the manufacturer’s production site in Marignane, France, before final assembly shifts to KAI’s factory in Sacheon. A joint venture will also be created to tap the export market for both types, for which Airbus Helicopters estimates potential sales of up to 600.

REPUBLIC OF KOREA NAVY

16 Lockheed Martin P-3C/CK maritime patrol aircraft
5 Reims F406 Caravan II turboprop utility transport
23 AgustaWestland Lynx 99/99A maritime support helicopter. Two lost
8 Sikorsky UH-60P maritime support helicopter. One lost.
4 Bell Helicopter UH-1H maritime support helicopter
8 AgustaWestland AW159 maritime support helicopter. Purchased in a $560 million deal that saw the four AW-159s inducted on 29 July, 2016. Final four were delivered in November 2016 and commissioned on 5 July, 2017.

REPUBLIC OF KOREA MARINE CORPS

30 ordered Korea Aerospace Industries Surion KUH/1. The Marines contracted KAI/ Airbus for supply of 30 KUH-1Ms in December 2016.

NOTES: The RoK hopes to leap into the rank of major arms exporters as a result of its ongoing Korea Fighter Experimental (KFX) programme. The programme, which is to be led by the RoK’s largest aircraft manufacturer Korea Aerospace Industries (KAI), focuses on the development of an advanced fifth-generation multi-role combat aircraft for the Republic of Korea Air Force (RoAF) and the Indonesian Air Force (TNI-AU). Facing the threat from the Democratic People’s Republic of Korea and the strategic situation involving China and Japan, the RoK has developed its own initiatives to respond to the urgent need to replace obsolete plat-forms in its fleet of MRCA. The country has also announced its intentions to purchase 60 Lockheed Martin F-35A Lightning-II MRCA fifth-generation fighters under the FX-III pro-gramme, with a contract for ten already signed. First deliveries should occur in 2018.

SRI LANKA

SRI LANKAN AIR FORCE

6 Israel Aerospace Industries Kfir C2/7/(T)/C2 MRCA. Only one airworthy in mid 2016.
8 Chengdu F-7BS/CS/FT-7 MRCA. None airworthy in mid-2016.
2 Shenyang FT-5 jet trainer. Both aircraft are now stored.
6 MiG-27M MRCA. None airworthy in mid-2016.
1 MiG-23UB MRCA. Not airworthy in mid-2016.
2 Hawker Beechcraft King Air 200 maritime patrol aircraft
2 Lockheed Martin C-130K turboprop freighter
4 Antonov An-32 turboprop freighter. Six lost.
7/2 Harbin Y-12-II IV turboprop transport
4 Xian MA60 turboprop transport. Operated by Helitours, the commercial arm of the SLAF.
4 Bell Helicopter 206 medium-lift utility helicopter
13 Bell Helicopter 212/412 medium-lift utility helicopter
4 Mil Mi-17 medium-lift utility helicopter. Seven lost.
18 Mil Mi-171 medium lift helicopter. Includes four civilian operated by Helitours
9 Mil Mi-24/35 attack helicopter. Most believed to be grounded mid-2016
7 Hongdu K-8 lead-in jet trainer/light attack aircraft
4 Cessna 150 utility aircraft. Used for primary training.
1 Cessna 421C Golden Eagle. Used for survey work.
8 Nanchang FT-6 training aircraft

TAIWAN

REPUBLIC OF CHINA AIR FORCE

115/27 Lockheed Martin F-16A/B MRCA Taiwan is the launch customer for the new F-16V variant from Lockheed Martin. The company has won a contract worth $1.85 billion to upgrade its fleet of 144 Block 20 F-16A/Bs to the F-16V status. This will include Northrop Grumman’s Scalable Agile Beam Radar (SABR) as well as enhancements to mission computers, vehicle systems, aircraft structure, cockpit and electronic warfare systems. On 22 November, 2016 Lockheed Martin was awarded a $12.3 billion contract for developmental support equipment for the ROCAF F-16s. The contractor will provide equipment required for reliability, performance, and sustainability for 144 Taiwan F-16s. The company also will provide
specialized familiarization on the use of integrated ground software to support F-16 aircraft maintenance and accident investigations. Work is expected to be complete by 31 May, 2022. In August 2013, Taiwan became the 20th customer of the Sniper Air Targeting Pod, which will be fitted to the F-16s.

- **47** Dassault Mirage 2000-5EI MRCA
- **9** Dassault Mirage 2000-5DI MRCA
- **35+** Northrop Grumman F/RF-5E MRCA
- **102** Aerospace Industrial Development Corporation F-CK-1A MRCA
- **19** Lockheed Martin C-130H turboprop freighter
- **1** Lockheed Martin C-130HE ELINT aircraft
- **12** Lockheed Martin P-3C Maritime Patrol Aircraft (MPA). The first of twelve refurbished P-3C MPA was delivered to Taiwan in September 2013. The last of these aircraft was delivered by end of 2015.
- **6** Northrop Grumman E-2K airborne early warning and control

3+17 requirement

- **Airbus Helicopters H225 medium-lift utility helicopter**
- **16** Sikorsky S-70/1/7 MD Helicopters MD500MD/ASW maritime support helicopter
- **45** Aerospace Industrial Development Corporation AT-3A/B trainer aircraft
- **25** Aerospace Industrial Development Corporation F-CK-1B MRCA
- **36** Northrop Grumman F-5F LIFT
- **19** Beechcraft T-34C trainer aircraft
- **8** Boeing 737-800 VIP passenger aircraft
- **3** Fokker 50 turboprop transport aircraft

REPUBLIC OF CHINA ARMY

- **60** Bell Helicopter AH-1W attack helicopter
- **29** Boeing AH-64E attack helicopter. First six helicopters received in November 2013, part of a 30-aircraft contract signed in June 2011. One crashed April 2014.
- **8** Boeing CH-47SD heavy-lift helicopter
- **38** Bell Helicopter OH-58D reconnaissance helicopter
- **50** Bell Helicopter UH-1H medium-lift utility helicopter
- **20+34 ordered** Sikorsky UH-60M medium-lift utility helicopter. Order for additional 26 announced in November 2013. Deliveries ongoing.
- **29** TH-67A Creek training helicopter

REPUBLIC OF CHINA NAVY

- **1/7** MD Helicopters MD500MD/ASW maritime support helicopter
- **18** Sikorsky S-70C(M) -1/2 maritime support helicopter

THAILAND

- **ROYAL THAI AIR FORCE**
 - **8/3** Northrop Grumman F-5E/F MRCA
 - **37/15** General Dynamics/Lockheed Martin F-16A/B MRCA. On 29 September, 2010 the DSCA notified US Congress as to the possible sale to Thailand of a six year, three phase programme of upgrades to 18 existing F-16A/B aircraft. The MLU with Modular Mission Computer upgrade will include APG-68(V)9 Radar, APX-113 Combined Interrogator and Transponder, ALQ-213 Electronic Warfare Management System, ALE-47 Countermeasures Dispenser System, plus associated spares, tools, training & logistics support. At an estimated cost of $700 million. The first aircraft to be inducted into the MLU programme, was an F-16A Block 15 that had been delivered new in 1995, was accepted during a ceremony at Thai Aviation Industries (TAI) on 13 November, 2012. The work has now been completed.
 - **Dassault/Dornier Alpha Jet**
 - **Saab JAS-39C/D Gripen MRCA. Initial batch delivered in February 2011 and the last three fighters were received in September 2013. The aircraft replaced half of Royal Thai Air Force's existing Northrop Grumman F-5B/E MRCA fleet.
 - **Diamond DA42/MPP training/reconnaissance aircraft**
 - **19** Dassault/Dornier Alpha Jet
 - **8/4** Saab JAS-39C/D Gripen MRCA. Initial batch delivered in February 2011 and the last three fighters were received in September 2013. The aircraft replaced half of Royal Thai Air Force's existing Northrop Grumman F-5B/E MRCA fleet.
 - **4 Diamond DA42NG Twin Star training aircraft. In service from May 2017.**
 - **2 Saab 340 AEW&C airborne early warning and transport**
 - **3 Saab 340B training/transport aircraft**
 - **7 Basler BT-67 turboprop transport aircraft. One lost and two have accidents but were rebuilt.**
 - **21 Pilatus PC-9 turboprop trainer**
 - **1 Leajet 35A special mission aircraft. Now stored.**
 - **1 A319CJ VIP transport aircraft**
 - **1 B737-800 VIP transport aircraft**
 - **1 A320-214 Prestige. On June 25, 2013 the Thai Cabinet approved funding, to the value of $102 million for the acquisition of a new VIPV-specification Airbus ACJ320 aircraft, with an additional $582,000 also allocated for the cost of a new hangar in which to house it.**
 - **1 A340-541 Airbus VIP transport aircraft**
 - **3 Sukhoi Superjet 100 VIP transport aircraft.**

- **ROYAL THAI ARMY**
 - **2 Airbus C-212 turboprop transport aircraft**
Airbus C295W turboprop transport aircraft
Embraer ERJ 135LR
Hawker Beechcraft King Air 200 turboprop transport
Bell AH-1F/G attack helicopter
Bell 206 medium-lift utility helicopter
Bell 212 medium-lift utility helicopter
Bell 412EP medium lift helicopter
Mil Mi-17 medium-lift utility helicopter
Sikorsky UH-60M medium-lift utility helicopter. Three S-70A medium-lift utility helicopter (based on the UH-60L) were delivered to Thailand in September 2014
Sikorsky S-70A-43/UH-60L Black Hawk
AgustaWestland AW-139 medium-lift utility helicopter. Order announced in October 2012 and were delivered in Dec 2013 and Jan 2014.
Announcement by Finmeccanica on 7 October, 2015 that eight more had been ordered. They were built on the Philadelphia production line with deliveries taking place between December 2015 and October 2016.
AgustaWestland AW149 medium lift helicopter. Up to 12 thought to be on order.
Bell Helicopter UH-1H medium-lift utility helicopter
Airbus Helicopters EC725. First order deliveries from 2012 start in 2015, second batch start in 2017
Airbus Helicopters H125M Fennec medium-lift utility helicopter
Airbus helicopters H145M. On 23 February, 2015 Airbus Helicopters announced that the RTA had recently signed a contract for the acquisition of 6 examples. The EC 145T2s will be supplied in a VIP passenger configuration, to meet the RTA’s Light Utility Helicopter Type II requirement & be used primarily on official passenger transport duties. Deliveries took place between November 2016 – April 2017.
Airbus Helicopters UH-72A medium-lift utility helicopter. Formally requested by Thailand in June 2013. Deal includes communication equipment, spare and repair parts, support equipment, technical documentation and training. The estimated cost for the operation is $77 million. On 26 September 2014 the DSCA gave notification of a potential follow-up contract, for a further 9 Lakotas. The RTA’s first attrition loss of the type occurred on 14 August 2016, when one crashed on a mountain peak, killing all five on board.
Enstrom 480 light utility helicopter
Schweizer 269/TH-300 light utility helicopter
Jetstream 41 VIP passenger aircraft
Cessna U-17B Skywagon
Maule MX-2-235 training aircraft
Beech 1900C-1 VIP passenger aircraft
Dornier Do 228 maritime patrol aircraft
Embraer ERJ135LR
MOD NAE NAX. A batch of 4 locally-built light, amphibious aircraft has been acquired, with 4 delivered by 2013.
Cessna T337 Super Skymaster
Lockheed Martin P-3F maritime patrol aircraft
Fokker F-27 maritime patrol aircraft. Upgraded
With Selex Soopray 7000 radar

1 Canadair/Bombardier CL-215 fire-fighting amphibious aircraft
6/3 Bell Helicopter 212/214 maritime support helicopter
5 Sikorsky S-76B search and rescue
6/2 Sikorsky S-70B/MH-60S maritime support helicopter
2 AgustaWestland Super Lynx 110 maritime support helicopter
5 Eurocopter EC-635 T2 utility helicopter. Deliveries accepted into service in 2016.

VIETNAM

VIETNAMESE AIR FORCE
40 MiG-21bis MRCA
6/5 Sukhoi Su-27SK/UBK MRCA
35 Sukhoi 30MK2V MRCA. Contract announced in August 2013. Aircraft delivered in 2014-2015 timeframe. The first loss of the type occurred on June 14, 2016, when the aircraft crashed into the sea. Both pilots ejected and one was rescued the next day but the other was never found.
25 Sukhoi Su-22 MRCA
3 Airbus C295M transport aircraft. The first example was handed-over to the VPAF on 17 October, 2014, but retained at the Airbus DS facility in Seville, for crew training, with delivery to Vietnam taking place in early December 2014. The second C295M departed Seville on 5 March, 2015, to undertake its delivery flight to Vietnam, whilst it is also thought that the third aircraft has been delivered.

VIETNAMESE NAVY
3/3 Viking Air DHC-6-400/Guardian 400 Twin otter turboprop transport. Agreement for six aircraft signed in May 2010. First DHC-6 arrived in Vietnam in October 2013. The three Guardian 400s are being utilised for transport, resupply, maritime surveillance & SAR operations throughout Vietnam’s coastal regions.
2 Airbus Helicopters EC-225 medium-lift utility helicopter
3/1 Kamov Ka-28/32 maritime support helicopter

VIETNAMESE COAST GUARD
3 CASA 212-400 Aviocar. Two ex-Swedish Coast Guard aircraft, and a third brand new NC 212 built by PTDI in Bandung, Indonesia. All fitted with the Swedish Space corporation (SSC) MSS6000 maritime surveillance system.

Antonov An-26 turboprop transport
1 PZL M28MPW Skystar maritime patrol aircraft.
One lost.
30? Mil Mi-8/17 medium-lift utility helicopter
3 Mil Mi-172 VIP/transport medium lift utility helicopter
4 Mil Mi-171 SAR-equipped
5 Bell Helicopter UH-1H medium-lift utility helicopter
10 Aero L-39 lead-in jet trainer
15+ Aerostar Iak-52. Ten delivered during 2009-10.
6 An-2TD Colt supplied by PZL Mielec in 2002
Mobility, firepower and protection. Three qualities of the main battle tank that ensure that they are retained, modernised or replaced.

by Stephen W. Miller

The tank is a uniquely valued battlefield asset due to its unique combination of mobility, firepower, and protection. It is equally capable of executing offensive and defensive operations with the ability to shift from one to the other literally in minutes. The tank can also demoralize an opponent sowing confusion and fear thereby breaking down the cohesion of their combat and support forces. It possesses arguably the greatest capacity to physically destroy an enemy and its assets of any other single ground combat system. Yet it is its ability to apply precise fires while moving at speed and to reposition to attack or defend from unexpected quarters at will that are it’s most significant attribute. In many ways the physiological impact is the tanks greatest contribution.

It is the combination of mobility, firepower, and protection that defines the tank. The impact of these attributes is not necessarily dependant on a perfect mix of these characteristics. In fact, history has repeatedly shown that small numbers of tanks even with lesser capabilities have dominated battlefields. The success of Japan’s lightly armed and armed tanks in overcoming the British Commonwealth defence of the Malaya peninsula in 1942 is a case in point. The fact is that the tanks attributes are multiplied when it is employed and properly supported in terrain and conditions where or when it is not anticipated. It is a tactical lesson armies operating in the Asian-Pacific appear to have taken to heart as they acquire not only modern main battle tanks but develop and field other highly manoeuvrable and deployable direct fire gun systems.

Manoeuvre Tanks
The current generation of main battle tank (MBT) has become to some military the ideal combination of mobility, firepower, and protection that cannot be compromised. The difficulty is that this MBT has become increasingly difficult to move easily in response to operational demands. This is particularly true on rural roads and over bridges but also travelling long distances on paved roadways. In addition, their transport by air and sea to conduct expeditionary operations is limited. Modern MBT’s like the Rheinmetall Leopard 2A6 have a combat weight of over 62 tonnes. Even the Japanese Ground Self Defence Forces (JGSDF) Type 10 MBT, designed specifically to be lighter, comes in at 48 tonnes. A principle driver for weight is the protection level requested since technologies have been introduced that allow for even 120mm cannon to be mounted in lighter vehicles. A number of armies in the Asian-Pacific have chosen increased manouevrability and expeditious capability accepting reduced passive protection.

Type 16 Manoeuvre Combat Vehicle – Japan
The JGSDF recognizing a capability gap in its forward defence strategy developed a highly mobile direct fire support combat vehicle. The Manoeuvre Combat Vehicle (MCV) or Type 16 debuted in 2013. Produced by Mitsubishi Heavy Industries the 26 tonne eight wheeled drive vehicle mounts a 105mm rifled cannon. The turret has fire controls equivalent to the latest MBT including the commander’s independent panoramic hunter-killer sight that allows target detection on the move and hand off engagement by the gunner. Its wheeled running gear permits autonomous long distance road movements at speeds up to 100 km/h. In addition, MCV can be transported in the Kawasaki C-2 tactical cargo aircraft allowing deployment to even remote islands. Despite its moderate weight its modular armour resists penetration of 35mm and 40mm projectiles in the frontal area and 14.5mm projectiles all around. The first MCV’s were fielded in 2016 with plans for around 300 and the possibility of replacing some older MBTs.

CM-32 – Taiwan
The Republic of China’s (Taiwan) Clouded Leopard family of indigenously developed 8 X 8 armoured fighting vehicles includes a mobile gun variant with a 105mm rifles cannon. This version has been displayed at several defence shows. It has been considered as an appropriate replacement for the Army’s M41 Walker Bull Dog light tank fleet. Although locally upgraded in the M41D with thermal sights, new fire controls, and a Detroit 8V-71T diesel engine, the M41’s are considered marginally capable at best. Reportedly 400 are still in operational use. Production of the CM-32 infantry version was to begin in 2010 but local news has reported delays which would certainly impact on any further commitment to the ‘gun variant’.

Light Tanks
Light tanks have the attributes of MBTs but compromise armour protection levels for lower combat weight. This lower weight makes the tanks more suited for the lower capacity of rural bridges, thus, light tanks found service with many Asian-Pacific armies. Introduced in the 1960s and 70s, armies including the Philippines, Thailand, Taiwan, and Indonesia retain light tanks, albeit upgraded with improved fire controls and, in some cases, larger main armament. The GIAT (now Nexter) AMX-13, for example, remains in use in Indonesia with a new fire control, and additional armour fitted locally by PT PINDAD.

ZTQ - PLA
As early as 2011 reports of a new People’s Liberation Army (PLA) of China tank surfaced. This new tank appeared destined for use in the western mountainous regions and was later identified as the ZTQ, a 105mm gun equipped tank with an automatic loader with a 30 tonne weight. Its public display by NORINCO, the developer, at the Beijing Exhibition Centre in 2016 confirmed some of its details as well as the offering of an export version, the VT-5. It reportedly uses composite armour and can fit explosive reactive armour. The PLA is reported to be fielding 300 units.

Modern Medium Weight Tank (MMWT) – Indonesia
This weight class appears to be a compromise made by other armies as well. Since 2015, Indonesia’s PT PINDAD has been pursuing a joint development of its new Modern Medium Weight Tank (MMWT) with Turkey’s FNSS.
100 years of defence and security electronics under one roof.

www.hensoldt.net
Main Battle Tanks

Leonard 2 – Indonesia and Singapore

There have been a number of initiatives by Asian-Pacific armies to introduce the most advanced MBTs in the last few years. This is partly the result of state-of-the-art MBTs becoming available at attractive prices from surplus created by several NATO Army reorganisations. Rheinmetall Defense has successfully offered upgrades and customized improvements for the Leopard2 MBT to both the Indonesian Army (Tentara Nasional Indonesia Angkatan Darat, TNI-AD) and Singapore Armed Forces (SAF).

Oliver Hoffman, a Rheinmetall spokesperson verified to AMR that "the modernization program includes both Leopard 2A4+ and either a Leopard 2 RI (in the case of Republic of Indonesia) or Leopard 2SIC (for Singapore). Improvements cover climate control system, improved ballistic protection, conversion from a hydraulic to an electric turret drive, an auxiliary power unit, and installation of rear cameras. In addition, Rheinmetall is enhancing the 120mm smoothbore gun in the RI with a programming kit that will enable it's new programmable DM11 multipurpose round."

The TNI-AD has ordered 103 of the Leopard 2 RI and taken delivery of more than half of these. Substantial work is being accomplished by Indonesia’s state owned company PT PINDAD and the TNI-AD’s Ordnance Depot. The Singapore MBT contract is being conducted with Singapore Technologies (ST) who’s subsidiary STELOP is providing its Commander’s Open Architecture Panoramic Sight (COAPS). COAPS appears to be being build under licence from Elbit Systems and was first seen on the Leopard SRK in May at the Army Open House 2017. Singapore is receiving 66 Leopard SIRs.

VT-4 Thailand

The Royal Thai Army’s (RTA) quest for a new MBT has been taken several twists. Its original intent was to acquire 49 of the Oplot T-84T MBT has been taken several twists. Its original intent was to acquire 49 of the Oplot T-84T that will be manufactured at the developer NORINCO has clearly demonstrated its abilities. This could find it being considered as a solution for some of these armies to complement these MBTs. The Royal Thai Army's (RTA) quest for a new MBT has been taken several twists. Its original intent was to acquire 49 of the Oplot T-84T that will be manufactured at the developer NORINCO has clearly demonstrated its abilities. This could find it being considered as a solution for some of these armies to complement these MBTs.

K-2 Black Panther

In development since 1995, the Republic of Korea Army’s K-2 Black Panther MBT began to be delivered in 2014. The K-2 is considered one of the primer MBTs today. Its 120mm L/55 smoothbore cannon developed by Hyundai Wia uses an autoloader capable of 10 rounds per minute. The fire control includes a panoramic sight, radar and capability to engage low altitude aircraft. It also fires the Korean Smart Top-Attack Munition (KSTAM) a lim-and-forget munitions with 8km range. The In-arm Suspension Unit (ISU) allows the tank to adjust its height and "knee". Plans are to deploy 320 of the K-2s while a number of improvements are already being developed including Active Protection and reactive amour.

Future Needs

The level of activity in introducing modern tank capabilities into Asian-Pacific armies is unprecedented. The MBT programs will require several years to be completed and to field the numbers of vehicles required. At that point the ‘manoeuvre’ tank will have more clearly demonstrated its abilities. This could find it being considered as a solution for some of these armies to complement these MBTs.
Contact us now for more details
Exhibition & Sponsorship Opportunities: sales@isdefexpo.com
General Information: expoaffairs@isdefexpo.com
Tel. +972 3 691 4564 | Fax. +972 3 691 4567

RESERVE YOUR BOOTH TODAY!

THE RIGHT PLACE
THE RIGHT TIME
THE RIGHT PEOPLE

www.isdefexpo.com
While Europe has woken up relatively recently to the resurrection of state-versus-state naval activity, the Asia-Pacific region has for some time been developing into a major maritime theatre. Analysts have often spoken of the 20th century being the era of the Atlantic Ocean and the 21st century being that of the Pacific. Certainly, since the turn of the century, maritime matters in the Asia-Pacific theatre - and their implications for regional and wider global security - have become a central element of the international strategic balance.

Depending on the geographic perspective taken, the Asia-Pacific region is dominated by the Pacific and Indian oceans, with areas of land (ranging from islands of all sizes to the littoral regions of major continents) fitted around the fringes. Within this maritime mass are key international access and choke points and sea lines of communication, sea spaces ranging from vast oceans to intricate littoral waters, critical natural resources, and economic and territorial assets that are subject to disputes between indigenous states.

Alongside the need to bolster national prestige and international standing, disputes over resources and territories have perhaps been the principal driver for a number of countries in the region to seek a substantial uplift in their naval capabilities.

At the high end of the operational scale, the region’s major and medium navies – including Australia, China, India, Japan, and South Korea (the United States, as the major global naval power, is often understood here as a global actor rather than a standalone regional one) - have all been developing complex naval capabilities for deterrent effect and to play a part in contributing to international stability at both regional and global levels. Indeed, some analysts have referred to the existence of a naval arms race in the Asia-Pacific region. However, in the light of the region’s economic significance, at the lower end of the scale there is a requirement amongst these and other navies to also develop constabulary maritime presence to (amongst other things) protect economic and territorial interests.

In this context, navies have been seeking to develop patrol capabilities which offer endurance, extended range, good seakeeping, reliable communications, and capable sensors, along with weapons system fits that are robust, low key, and interchangeable. While destroyers and frigates remain the preserve, in the region, of the higher end of the spectrum, for other navies seeking to boost the constabulary presence corvettes and, especially, offshore patrol vessels (OPVs) are increasingly coming to be a platform of choice.

What’s in a name?
Writing in his book The Future of Sea Power in 1990, as the strategic focus shifted from the European theatre to other parts of the world, Professor Eric Grove defined a corvette as a “small sea-going combatant of 500 to 1,750 tons of limited endurance and capability; best employed in coastal escort and patrol work and relatively low-level operations, although with some potential for higher endurance operations in the absence of more capable units; not usually air capable.”

It is widely recognised that different ship types, across many navies, have shown a trend generally for increasing in size as new classes are introduced. Moreover, writing in his 2004 book Seapower: A Guide for the Twenty-First Century, Professor Geoffrey Till noted that many navies, including those in the Asia-Pacific region, had seen step-ups in force structure composition as (for example) fast attack craft fleets were replaced with corvettes or frigates.

It is notable that OPVs per se were missing from such discussions. Indeed, OPVs seem to be a relatively new concept in terms of typology, capability, and operations. Grove’s definition arguably covered in large part the role and capabilities of patrol vessels. However, today - as high-end naval capabilities have become more expensive and have limited the number of such platforms as a result - a requirement has emerged to support constabulary tasks at distance with a lower-end platform. This has mandated a need for patrol vessel capabilities with offshore or even oceanic, rather than coastal, range and endurance. Grove also argued that, for navies seeking constabulary capability, small but relatively high endurance vessels with very limited armament and probably some helicopter capability were the best solution. This hinted at the emergence of a requirement for offshore patrol capability. Today, such vessels require: greater endurance; organic aviation (currently a helicopter, but increasingly likely tomorrow an unmanned aerial vehicle?) to conduct maritime security operations. They can be supported by large, robust sea boats for at-sea interdiction; and perhaps slightly higher high-end sensors and weapons, as the platforms’ extended reach and the blurring of lines within both tasks underway and missions of the near future.

What’s in a navy?
When talking about the low-end constabulary presence provided by OPVs in particular, it is notable that many of the higher-end Asia-Pacific navies do not possess OPVs. In terms of Japan, for example, the surface fleet of its navy - the Japan Maritime Self-Defence Force (JMSDF) - is dominated by destroyers and frigates. However, Japan’s coastguard operates several different classes of large patrol vessel. One of the most recent to arrive is the Taketomi class: this programme has arrived with the 1,500-tonne Type 056 Jiangdao-class corvette. With the first ship commissioned in 2016 ‘RIMPAC’ exercise, with the US Navy Independence-class Littoral Combat Ship USCGC Stratton, pictured in formation. The Legend-class cutters displace 4,500 tonnes.

Not all naval ships have to be big to be useful. Home waters maritime security can be adequately prosecuted by smaller, yet increasingly more capable vessels.

by Dr Lee Willett

Oceans of all sizes to the littoral regions of major continents) fitted around the fringes. Within this maritime mass are key international access and choke points and sea lines of communication, sea spaces ranging from vast oceans to intricate littoral waters, critical natural resources, and economic and territorial assets that are subject to disputes between indigenous states. Resources, and economic and territorial assets that are subject to disputes between indigenous states. Resources, and economic and territorial assets that are subject to disputes between indigenous states.

Alongside the need to bolster national prestige and international standing, disputes over resources and territories have perhaps been the principal driver for a number of countries in the region to seek a substantial uplift in their naval capabilities.

At the high end of the operational scale, the region’s major and medium navies – including Australia, China, India, Japan, and South Korea (the United States, as the major global naval power, is often understood here as a global actor rather than a standalone regional one) - have all been developing complex naval capabilities for deterrent effect and to play a part in contributing to international stability at both regional and global levels. Indeed, some analysts have referred to the existence of a naval arms race in the Asia-Pacific region. However, in the light of the region’s economic significance, at the lower end of the scale there is a requirement amongst these and other navies to also develop constabulary maritime presence to (amongst other things) protect economic and territorial interests.

In this context, navies have been seeking to develop patrol capabilities which offer endurance, extended range, good seakeeping, reliable communications, and capable sensors, along with weapons system fits that are robust, low key, and interchangeable. While destroyers and frigates remain the preserve, in the region, of the higher end of the spectrum, for other navies seeking to boost the constabulary presence corvettes and, especially, offshore patrol vessels (OPVs) are increasingly coming to be a platform of choice.

What’s in a name?
Writing in his book The Future of Sea Power in 1990, as the strategic focus shifted from the European theatre to other parts of the world, Professor Eric Grove defined a corvette as a “small sea-going combatant of 500 to 1,750 tons of limited endurance and capability; best employed in coastal escort and patrol work and relatively low-level operations, although with some potential for higher endurance operations in the absence of more capable units; not usually air capable.”

It is widely recognised that different ship types, across many navies, have shown a trend generally for increasing in size as new classes are introduced. Moreover, writing in his 2004 book Seapower: A Guide for the Twenty-First Century, Professor Geoffrey Till noted that many navies, including those in the Asia-Pacific region, had seen step-ups in force structure composition as (for example) fast attack craft fleets were replaced with corvettes or frigates.

It is notable that OPVs per se were missing from such discussions. Indeed, OPVs seem to be a relatively new concept in terms of typology, capability, and operations. Grove’s definition arguably covered in large part the role and capabilities of patrol vessels. However, today - as
2018
EUROSATORY
11 - 15 JUNE 2018 / PARIS
THE LAND & AIRLAND REFERENCE
Identify your company as a key player
GICAT
www.eurosatory.com
COGES
March 2013, reports in late 2017 suggest that more than 35 are now in service.

Patrol vessel classes are found within China’s Coast Guard and navy. Of particular note, the lead in the programme to deliver 10,000-tonne cutters. The first ship deployed on operations in 2015, and build on the second-in-class finished in early 2016. As has been noted in analytical commentary, these patrol vessels are cutters are similar in size to the US Navy’s CG 47 Ticonderoga-class guided-missile cruisers and DDG 51 Arleigh Burke-class guided-missile destroyers.

The Royal New Zealand Navy’s (RNZN) lead OPV HMNZS Otago pictured here departing Apia in Samoa. The RNZN is considering procurement of a third Otago-class OPV.

Western navies are increasingly having to blur the boundaries between ship types as reduced force numbers drive the development of more multipurpose vessels (which in turn drives up cost, drives down numbers, and places even-greater emphasis on multi-role requirements). Yet in the Asia-Pacific region, it seems that the overall build-up in naval and coastguard capabilities is enabling countries to draw clear differences between platforms acquired for higher-end operations and those procured to provide constabulary patrol capability. However, while deploying coastguard – rather than naval – platforms in waters where the Malacca Strait, the LMVs’ patrol capability will be most important in the Singapore Strait, which remains a source of counter-piracy concern for regional security stakeholders. However, the fact that the LMVs will carry MBDA’s VL MICA surface-to-air missile (SAM) system and a 76mm Leonardo/Oto Melara gun demonstrates their ability to contribute to higher-end tasks, too. Defence minister Dr Ng Eng Hen has stated that the LMVs, built by Singapore Technologies Marine (Sea), will be an “important leap” in capability for the RSN. November 2017 saw ships two and three (RSS Sovereignty and RSS Unity) commissioned into service. According to Singapore’s defence minister, the other five ships are expected to be operational by 2020.

Singapore is a strategically significant position in the southeast Asian region, and is seeking to strengthen its naval capability to increase its influence and global standing. Of note here are its Damen-designed four Sigma 9113 Diponegoro-class and four Sigma 10514 Perusak Kawai Rudal (PKR) cutters. Fitted with several higher-end systems, such as the Thales Tactico combat management system (CMS), the Thales KingKlip hull-mounted sonar, and in the case of the PKR platforms the Thales SMART-S Mk2 3-D air/surface search radar, these platforms seem focused towards frigate-type operations, including ASW. According to Damen, for the PKR frigates: “Their primary mission is anti-air, anti-surface and anti-submarine warfare. However, they are also equipped for maritime security, search and rescue, and humanitarian support tasks.”

Programme developments

In terms of both corvettes and OPVs, India is a prominent example of an Asia-Pacific country developing several new programmes. The Indian Navy operates five classes of corvette, the newest being the 3,500-tonne Karorna class. Four have been built to date by Garden Reach Shipbuilders & Engineers (RSE), with third ship Kiltan commissioned in October 2017. Reports suggest that the class is focused on ASW activity.

The Indian Coast Guard operates at least five different OPV classes. One of the most prominent developments here is the Sanjuk-class programme. At least eight of these 2,350-tonne OPVs are to be delivered, with the most recent – ship seven, Shaurya – commissioned in August 2017. India’s focus on developing constabulary platforms with a bit of punch was sharpened by the 2008 sea-based terror attack on Mumbai.

In discussing Lürssen’s OPV 80 design, already been used for the Royal Brunei Navy’s four Darussalam-class PV 80 OPVs. According to reports, the design will be adapted to meet Australian requirements. The nature of such adaptations, though, has yet to be revealed. The defence department spokesperson told AMR that “The details of the tendered OPV design are part of ongoing contract negotiations between the Commonwealth of Australia and Lürssen and as such, it would be inappropriate for Defence to disclose this information at this time.”

Production work on the first OPV will commence in the fourth quarter of 2018, with the ship entering service in 2021. “Further schedule details are still under negotiation,” the defence department spokesperson added.

In Australia’s case, this is in its future frigate programme as delivering “perhaps the most significant OPV programme” in the region. What he sees as “a step-change in sea-keeping and endurance” will provide “increased persistence, [and] greater ... physical presence and the capability to operate in the without the need for other vessels or unmanned systems. Many navies today are seeking to improve capability and reduce cost by increasing system commonality across their respective platforms. Here, with the RAN’s new OPVs to receive the Saab 9LV CMS that is already fitted to other RNAN platforms, such as its eight MEKO 200 Anzac frigates and two Canberra-class amphibious assault ships.

Second, in terms of increasing platform numbers, the Royal New Zealand Navy (RNZN) is reflecting a trend growing steadily amongst other Western navies. Across the world, navies from countries such as Australia, Germany, Italy, the United Kingdom, and the United States are all looking to increase platform numbers for certain programmes, recognising that current force levels offer insufficient capability to meet growing tasks. In Australia’s case, this is in its future frigate programme, where its eight Anzac ships will be replaced by nine new platforms. For New Zealand, its navy is considering procurement of a third Otago-class OPV.

A New Zealand Defence Force spokesperson told AMR that “[the] possible project to acquire a third OPV is in the very early stages of capability definition. The government is yet to be presented with any options or proposed timeframes for delivery.”

“However,” the spokesperson continued, “the intent would be to increase New Zealand capability for maritime patrol tasks in the Southern Ocean.” According to its 2016 defence white paper, New Zealand could re-strengthen the third ship allowing it to patrol both the Southern Ocean and Antarctic waters. AMR
DIMDEX 2018
Doha International Maritime Defence Exhibition & Conference

12-14 MARCH

A WORLD-CLASS PLATFORM FOR TECHNOLOGY, MARITIME & DEFENCE INDUSTRY CAPABILITIES

QNB
FINCANTIERI
BOEING
MBDA
THALES
Raytheon

www.dimdex.com
Countering the MANPAD threat consistently challenges industry’s design and development teams

by Dr. Joetey Attariwala

One of the most unpredictable and terrifying asymmetric threats to military fixed-wing aircraft and rotorcraft revolves around Man-Portable Air Defence Systems, or MANPADS. These low-cost, light-weight, infrared surface-to-air missile systems are small in size, highly mobile, easy to employ, and exceptionally difficult to detect - all of which makes them incredibly lethal.

Numerous countries around the world manufacture MANPADS, and although these systems are tightly controlled, they are prevalent across the globe. Additionally, the features that make MANPADS suitable for soldiers also makes them attractive to those with nefarious intent. Collectively, these aspects make countering the MANPADS threat an incredibly important priority for militaries around the world.

The MANPADS threat

The first development of a rudimentary MANPADS dates back to the 1940s when systems began to use heat-seeking infrared (IR) missiles which guide themselves by zeroing in on a target's infrared heat signature. Unlike radar guided missiles, infrared guided missiles are difficult to mask without the expense of engine masking. IR suppression reduces the signature - this often entails masking an IR source, or reduce an aircraft's infrared signature. This is a constant cat and mouse game of cyclical threats. Be it MANPADS or others, is to suppress or reduce an aircraft’s infrared signature. This is particularly important in low flying military aircraft like helicopters. Aerospace engineers who design military aircraft are very cognisant of performance, considerations of maintainability, or a host of other factors. A prime example of an aircraft design which embodies engine masking is the Northrop Grumman B-2 Stealth Bomber.

Dissipating IR energy is usually done through the addition of IR suppressors, by using heat exchangers. IR suppressors reduce exhaust temperatures by shielding a hot engine from view and mixing it with ambient air - as seen in the Boeing AH-64 Apache; and/or by ‘bending’ the exhaust with the aid of a cowl - as is seen in the Leonardo AW101 Wildcat.

Heat exchangers on the other hand, use fluid or materials to absorb and exchange heat. The Lockheed Martin F-35 Lightning II makes use of fluid to dissipate thermal loads generated by the aircraft’s avionics suite and sub-systems.

Masking and dissipating techniques are helpful methods to reduce an aircraft’s IR signature, however one can’t choose either as any aircraft moving through the air will emanate IR energy by way of friction, which newer guidance sections on IR missiles are adept at distinguishing.

Never enough knowledge

The old adage of ‘knowledge is power’ holds very true when considering mission safety and success, therefore a key element to every sortie is a comprehensive pre-mission briefing. Threat manufacturers seek to add countermeasures advancing to counter those. "Because countermeasures have become so effective, threat manufacturers seek to add different ways to counter the threat and exchanges. What you’re seeing in the field of countermeasures is a constant cat and mouse game of cyclical capabilities which constantly evolves, and is usually driven by the pace of geopolitical events,” said Tom Kirkpatrick, a business development manager for BAE Systems Survivability, Targeting, and Sensing Solutions. “In today’s world, they [MANPADS] are a very present threat so the technology has ramped up in the last few years as we see threats proliferate, and we see countermeasures advancing to counter those.

One of the most prolific infrared
countermeasures (IRCM) systems fitted to helicopters and small aircraft today is the "always-on" BAE Systems AN/ALQ-144 IR Countermeasures Set which provides protection against infrared missiles over a wide wavelength range. The system has an IR source which is surrounded by a large cylindrical mechanical shutter that modulates the infrared output, producing a pulsing pattern which serves to decoy IR missiles. The newest variant, the AN/ALQ-144C has an increased cooling and air filtering capability which provides greater mission versatility and readiness. There are multiple configurations available to complement small to medium signature aircraft. The system is fitted to one of the newest maritime patrol helicopters in the world, the Sikorsky CH-148 Cyclone.

The AN/ALQ-144 IR Countermeasures Set may operate independently, or improve survivability in combination with a missile warning system and flares. In the case of the Cyclone, the ALQ-144 works in conjunction with the AN/ALQ-144 Countermeasures Dispensing System (CMDS).

To date, over 8,000 AN/ALQ-144 IR Countermeasures Sets have been delivered to the U.S. military and 23 other nations.

DIRCM technology

Modern MANPADS missiles can be launched from any aspect to a target, and can travel at speeds of 570 meters per second (Mach 1.7), so the ability for a pilot to detect a launch is extremely remote, and evading them is typically beyond human reaction time.

In order to address the time/speed/distance problem inherent in the MANPADS threat, companies have developed advanced infrared countermeasures systems which utilise electro-optical systems which automatically detect missile launches from the distinct thermal emission of a missile’s rocket motor, and then automatically deploy both thermal expendables (flares) and directed lasers to defeat - commonly known as Directional Infrared Countermeasures Systems (DIRCM).

BAE Systems is the current provider of a suite of systems for a U.S. Army program of record to protect its fleet of CH-47 Chinook helicopters. This suite of systems is comprised of the BAE Systems AN/AAR-57 Common Missile Warning System (CMWS) which provides advanced missile warning and hostile fire detection for rotary and fixed-wing aircraft. The system uses electro-optic missile sensors (EO/MS) paired with an electronic control unit (ECU) to automatically detect a wide range of missile and hostile fire threats. The system is linked to the AN/ALE-47 CMDS and the AN/AQ-212 ATIRCM (Advanced Threat Infrared Countermeasure) directional infrared countermeasures system.

Once an IR missile launch is detected by the CMWS, the system automatically hands-off to the CMDS to dispense flares as needed, and it also provides a spatial cue to the ATIRCM system which acquires the missile and tracks the trajectory with a high-precision tracking sensor. The ATIRCM infrared jam head then fires a multi-band laser beam directly into the missile seeker, causing the missile to steer away from the aircraft.

"One of BAE Systems’ expertise lies in laser technology. The laser that we use in our ATIRCM system is called the multi-band laser. These bands are all collocated into one single beam, so it’s not just a single wavelength - we’re putting out multiple wavebands that we’re directing towards the threat. That provides us with greater capacity to defeat infrared missiles,” said Kirkpatrick.

In 2015, the U.S. DoD approved ATIRCM for export. Now fielded in over 10 countries, BAE Systems has delivered and installed more than 2,000 CMWS units on over 30 different platforms with a recorded reliability four times the requirement. Since 2005, CMWS has logged more than 3 million combat theatre flight hours with the U.S. Army, saving dozens of aircraft and hundreds of lives. The most recently developed, third-generation CMWS technology integrates hostile fire indication with missile warning into one unit. This enables high performance in complex missile, small arms, and rocket propelled grenade scenarios.

CIRCM for US Army Aviation

DIRCM technology is constantly evolving, and part of that effort is focused on reducing size and weight. The U.S. Army’s new programme of record for laser-based aircraft missile defence is the CIRCM (Common Infrared Countermeasures) programme, which is intended to develop a lightweight, low-cost and modifiable infrared protection system for U.S. helicopters and light fixed-wing aircraft.

Northrop Gruman was selected to deliver the CIRCM programme. CIRCM is part of a suite of infrared countermeasures that utilises the CMWS and an Improved Countermeasure Dispenser (ICMD) for flares and chaff. According to the company, the CIRCM solution uses a compact ECLIPSE peri/locator, a lightweight commercial-off-the-shelf processor, and advanced Quantum Cascade Laser (QCL) technology for greater reliability and scalability. Partnered with Northrop Gruman is Leonardo MW, Northrop Gruman’s IRCM partner for more than 15 years and Daylight Solutions, an innovator in QCL-based laser technology.

"We have a very robust program and we are constantly looking at better techniques and tactics and hardware that allows us to stay ahead of the threat in terms of defeating it," said Phil Louden, director, Business Development with Northrop Gruman’s Mission Systems. “We’re installed on 1,500 aircraft, our platforms are in combat every day, and we’ve had no missile hits and no loss of aircraft with our system. We get the benefit of all that performance and data feedback that allows us to continue to advance and develop techniques that are more effective against current threats and anticipated future threats.”

Implementing new technologies is never easy, and the CIRCM program is facing challenges. According to a 26 April 2017 U.S. Department of Defense Inspector General (DoD IG) report titled: “The Army Needs to More Effectively Prepare for Production of the Common Infrared Countermeasure System,” the report states that Army management did not adequately define firm system capability requirements (what the system must do to meet its mission). The Army also prepared requirements documents, which communicated system capabilities, and implemented a test plan that does not require CIRCM to demonstrate minimum required system reliability. The DoD IG report adds that CIRCM is not achieving just 75% reliability and the 214 hours mean time between operational mission failures needed to meet the minimum system reliability requirement.

The Army’s Inspector General Chief, Assistant Director for Management and Requirements, Robert S. Finley delivered comment on the DoD IG report.

"There are several priorities that are being addressed in the CIRCM program. The Army is actively managing the CIRCM development, taking a disciplined approach to development activities to bring together two of their most advanced products: Thales’s ‘Elix-IR’ Threat Warning System and Leonardo’s ‘Miysis’ DIRCM system. Under the contracts, funding from the UK MoD will support lab-based and field trials of the integrated system in early 2018 and help evaluate its use for current and future UK air platform protection.

It is clear that DIRCM systems are the current gold standard in the cat and mouse battle to defeat MANPADS. DIRCM systems are undergoing a period of design and enhancement to stay ahead of this lethal and ever-evolving threat.
THE XIIth SPECIAL OPERATIONS FORCES EXHIBITION & CONFERENCE

Conference: May 7th, 2018
Exhibition: May 8th - 10th, 2018

www.sofexjordan.com
THE QUAD RETURNS - BUT WHAT’S CHANGED?

by Veerle Nouwens

T he end of 2017 saw the reinvigoration of the ‘Quad’, an informal alliance between Australia, Japan, the United States and India that was first conceptualised by Japanese Prime Minister Shinzo Abe in 2006-2007. As maritime democracies, the four nations gathered under the title of the Quadrilateral Security Dialogue in an effort to continue to shape the regional order in the face of a rising China. The original Quad fell apart in 2008 with the election of Australian Prime Minister Kevin Rudd who decided that a formalised Quad too provocative at a time when he had interest in a closer engagement with China. The question is now whether and what a new Quad will achieve in tangible terms this time around?

Its return marks a renewed concern over a rising and increasingly assertive China whose growing maritime power and increased assertiveness in the South and East China Seas - from island building to stand-offs over maritime territory - have led to speculation over whether it has a ‘grand strategy’ for regional dominance.

In 2009, the Obama Administration’s ‘pivot to Asia’ policy, the roots of which can be seen in a classified Air-Sea Battle doctrine developed at the time, sought to counter-balance China’s rise. This included a renewed focus of resources and policy to the region through strengthened bilateral and multilateral relations, and on a variety of norms pertaining to a liberal regional order like human rights, democracy, free trade and freedom of navigation. The Trans-Pacific Partnership, an ambitious regional free trade agreement, and defence activities like freedom of navigation operations (FONOPS) sought to illustrate that the United States would continue its role as leading Pacific power.

Despite this, Beijing has successfully forged ahead with activities that have helped pave the way for Chinese predominance in its immediate neighbourhood. In addition to modernising its armed forces and placing an emphasis on becoming a major maritime power, Beijing has been able to continue its advances toward building anti-aerial access denial (A2/AD) capabilities in the South China Sea. It has done so even in the face of the final ruling by the Permanent Court of Arbitration on 12 June 2016 that found no legal basis for China’s maritime territorial claims of roughly 90 per cent of the South China Sea. The very public setback was followed by a strategic effort to step up regional engagement, for example through fast-tracking stalled negotiations between China and ASEAN on a Code for Conduct in the South China Sea, increasing Chinese overseas economic investment and public statements that island building had stopped.

However, over the past year, various observers have pointed toward the likelihood of a toothless and non-binding Code of Conduct along the lines of its predecessor, the Declaration of Conduct, which will change very little in the South China Sea. Secondly, despite an increase in foreign investments, there is concern that they are made largely to increase political influence in Beijing’s favour. Finally, recent reports show that China has continued to install defence infrastructure on the various islands in the Spratlys. Taken together, it seems that Beijing is poised to becoming a regional heavyweight, and one that is unlikely to be bound by the rules that the liberal order has largely upheld thus far, for example those enshrined in the United Nations Convention on the Law of the Sea (UNCLOS).

However, the strategic costs of China’s rise seem to have grown for the countries of the Quad. For India, the stand-off at Doklam Plateau (see AMR, Vol 25/Issue 7: Face Off, Step Back) and reports of potential PLA-N bases in Pakistan and Sri Lanka are too close for comfort. Japan, too, has seen continued incursions into its airspace and maritime territory, while Australia has dealt with reports of Beijing’s political influence campaigns. The United States, under the Trump Administration, has dealt a blow to wider multilateral efforts to counteract China’s economic power by abandoning the Trans-Pacific Partnership (TPP). However, given the Trump Administration’s insistence that maintaining regional security and stability is a burden that must be shared, the renewed Quad may be an ideal way to do so particularly, as Washington maintains, that China’s militarisation of islands in the South China Sea is unacceptable and that FONOPS will continue.

Together, these countries have found value in returning to the Quad. The objective, as stated in their first senior-level working level meeting in Manila in November 2017, is to maintain a ‘free and open Indo-Pacific’. Several themes were reported to have been addressed: the rules-based order in Asia, freedom of navigation and overflight in the maritime commons, respect for international law, enhancing connectivity, maritime security, North Korea and non-proliferation, and terrorism. However, the question is whether their doing so will have any impact. An analysis of the press releases of each of the four countries showed inconsistencies in how these topics were included or omitted. This may be a matter of reporting, rather than a different interpretation of policy. For the Quad to be successful this time around, and early identification and prioritisation of agreed and achievable goals is essential. However, if this initiative is to be taken seriously a concerted effort must be made sooner rather than later. There won’t be much appetite for the Quad version 3.0.

Note: Veerle Nouwens is a research analyst, Asia Studies at the Royal United Services Institute for Defence and Security Studies, Whitehall, London. E-mail: VeerleN@rusi.org
10th International Defence Exhibition And Seminar

IDEAS 2018
PAKISTAN
ARMS FOR PEACE
27-30 November 2018
Karachi Expo Centre
www.ideaspakistan.gov.pk

ORGANIZED BY
DEFENCE EXPORT PROMOTION ORGANIZATION

A VENTURE OF
GOVERNMENT OF PAKISTAN
SUPPORTED BY
PAKISTAN ARMED FORCES
ENDORSED BY
TRADE DEVELOPMENT AUTHORITY OF PAKISTAN
EVENT MANAGER
BADAR EXPO SOLUTIONS

IDEAS SECRETARIAT
C-175, Block-9, Guishan-e-Iqbal Near Aziz Bhatti Park, Karachi. Tel: (92-21) 34821159, (92-21) 34821160 Fax: (92-21) 34821179
Email: info@ideaspakistan.gov.pk