Р. Карнап
Значение и необходимость
Rudolf Carnap

MEANING AND NECESSITY

A STUDY IN SEMANTICS
AND MODAL LOGIC

CHICAGO, 1956
Рудольф Карнап

ЗНАЧЕНИЕ И НЕОБХОДИМОСТЬ

ИССЛЕДОВАНИЕ ПО СЕМАНТИКЕ И МОДАЛЬНОЙ ЛОГИКЕ

Перевод Н. В. Воробьева
Общая редакция профессора Д. А. Бочвара
Предисловие профессора С. А. Яковской

1959
Москва
ИЗДАТЕЛЬСТВО ИНОСТРАННОЙ ЛИТЕРАТУРЫ
АННОТАЦИЯ

Труд Р. Карнапа "Значение и необходимость" является заключительным томом его "Исследований по семантике", который имеет самостоятельное значение. Он подводит некоторые итоги эволюции взглядов одного из лидеров логического позитивизма на философию и логическую семантику. Карнап, обосновывая здесь свои теоретико-познавательные позиции и вновь подтверждая позитивистскую семантическую концепцию предмета философии, развивает некоторые новые логические идеи. Главной целью этой книги, — как пишет автор, — является развитие нового метода семантического анализа значения, то есть нового метода анализа и описания значений языковых выражений (метод экстенсионала и интенсонала). Однако основное значение книги заключается не в принадлежащем автору новом методе экстенсонала и интенсонала, а в выявлении трудностей анализа смысла и критическом обсуждении предлагавшихся разными авторами методов их решения.

Редакция литературы по философии и психологии
ПРЕДИСЛОВИЕ

1. Читателя, приступающего к изучению так называемой классической математической логики — например, по книге Гильберта и Аккермана «Основы теоретической логики», — уже с первых шагов подчас отпугивают приводимые для иллюстрации примеры:
 «Если 2×2=5, то снег черен»,
 «Если 2×2=5, то снег бел»,
 «Если 2×2=4, то снег бел»,
которые все к тому же трактуются как истинные высказывания.

В дальнейшем, правда, становится ясно, что примеры эти приводятся именно для того, чтобы объяснить, что связка «если... то» будет употребляться в книге не в обычном смысле, что выражение «Если A, то B» (где A и B — какие-нибудь высказывания) будет означать только: «Из двух высказываний: не-A и B — хотя бы одно истинно».

Но тогда естественно возникает вопрос: в чем же состоит обычный смысл этой связки? Столь же естественным представляется и ответ, что связкой «если... то» соединяются обычно только высказывания, связанные между собой по смыслу. При каких условиях, однако, два высказывания могут считаться связанными по смыслу? И что такое вообще смысл высказывания?

Последний вопрос приобретает особую важность в связи с проблемами машинного перевода с одного языка на другой. Ведь перевод должен передавать именно смысл высказываемого, то есть нечто объективное и независимое от того языка, средствами которого оно выражено. В чем же состоит это нечто и чем обеспечивается возможность его отождествления, несмотря на различие языка или языковой формы, в которой оно выражено?
Кругу вопросов этого рода и посвящена в основном книга Карнапа «Значение и необходимость». Автор предлагает в ней новый метод анализа значения языковых выражений, который он называет «методом экстенсионала и интенсионала»; подробно выясняет отношение своего метода к методам, предложенным другими авторами (Фреге, Рассел, Куайн, Чёрч и др.), причем методы эти он освещает критически, останавливаясь подробно на тех чертах их, которые, по его мнению, следует квалифицировать как их недостаток: применяет, наконец, свой метод к построению логики модальностей, таких, как «необходимость», «возможность», «случайность», «невозможность». Книга завершается несколькими статьями, написанными после выхода в свет первого ее издания и представляющими собой в основном ответ на появившуюся в связи с первым изданием книги критику.

Фреге, Рассел, Куайн, Чёрч и др. кладут в основу своих методов логического анализа языковых выражений понятия «имени» и его «номината» (предмета, обозначаемого данным именем), а также соответствующего «отношения именования» (отношения имени к его номинату).

Поскольку Карнап останавливается на отношении своего метода к методам других авторов, ему приходится вводить в рассмотрение и круг понятий, связанных с методами «отношения именования».
3. Мы не имеем здесь возможности сколько-нибудь подробно остановиться на трудностях, для преодоления которых необходимо в семантике все эти категории (или которые возникают в связи с задачей адекватного определения этих понятий). Читатель встретится с ними уже с первых страниц книги. В качестве иллюстрации приведем здесь только один пример.

Рассмотрим высказывание:

«Город Манагуа есть столица государства Никарагуа». (1)

Так как «город Манагуа» и «столица государства Никарагуа» — это разные имена одного и того же номината (в данном случае города), то естественно полагать, что, говоря о столице государства Никарагуа, мы говорим именно о городе Манагуа, то есть что слова «столица государства Никарагуа» мы можем заменить словами «город Манагуа». (И уж, во всяком случае, все, что верно для столицы государства Никарагуа, верно и для города Манагуа. Так, если верно, что «На улицах столицы государства Никарагуа можно увидеть возки, запряженные буйволами», то верно и то, что «На улицах города Манагуа можно увидеть возки, запряженные буйволами».) Однако если мы произведем эту замену уже в самом нашем высказывании (1), то получим:

«Город Манагуа есть город Манагуа» (2)
— высказывание, которое хотя и истинно, но заведомо не может заменить высказывания (1), поскольку оно утеряло содержащуюся в этом первом высказывании информацию.

Еще хуже будет обстоять дело, если мы произведем аналогичную замену в высказывании (которое довольно часто может оказаться истинным):

«X не знает, что город Манагуа есть столица государства Никарагуа», (3)
или в заведомо истинном высказывании:

«Фраза «столица государства Никарагуа» состоит из трех слов», (4)
ибо в результате такой замены мы получим ложные высказывания:

«X не знает, что город Манагуа есть город Манагуа»,(5)
«Фраза «город Манагуа» состоит из трех слов». (6)

Когда же можно производить такого рода замену и когда нет? Можно ли сформулировать какие-нибудь общие правила на этот счет? В том числе правила, указывающие, мож-
Предисловие

но ли осуществить такую замену, не меняя истинности (соответственно, ложности) высказывания. И какую замену можно делать, если требуется обеспечить сохранение высказыванием его смысла? Попыткам дать ответ на эти вопросы и посвящены прежде всего методы, рассматриваемые в книге Карнапа: его собственный метод «экстенсионала и интенсонала» (гл. I) и различные методы «отношения именования» (гл. III).

Оказывается, что сформулировать такие общие правила отнюдь не просто 1, что уже в этой связи возникает ряд трудностей, ситуаций, представляющихся подчас даже противоречивыми (см., например, так называемый «парадокс анализа», § 15), которым занимаются авторы многих исследований по вопросам семантики,— по их собственному признанию, довольно безуспешно 2.

В своей книге Карнап специально останавливается на многих из этих трудностей и критически разбирает различные предложенные как им самим, так и другими исследователями методы их решения. Эта сторона книги представляет несомненный интерес для советского читателя, привыкшего критически относиться к методологии буржуазных авторов.

4. Метод «экстенсонала и интенсонала» Карнапа (и положенная в его основу трактовка упомянутых выше категорий семантики) породил довольно значительную литературу.

1 По-видимому, вопрос нужно решать не раз навсегда — в применении к любым возможным языкам, естественным или искусственным (создаваемым, например, в качестве промежуточных между двумя естественными языками для целей машинного перевода), — а с помощью конкретного исследования того или иного языка (или группы языков).

2 См., например, книгу А. Равр, Semantics and necessary truth, New Haven, 1958, автор которой критикует многие предложенные до сих пор решения этого и аналогичных парадоксов. (Грубо говоря, «парадокс» состоит в следующем: если, анализируя значение выражения X, мы выясним, что X означает то же, что Y, то есть что X = Y, тогда — если наш анализ правилен — суждение, выраженное в виде предложения X = Y, должно быть тождественно с суждением, выраженным предложением X = X, которое, однако, в общем случае не содержит информации, заключенной в предложении X = Y. Суть дела, на наш взгляд, состоит в том, что во всяком тождестве есть различие, но от этого различия (в данном контексте) разрешается отвлекаться. Так, даже когда мы пишем X = X с целью выразить тождественность X самому себе, то отвлекаемся от того, что одно X стоит слева, а другое — справа.)
Предисловие

тюру, посвященную его критике. Ряд конкретных замечаний, раскрывающих неудовлетворительность предлагаемых Карнапом решений некоторых вопросов, нашел отражение в комментариях к русскому переводу книги «Значение и необходимость».

Здесь мы не будем останавливаться детально на этой критике. Заметим лишь, что трудности, возникающие фактически в связи со всеми вышеупомянутыми категориями семантики, на наш взгляд, не случайны, ибо корень их состоит в том, что автор отрицает логическое от фактического, тождество от различия, фразу от контекста, в котором она находится 1, теоретическое решение вопроса от его практического решения, логическое исследование от исторического и т. п. В действительности в самих правилах логики и грамматики находит отражение многотысячелетний опыт людей, пользующихся языком для выражения своих мыслей и логикой для их анализа и обоснования. Вряд ли можно строить поэтому теорию смысла каких-либо выражений, не исходя из того, что смысл каких-то других выражений нам уже понятен или может быть объяснен наглядно, с помощью сопровождаемых словами действий: так, сущность пирога познают, съедая его (и смысл слова «пирог» разъясняют так же). Теория же должна прежде всего объяснять, как, зная уже смысл одних выражений, определять с его помощью смысл других, более сложных или новых выражений. Но в таком случае нужно точно формулировать, что именно считается уже известным и что ищется. Больше того, от теории требуется, чтобы она — хотя бы при определенных условиях — давала возможность действительно найти ис комое, чтобы она содержала конструктивные способы реше -

1 Одну из главных заслуг своего метода анализа значения языковых выражений Карнап видит в том, что его метод позволяет строить язык так, чтобы каждое выражение всегда имело один и тот же смысл, то есть было независимо от контекста. Наоборот, метод Фреге и Чёрча (разрабатывающего идеи Фреге) он критикует за то, что, согласно Фреге, выражение имеет бесконечно много смыслов, зависящих от контекста (стр. 334 настоящего издания). С нашей точки зрения, однако, это недостаток, а достоинство метода Фреге, так как делает его применимым к естественным языкам. Не случайно и при машинном переводе с одного языка на другой приходится так строить программу машины, чтобы она позволяла учитывать роль контекста.
ния определенных задач, в том числе и познавательного ха-
рактера.
Требованиям конструктивности теория Карнапа заведо-
мело не удовлетворяет. Но и допущения, из которых автор
исходит — особенно в отношении тех языков и выража-
ний в этих языках, смысл которых предполагается (или дол-
жен предполагаться) уже известным,— в книге не форму-
лируются в явном виде. Читателю предоставляется догады-
ваться, что если формулируется (для некоторого искусство-
ногого языка S_1) семантическое правило обозначения (см. 1—2)
"Hx" обозначает "x is human (a human being)"", то тем
самым предполагается, что читатель владеет английским
языком: понимает выражения этого языка и связывает с
ними, как это и бывает обычно, не только какой-то смысл,
но и некоторые знания фактического характера, подчас не-
отделимые от этого смысла — в частности, неоднократно
используемые автором в его примерах фактические знания,
что люди — разумные существа и что они — двуногие, но
не обладающие пятыми животные. Обусловленные не-
выявленностью таких предположений противоречия, с кото-
рыми мы встречаемся в книге Карнапа, разобраны в коммен-
tариарии к стр. 36—44. Здесь для нас существенно только,
что попытка отделить (в абстрактном смысле) логическое, пони-
маеое как вытекающее из одних лишь семантических
правил, от фактического заведомо неосуществима.
Само собой разумеется, что такого рода соображения ни
в какой мере не претендуют на то, чтобы подменить собой
подробный критический анализ книги Карнапа. Здесь
скорее имеется в виду побудить читателя принять участие
в этой работе, во многом лишь предстоящей нам (особенно
поскольку речь идет о конструктивном решении задач, связан-
ных с построением больших информационных машин
или с машинным переводом).
5. Нам представляется необходимым обратить также вни-
мание на то, что многие конкретные недостатки методов
Карнапа обусловлены его гносеологическими установками.
Но, прежде чем перейти к краткому освещению последних,
остановимся еще на одном вопросе, связанном непосредствен-
но с оценкой метода «экстенционала и интенционала» са-
mим Карнапом.
Основную заслугу своего метода Карнап видит в том, что
с помощью этого метода устраняется характерное для других методов «удвоение имен», состоящее в различении логиками «класса» и «свойства» как двух самостоятельных категорий. Действительно, в тех формализованных системах («языках»), в которых действует так называемый принцип объемности 1 (например, в некоторых аксиоматических теориях множеств), можно отождествить свойство с классом. Установив какой-нибудь канонический способ выражения свойств (такой, что все эквивалентные свойства получают одно и то же каноническое выражение), можно, наоборот, свести класс к свойству.

Однако из этого еще не следует, будто различие класса и свойства не может оказаться весьма существенным. Именно на таком различении смысла выражений

\[x \in \mathcal{P} \]

(«\(x \) есть элемент класса, определяемого свойством \(\mathcal{P} \)») и

\[\mathcal{P}(x) \]

(«\(x \) обладает свойством \(\mathcal{P} \), последнее может при этом не определять никакого класса) и основан один из способов устранения известных антиномий (парадоксов) теории множеств, предложенный Д. А. Бочваром. Вообще метод расщепления понятий (на два или большее их число) в соответствии с различными возможными оттенками смысла есть один из наиболее важных способов уточнения (конкретизации) смысла выражений. Этот метод постоянно используется наукой, когда речь идет именно о логическом анализе значения выражений и уточнении их смысла в соответствии с требованиями науки (сам Карнап пользуется им, например, когда различает «вероятность\(_1 \)» и «вероятность\(_2 \)»). Само собой разумеется, что такой анализ должен обнаружить, говоря коротко, не только различие в тождестве, но и тождество в различии. Не случайно и сам Карнап начинает с того, что вводит две разные категории — «экстенциональ» и «интенциональ», — обобщающие фактически понятия объема понятия («класса») и содержания понятия («свойства»), и лишь впоследствии обнаруживает, что его «метод экстенционала и интенционала нуждается только в одном выражении для того, чтобы говорить как о свойстве, так и о классе» (стр. 29). Поскольку, однако, предположения, на которых осно-

1 Согласно этому принципу, если два свойства определяют один и тот же класс предметов (то есть если каждый предмет, обладающий одним из этих свойств, обладает и другим), то эти свойства неразличимы (средствами рассматриваемой формальной системы).
ван этот метод, оставляются невыясненными, больше того, самый метод предлагается, по существу, как универсальный, а главным достоинством его провозглашается доставляемая им «экономия мышления», состоящая в замене двух разных выражений одним, не приходится удивляться тому, что действительное развитие науки оказывается несовместимым с такими установками: оно обнаруживает и важность обобщения понятий, и важность содержательного расщепления понятий на два (или большее число), и условия применимости (то есть границы) методов, претендующих на универсальность.

Но таким образом мы опять приходим к необходимости разобраться в философских установках, из которых исходит автор в своей книге. Здесь также мы не ставим перед собой задачи детально разобраться во всех вопросах, затронутых автором в его книге или нашедших отражение в тех или иных решениях рассматриваемых им конкретных проблем анализа значения языковых выражений. Это потребовало бы специального исследования. Но мимо основных черт общих философских установок автора нельзя пройти даже в кратком предисловии к его книге.

6. В этой связи нужно отметить прежде всего глубокое расхождение между философскими взглядами автора и приемами, которыми его побуждает пользоваться конкретный материал его научных исследований. Для путаной идеалистической в своей основе философии логического позитивизма, к числу виднейших представителей которой принадлежит Р. Карнап, характерно вообще стремление совместить типичные для подлинной науки материалистические установки, на которых основано решение конкретных научных задач, с идеалистическими по своему существу исходными гносеологическими принципами.

Читая книгу Карнапа, мы можем обнаружить в ней и такие места, в которых речь идет о том, что свойства вещей понимаются им «не как нечто психическое, скажем, образы или чувственные данные, а как нечто физическое, как то, что имею сами вещи» (стр. 53). Или такие, где говорится: «Под свойством Черное мы имеем в виду нечто такое, что какая-либо вещь может иметь или не иметь и что этот стол на самом деле имеет. Аналогичным образом суждение, что этот стол черный, есть нечто такое, что экземплифицировано
фактом существования стола такого, каков он есть» (стр. 63). Значительное место уделяется в книге критике номинализма, не допускающего в науку никаких абстрактных категорий (универсалий). А в качестве критерия, позволяющего отбирать «хорошие» (удовлетворяющие требованиям научности) абстракции, выдвигается (в борьбе с номинализмом)... критерий практики (который, правда, трактуется при этом лишь прагматически). «Принятие или отказ от абстрактных языковых форм, — пишет Карнап, — точно так же, как и принятие или отказ от любых других языковых форм в любой отрасли знания, будет в конце концов решаться эффективностью их как инструментов, отношением достигнутых результатов к количеству и сложности требуемых усилий. Декретировать догматические запрещения определенных языковых форм вместо проверки их успехом или неудачей в практическом употреблении более чем напрасно — это положительно вредно, ибо это может препятствовать научному прогрессу» (стр. 320).

В то же время, как и все представители современного идеалистического эмпиризма, Карнап претендует, конечно, на нейтральность в споре материализма с идеализмом. Он и в этой книге объявляет себя верным последователем идей Венского кружка, который «отверг и тезис о реальности внешнего мира, и тезис о его нереальности как псевдоутверждения» (стр. 312). Вся та замечательная критика, которой Ленин подверг в своем «Материализме и эмпириокритицизме» такого рода претензии на нейтральность, полностью применима поэтому и сейчас к философским установкам Карнапа. И действительно, в идеалистическом характере его установок не приходится сомневаться. Материальный мир вещей с точки зрения материализма есть первичное; мышление, а следовательно, и язык, в той мере, в какой он употребляется для выражения мысли, — вторичное. Карнап же переворачивает это соотношение между первичным и вторичным. Для него первичным является не мир вещей, а язык. Каждый человек волен выбирать такой язык, какой ему нравится. Если мы рассматриваем простейший вид объектов, с которыми мы имеем дело в повседневном языке: пространственно-временное упорядоченную систему наблюдаемых вещей и событий, то, значит, «мы приняли вещный язык» (стр. 300). Правда, «все мы приняли
вещный язык еще в детском возрасте как нечто само собой разумевающееся. Тем не менее мы можем считать это вопросом выбора в следующем смысле: мы свободны выбирать, продолжать ли нам пользоваться вещным языком или нет; в последнем случае мы могли бы ограничиться языком чувственных данных и других «феноменальных» объектов, или построить иной язык, отличный от обычного вещного языка... или, наконец, могли бы воздержаться от высказываний... Принять мир вещей значит лишь принять определенную форму языка... Принятие вещного языка ведет, на основе произведенных наблюдений, также к принятию и утверждению определенных предложений и к вере в них. Но тезиса о реальности мира вещей не может быть среди этих предложений, потому что он не может быть сформулирован на вещном языке и, по-видимому, ни на каком другом теоретическом языке» (стр. 301—302).

Я думаю, не требуется особых комментариев, чтобы стало ясно, что, несмотря на видимое безразличие к выбору материалистического или идеалистического «языка», язык, на котором разговаривает Карнап и который — в противоречии с его собственными установками — выбран им не произвольно (и не как первичное), а как способ выражения его философских взглядов, достаточно ясно свидетельствует о том, что мы имеем дело с идеализмом. И притом с субъективным идеализмом, поскольку утверждается, будто каждый волен выбирать себе ту форму «языка», какая ему (данному субъекту) нравится.

Ясно также, что на такой основе в действительности нельзя построить никакой подлинно научной (объективной) теории анализа значения языковых выражений. Не удивительно поэтому, что Карнап не формулирует в своей книге (в сколько-нибудь ясной форме) исходные допущения, на которых строится его метод экстенсионала и интенсионала; что в действительности он, худо ли, хорошо ли, мотивирует выбор используемых им семантических категорий именно такими соображениями, которые должны показать, что этот выбор отнюдь не произволен, а определяется тем объективным содержанием, в котором ему нужно разобраться, наконец, он (в осторожной форме) позволяет себе надеяться, что практическая проверка его метода и метода отношения именования заставит предпочесть именно его метод, по-
скольку позволяет обнаружить, что «метод отношения именования должен рассматриваться по крайней мере как спорный вводить в заблуждение, если не как неадекватный» (стр. 176).

Невольно хочется повторить в применении к Карнапу его собственное остроумное соображение, высказанное им по поводу физика, пользующегося абстрактными понятиями в своей научной работе, но чурающегося их в связи со своими философскими номиналистическими установками: «Более вероятно, что он будет говорить о всех этих вещах [абстрактных объектах физики] так, как и всякий другой, но с неспокойной совестью, как человек, который в своей повседневной жизни делает с угрозами совести многое такое, что не согласуется с высокими моральными принципами, которые он исповедует по воскресеньям» (стр. 299).

50 лет прошло со времени выхода в свет «Материализма и эмпириокритицизма» В. И. Ленина. Но когда читаешь статью Карнапа «Эмпиризм, семантика и онтология», помещенную в Приложении к его книге, лишний раз убеждаешься в том, как гениально прозорлив был В. И. Ленин в своей критике любых разновидностей «нейтральных» в споре материализма с идеализмом философов.

7. В применении специально к языку суть дела в философских установках Карнапа состоит, на наш взгляд, в том, что Карнап мыслит себе «язык» лишь как формальную систему, выражения которой строятся в соответствии с определенными правилами. При этом вопрос о том или ином выборе последних для него «является не теоретическим, а практическим вопросом, скорее вопросом выбора, чем утверждения» (стр. 309. Курсив наш. — С. Я.). Даже признавая значение обдуманного выбора таких соглашений, руководимого соображениями практической целесообразности и плодотворности (см., например, стр. 302, 309), Карнап не считает возможным делать из того факта, что теория оказалась с успехом применяемой на практике, какие-либо (теоретические) выводы об адекватности этой теории отображаемой ею области явлений действительности.

Для «обоснования» такого отрыва теории от практики Карнап пытается использовать то обстоятельство, что выводы об адекватности (или неадекватности) теории отобра-
жаемым ею соотношениям действительности нельзя получить в виде окончательных ответов «да — нет» по «внутренним» правилам некоторой формализованной системы («языка»); что они носят содержательный характер и «являются не вопросами типа «да — нет», а вопросами о степени [соответствия]» (стр. 302).

Однако нужно иметь в виду, что и при построении формальной теории нельзя (невозможно даже) исключить полноту содержательных моментов. Ведь даже такая формализованная «теория», которая нарочито строится лишь как некоторая игра в символы по определенным правилам, нуждена исходить по меньшей мере из предположений: (1) что эти символы суть материальные объекты — буквы, палочки, кружочки и т. п., с которыми люди привыкли иметь дело именно на практике, которые не ломаются, не портятся, не стираются (не гибнут и не размножаются), когда по правилам нашей «игры» им этого не положено делать; (2) что правила обращения с этими символами осмыслены и, более того, не только поняты «играющим», но и практически (в обычных случаях) осуществимы (во всяком случае, потенциально осуществимы). Иными словами, даже в такой полноту формализованной теории ответы «да — нет» (говорящие на самом деле только о том, выводится ли данное предложение P из других предложений P_1, P_2, \ldots, P_k по дан-

1 В этой связи уже сейчас стоит отметить, что вопрос о соответствии (или несоответствии) формализованной теории ее содержательным моделям является одним из наиболее важных (если не важнейших) вопросов теории формализованных систем (логико-математических исчислений, прежде всего) и что — при уточненной его постановке — он допускает однозначный ответ типа «да — нет». Такой именно ответ дает, например, знаменитая теорема Гёделя о неполноте формализованных систем, включающих арифметику, которую автор даже не упоминает в своей книге. (Из теоремы Гёделя следует непосредственно, что не существует такой формализованной теории — с фиктивными правилами вывода, — в которой были бы доказуемы все содержательно истинные предложения арифметики, то есть которая давала бы ответ типа «да — нет» на всякий вопрос об истинности или ложности какого-нибудь предложения арифметики.) Вообще на вопрос о соответствии принципа конкретности истины с отображаемой при его помощи материальной действительностью, находящейся в состоянии постоянного изменения и движения, даст ответ диалектическая логика.

2 А если положено, то они должны это делать мгновенно. Ведь каждая вещь мыслится тут как абсолютно тождественная самой себе и абсолютно отличная от всякой другой вещи!
ным правилам $R_1, R_2, ..., R_k$ являются не окончательными, а верными лишь в той степени, в которой практически осуществляются предположения, лежащие в основе этой теории.

Больше того, в науке формальная теория и определенным образом уточненный язык ее терминов и выражений нужны на самом деле не как простая игра в символы по некоторым правилам, а лишь в связи с их содержательным истолкованием. Проблема смысла языкового выражения — это и есть проблема такого истолкования, а в этом истолковании нельзя отвлекаться от таких вещей, с которыми люди знакомятся только на практике: нельзя отделить теорию от практики, формализованный «язык» от его содержательного истолкования. Можно и нужно уточнять языковые выражения — так, например, как это происходит в математике, где с ними оперируют по определенным, четко сформулированным и однозначно понимаемым правилам. Но не следует думать, будто такое оперирование означает отказ от содержательного истолкования выражений языка формальной системы, будто оно вообще возможно вне связи с фактическими знаниями людей, приобретаемыми ими в жизни, на практике. Не случайно всякое уточнение важнейших понятий науки (например, разные уточнения понятия алгоритма в современной математической логике, принадлежащие Чёрчу, Тьюрингу, Посту, Клини, А. А. Маркову, А. Н. Колмогорову и др.) всегда сопряжено с некоторым содержательным тезисом, истинность которого может быть проверена только практикой (в том числе и практикой научного исследования).

Между тем Карнап пытается представить дело так, будто внутренние вопросы теории можно начисто оторвать от внешних вопросов, касающихся ее отношения (как целого) к реальности; будто водораздел между теоретическими и практикующими вопросами можно провести, противополагая теоретический вопрос, как допускающий окончательный, решающий, «внутренний» (для данной формальной системы) ответ «да — нет», практическому вопросу, который — сколь бы важным он ни был — есть «не вопрос просто о «да или нет», а вопрос о степени» (стр. 319 — 320, см. также стр. 302).

На наш взгляд, в этом нельзя не увидеть попытки ис-
пользовать действительный прогресс науки — связанный прежде всего с созданием формализованных логико-математических систем — для идеалистических «выводов», несовместимых на самом деле с этим научным достижением. Действительно, учитывая конкретные условия обстановки, места и времени, наука добивается правильной постановки и однозначного решения поставленных практикой вопросов (в том числе и практикой самого научного исследования, которое не случайно — даже в самых абстрактных областях науки, таких, например, как математическая логика, — все более и более тесно связывается с техническими приложениями). В этой связи науке приходится уточнять используемые ею понятия, добиваться возможности оперировать с ними по определенным, конструктивным, правилам. И если это удается сделать, то можно по праву говорить о достигнутом научной успеше. Но из этого отнюдь не следует, будто этот успех не есть прежде всего приближение к ещё более полному, адекватному познанию исследуемой области действительности; будто с ним вообще не связан вопрос о степени этого приближения; будто «внутренний» критерий формальной выводимости по определенным правилам не есть только вспомогательный критерий для критерия практики — вспомогательный, поскольку, если выводы, получаемые с его помощью, оказываются неприменимыми (или плохо применимыми) на практике, то, хотя это лишь (!) «вопрос о степени», наука отказывается от такого непригодного практически вспомогательного критерия, независимо от того, что «теоретически» он, может быть, и дает ответы типа «да — нет» на некоторые «внутренние» вопросы. В соотношении между критерием формальной выводимости «внутри» некоторой системы («языка») и критерием практики (который отнюдь не является только «внешним» для подлинно научной теории) первичным является, таким образом, критерий практики. Карнап же и здесь переворачивает это соотношение, отказывая критерию практики в праве решать теоретические задачи, в праве отвечать вообще «да или нет» на основной для науки вопрос о ее отношении к реальности.

1 Об этом свидетельствует, в частности, уже упомянутая нами выше теорема Гёделя.
Иного критерия—как основного, как последнего, который должен иметь решающее значение,—в науке и не может быть: иначе не было бы никакой науки, ибо она лишилась бы возможности развиваться. «Точка зрения жизни, практики должна быть первой и основной точкой зрения теории познания,—пишет В. И. Ленин.—И она приводит неизбежно к материализму, отбрасывая с порога бесконечные измышления профессорской схоластики. Конечно, при этом не надо забывать, что критерий практики никогда не может по самой сути дела подтвердить или опровергнуть полностью какого бы то ни было человеческого представления. Этот критерий тоже настолько «неопределенен», чтобы не позволять знаниям человека превратиться в «абсолют», и в то же время настолько определен, чтобы вести беспощадную борьбу со всеми разновидностями идеализма и агностицизма».

Но в таком случае и от вопроса о реальном существовании системы объектов, о которых идет речь в некотором языке, нельзя отделяться, сославшись на то, что это—внешний (для языка) вопрос, а «внешний вопрос является не теоретическим, а скорее практическим вопросом о том, принимать или не принимать эти лингвистические формы» (стр. 315).

8. Проблема анализа значения языковых выражений есть только одна из задач семантики. Для развития семантики как части математической логики особое значение имела история аксиоматического метода. Встающие в связи с этим методом проблемы непротиворечивости, независимости и особенно полноты системы аксиом заставили вскоре перенести центр тяжести с формального построения аксиоматической дедуктивной системы на ее содержательные модели или интерпретации. Так как полнота формальной системы понимается чаще всего в смысле выводимости в ней

1 В. И. Л е н и н, Соч., т. 14, стр. 130.
2 Само собой разумеется, что в абстрактных понятиях отражаются лишь некоторые стороны вещей, явлений, событий материального мира; абстрактные объекты не существуют независимо от вещей, из которых они «извлечены», аналогично тому, как фасад дома не существует изолированно от самого дома; вообще проблема абстракций в марксистско-ленинском их понимании, которой занимается ряд советских философов и логиков, заслуживает специальных трудов, посвященных ей.
(ее средствами) всех содержательно истинных предложе-
ний модели, которые могут быть выражены на «языке»
эти формальной системы, то встал вопрос об уточнении
понятия содержательной истинности такого рода предложе-
ний. Этому уточнению и связанным с ним вопросам об
условиях (и границах) его применимости был посвящен ряд
работ, начиная с известной статьи А. Тарского «Понятие
истинности в формализованных языках». Весь этот круг
вопросов семантики (относящихся к теории моделей и поня-
тию истинности) совсем не затрагивается в книге Карна-
па. Не освещается в ней и понятие «семантическая система»,
введенное Карнапом в его предшествующих работах по се-
мантике. Хотя в своем предисловии к настоящей книге ав-
тор пишет, что эта его книга не предполагает знакомства с
dвумя предшествующими томами его «Исследований по
семантике», понятием «семантическая система» (и некоторы-
ми другими понятиями того же рода) он пользуется по-
стоянно, не останавливаясь на них специально.
В той мере, в какой это оказалось возможным (без зна-
чительного увеличения объема книги), редакция снабдила
такие места примечаниями или краткими комментариями
в конце книги.
Хотя проблемами содержательной интерпретации фор-
мализованных логических и логико-математических теорий
(формальных логических и логико-математических систем),
a также связанными с ними вопросами анализа смысла
выражений советские ученые занимаются уже достаточно
dавно (назовем в этой связи работы А. Н. Колмогорова и
Н. А. Шанина, посвященные конструктивному истол-
kованию логико-математических суждений, а также ряд

1 Некоторые библиографические указания на литературу, относи-
щуюся к этому кругу вопросов, см. в списке литературы в конце дан-
ной книги.
2 А. Н. К о л м о г о р о в, О принципе tertium non datur,
Матем. сб., 32, 1925, стр. 646—667.
А. Н. К о л м о г о р о в, Zur Deutung der intuitionistischen Lo-
3 Н. А. Ш а н и н, О некоторых логических проблемах арифмети-
Н. А. Ш а н и н, О конструктивном понимании математических
суждений, Труды матем. ин-та им. В. А. Стеклова, т. 52, 1958, стр. 226—
312.
работ Д. А. Бочвара, в том числе и упоминавшуюся уже нами), но монографических работ по вопросам семантики у нас, по сожалению, пока еще нет. Перед переводчиком и редакторами книги Карнапа стояла поэтому трудная задача выбора подходящей терминологии. Хотя терминология, использованная в переводе, по мнению редакции, отнюдь не всегда может считаться удовлетворительной, пришлось остановиться на ней, чтобы не исказить в переводе смысл текста и передать, насколько возможно, стиль автора (часто довольно сухой и громоздкий, несмотря на стремление автора сделать содержание книги более обозримым с помощью кратких аннотаций перед каждой главой, а затем и каждым разделом книги, а также посредством удобного способа нумерации предложений, на которые в дальнейшем ему приходится ссылаться).

В качестве читателя книги я, во всяком случае, могу сказать, что она пробуждает горячее желание критически разобраться в затронутых автором вопросах и противо поставить его точке зрения наш диалектико-материали стический и конструктивный подход к проблемам смысла языковых выражений как в естественных языках, так и в формализованных логических или логико-математических системах.

Данной цели, на мой взгляд, и предназначено служить предпринятое Издательством иностранной литературы издание перевода этой пользующейся достаточной известностью у специалистов книги Карнапа.

С. Яновская

1 Д. А. Бочвар, Об одном трехзначном исчислении и его применении к анализу парадоксов классического расширенного функционального исчисления, Матем. сб., 4(46):2, 1938, стр. 287—308.

Д. А. Бочвар, Некоторые логические теоремы о нормальных множествах и предикатах, Матем. сб., 16(58):3, 1945, стр. 345—352.

Д. А. Бочвар, К вопросу о парадоксах и к проблеме расширенного исчисления предикатов, Матем. сб., 42(84):1, 1957, стр. 3—10.
ПРЕДИСЛОВИЕ АВТОРА

Главной целью этой книги является развитие нового метода семантического анализа значения, то есть нового метода анализа и описания значений языковых выражений. Этот метод, называемый методом экстенсионала и интенсионала, выработан путем модификации и расширения некоторых обычных понятий, особенно понятий класса и свойства. Этот метод будет сопоставлен с различными другими семантическими методами, употребляемыми в традиционной философии или используемыми современными авторами. Эти другие методы имеют одну общую характерную черту: все они рассматривают выражение в языке как имя какого-либо конкретного или абстрактного объекта (entity). В отличие от этих методов предлагаемый здесь метод рассматривает выражение не как имя чего-либо, а как имеющее интенционал и экстенционал.

Второй после анализа значения основной темой этой книги является модальная логика, то есть теория модальностей, таких, как необходимость, случайность, возможность, невозможность и т. д. Различными авторами предлагались разные системы модальной логики. Мне, однако, кажется, что невозможно построить удовлетворительную систему до
того, как будут достаточно выяснены значения модальностей. Я полагаю, далее, что это выяснение лучше всего может быть достигнуто соотнесением каждого из модальных понятий с соответствующим семантическим понятием (например, необходимости с L-истинностью). Будет показано, что этот метод ведет также к выяснению и устранению некоторых затруднений, которые встречались логикам в связи с модальностями. В предисловии ко второму тому «Исследований по семантике» я сообщил о своем намерении опубликовать в качестве следующего тома книгу о модальной логике, содержащую наряду с другими предметами синтаксические и семантические системы, которые комбинируют модальности с квантовикацией. Но эта книга не является еще выполнением обещания: она содержит только анализ и обсуждение модальностей, предваряющие построение модальных систем. Самые системы здесь не даются. В одной статье, опубликованной в другом месте (см. Библиографию), я предложил исчисление и семантическую систему, комбинирующие модальности с квантовикацией, и резюмировал некоторые результаты, касающиеся этих систем. Более полное изложение результатов, уже полученных и ожидаемых, должно быть отложено до другого времени.

Исследования модальной логики, приведшие к методу, разрабатываемому в этой книге, были проведены в 1942 году, и первый вариант этой книги был написан в 1943 году во время отпуска, предоставленного мне Чикагским университетом и оплаченного Рокфеллеровским фондом. Каждому из этих учреждений я хочу выразить благодарность. Профессора Алонсо Чёрч и У. В. Куайн прочитали первый вариант и обсудили его со мной в обширной переписке. Я очень благодарен им обоим за поощрение, а также за разъяснения, данные в ходе этого обсуждения, а проф. Куайну — также за изложение его взглядов и особенно его отношения к моему методу модальной логики. Это изложение цитируется и детально обсуждается в предпоследнем разделе этой книги. Я также обязан профессорам К. Г. Гемпелу и Дже. Маккинзи за некоторые полезные замечания. Мисс Гертруде Джейгер я благодарен за ее квалифицированную помощь при подготовке рукописи.

Чикаго, ноябрь 1946 года. Р. К.
ПРЕДИСЛОВИЕ АВТОРА КО ВТОРОМУ ИЗДАНИЮ

Основной текст книги остался без изменений. Но добавлено приложение, содержащее пять ранее опубликованных статей. Они были написаны в результате обсуждений проблем, разбираемых в этой книге. Кое-где они дают более детальную или более ясную формулировку моей позиции, а кое-где отражают изменение моих более ранних взглядов, совершенное под влиянием обсуждения и возражений, выдвинутых другими авторами.

Содержание помещенных в приложении статей А—Е относится к некоторым разделам книги следующим образом: статья В дает очерк нового метода в связи с определением L-истинности в § 2 и понятием описания состояния как описания возможного состояния. Проблема природы и допустимости суждений и других объектов, обсуждаемая в § 6 и 10, более детально разбирается в статье А. Статья С указывает на изменение в трактовке предложений мнения в § 13—15. Статья D защищает семантическое понятие интенсонала против экстенсоналистских возражений, подобных возражениям Куайна, обсуждаемым в § 44, показывая научную правомерность соответствующего прагматического понятия языкового значения. Статья Е добавляет к этому некоторые краткие замечания о прагматических понятиях.

К библиографии добавлено много ссылок на позднейшие публикации.

Рудольф Карнап

Калифорнийский университет, Лос-Анджелес, декабрь 1955 года.
ГЛАВА I

МЕТОД ЭКСТЕНСИОНАЛА И ИНТЕНСИОНАЛА

В этой главе развивается метод семантического анализа значения. Он применяется к тем выражениям семантической системы S, которые мы называем десигнаторами (designators); они включают (декларативные 1) предложения, индивидные выражения (то есть знаки постоянных индивидов или дескрипции 2 индивидов) и предикаторы (то есть предикатные постоянные или сложные предикатные выражения, включая выражения абстракции). Мы отправляемся от семантических понятий истинности и L-истинности (логической истинности) предложений (§ 1, 2). Из определения L-истинности видно, что она имеет место для предложения, если его истинность вытекает только из семантических правил безотносительно к (внезаконным) фактам (§ 2). Два предложения называются (материально) эквивалентными, если они оба истины или оба неистины. Это понятие эквивалентности распространяется затем, кроме предложений, и на другие десигнаторы. Два индивидуальных выражений эквивалентны, если они обозначают один и тот же индивид. Два предикатора (степени 1*) эквивалентны, если они удовлетворяют для одних и тех же индивидов. L-эквивалентность (логическая эквивалентность) определяется как для предложений, так и для других десигнаторов таким образом, что она имеет место для двух десигнаторов, если и только если их эквивалентность вытекает из одних только семантических правил. Понятия эквивалентности и L-эквивалентности в их расширенном употреблении являются основными для нашего метода (§ 3).

Если два десигнатора эквивалентны, мы говорим также, что они имеют один и тот же экстенсионал**. Если они, кроме того, являются L-эквивалентными, мы говорим, что они имеют также один и тот же интенсиянал (§ 5). Затем мы нщем объекты, которые можно было бы избрать в качестве экстенсионала или интенсиянала для различных видов десигнаторов. Мы находим, что с только что установленными двумя условиями тождества согласуется следующий выбор: в качестве экстенсонала предикатора мы берем класс тех индивидов, для которых он удовлет-

1 То есть повествовательные. — Прим. ред.
* См. комментарий.
** См. комментарий.
вторяется, а в качестве интенционала — свойство, которое он выражает; это согласуется с обычными концепциями (§ 4). В качестве экстенционала предложения мы берем его логическую валентность 1 (истина или ложь), в качестве интенционала — суждение, выраженное этим предложением (§ 6). Наконец, экстенционалом индивидного выражения является идивид, к которому оно относится, а его интенционалом является выражаемое им понятие нового рода, которое мы называем индивидным концептом (§ 7—9). Эти понятия экстенционалов и интенционалов оправдываются их плодотворностью; дальнейшие определения и теоремы равно применимы к экстенционалам всех типов или к интенционалам всех типов.

Предложение является экстенциональным в отношении входящего в него десигнатора, если экстенциональ предложение является функцией экстенционала десигнатора, то есть если замещение десигнатора эквивалентным ему преобразует все предложение в эквивалентное ему. Предложение является интенциональным в отношении входящего в него десигнатора, если оно не экстенционально и если его интенционал является функцией интенционала десигнатора, то есть если замещение этого десигнатора L-эквивалентным ему преобразует все предложение в L-эквивалентное ему. Модальное предложение (например, «необходимо, что...») является интенциональным в отношении подчиненного ему предложения (§ 11). Психологическое предложение, подобное «Джон считает, что сейчас идет дождь», не является ни экстенциональным, ни интенциональным в отношении подчиненного ему предложения (§ 13). Проблема семантического анализа этих предложений меняется разрешается с помощью понятия интенциональной структуры (§ 14, 15).

§ 1. ПРЕДВАРИТЕЛЬНЫЕ РАЗЪЯСНЕНИЯ

Этот раздел содержит разъяснение символической языковой системы S_1, которая будет далее служить в качестве языка-объекта для иллюстрации применения семантических методов, подлежащих обсуждению в этой книге. Кроме того, в целях дальнейшего употребления разъясняются некоторые семантические понятия; они принадлежат к семантическому метаязыку M, который является частью обычного языка. Среди них имеются понятия истинности, ложности и (материальной) эквивалентности, применяемые к предложениям. Термин «десигнатор»

1 В переводе этой книги Р. Карнапа, где объектом исследования является значение (meaning), нам представлялось неудобным создавать впечатление неоднозначности в понимании термина «значение предложения». Ввиду этого мы отказались от принятого в переводах на русский язык книг по математической логике термина «значение истинности» для английского «truth-value» и заменили его термином «логическая валентность». Последний термин удобен и тем, что он позволяет избежать таких громоздких и двусмысленных словообразований, как, например, «значение истинности истин» и т. д. Точно так же употребление термина «логическая валентность» хорошо согласуется с применением в тексте терминов «эквивалентно» и «L-эквивалентно».— Прим. ред.
вводится для всех тех выражений, к которым применяется семантический анализ значения, причем этот термин будет здесь употребляться в особенности для предложений, предикаторов (то есть предикатных выражений) и индивидуальных выражений.

Главной задачей этой книги является нахождение подходящего метода для семантического анализа значения, то есть нахождение понятий, пригодных в качестве инструментов этого анализа. Для этой цели предлагаются понятия интенсонала (intension) и экстенсонала (extension) языкового выражения. Они аналогичны обычным понятиям свойства и класса, но будут применяться более общим образом к различным типам выражений, включая предложения и индивидуальные выражения. Эти два понятия будут разъяснены и разобраны в главах I и II.

Обычное понятие отношения именования и различение, которое со времени Фреге иногда проводилось между объектом, именуемым посредством выражения, и смыслом этого выражения, будут детально рассмотрены в главе III. Пара понятий экстенсонал — интенсонал в некоторых отношениях подобна паре понятий Фреге; но будет показано, что последняя пара обладает серьезными недостатками, которых избегает первая. Главный недостаток метода, применяющего последнюю пару, тот, что два различных выражения употребляются для того, чтобы говорить, сказать, о свойстве и соответствующем классе. Метод экстенсонала и интенсонала нуждается только в одном выражении для того, чтобы говорить как о свойстве, так и о классе, и вообще только в одном выражении для того, чтобы сказать о некотором интенсонале и соответствующем экстенсонале.

В главе IV будет построен метаязык, нейтральный по отношению к экстенсоналу и интенсоналу, в том смысле, что он говорит не о свойстве и соответствующем классе как двух объектах, а только об одном объекте; и аналогично вообще для любой пары: интенсонал — соответствующий экстенсонал. Возможность этого нейтрального языка показывает, что наше различение между экстенсоналом и интенсоналом не предполагает удвоения объектов.

В главе V на основе метода экстенсонала и интенсонала обсуждаются некоторые вопросы, касающиеся модальной логики.
Обсуждаемые здесь вопросы впервые привлекли мое внимание, когда я работал над системами модальной логики и пришел к необходимости выяснить понятия, которые будут здесь рассматриваться под названиями «экстенционал» и «интенционал», и связанные с ними понятия, относящиеся к тому, что обычно называется «значениями переменной». Дальнейшим стимулом для меня послужили недавние публикации Куайна и Чёрча, явившиеся ценным вкладом в выяснение понятий именования и значения.

Прежде чем начать обсуждение указанных проблем, мы дадим в этом разделе некоторые разъяснения, касающиеся употребляемых здесь языков-объектов и метаязыка. В качестве языков-объектов мы будем употреблять преимущественно символические языки, главным образом три семантические языковые системы — S₁, S₂ и S₃, — а иногда и обычный словесный язык. Ради краткости данные будут не все правила этих символических систем, а будут описаны только те их черты, которые существенны для нашего обсуждения. Систему S₁ мы опишем сейчас; S₂ является расширением ее и будет разъяснена позднее (§ 41); S₃ будет описана в § 18.

Система S₁ содержит обычные коннекторы отрицания «¬» («не»), дизъюнкцию «∨» («или»), конъюнкцию «∧» («и»), материального следования (или материальной импликации) «⇒» («если... то») и двуустороннего материального следования (или материальной эквивалентности) «≡» («если и только если»). Единственными переменными в S₁ являются

1 [Notes] (см. Библиографию в конце этой книги). Взгляды Куайна на отношение именования (обозначения) будут разобраны в гл. III, а заключения, которые он выводит из них применительно к проблеме квантификации модальных предложений, будут рассмотрены в гл. V.

3 [Прим. ред.]
индивидуальные переменные «x», «y», «z» и т. д. Для этих переменных употребляются обычные кванторы, общности (universal) и существования: «(x) (...x...)» («для каждого x, ...
...x...») и «(∃x) (...x...)» («существует x такой, что ...
...x...»). Все предложения в S₁ и в других системах замкнуты (то есть не содержат свободных переменных). Кроме двух кванторов, встречаются два оператора другого рода: йота-оператор для дескрипций индивидов [«(ιx) (...x...)»], «тот индивид, для которого ...
...x...»] и лямбда-оператор для выражений абстракции («(ιx) (...x...)»), «свойство (или класс) таких x, что ...
...x...»). Если предложение состоит из выражения абстракции, за которым следует индивидуальная постоянная, то оно говорит, что этот индивид имеет рассматриваемое свойство. Следовательно, «(ιx) (...x...)a» значит то же самое, что «...a...», то есть предложение, образованное из «...x...» путем подстановки «a» вместо «x». Правила нашей системы допускают преобразование «(ιx)(...x...)a» в «...a...», и наоборот; эти преобразования называются конверсиями (conversions). S₁ содержит дескриптивные постоянные (то есть нелогические постоянные) индивидуального и предикатного типов. Число предикатов в S₁ предполагается конечным, число же индивидуальных постоянных может быть бесконечным. Для некоторых из этих постоянных, которые мы будем употреблять в примерах, мы установим здесь значения с помощью семантических правил, которые переводят их на английский язык.

1-1. Правила обозначения для индивидуальных постоянных.
«s» — символьский перевод «Вальтер Скотт»
«w» — «(книга) Веверлей».

1-2. Правила обозначения для предикатов.
«Hx» — «x человек»
«RAx» — «x разумное животное»
«Fx» — «x (по природе) не имеет перьев»
«Bx» — «x двуногое»
«Axy» — «x автор y».

Предполагается, что употребляемые здесь слова английского языка должны пониматься так, что «человек» и «разумное животное» значит одно и то же. Далее мы будем употреблять «a», «t», «c» как индивидуальные постоянные, а «P», «Q» — как предикатные постоянные (первого уровня и первой степени); интерпретация этих знаков будет укажы-
ваться в каждом случае или будет оставаться неуказанной, если не будет существенной для нашего обсуждения.

Для того чтобы говорить о каком-либо языке-объекте — в данном случае о символических языковых системах S_1 и т. д. — нам нужен метаязык. Мы будем употреблять в качестве нашего метаязыка M соответствующую часть английского языка, содержащую переводы предложений и других выражений наших языков-объектов (например, переводы, данные в пунктах 1-1 и 1-2), имена (описания) этих выражений и специальные семантические термины. Для простоты мы, как правило, будем образовывать имя выражения обычным путем, заключая последние в кавычки. Для того чтобы говорить о выражениях в общем виде, мы часто употребляем «A_i», «A_j» и т. д. для выражений любого рода и «E_i», «E_j» и т. д. для предложений, иногда также пустые места, вроде «...», «— — —» и т. д., и пустые места в комбинации с переменными, например «...х...», для выражения, в котором эта переменная является свободной. Если в выражении встречается буква немецкого готического шрифта вместе с символами языка-объекта, эти символы употребляются автономно, то есть как имена самих себя. Так, мы можем написать в M, например, «$A_i \equiv A_j$»; это должно обозначать то выражение языка-объекта, которое состоит из выражения A_i (что бы это ни было, например, «Hs»), после которого стоит знак «\equiv», за которым следует выражение A_j. (В формулах, как в языках-объектах, так и в M, круглые скобки часто будут опускаться при обычных соглашениях.) Термин «предложение» (sentence) будет употребляться в смысле «декларативное предложение». Термин «матрица предложений», или, короче, «матрица», будет употребляться для выражений, которые или являются предложениями, или образованы из предложений путем замены индивидуальных постоянных переменными. (Если матрица содержит некоторое число свободных вхождений n различных переменных, то она называется матрицей степени n; например, $Axy \lor Px$ будет матрицей второй степени; предложения являются матрицами нулевой степени.) Предложение, состоящее из предиката степени n, за которым следует n знаков индивидуальных

1 См. [Syntax], § 42.
постоянных, называется атомарным предложением (например, «P», «ABC»).

Полное построение семантической системы S_1, которое здесь не может быть дано, состояло бы в задании правил следующих родов: (1) правило образования, определяющих допускаемые формы предложений; (2) правило обозначения для дескриптивных постоянных (например, 1-1 и 1-2); (3) правило истинности, которые мы сейчас объясним; (4) правило областей, которые будут разъяснены в следующем разделе. Мы дадим здесь только три примера **правил истинности**: для атомарных предложений (1-3), для \lor (1-5) и для \equiv (1-6).

1-3. **Правило истинности** для простейших атомарных предложений. Атомарное предложение в S_1, состоящее из предиката, за которым следует индивидная постоянная, истинно, если и только если тот индивид, к которому относится индивидная постоянная, обладает свойством, которое обозначается предикатом.

Это правило предполагает правила обозначения. Оно дает вместе с правилами 1-1 и 1-2, например, следующий результат.

1-4. Предложение «Bs» истинно, если и только если Скотт — двуногое существо.

1-5. **Правило истинности** для \lor. Предложение $\mathcal{E}_i \lor \mathcal{E}_j$ истинно в S_1, если и только если по крайней мере одно из предложений \mathcal{E}_i, \mathcal{E}_j истинно.

1-6. **Правило истинности** для \equiv. Предложение $\mathcal{E}_i \equiv \mathcal{E}_j$ истинно, если и только если \mathcal{E}_i, \mathcal{E}_j оба истинны или оба не истинны.

Имеются еще некоторые дальнейшие правила истинности для других конъюнкторов, соответствующие их таблицам логической валентности, и для кванторов; другой пример правила истинности будет дан в 3-3. Правила истинности все вместе составляют рекурсивное определение для «истинно в S_1», потому что они, в сочетании с правилами обозначения, определяют для каждого предложения в S_1 достаточно и необходимое условие его истинности (как это дано для «Bs» в 1-4). Тем самым они дают интерпретацию для каждого предложения. Так, например, мы узнаем из правила, что предложение «Bs» гозорит (другими словами, выражает суждение), что Скотт — двуногое существо. Для целей на него обсуждения нет необходимости давать полное...
определение истинности\(^1\). Достаточно будет предположить, что термин «истинно» определяется так, что в применении к предложениям имеет свое обычное значение. Более точно, мы предполагаем, что предложение в \(M\) говорящее, что определенное предложение в \(S_1\) истинно, значит то же самое, что и перевод этого последнего\(^2\), например, «предложение «\(H_s\) истинно в \(S_1\)» значит то же самое, что «Вальтер Скотт — человек». На основе «истинно» некоторые дальнейшие семантические термины определяются следующим образом относительно любой семантической системы \(S\), например \(S_1\) и т. д.

1-7. Определение. \(S_i \text{ ложно} (в \(S\)) = D_i \sim S_i \text{ истинно} (в \(S\)).\) Таким образом, «ложно» имеет здесь свое обычное значение.

1-8. Определение. \(S_i \text{ эквивалентно} S_j (в \(S\)) = D_i S_i \equiv S_j \text{ истинно} (в \(S\)).\)

Это определение вместе с правилом истинности для \(\equiv\) (1-6) дает следующий результат:

1-9. Два предложения эквивалентны, если и только если оба обладают одной и той же логической валентностью, то есть если оба истинны или оба ложны.

Следует заметить, что термин «эквивалентный» определяется здесь так, что он означает простое совпадение логической валентности (одновременную истинность или ложность), то есть отношение, которое иногда называется «материальной эквивалентностью». Этот термин («материальная эквивалентность») употребляется здесь не как в обычном языке, в смысле совпадения значений, иногда называемого «логической эквивалентностью»; для последнего понятия мы дальше введем термин «\(L\)-эквивалентно» (2-3c).

Я предлагаю пользоваться термином «десигнатор» для всех тех выражений, к которым применяется семантический анализ значения, причем класс десигнаторов, таким

\(^1\) Первое определение семантического понятия истинности было дано Тарским [Warheitstbegriff]; я дал определение, несколько отличное от него, в [1], § 7. Обсуждение природы семантического понятия истинности без применения специальных технических средств см. T a r s k i [Truth] и мои [Remarks].

\(^2\) Детальное обсуждение этой характеристики семантического понятия истинности см. T a r s k i [Truth] и мои [Remarks], § 3.
образом, сужается или расширяется, в соответствии с употребляемым методом анализа. (Слово «значение» здесь всегда понимается в смысле «обозначающего значения», иногда также называемого «познавательным», «теоретическим», «относящим к (referential)», или «сообщающим (informative)», в отличие от других компонент значения, напр., мер эмоциональной или побудительной. Таким образом, мы имеем дело только с декларативными предложениями и их частями. Наш метод берет в качестве десигнаторов по крайней мере предложения, предикаторы (то есть предикатные выражения в широком смысле слова, включая выражения классов), функции (то есть выражения для функций в более узком смысле слова, исключая пропозициональные функции) и индивидуальные выражения; другие типы могут быть включены при желании (например, коннекторы, как экстенсональные, так и модальные).

Смысл термина «десигнатор» не предполагает, что эти выражения являются именами каких-либо объектов (отношение именования будет разобрано в § 24), а подразумевает лишь, что они имеют, так сказать, независимое значение, по крайней мере независимое от некоторой степени. Только (декларативные) предложения имеют (обозначающее) значение в самом строгом смысле слова, значение в высшей степени независимое. Значение всех других выражений является производным от того способа, каким

они вносят свой вклад в значение предложения, в котором встречаются. Может быть, можно было бы различать — приблизительно — различные степени независимости этого производного значения. Так, например, я приписал бы очень низкую степень независимости выражению «(»), несколько большую независимость выражению «√», еще большую — выражению «+» (в арифметическом языке), еще большую — «Н» (человек) и «с» («Скотт»); я не знаю, какое выражение из двух последних следует поставить выше. Этот порядок расположения по степени, конечно, весьма субъективен. И проведение границы между выражениями с полным отсутствием или малой степенью независимости значения («синкатегорематическими» по традиционной терминологии) и выражениями с высокой степенью независимости, рассматриваемыми как десигнаторы, является, по-видимому, в большей или меньшей степени вопросом соглашений. Если выбран метаязык, по-видимому, удобно рассматривать в качестве десигнаторов, по крайней мере, выражения всех тех, но не обязательно только тех типов, для которых в этом метаязыке существуют переменные (ср. [1], § 12, и ссылки на Куайна ниже, в начале § 10).

§ 2. L-ПОНАЯ

Под экспликацией (explication) хорошо знакомого, но неточного понятия мы имеем в виду замещение его новым, точным понятием; первое называется экспликацией [подлежащим выяснению.— Ред.], а последнее — экспликатом [результатом выяснения.— Ред.]. Понятие L-ишинности определяется здесь в качестве экспликаата для того, что философы называют логической, или необходимой, или аналитической истиностью. Это определение ведет к тому результату, что предложение в семантической системе является L-ишинным, если и только если семантических правил этой системы достаточно для установления его истиности. Понятия L-ложности, L-импликации и L-эквивалентности определяются в качестве экспликаатов для логической ложности, логической импликации или логического следования и двусторонней логической импликации соответственно. Предложение называется L-детерминированым, если оно или L-ишинно, или L-ложно; в других случаях оно называется L-недетерминированным или фактическим. Последнее понятие является экспликатом для того, что Кант называл синтетическими суждениями. Предложение называется F-ишинным, если оно истинно, но не L-ишинно; F-ишинность является экспликатом для того, что известно как фактическое, или синтетическая, или случайная истиность. Понятия F-ложности, F-импликации и F-эквивалентности определяются аналогичным образом.
Задача уточнения неопределенного или не вполне точного понятия, употребляемого в повседневной жизни или употребляющегося на более ранней стадии научного или логического развития, или, скорее, задача замещения его вновь построенным, более точным, понятием относится к числу самых важных задач логического анализа и логического построения. Мы называем это задачей эксплицирования, или заданием экспликации для прежнего понятия; это прежнее понятие, или, иногда, термин, употребляемый для него, называется экспликацией (explicitum), а новое понятие, или его термин, называется экспликацией (explicitum) старого. Так, например, Фроле, а позднее Рассел взяли в качестве экспликации термин «два» в том не вполне точном значении, в котором он употребляется в повседневной жизни и прикладной математике; в качестве экспликации для него они предложили точно определенное понятие, а именно класс парных классов [см. ниже замечание к (.) в § 27]; другие логики предложили другие экспликации для того же самого экспликации. Многие понятия, получившие теперь определение в семантике, предназначены служить экспликациями для понятий, ранее употреблявшихся в повседневном языке или логике. Например, семантическое понятие истинности имеет в качестве своего экспликаци за то понятие истинности, которое употребляется в повседневном языке (в применении к декларативным предложениям) и во всей традиционной и современной логике. Далее, различные интерпретации дескрипций, данные Фроле, Расселом и другими, которые будут обсуждены в § 7 и 8, могут рассматриваться как различные экспликации для фраз формы «тот, который...»; каждая из этих экспликаций состоит в установлении правил для употребления соответствующих выражений в конструируемых языковых системах. Интерпретация, которую мы прилем, следуя предложению Фроле (§ 8, метод III b), настолько отклоняется от значения описаний в обычном языке. Вообще говоря, вовсех не требуется, чтобы значение экспликации сколько возможно близко совпадало со значением

1 То, что здесь имеется в виду под «экспликацией» и «экспликацией», по-индийский, имеет сходство с тем, что имеет в виду Лайнфорд под «подложим аналитику» (analysandum) и «анализирующим» (analysins); см. ниже, прим. 3, стр. 111.
экспликаанда, но экспликаат должен, однако, соответствовать экспликаанду таким образом, чтобы его можно было употряблять вместо последнего.

L-термины («L-истинно» и т. д.), которые мы теперь будем вводить, подобным же образом предназначаются в качестве экспликаатов для обычных, но не вполне точных понятий. «L-истинно» мыслится как экспликаат для того, что Лейбниц называл необходимо истинным, а Кант — аналитически истинным. Мы здесь братце укажем, как могут определяться этот и другие L-термины. В ходе дальнейшего обсуждения мы, однако, не будем пользоваться техническими деталями даваемых ниже определений, а используем только тот факт, что «L-истинно» определяется так, что требование, установленное в нижеследующем соглашении 2-1, оказывается выполненным. Это согласуется с целью настоящей книги, которая заключается не столько в том, чтобы провести точный анализ точно построенных систем, сколько в неформальном установлении некоторых соображений, направленных на открытие понятий и методов, пригодных для семантического анализа.

Мы будем вводить L-понятия с помощью понятий описания состояния и области. Отправным пунктом для развития этого метода послужили некоторые идеи Витгенштейна.

Класс предложений в S₁, который содержит для каждого атомарного предложения или само это предложение, или его отрицание, но не то и другое вместе, и не содержит никаких других предложений, называется описанием состояния (state description) в S₁, потому что оно, очевидно, дает полное описание возможного состояния универсума индивидов относительно всех свойств и отношений, выраженных предикатами этой системы. Таким образом,

1 Метод, который я употребляю здесь, сходен с тем, который я описал в [1], § 19 как процедуру E, но проще его. Более простая форма возможна здесь потому, что S₁ содержит атомарные предложения для всех атомарных суждений из всех известных в настоящее время используемых здесь процедура кажется мне самой удобной для семантического построения системы дедуктивной логики; я, сверх того, использовал ее для модальной логики в [Modalities] и для индуктивной логики, то есть для теории логической вероятности или степени подтверждения в [Inductive].

2 [Tractatus]; см. также [1], p. 107.
описания состояния представляют возможные миры Лейбница или возможные положения вещей по Витгенштейну.

Легко установить семантические правила, которые для каждого предложения в \(S_1 \) определяют, выполняется оно в данном описании состояния или нет. То, что предложение выполняется в описании состояния, значит, говоря не технически, что оно истинно, если описание состояния (то есть все входящие в него предложения) истинно. Нескольких примеров будет достаточно, чтобы показать природу этих правил: 1) атомарное предложение выполняется в некотором описании состояния, если и только если оно входит в него; 2) \(\sim \mathcal{E}_i \) выполняется в некотором описании состояния, если и только если \(\mathcal{E}_i \) не выполняется в нем; 3) \(\mathcal{E}_i \lor \mathcal{E}_j \) выполняется в описании состояния, если и только если \(\mathcal{E}_i \) выполняется или \(\mathcal{E}_j \) или оба вместе; 4) \(\mathcal{E}_i \equiv \mathcal{E}_j \) выполняется в некотором описании состояния, если и только если или \(\mathcal{E}_i \) и \(\mathcal{E}_j \) выполняются в нем, или ни одно из них не выполняется в нем; 5) общее предложение (например, \(\langle x \rangle (P_x) \rangle \) выполняется в некотором описании состояния, если и только если все случаи подстановки в его матрице\(^1\) (\(\langle Pa \rangle, \langle Pb \rangle, \langle Pc \rangle \) и т. д.) выполняются в нем. Йота-операторы и лямбда-операторы могут быть элиминированы (для первых это будет показано дальше, см. 8-2; для последних см. объяснение конверсии в § 1). Поэтому достаточно установить правило, согласно которому любое предложение, содержащее оператор одного из этих видов, выполняется в тех же самых описаниях состояния, что и предложение, получающееся из него в результате элиминации оператора.

Класс всех тех описаний состояния, в которых данное предложение \(\mathcal{E}_i \) выполняется, называется областью \(\mathcal{E}_i \). Все правила, пять примеров которых мы только что дали, определяют, вместе взятые, область любого предложения в \(S_1 \); поэтому они называются правилами областей. Определяя область, они, вместе с правилами обозначения для предикатов и индивидуных постоянных (например, 1-1 и 1-2), дают интерпретацию для всех предложений в \(S_1 \), по-

\(^1\) То есть единичные предложения, получаемые из данной матрицы подстановками постоянных вместо свободных переменных. — Прим. ред.
сколько знать значение предложения значит, как указывал Витгенштейн, знать, в каких из возможных случаев оно было бы истинным и в каких — нет.

Связь между этими понятиями и понятием истинности следующая: существует одно и только одно описание состояния, которое описывает действительное состояние вселенной; таким является описание, содержащее все истинные атомарные предложения и отрицания всех ложных. Следовательно, оно содержит только истинные предложения и потому мы называем его истинным описанием состояния. Предложение любой формы является истинным, если и только если оно выполняется в истинном описании состояния. Это лишь вспомогательные поясняющие замечания; в определении же L-истинности понятие истины использовано не будет.

Подлежащие теперь определению L-понятия вводятся как экскликации для известных понятий, которыми философы пользовались на протяжении долгого времени без удовлетворительного их определения. Наше понятие L-истинности вводится, как указано выше, в качестве экскликации для хорошо знакомого, но неточного понятия логической, или необходимой, или аналитической истинности, как экскликанд.

Этот экскликанд иногда характеризовался как истинность в силу чисто логических оснований, в силу одного лишь значения, независимо от случайности фактов. Значение же предложения, его интерпретация определяется посредством семантических правил (правил обозначения и правил областей в описанном выше методе). Поэтому будет, по-видимому, вполне в согласии с традиционным понятием, которое мы берем в качестве экскликанд, если мы потребуем, чтобы любой эксклика́т удовлетворял следующему условию:

2-1. Соглашение. Предложение E_i L-истинно в семантической системе S, если и только если E_i истинно в S таким образом, что его истинность может быть установлена на основе одних лишь семантических правил системы S, без всякой ссылки на (внешниховь) факты.

Но это еще не определение L-истинности. Это неформальное выражение условия, которому должно удовлетворять любое предлагаемое определение L-истинности. Чтобы быть адекватным в качестве экскликации для нашего
§ 2. L-понятия

экспликация. Таким образом, функция этого соглашения — чисто объяснительная и эвристическая.

Как же должны мы определить L-истинность, чтобы выполнить требование 2-1 Способ определения подсказывает концепцией Лейбница, согласно которой необходимая истина должна выполняться во всех возможных мирах. Так как наши описания состояния представляют возможные миры, то это значит, что предложение логически истинно, если оно выполняется во всех описаниях состояния. Это ведет к следующему определению:

2-2. Определение. Предложение \(\Xi_i \) Л и мно (в \(S_j \)) = \(\text{dt} \Xi_i \) выполняется в каждом описании состояния (в \(S_j \))

Следующее рассуждение показывает, что понятие L-истинности, определенное таким образом, находится в согласии с условием 2-1 и, следовательно, является адекватным экспликатом для логической истинности. Если \(\Xi_i \) выполняется в каждом описании состояния, то семантические правила областей достаточны для установления этого результата. (Например, из приведенных выше правил областей мы видим, что «Pa» выполняется в некоторых описаниях состояния, что «\(\neg \text{Pa} \)» выполняется во всех остальных описаниях состояния и что, следовательно, дизъюнкция «Pa \(\lor \neg \text{Pa} \)» выполняется в каждом описании состояния.) Таким образом, семантические правила устанавливают также истинность \(\Xi_i \), потому что если \(\Xi_i \) выполняется в каждом описании состояния, то оно выполняется также и в истинном описании состояния и, следовательно, само является истинным. Если, с другой стороны, \(\Xi_i \) выполняется не в каждом описании состояния, тогда имеется по крайней мере одно описание состояния, в котором \(\Xi_i \) не выполняется. Если бы это описание состояния было истинным, то \(\Xi_i \) было бы ложным. Является ли это описание состояния истинным или неистинным — зависит от фактов универсума. Следовательно, в этом случае, даже если \(\Xi_i \) истинно, все-таки невозможно установить его истинность без обращения к фактам.

L-ложность вводится как экспликация для логической, или необходимой, ложности, или для противоречивости. L-импликация вводится как экспликация для логической импликации или логического следования. L-эквивалентность мыслится как экспликация для двусторонней логической им-
пликации, или логического следования. Определяются они следующим образом:
2-3. Определения.
а. \(\mathbf{S}_i \) \(L \)-ложно \((v S_i) = dt \sim \mathbf{S}_i \) \(L \)-истинно
б. \(\mathbf{S}_i \) \(L \)-имплицирует \(\mathbf{S}_j \) \((v S_i) = dt \) предложение \(\mathbf{S}_i \Rightarrow \mathbf{S}_j \) \(L \)-истинно.
в. \(\mathbf{S}_i \) \(L \)-эквивалентно \(\mathbf{S}_j \) \((v S_i) = dt \) предложение \(\mathbf{S}_i \wedge \mathbf{S}_j \) \(L \)-истинно.
г. \(\mathbf{S}_i \) \(L \)-детерминировано \((v S_i) = dt \) \(\mathbf{S}_i \) является или \(L \)-истинным или \(L \)-ложным.
Следующие результаты легко вытекают из этих определений и определения 2-2.
2-4. \(\mathbf{S}_i \) \(L \)-ложно, если и только если \(\mathbf{S}_i \) не выполняется ни в каком описании состояния.
2-5. \(\mathbf{S}_i \) \(L \)-имплицирует \(\mathbf{S}_j \), если и только если \(\mathbf{S}_j \) выполняется в каждом описании состояния, в котором выполняется \(\mathbf{S}_i \).
2-6. \(\mathbf{S}_i \) \(L \)-эквивалентно \(\mathbf{S}_j \), если и только если \(\mathbf{S}_i \) и \(\mathbf{S}_j \) выполняются в одних и тех же описаниях состояния. Условие для \(L \)-ложности, установленное в 2-4, означает в действительности, что \(\mathbf{S}_i \) не может быть истинным. Условие для \(L \)-импликации в 2-5 означает, что невозможно, чтобы \(\mathbf{S}_i \) было истинным, а \(\mathbf{S}_j \) было при этом ложным. Условие для \(L \)-эквивалентности в 2-6 означает, что невозможно, чтобы одно из этих двух предложений было истинным, а другое — ложным. Таким образом, эти результаты показывают, что \(L \)-ложность, \(L \)-импликация и \(L \)-эквивалентность, по их определению в 2-3a, b, c, действительно могут рассматриваться как адекватные экспликации для ранее упомянутых экспликантов.
Мы видели, что наше понятие \(L \)-истинности выполняет наше соглашение 2-1. Таким образом, в соответствии с определением 2-3d предложение является \(L \)-детерминированным, если и только если семантические правила независимо от фактов оказываются достаточными для установления его логической валентности, то есть или его истинности, или его ложности. Это подсказывает следующее определение, 2-7, как экспликацию для того, что Кант называл синтетическими суждениями. Вытекающий из этого определения результат 2-8 показывает, что так определенное понятие действительно является адекватным экспликатом.
2-7. Определение. E_i является Л-недетерминированным или фактическим (в S_i) $= \exists_E^L E_i$ не является Л-детерминированным.

2-8. Предложение является фактическим, если и только если имеется по крайней мере одно описание состояния, в котором оно выполняется, и по крайней мере одно, в котором оно не выполняется.

Понятие F-истинности, которое будет определено в 2-9а, вводится как экспликация для того, что обычно называется фактической, или синтетической, или случайной истинностью в противоположность логической или необходимой истинности. Понятия, определяемые в 2-9 б, с, d, вводятся аналогичным образом как экспликации. Адекватность этих F-понятий как экспликаций вытекает из адекватности Л-понятий.

2-9. Определения.

a. E_i F-истинно (в S_i) $= \exists_E^L E_i$ истинно, но не Л-истинно.

b. E_i F-ложно (в S_i) $= \exists_E^L E_i$ F-истинно.

c. E_i F-имплицирует E_j (в S_i) $= \exists_E^L E_i \supset E_j$ F-истинно.

d. E_i F-эквивалентно E_j (в S_i) $= \exists_E^L E_i \equiv E_j$ F-истинно.

Следующие положения являются прямыми следствиями этих и предшествующих определений:

2-10. E_i F-ложно, если и только если E_i ложно, но не L-ложно.

2-11. E_i F-эквивалентно E_j, если и только если E_i эквивалентно, но не L-эквивалентно E_i.

Как пример F-истинности, рассмотрим предложение «Bs».

С помощью некоторого правила истинности и правил обозначения мы ранее установили, что «Bs» истинно, если и только если Скотт является двуногим (1-4). Этот результат не говорит нам, является ли «Bs» истинным или нет; он просто устанавливает достаточное и необходимое условие для истинности предложения « Bs». Это все, что мы можем узнать о « Bs» из одних только семантических правил. Если мы хотим определить логическую валентность « Bs», мы должны выйти за пределы чисто семантического анализа и обратиться к наблюдению фактов. Из 1-4 мы видим, о каких фактах идет речь: мы должны посмотреть на предмет Вальтер Скотт и увидеть, является ли он двуноним. Наблюдение показывает, что дело обстоит именно так. Следовательно, «Bs» истинно. Поскольку семантиче-
ские правила недостаточны для установления истинности этого предложения, поскольку оно не является L-истинным; следовательно, оно F-истинно.

§ 3. ЭКВИVALENТНОСТЬ И L-ЭКВИВАЛЕНТНОСТЬ

Символ «≡», обычно употребляемый между предложениями, ставится здесь также и между десигнатами других видов, в частности между предикатами и между индивидуальными выражениями. (P≡Q) должно значить то же самое, что и ((x) (Px≡Qx)). (≡) употребляется вместо обычного «a = b» как предложение тождества, говорящее, что a есть тот же самый индивид, что и b. З. тем понятия эквивалентности и L-эквивалентности, ранее применявшиеся только к предложениям, определяются для десигнатов любого вида; эти два понятия являются синонимами в н. шем методе. О двух десигнатах говорится, что они эквивалентны, если ≡-предложение, связывающее их, истинно; говорят, что они L-эквивалентны, если это предложение L-истинно. Отсюда следует, что P и Q эквивалентны, если они удовлетворяются для одних и тех же индивидов. Точно так же a и b эквивалентны, если a есть тот же самый индивид, что и b.

Мы определили термины «эквивалентный» и «L-эквивалентный» пока только для предложений (1-8 и 2-3c). Теперь мы расширим их употребление так, чтобы сделать их применимыми ко всем видам десигнатов, в особенности также к предикатам и индивидуальным выражениям. Так расширенные, эти два понятия стают основными понятиями предлагаемого здесь метода семантического анализа.

Мы начинаем с расширения употребления символа «≡». Обычно он употребляется в качестве коннектора между предложениями. В наших системах мы будем употреблять его между двумя десигнатами любого вида, но только в тех случаях, если оба десигнаторы относятся к одному и тому же типу. Это употребление вводится с помощью приводимых далее правил сокращения. Если в расширенном употреблении символ «≡» выбирается как исходный (primitive), то должны быть установлены соответствующие правила областей, которые приводят к тем же самым результатам (например, к результату, что P Q имеет ту же самую область, как и ((x) (Px Qx))), и является,

1 Под исходным символом разумеется символ, не определяемый в данной формальной системе. - Прим. ред.
следовательно, L-эквивалентным ему выражению) Основания для выбора именно этих интерпретаций для \(\equiv\) при различных видах десигнаторов вскоре станут ясными.

Первое правило вводит \(\equiv\) между предикаторами:

3-1. Сокращение.

а. Пусть \(\emptyset_i\) и \(\emptyset_j\) — два предикатора одной и той же степени в \(S\).

\[\emptyset_i \equiv \emptyset_j\] есть сокращение для

\[(x_1)(x_2)\ldots(x_n)[\emptyset_i x_1 x_2 \ldots x_n \equiv \emptyset_j x_1 x_2 \ldots x_n].\]

б. Отсюда для степени 1

\[\emptyset_i \equiv \emptyset_j\] есть сокращение для \((x)[\emptyset_i x \equiv \emptyset_j x].\)

В \(S\), мы будем употреблять коннектор \(\equiv\) также между предикаторами, но, ради удобства записи, иначе, чем только что введенный знак \(\equiv\). Получающееся в результате выражение (например, «\(\mathcal{P}\mathcal{C}\mathcal{Q}\)») берется здесь в качестве предикатора, а не в качестве предложения, как в случае \(\equiv\) (например, «\(I\) \(\mathcal{P}\) \(\mathcal{Q}\)»). Мы определяем его для степени 1:

3-2. Сокращение. Пусть \(\emptyset_i\) и \(\emptyset_i\) — два предикатора степени 1 в \(S\). \(\emptyset_i \circ \emptyset_i\) есть сокращение для \((\emptyset_i x \circ \emptyset_i x).\)

Таким образом, например, \(\emptyset_i \mathcal{F} \equiv \emptyset_i \mathcal{B}\) есть сокращение для \((\emptyset_i x \mathcal{F} \equiv \emptyset_i x)\) \(\mathcal{F}\mathcal{B}\) и, следовательно, является выражением для с. ойста быть бесперечным двуногим существом.

Кроме того, мы вводим знак \(\equiv\) как исходный знак тождества индивидов, вместо обычного \(" = \). Для этой цели мы устанавливаем следующее правило:

3-3. Правило истинности. Если \(\emptyset_i\) есть индивидуальное выражение в \(S\), для индивида \(x\), а \(\emptyset_j\) — для \(y\), то \(\emptyset_i \equiv \emptyset_j\) истинно, если и только если \(x\) есть тот же индивид, что и \(y\).

[Если \(S\) есть экстенсиональная система, содержащая в отличие от \(S\), переменный предикатор \(\emptyset_f\), то мы можем получить тот же результат, что и 3-3, определяя \(\emptyset_i = \emptyset_j\), подобно Расселу, как сокращение для \((\emptyset_i = \emptyset_j)\) \(\emptyset_f\) \(\emptyset_f\).]

Если система \(S\) в отличие от системы \(S\) содержит также и функции, то знак \(\equiv\) может быть определён для них методом, подобным вышеупомянутому определению для предикаторов. Можно вкратце указать этот метод, дав определение для простейшего типа, именно функций
для функций одного аргумента, область определения и область значений которых состоят из индивидов; определение для других типов аналогичны. Это определение не будет использоваться в наших дальнейших рассуждениях.

3-4. Сокращение. Для функций A_i и A_j в S:

$$A_i = A_j$$ есть сокращение для $(x)[A_i x = A_j x.]$$

[Следует заметить, что здесь в правой части знак «≡» стоит не между матрицами предложений, как в 3-1b, а между полными выражениями функций, которые для этого типа являются индивидуальными выражениями.]

Теперь мы определяем «эквивалентно», «L-эквивалентно» и «F-эквивалентно» общим способом для всех видов десигнаторов.

3-5. Определения. Пусть A_i и A_j — два десигнатора одного и того же типа в S_1.

а. A_i эквивалентно A_j (в S_1) $=_{df}$ предложение $A_i = A_j$ истинно (в S_1).

б. A_i L-эквивалентно A_j (в S_1) $=_{df}$ $A_i = A_j$ L-истинно (в S_1).

в. A_i F-эквивалентно A_j (в S_1) $=_{df}$ $A_i = A_j$ F-истинно (в S_1).

Теперь посмотрим, каково значение только что определенных понятий для различных видов десигнаторов. Начнем с предикаторов. Пусть \mathbf{P} и \mathbf{Q} — два предикатора степени 1 в S_1. Согласно 3-5a, они эквивалентны, если и только если $\mathbf{P} \equiv \mathbf{Q}$ истинно, следовательно, согласно 3-1b, если и только если $\langle x\rangle [\mathbf{P} \equiv \mathbf{Q} x]$ истинно, следовательно, если \mathbf{P} удовлетворяется для тех же индивидов, что и \mathbf{Q}. Результат для двух предикаторов любой степени n, скажем \mathbf{R} и $\mathbf{R'}$, аналогичен. Согласно 3-5a и 3-1а, они эквивалентны, если и только если $\langle x_1 \ldots x_n \rangle [\mathbf{R} x_1 \ldots x_n \equiv \equiv \mathbf{R'} x_1 \ldots x_n]$ истинно, следовательно, если два предикатора удовлетворяются для одних и тех же кортежей (длины n) индивидов.

Для примера допустим в качестве биологических фактов следующее:

3-6. Допущение. Все человеческие существа являются бесперыми двуногими существами, и наоборот.
§ 3. Эквивалентность и \(L \)-эквивалентность

Тогда имеет место следующее:

3-7. Пределожение \(\langle x \rangle \{ Hx \Rightarrow (F \land B)x \} \) истинно (в \(S_1 \)), но не 4. Истинно, следовательно, \(F \)-истинно.

Согласно 3-1b, только что приведенное предложение может быть сокращено с помощью \(H \Rightarrow F \land B \). Следовательно, 3-5 дает: 3-8. Предикаторы \(\langle H \rangle \) и \(\langle F \land B \rangle \) эквивалентны (в \(S_1 \)), но не \(L \)-эквивалентны, следовательно, \(F \)-эквивалентны.

С другой стороны, истинность предложения \(\langle x \rangle \{ Hx \Rightarrow \Rightarrow RAx \} \) может быть установлена без обращения к фактам, одним лишь применением семантических правил системы \(S_1 \), особенно 1-2 (см. замечание, следующее за этим правилом), и правил истинности для квантора общности и для знака \(\equiv \). Таким образом:

3-9. \(\langle x \rangle \{ Hx \equiv RAx \} \) \(L \)-истинно.

Согласно 3-1b, только что приведенное предложение может быть сокращено с помощью \(H \Rightarrow RA \):

3-10. \(H \Rightarrow RA \) \(L \)-истинно.

Следовательно, 3-5b дает:

3-11. Предикаторы \(\langle H \rangle \) и \(\langle RA \rangle \) \(L \)-эквивалентны (в \(S_1 \)).

Теперь применим наши определения к индивидуальным выражениям. Из 3-3 и 3-5a получается следующий результат:

3-12. Индивидуальные выражения эквивалентны, если и только если они являются выражениями для одного и того же индивида.

Примеры для \(L \)-эквивалентности и \(F \)-эквивалентности индивидуальных выражений будут даны позже (§ 9).

Рассмотрение этих результатов для предикаторов и индивидных выражений показывает следующее: если \(\langle P \rangle \) и \(\langle Q \rangle \) являются эквивалентными предикаторами, то \(\langle Pa \rangle \) и \(\langle Qa \rangle \) или оба истинны или оба ложны и, следовательно, в любом случае эквивалентны; то же самое верно и для \(\langle Pb \rangle \) и \(\langle Qb \rangle \) и т. д. Кроме того, если \(\langle a \rangle \) и \(\langle b \rangle \) эквивалентны, то \(\langle Pa \rangle \) и \(\langle Pb \rangle \) или оба истинны или оба ложны и, следовательно, в любом случае эквивалентны; то же самое верно и для \(\langle Qa \rangle \) и \(\langle Qb \rangle \) и т. д. Аналогичный результат для функций следует из правил, подобных 3-4. Можно показать, что следующие две теоремы справедливы вообще для наших систем \(S_1 \), \(S_2 \) и \(S_3 \) и точно так же для любых подобных систем, включая те, которые содержат функции, если только в основу положены определения, аналогичные выше-приведенным.
3-13. Если два знака десинработоров эквивалентны, то любые два предложения простейшей формы (в \(S_1 \); атомарной формы), одинаковые во всем, кроме вхождений этих двух десинработоров, являются также эквивалентными.

3-14. Если два десинработора (которые могут быть сложными выражениями) L-эквивалентны, то любые два предложения (какой бы то ни было формы), одинаковые во всем, кроме вхождений этих двух десинработоров, точно так же L-эквивалентны.

Эти два результата показывают, что наш выбор интерпретации для расширенного употребления знака «≡» и определения для расширенного употребления терминов «эквивалентно» и «L-эквивалентно» не был произвольным. Действительно, выбор и был сделан с целью получения этих результатов. В частности, первый результат 3-13, в его применении к индивидуальным выражениям, может рассмотрываться как определяющий употребление знака «≡» как знака тождества, что сначала могло бы показаться необычным.

На основе эквивалентности и L-эквивалентности для десинработоров мы определяем следующие два понятия:

3-15. Определения. Пусть \(\mathcal{A}_1 \) — десинработор (в \(S_1 \)).

a. Класс эквивалентности \(\mathcal{A}_1 =_{d} \) класс выражений (в \(S_1 \), эквивалентных \(\mathcal{A}_1 \).

b. Класс L-эквивалентности \(\mathcal{A}_1 =_{dl} \) класс выражений (в \(S_1 \), L-эквивалентных \(\mathcal{A}_1 \).

Легко видеть, что \(\mathcal{A}_1 \) сам принадлежит к обоим классам, что класс L-эквивалентности является подклассом класса эквивалентности и что оба класса содержат только десинработоры того же типа, что и \(\mathcal{A}_1 \).

§ 4. КЛАССЫ И СВОЙСТВА

Обычно рассматривают два класса, скажем классы, соответствующие предикаторам «P» и «Q», как тождественные, если они имеют один и те же элементы, другими словами, если «P» и «Q» эквивалентны. Мы считаем два свойства «P» и «Q» тождественными, если «P» и «Q», кроме того, L-эквивалентны. Под интенсионным предикатором «P» мы понимаем свойство P; по его экстенсионому мы понимаем соответствующий класс. Из этого следует, что для предикатора имеют один и тот же экстенсиональ, если он эквивалентен, и один и тот же интенсиональ, если они L-эквивалентны. Термин «свойство» должен пониматься в объективном, физическом смысле, а не в субъективном, относящемся к мышле-
нино; это же самое имеет силу и для терминов, подобных терминам «концепт», «интенсионал» и т. д. Употребление этих и родственных им терминов не заключает в себе их гипостазирования.

При анализе значения прилагательного, например «человеческий», или соответствующего предикатора в символическом языке, например «H», обычно говорят о двух объектах — с одной стороны, о свойстве быть человеком, или, как мы будем писать для краткости, о свойстве Человек (Human); с другой стороны, о классе человеческих существ, или о классе Человек (Human)

Метаязык M должен содержать некоторые переводы предложений языков-объектов, с которыми приходится иметь дело в M. Перевод часто может быть формулирован различными способами. В качестве примера возьмем атомарное предложение в S₁, скажем «H₂». Его простой, прямой перевод на M, согласно нашим правилам обозначения для «H» и «s» (1-2 и 1-1), следующий:

4-1. «Скотт — человек».

Имеются два других перевода «Hₜ» являющиеся в известном смысле более явными благодаря употреблению терминов «свойство» или «класс», но имеющие то же самое логическое содержание, что и 4-1:

4-2. «Скотт имеет свойство Человек».
4-3. «Скотт принадлежит классу (есть элемент класса) Человек».

В качестве другого примера возьмем предложение «(x) [Hₓ ⊃ Bₓ]» Здесь точно так же имеется прямой перевод (4-4) и два более явных со словами «свойство» (4-5) или «класс» (4-6):

1 Поскольку представляется желательной краткой формулировка и поскольку сочетания слов вида: «свойство человечек» («the property human») и «класс человек» («the class human») не согласуются с грамматикой английского языка и иногда бывают даже двусмысленными, я употреблял в прежних публикациях (см. [1], р. 237) двойные кавычки, например «свойство человечек». Однако это употребление кавычек отличается от их нормального употребления Поэтому я теперь предпочитаю способ «заглавных букв»; я буду употреблять его не только в связи со словами «свойство» и «класс», но также и с другими словами, обозначающими различные объекты, например «отношение», «функция», «понятие», «индивид», «индивидный концепт» и т. п. В связи с использованием имен существительных вместо прилагательных я часто употребляю также обычную форму родительного падежа (с предлогом «of»); например я пишу или «понятие эквивалентности» («the concept of equivalence»), или «понятие эквивалентности» («the concept of equivalence»).
4-4. «Для каждого x, если x человек, то x — двуногое».
4-5. «Свойство Человек имплицирует (материально) свойство Двуногое».
4-6. «Класс Человек есть подкласс класса Двуногое».

В этих примерах термины «свойство» и «класс» кажутся не необходимыми, поскольку имеются формы, не имеющие этих терминов (4-1 и 4-4). Таким образом, возникает важный вопрос, не может ли семантика обходить всецело без этих терминов. Однако мы сначала примем их, так сказать, некритически, стараясь просто сделать их обычное употребление более точным и непротиворечивым. Лишь позднее мы вернемся снова к упомянутому здесь вопросу; тогда будет показано, как кажущаяся множественность объектов, которая, по-видимому, вводится допущением этих и других терминов, может быть устранена (§ 33 и сл.). Таким образом, принятие нами теперь этих двух более явных форм перевода является только введением двух способов выражения; оно никоим образом не означает признания двух отдельных видов объектов — свойств, с одной стороны, и классов — с другой.

Приведенные выше примеры, по-видимому, показывают наличие некоторого параллелизма между двумя модусами речи, одним — в терминах «свойств» и другим — в терминах «классов». Однако, независимо от того несущественного, чисто идиоматического различия, что в одном случае соединяющим словом является «имеет» или «обладает», тогда как в другом случае такими словами являются «принадлежит к» или «является элементом», здесь есть одно фундаментальное различие. Это различие заключается в условиях тождества. Классы обычно считаются тождественными, если они имеют одни и те же элементы. Так, например, на основе принятого нами ранее положения (3-6) класс Человек имеет те же элементы, что и класс Бесперое Двуногое. Следовательно:

4-7. Класс Человек — тот же самый, что и класс Бесперое Двуногое.

Менее ясно, при каких условиях свойства рассматриваются обычно как тождественные. Кажется естественным и достаточно согласующимся с неопределенным обычным употреблением считать свойства тождественными в том случае, если можно показать одними логическими
§ 4. Классы и свойства

средствами, без ссылок на факты, что все то, что имеет одно свойство, имеет и другое, и наоборот; другими словами, если выражающее эквивалентность предложение не только истино, но и L-истинно. Таким образом, в отношении более ранних наших примеров (3-7 и 3-9) справедливо следующее:

4-8. Свойство Человек не то же самое, что свойство Беспере Двуногое.

4-9. Свойство Человек — то же самое, что Разумное Животное.

На основе наших определений в предшествующем разделе (3-1b и 3-5а, b) легко видеть, что установленные выше условия тождества в отношении предикаторов (степени 1) могут быть сформулированы следующим образом:

4-10. Классы тождественны, если и только если предикаторы для них эквивалентны.

4-11. Свойства тождественны, если и только если предикаторы для них L-эквивалентны.

Теперь мы введем термины «экстенсионал» и «интенсионал» для предикаторов. Если два предикатора удовлетворяются для одних и тех же индивидов — другими словами, если они эквивалентны, — то иногда говорят, что они коэкстенсивны или что они имеют один и тот же объем (extension) (в одном из различных обычных употреблений этого термина). Употребление термина «содержание» (intension) в ряду употребляется еще больше, чем употребление термина «объем». Когда мы говорим о том же самом интенсionale в случае L-эквивалентности, мы, по-видимому, находимся в согласии, по крайней мере, с одним из обычных употреблений термина «содержание». Таким образом, мы формулируем следующие два соглашения:

4-12. Два предикатора имеют один и тот же экстенсионал, если и только если они эквивалентны.

4-13. Два предикатора имеют один и тот же интенсионал, если и только если они L-эквивалентны.

Эти соглашения определяют только употребление фраз «имеют один и тот же экстенсионал» и «имеют один и тот же интенсионал». Для многих целей это оказывается достаточным. Если же мы хотим пойти дальше и говорить о чем-либо как об экстенсionale данного предикатора и о чем-либо другом как об его интенсionale, то эти
соглашения становятся недостаточными; но они помогают нам тем, что суживают выбор соответствующих объектов. Первое соглашение означает, что мы можем рассматривать как экстенсионалы предикаторов только то, что у эквивалентных предикаторов является общим. Согласно 4-10, это условие выполняется соответствующими классами. Второе соглашение означает, что мы можем рассматривать как интенсионалы предикаторов только то, что у L-эквивалентных предикаторов является общим. Согласно 4-11, это условие выполняется соответствующими свойствами. Это приводит к следующему пониманию экстенсионала и интенсионала предикаторов:

4-14. Экстенсионал предикатора (степени I) есть соответствующий класс.

4-15. Интенсионал предикатора (степени I) есть соответствующее свойство.

Это, по-видимому, достаточно согласуется с обычным словоупотреблением. Если это применить к предикатору "H" в S₁, то получится:

4-16. Экстенсионал "H" есть класс Человек.

4-17. Интенсионал "H" есть свойство Человек.

Оба результата имеют силу также и для предикатора "x)(Hx)", который L-эквивалентен "H" в S₁.

Очевидно, что существует много других способов выбора объектов в качестве экстенсионалов и интенсионалов предикаторов (степени I), которые удовлетворяли бы нашим соглашениям (4-12 и 4-13). Возможной альтернативой является следующая: в качестве экстенсионала предикатора можно рассматривать его класс эквивалентности (3-15a) и в качестве его интенсионала его класс L-эквивалентности (3-15b). Эта концепция кажется менее естественной, чем та, которую мы избрали (4-14, 4-15), потому что она ведет к языковым, а не к внезыковым объектам. С другой стороны, эта концепция интенсионалов имеет то преимущество, что она возможна в экстенсиональном метаязыке; это будет разъяснено позднее. (Следует сравнить определения Рассела и Куайна, приведенные ниже, в конце § 33.)

Во избежание неправильного понимания может быть полезно добавить некоторые неформальные замечания, касающиеся употребления в этой книге термина "свойство".
Этот термин будет употребляться как синоним слов, таких, как «качество» (quality), «признак» (character), «характерная особенность» (characteristic), и им подобных в их обычном употреблении. Он должен пониматься в очень широком смысле, включая все то, что может быть осмысленно сказано — все равно, верно или неверно,— о любом индивиде. Этот термин употребляется здесь не только для качественных свойств в более узком смысле (например, свойств Синее, Теплое, Твердое и т. п.), но также и для количественных свойств (например, свойства Весящий Пять Фунтов), для свойств, производных от отношений (например, свойства Чей-либо Дядя), для пространственно-временных свойств (например, свойства Находящийся к Северу от Чикаго) и др. Важно отметить то, что здесь не имеется в виду под термином «свойство». Во-первых, он не относится к языковым выражениям; к символу «Н» и соответствующему слову «человек» мы применяем термин «предикатор», а не «свойство»; под свойством мы имеем в виду скорее то, что выражается предикатором (степени I). Во-вторых, свойства вещей понимаются не как нечто психическое, скажем, образы или чувственные дачные, а как нечто физическое, как то, что имеют сами вещи,— сторона, или аспект, или компонента, или признак вещи. Если наблюдатель видит, что этот стол красный, то это значит, что стол имеет признак Красное, а наблюдатель имеет соответствующий признак Видящий Красное. Под свойством Красное мы понимаем первое, а не второе; мы имеем в виду тот физический признак вещи, который физик объясняет как определенное предрасположение (disposition) к избирательному отражению, а не ту психологическую особенность наблюдателя, которую психолог объясняет как определенное предрасположение сенсорной части нервной системы к специфической реакции.

Предположим, что в каком-то данном языке мы понимаем некоторые предикаторы, то есть мы знаем, какие свойства они выражают. Предположим, далее, что мы на опыте познакомились с каждым из этих свойств; это значит, что для каждого из них мы нашли какие-то вещи, которые, согласно нашим наблюдениям, имеют эти свойства. Из данных предикаторов мы можем составлять сложные предикаторы с помощью логических конъюнкторов и операторов,
Тогда мы понимаем сложный предикатор, потому что его значение определяется значениями составляющих предикаторов и логической структурой сложного выражения. Важно отметить, что наше понимание сложного предикатора больше не зависит от наблюдений каких-либо вещей, для которых он удовлетворяется, то есть от каких-либо вещей, которые имеют выраженное им сложное свойство.

Для того чтобы иллюстрировать это примерами, допустим, что система \(S_1 \) содержит не только предикатор «Н» для свойства Человек, но также и предикатор «Т» для свойства «Рост Двадцать Футов». Тогда мы можем, например, обозначать следующие сложные предикаторы (если только мы допускаем употребление знаков \(\sim \) и \(\lor \) в предикаторах по аналогии с употреблением знака \(\equiv \), введенного сокращением 3-2): \(\sim\text{Н} \) выражает свойство Не-Человек, \(\text{Н} \lor \text{Т} \) свойство Человек Или Рост Двадцать Футов и \(\text{Н} \circ \text{Т} \) свойство Человек И Рост Двадцать Футов. Мы знаем вещи, которые обладают первым из этих свойств, а также некоторые вещи, которые обладают вторым. Но мы никогда не видели ни одной вещи, для которой мог бы удовлетворяться предикатор \(\text{Н} \circ \text{Т} \), и предполагаем, что таких вещей в мире не существует. Тем не менее предикатор \(\text{Н} \circ \text{Т} \) не бессмыслен. Поскольку он является правильно образованным предикатором (степени 1), он выражает свойство, хотя это свойство ничему не принадлежит. Мы будем говорить о нем предикаторе, и об этом свойстве, что они пусты. Предикатор \(\text{Н} \circ \text{Т} \) можно понять так же ясно, как и другие сложные предикаторы; и действительно, можно понять этот или любой другой сложный предикатор, если не знаешь, удовлетворяется ли он для какой-либо вещи и как удовлетворяется, то для какой именно. Понимание сложного предикатораосновывается на понимании составляющих предикаторов. Экземплификация в опыте требуется только для первичных предикаторов, с помощью которых интерпретируются другие.

Теперь рассмотрим предикатор \(\text{Н} \circ \sim\text{Н} \). Не нужно никакого знания фактов для понимания того, что этот предикатор не может удовлетворяться ни для какой вещи. Тем не менее это выражение не бессмысленно. Оно является правильно образованным предикатором; он выражает свой
§ 4. Классы и свойства

ство Человек И Не-Человек\(^1\). Мы будем говорить об этом придетерьоре и этом свойстве, что они \(L\)-пусты (логически пусты). Имеется только одно \(L\)-пустое свойство, хотя существует много пустых свойств. Если \(\langle P \rangle\) и \(\langle Q \rangle\) суть любые два \(L\)-пустые предикатора, то \(\langle P \equiv Q \rangle\), то есть \(\langle x \rangle (P_x \equiv Q_x)\) (3-1b), \(L\)-истинно; следовательно, \(\langle P \rangle\) и \(\langle Q \rangle\) \(L\)-эквивалентны (3-5b); следовательно, они выражают одно и то же свойство (4-11).

Употребление термина «отношение» в этой книге аналогоично употреблению только что разобранного термина «свойство». Под отношением понимается не психический объект и не выражение, а скорее то, что выражается некоторыми определенными десигнаторами, а именно предикаторами степени 2 или большей, и что может объективно удовлетворяться для двух или более вещей.

Термин «концепт»* будет употребляться здесь как общее обозначение для свойств, отношений и тому подобных объектов (включая индивидуальные концепты, которые будут разобраны в § 9, и функции, но не суждения). Для этого термина особенно важно подчеркнуть то обстоятельство, что он не должен пониматься в психологическом смысле, то есть как относящийся к процессу воображения, мышления, понимания и т. п., он скорее должен пониматься как термин, который относится к чему-то объективному, находящемуся в природе и выражаемому в языке десигнатором, не имеющим форм предложении. (Это, конечно, не исключает того, что концепт — например, свойство, которым объективно обладает данная вещь, — может быть предметом субъективного восприятия, сравнения, размышления и т. д.)

Эти замечания следует понимать лишь как неформальные терминологические разъяснения. Они ни в каком случае не должны рассматриваться как попытка разрешения старой спорной проблемы универсалей. Традиционные дискуссии, касающиеся этой проблемы, с моей точки зрения, представляют собой довольно неоднородную смесь различных компонент, в том числе логических предложений, психологических предложений и псевдопредложений, то есть

\(^1\) Ср. Bennett and Baylis, [Logic], sec. 3. 4: «The existence of self-inconsistent concepts».

* См. комментарий.
выражений, которые ошибочно рассматриваются как предложения, а на самом деле не имеют познавательного содержания, хотя могут иметь непознавательные — например, эмоциональные — компоненты значения.

Надо согласиться, что мои замечания по поводу интерпретации термина «свойство» довольно неопределены, главным образом из-за отсутствия ясной и общепризнанной терминологии в такого рода вопросах. Тем не менее я надеюсь, что они дадут достаточно ясные указания для всех практических целей и, сверх того, помогут избежать некоторых типичных недоразумений.

Я хочу подчеркнуть, что имеющиеся в этой книге рассуждения о свойствах, как и об отношениях, концептах вообще, суждениях и т. д. отнюдь не содержат гипостазирования. Как я понимаю, гипостазирование, или субстанциализация, или овеществление состоит в ошибочном признании вещами объектов, которые не являются вещами. Примерами гипостазирования свойств (или идей, универсалий, или т. п.) в этом смысле являются такие формулировки, как «идей имеют самостоятельное существование», «они обитают в надзвездном мире», «они уже существовали в божественном разуме до того, как воплотились в вещах» и т. п., если только эти формулировки мыслятся буквально, а не только как поэтические метафоры. (Мы здесь оставляем в стороне исторический вопрос, следует ли эти гипостазирования приписывать самому Платону или, скорее, его истолкователям.) Эти формулировки, если их понимать буквально, являются псевдопредложениями, лишенными познавательного содержания, и поэтому не являются ни истинными, ни ложными. Все, что говорится в этой книге о свойствах, может быть ошибочным, но имеет, по крайней мере, познавательное содержание. Это вытекает из того факта, что наши предложения принадлежат к общему языку науки или могут быть переведены на него. Мы употребляем термин «свойство» в том смысле, в котором он употребляется учеными в предложениях следующей формы: «Эти два тела имеют один и те же химические свойства, но есть определенные физические свойства, которыми они различаются»; «Выразим свойство..., которым обладает одно из этих двух тел, но которого нет у другого, знаком "Р"."
§ 5. Экстенсионали и интенсонали

Термин «объект» (entity) часто употребляется в этой книге. Я отдаю себе отчет во всех связанных с ним метафизических ассоциациях, но я надеюсь, что читатель сможет отрехшиться от них и будет понимать это слово в том простом смысле, в котором оно понимается здесь,— как общее обозначение для свойств, суждений и других интенсоналов, с одной стороны, и для классов, индивидов и других экстенсоналов— с другой. Мне кажется, что в английском языке нет другого подходящего термина с такой широкой областью применения.

§ 5. ЭКСТЕНСИОНАЛЫ И ИНТЕНСИОНАЛЫ

По аналогии с предикаторами мы будем говорить о двух десигнаторах любого рода, что они имеют один и тот же экстенсонал, если они эквивалентны, и что они имеют один и тот же интенсонал, если они L-эквивалентны. В последующих разделах мы рассмотрим проблему нахождения подходящих объектов, которые могли бы рассматриваться как экстенсоналы и интенсоналы в соответствии с этими условиями тождества. Если два предикатора, скажем «P» и «Q», эквивалентны или L-эквивалентны в некоторой системе S, то мы говорим также, что свойства P и Q соответственно эквивалентны или L-эквивалентны; аналогичным образом обстоит дело с десигнаторами других видов и их интенсоналами.

В предыдущем разделе мы ввели термины «экстенсонал» и «интенсонал» только в отношении предикаторов в соответствии с традиционным словоупотреблением. Теперь мы расширим употребление этих терминов, применяя их аналитическим образом к другим типам десигнаторов.

В случае предикаторов мы выбрали эквивалентность как условие тождества экстенсоналов и L-эквивалентность для тождества интенсоналов (4-12 и 4-13). Выше (§ 3) мы видели, как семантические понятия эквивалентности и L-эквивалентности могут применяться к различным типам десигнаторов. Таким образом, кажется естественным выбрать эти же условия как определяющие

1 Как видно из изложения Карнапа на стр. 22—23 оригинала, термин «entity» избран автором на том основании, что именно он обладает в английском языке достаточно широким объемом. В русском языке возможно применить для той же цели термин «объект», тем более, что сам Карнап (на стр. 97 оригинала) счел нужным поставить в скобках при слове «entity» слово «object». — Прим. ред,
тождество экстенсионалов или интенсионалов в отношении десигнаторов вообще. Это ведет к приводимым ниже определениям; 4-12 и 4-13 теперь рассматриваются просто как их частные случаи.

5-1. Определение. Два десигнатора имеют один и тот же экстенсионал (в S_i) — они эквивалентны (в S_i).
5-2. Определение. Два десигнатора имеют один и тот же интенсионал (в S_i) — они L-эквивалентны (в S_i).

Отметим, что были определены не термины «экстенсионал» и «интенсионал», а только фразы «имеют один и тот же экстенсионал» и «имеют один и тот же интенсионал». Для того чтобы говорить о самих экстенсионалах и интенсионалах, мы должны найти объекты или, по крайней мере, сочетания слов вида обозначения объектов, могущие быть соотнесенными десигнаторам согласно этим определениям. В случае предикаторов в качестве таких объектов мы находим классы и свойства. Дальше мы увидим, как могут быть выбраны соответствующие объекты для предложений и индивидуальных выражений.

Введение в метаязык M выражений для дополнительных видов объектов — шаг, всегда связанный с риском и требующий осторожности и внимательного рассмотрения последствий. Проблему, связанную с введением экстенсионалов и интенсионалов для десигнаторов, мы обсудим ниже (§ 33 и сл.). Здесь можно отметить, что фразы «имеют один и тот же экстенсионал» и «имеют один и тот же интенсионал», хотя, по видимости, и говорят об определенных объектах как экстенсионалах и интенсионалах, на самом деле полностью свободны от проблематичности, связанной с природой терминов «экстенсионал» и «интенсионал»; ибо эти фразы основываются, согласно приведенным выше определениям, на терминах «эквивалентно» и «L-эквивалентно», которые сводятся (посредством 3-5) к терминам «истинно» и «L-истинно», а последние могут быть определены для системы S_i вполне точно, как было изложено выше.

Чаще бывает удобно применять термин «эквивалентно» и, возможно, также термин «L-эквивалентно» не только к десигнаторам, но также и к интенсионалам этих десигнаторов; таким образом, не только к предикаторам (например, «предикаторы «H» и «Fоб» эквивалентны в S_i), но также к свойствам и отношениям (например, «свойство
§ 5. Экстенционалы и интенционалы

Человек и свойство Бесперое Двуного эквивалентны) и, аналогичным образом, не только к предложениям, но также и к суждениям. Это переносное употребление терминов не может привести к какой-либо двусмысленности или путанице по двум основаниям: (1) контекст всегда помогает уяснить, в первоначальном или переносном смысле имеется в виду термин «эквивалентно»; первое (то есть первоначальный смысл) имеет место всегда, когда термин применяется к выражениям в языковой системе, последнее — всегда, когда термин применяется к интенционалам, следовательно, к внеязыковым объектам. (2) В первоначальном употреблении этот термин сопровождается ссылкой на ту или иную языковую систему (например, «эквивалентно в S»; однако это относится только к полной формулировке; на практике мы часто опускаем ссылку, если контекст помогает уяснить, какая языковая система имеется в виду); переносное употребление такой ссылкой не сопровождается (например, не имеет смысла говорить: «Эти два свойства эквивалентны в S»). Два десигнатора могут быть эквивалентными в одном языке и не быть эквивалентными в другом, потому что они могут иметь другие значения во втором языке; таким образом, эквивалентность десигнаторов, как и все семантические понятия, зависит от языка. С другой стороны, эквивалентность двух свойств не зависит от языка; она является несемантическим и, более того, немыслемым понятием (например, не мыслемым, а биологическим фактом является то, что свойство Человек и свойство Бесперое Двуного эквивалентны). Термин «эквивалентно» в переносном употреблении принадлежит, правда, к метаязыку M, однако не к семантической части M, а к тому, что мы могли бы назвать объектной частью, то есть к той части M, которая содержит переводы предложений и других выражений языкобъектов¹. Применение терминов «эквивалентно» и «L-эквивалентно» к интенционалам десигнаторов, если эти десигнаторы эквива-

¹ Раньше я называл такого рода терники, переносимые из семантики на внеязыковые объекты, абсолютными терминами ([11], § 17), для того чтобы показать, что в новом употреблении эти термины не зависят больше от языка. Теперь, однако, я предпочитаю избегать слова «абсолютный», потому что у некоторых читателей оно вызывает недомыслие и подозрение, что за ним таится какой-то метафизический абсолютизм.
лентны или L-эквивалентны в перграччальным семантическом смысле, ведет, в сочетании с выраженным в 5-1 и 5-2 условиями тождества, к следующим результатам: 5-3. Если два десигнатора эквивалентны (в S.), то мы говорим, что их экстенсоналы тождественны и что их интенсоналы эквивалентны.

5-4. Если два десигнатора L-эквивалентны (в S.), то мы говорим, что их интенсоналы L-эквивалентны (или тождественны).

Согласно 5-3, знак «≡» может рассматриваться как знак и для тождества экстенсоналов и для эквивалентности интенсоналов; в частности, если он стоит между предикаторами степени 1 (как: H ≡ FeB), то он является знаком тождества кл ссо, и знаком эквивалентности свойств.

Примеры. Выше мы рашли, что предикаторы H и «FeB» эквивалентны, но не L-эквивалентны (3-8) и что H и RA L-эквивалентны (3-11). Если мы применим здесь два вышеупрежденных определения, то получим следующие формулировки с переносным употреблением терминов в добавление к прежним формулировкам в терминах тождества (4-7, 4-8 и 4-9): 5-5. Свойство Человек эквивалентно свойству Бесперерое Двуногое.
5-6. Свойство Человек не L-эквивалентно свойству Бесперерое Двуногое.
5-7. Свойство Человек L-эквивалентно свойству Разумное Животное.

Из этих трех формулировок только первая оказывается действительно полезной в M; другие две служат только подготовкой для аналогичных формулировок в другом метаязыке M’ (§ 34). (Кстати, можно заметить, что термины «эквивалентно» и «L-эквивалентно» в их переносном, не-семантическом употреблении, применимые здесь к интенсоналах, могли бы также применяться и к экстенсоналам. Однако эквивалентность экстенсоналов была бы равносильной их тождеству и, следовательно, оказалась бы бесполезной. А говорить о L-эквивалентности экстенсоналов было бы даже опасно, потому что это привело бы к тем же следствиям, которые мы дальше найдем для предложений, подобных 42-6З.}
§ 6. ЭКСТЕНСИОНАЛЫ И ИНТЕНСИОНАЛЫ ПРЕДЛОЖЕНИЙ

В качестве экстенсионала предложения мы берем его логическую валентность, а в качестве интенсионала — выражаемое им суждение. Это согласуется с установленными в предыдущем разделе условиями тождества для экстенсиналов и для интенсиналов. Суждения рассматриваются здесь как нечто объективное, непсихическое, внешнеязыковое. Показано, что эта концепция применима также и к ложным предложениям.

Теперь посмотрим, можем ли мы найти объекты, которые могут быть выбраны в качестве экстенсиналов и интенсиналов предложений согласно нашим определениям тождества экстенсиналов (5-1) и интенсиналов (5-2).

Согласно 5-1, мы должны взять в качестве экстенсиналов предложений нечто такое, что является общим для эквивалентных предложений. Самым естественным кажется выбор логической валентности.

6-1. Экстенсиналом предложения является его логическая валентность.

На первый взгляд может показаться необычным называться логическую валентность экстенсиналом и, возможно, сложно вызвать возражение даже утверждение, что эквивалентные предложения имеют один и тот же экстенсинал. Термин «экстенсинал» кажется вполне естественным в отношении предикаторов; мы можем легко вообразить себе область индивидов, как некую протяженную область, а класс индивидов, для которых удовлетворяется определенный предикатор (например, класс Дву- ного для предикатора «V»), как некую подобласть, простирающуюся на меньшую или большую часть целого. Но могут сказаться, что в случае логической валентности нет ничего протяженного. Однако более внимательное рассмотрение может рассеять впечатление необычности. Стало обычным употреблять термин «экстенсинальный» для логических валентно-функциональных соединений (truth-functional connections), то есть для таких составных предложений, логическая валентность которых есть функция только логических валентностей составляющих предложений. И действительно, имеется близкая аналогия между логическими валентностями предложений и экстенсиналами предикаторов. Это видно из следующего: предикатор степени n
характеризуется тем, что мы должны связать с ним \(n \) аргументных выражений для того, чтобы образовать предложение. Следовательно, предложение можно рассматривать как предикатор нулевой степени. Пусть \(\mathcal{V}_i \) и \(\mathcal{V}_j \) — любые предикаторы степени \(n \) (\(n \geq 1 \)); тогда (согласно 4-12, 3-5 и 3-1а) \(\mathcal{V}_i \) и \(\mathcal{V}_j \) имеют один и тот же экстенционал, если и только если \((x_1)(x_2)\ldots(x_n)(\mathcal{V}_i x_1 x_2 \ldots x_n \equiv \mathcal{V}_j x_1 x_2 \ldots x_n) \) истинно. Если мы условимся, что это выражение, первоначально применимое только к \(n \geq 1 \), должно аналогичным образом применяться к предложениям, как предикаторам нулевой степени, то мы найдем, что два предложения, \(\mathcal{E}_i \) и \(\mathcal{E}_j \), имеют один и тот же экстенционал, если и только если \(\mathcal{E}_i \equiv \mathcal{E}_j \) истинно, следовательно, если и только если \(\mathcal{E}_i \) и \(\mathcal{E}_j \) эквивалентны. Таким образом, мы возвращаемся к определению 5-1 в его применении к предложениям; и тогда представляется естественным рассматривать логические валентности как экстенционалы. [Пока мы можем оставить в стороне вопрос, какого рода объекты — эти логические валентности, предлагаемые здесь в качестве экстенционалов. Эта проблема будет рассмотрена ниже (в § 23).]

Теперь мы должны решить, какие объекты взять в качестве интенционалов предложений. Часто говорят, что (декларативное) предложение выражает суждение. Мы принимаем это употребление слова «суждение» (proposition)*; это значит, что мы употребляем это слово не для предложений (sentences) или для предложений вместе с их значением, а для тех объектов, которые сами являются внезависимовыми, но которые, если они получают выражение в языке, выражаются (декларативными) предложениями\(^1\). У авторов, которые употребляют термин «суждение» в этом смысле, часто нет полной ясности в отношении условия, при котором два предложения выражают одно и то же суждение. Мы решаем в качестве этого условия\(^2\) выбрать L-эквивалентность. Так, например, мы говорим, что предложения \(\sim(Pa \land Qb) \) и \(\sim Pa \lor \sim Qb \) выражают одно и то же суждение. Это находится, по-видимому, в достаточном согласии с тем, что принято многими логиками.

\(^1\) О необходимости ясного различения двух значений термина «суждение» (proposition) см. [1], р. 235 и далее.
\(^2\) Ср. [1, р. 92].
* См. комментарий.
Так как мы выбрали L-эквивалентность как условие тождества для интенционалов (5-2), то мы можем рассматривать суждение как интенционал:

6-2. Интенционалом предложения является выражаемое им суждение. Примеры:

6-3. Экстенционалом предложения «Hs» (в S₁) является логическая валентность того, что Скотт есть человек⁴, что оказывается истиной.

6-4. Интенционалом предложения «Hs» является суждение, что Скотт есть человек⁴.

Несколько замечаний могут помочь выяснить смысл, в котором мы намереваемся употреблять термин «суждение». Как и термин «свойство» (§ 4), он не употребляется ни для языкового выражения, ни для субъективного, психического события, а скорее для чего-то объективного, что может иметь или не иметь экземплификацию* в природе.

Мы могли бы сказать, что суждения, как и свойства, имеют концептуальную природу. Но, может быть, лучше избегать этой формулировки, потому что она может повести к субъективистской ошибочной интерпретации, если не обратить внимание на то, что мы употребляем термин «концепт» в объективном смысле (см. § 4). Мы применяем термин «суждение» к любым объектам определенного логического типа, а именно к тем, которые могут быть выражены (декларативными) предложениями в каком-либо языке. Под свойством Черновое мы имеем в виду нечто такое, что какая-либо вещь может иметь или не иметь и что этот стол на самом деле имеет. Аналогичным образом суждение, что этот стол черный, есть нечто такое, что экземплифицировано фактом существования стола такого, каков он есть. (Это простое

⁴ По аналогии со словами «свойство Человек» и «класс Человек» мы могли бы писать здесь «суждение Скотт-Есть-Человек» и «логическая валентность Скотт-Есть Человек». Однако это стало бы несколько неудобным для более длинных предложений. Поэтому вместо того мы будем вводить слово «что» после «суждения», возвращаясь, таким образом, к обычному словоупотреблению. По аналогии мы будем также писать «логическая валентность того, что...», хотя это и отклоняется от обычного словоупотребления; мы же не можем употреблять более идиоматическую форму «логическая валентность суждения, что...», потому что в 6-3 мы хотим говорить только о предложении и его экстенционале, о логической валентности, а не о его интенционале, которым является суждение.

* См. комментарий.
объяснение возможно только в случае истинного суждения; проблема ложных суждений будет рассмотрена вскоре.)

Вопрос о том, являются ли факты суждениями определенного рода или объектами какой-то другой природы, есть вопрос спорный. Дюкасс\(^1\) отождествляет факты с истинными суждениями; Беннет и Бейлис\(^2\) говорят, что суждения или истины, или ложны; с другой стороны «сами факты ни истины, ни ложны, а просто сутит». Вопрос этот является до некоторой степени вопросом терминологическим и должен, следовательно, быть решен соглашением. Поскольку термин «факт» в его обычном использовании является довольно неточным и двусмысленным, постольку есть некоторая свобода выбора в отношении того, как превратить его в точный специальный термин, другими словами, как эксплицировать его. Я склонен думать, как и Дюкасс, что не было бы слишком сильным отклонением от обычного словоупотребления, если бы мы эксплицировали термин «факт», как относящийся к определенному роду суждению (в нашем обобщенном смысле слова). Какими свойствами должно обладать суждение для того, чтобы быть фактом в этом смысле? Во-первых, оно должно, конечно, быть истиным; во-вторых, оно должно быть случайным (или фактическим); следовательно, оно должно быть \(F\)-истинным. Я думаю, что следует добавить и еще одно требование: суждение должно быть в известном смысле вполне определенным (specific) или полным; но я не могу сказать точно, какая степень полноты должна требоваться. Один пример может иллюстрировать эту проблему. Суждение, что вот эта вещь (лежящий передо мной кусок бумаги) голубая, является истиным суждением; говоря другими словами, эта вещь имеет свойство Голубое. Но свойство Голубое\(^*\) охватывает широкую область вещей; оно не является вполне определенным и включает много разных оттенков голубого, скажем Голубое\(^*\), Голубое\(^*\) и т. д. С другой стороны, эта вещь, или, говоря точнее, определенное положение с на ее поверхности

\(^2\) [Logic], p. 49.
в настоящий момент имеет только один из этих оттенков, скажем Голубое. Пусть р — суждение, что с голубое, а q — уточненное суждение, что с Голубое. Именно истиность q делает истинным р. Поэтому неуточненное суждение р, может быть, не должно рассматриваться как факт. Должно ли считаться таковым q — остается сомнительным; q является вполне определенным в одном отношении, то есть в отношении цвета, но оно не определяет вполне другие свойства данной вещи. Должны ли мы требовать полной определенности в отношении всех свойств вещи или ячей, а также всех отношений между данными вещами или, может быть, даже всех отношений между данными вещами и всеми другими вещами? Остановиться на каком-либо из этих пунктов будет, по-видимому, в какой-то степени делом произвола. Если мы не остановимся на каком-либо из этих пунктов, а пройдем весь путь до конца, то мы придем к самому сильному F-истинному суждению р, которое является конъюнкцией всех истинных суждений и, следовательно, L-имплицирует каждое истинное суждение. Если мы требуем от факта этой максимальной ступени полноты (так что всякое пополнение приводит к L-ложности), то существует только один факт — вся полнота действительного мира с его прошлым, настоящим и будущим. Здесь мы лишь перечисляем эти различные возможности выбора экспликации для понятия факта, не предрешая этого выбора. Мы не будем пользоваться термином «факт» как техническим термином, а будем употреблять его только в неформальных объяснениях; так, например, мы сказали (§ 2), что логическая валентность предложения, которое не является L-детерминированным, зависит от фактов.

Найбольшая трудность при экспликации поняия суждения связана со случаем ложного предложения. Поскольку этот кусок бумаги с — действительно голубой, постольку такие предложения, как «с — не голубое» или «с — красное», ложны. Они не могут рассматриваться как бессмысленные, потому что мы понимаем их значение еще до того, как узнаем, истинны они или ложны. Таким образом,

1 О понятиях дигонкци и конъюнкци бесконечно многих выяснения см. [1], р. 92.
и эти предложения также выражают суждения. С другой стороны, эти суждения не могут иметь такого же отноше-
ния к фактам, какое имеет суждение, выраженное истинным предложением «с— голубое». В то время как по-
следнее суждение имеет экз.мпликацию и фак е, первые ее не имеют. Что же, в таком случае, представляет собой эти ложные суждения? Существуют ли какие-
либо объекты (entities), о которых мы можем сказать, что они выражаются этими ложными предложениями, но для которых мы не можем указать каких-либо фактов, являющихся их экземплификацией?

Связанные с этим проблемы были подробно рассмотре-
ны Расселом. Он точно так же решает употребление термин
«суждение» для того, что выражается предложением, дру-
гими словами, для значения (signification) предложения,
если только объект этого рода может быть найден. Но он
отчаянно найти объект этого рода в объективном мире
фактов. Он рассуждает следующим образом: «Поскольку
значающее (significant) предложение может быть ложным,
постольку ясно, что значение предложения не может быть
фактом, делающим его истинным (или ложным). Оно долж-
но, следовательно, быть чем-то пребывающим в том, кто
верит предложению, а не в объекте, к которому предло-
жение относится».

«Суждения... должны определяться как психологические и физиологические события опреде-
ленного рода — сложные образы, ожидания и т. д. ...Пред-
ложения обозначают что-то отличное от них самих, что
может быть одним и тем же, в то время как предложения
различаются. То, что это нечто должно быть чем-то пси-
хологическим (или физиологическим), делается очевидным из того факта, что суждения могут быть ложными».

Таким образом, ясно, что Рассел выбирает субъективный,
психологический экспликаст для понятия суждения только
или главным образом потому, что, по его мнению, нет дру-
гого способа преодолеть трудность, связанную с ложными
суждениями.

1 Russell [Inquiry], p. 229 (гл. X11, в разделе A) (номерация
страниц относится к американскому изданию; к сожалению, английское
издание имеет, по-видимому, другую нумерацию).
2 Там же, стр. 237 и далее (гл. X11, конец раздела A).
Я полагаю, что можно дать объективную интерпретацию термину «суждение», которая будет применима и в случае ложных предложений. Любое суждение должно рассматриваться как сложный объект, состоящий из объектов-компонент, которые в свою очередь могут быть простыми или опять-таки сложными. Даже если мы допустим, что простые компоненты суждения должны иметь экземплификацию, все-таки весь комплекс их, само суждение не обязано ее иметь. Ситуация может быть сделана более ясной с помощью аналогии с ситуацией, относящейся к свойствам.

Как мы видели выше (§ 4), сложный предикатор, например «Нот», может выражать пустое свойство, то есть такое, которым не обладает ни один индивид. В отдельности компоненты «Н» и «Т» выражают такие свойства, которые имеют экземплификацию. Свойство же, выраженное сложным предикатором, составляет из свойств-компонент в логической структуре, на которую указывают логические коннекторы и операторы, соединяющие предикаторы-компоненты. Таким образом, мы видим, что то обстоятельство, что некоторые предикаторы пусты, не может помешать экспликации свойств как существующих объективно (objective entities). Аналогичным образом то обстоятельство, что некоторые предложения ложны, не исключает экспликации суждений как существующих объективно. Суждения, подобно сложным свойствам, являются сложными объектами; даже если их простые компоненты имеют экземплификацию, сами они не обязательно ее имеют. Суждения отличаются от сложных свойств или от других сложных понятий только логическим типом. Различен, следовательно, вид соединения. В нашем примере «Нот» соединением является конъюнкция. Существуют и другие логические виды соединения, которые, будучи применены к непропозициональным компонентам соответствующих типов, в результате дают суждения. В качестве примера рассмотрим предложение «Нs» системы S1; оно состоит из написанных рядом предикатора «Н» и индивидной постоянной «s». Таким образом, оно выражает сложный интенциональный пропозиционального типа. Двумя его компонентами являются интенционал «Н», который есть свойство Человек, и интенционал «s», который есть, как мы увидим ниже (§ 9),
индивидный концепт Вальтер Скотт. Логическим соединением этих двух интенсионалов является атрибутивное соединение, или соединение предикации (выраженное в S1 простым написанием рядом; это предложение в некоторых других символических языках выражается с помощью знака «є», а в обычном языке связкой «есть»). Таким образом, получающимся в результате интенсионалом этого предложения является суждение, что Скотт есть человек. Как пример другой структуры возьмем «(x)(Bx ⊃ Fx)». Интенсионалом «B» является свойство Двуногое, а интенсионалом «F» — свойство Бесперое. Эти два свойства — компоненты сложного интенсионала целого предложения. Они соединены универсально-импликативно, что выражено, в соответствии с правилами системы, тем, что «B» и «F» соединяются в предложение с помощью трех вхождений переменной, двух пар круглых скобок и коннектора «⊃». Этот вид соединения в применении к двум свойствам дает суждение. Таким образом, сложный интенсионал, выраженный предложением, становится суждением, что всякое двуногое есть бесперое. Каждое из этих двух свойств-компONENT действительно имеется у некоторых индивидов. Некоторые из предложений формы «Bx ⊃ Fx» имеют экземплификацию в фактах и, следовательно, истины, а некоторые ее не имеют. Весь интенсионал в целом не имеет экземплификации; тем не менее он есть суждение, так как состоит из имеющихся экземплификацию компонент, соединенных в структуру суждения, точно так же как интенсионал «HоT», хотя и пустой, является свойством, потому что он состоит из двух имеющих экземплификацию компонент, соединенных в структуру свойства. Таким образом, F-ложные предложения тоже выражают суждения. Теперь мы можем пойти дальше. Рассмотрим L-ложное предложение «(Hо¬~H)s». Оно состоит из предикатора «Hо¬~H» и индивидной постоянной «s» в той же комбинации, как и в прежнем примере «Hs».

Выше мы видели (§ 4), что предикатор «Hо¬~H», хотя и L-пуст, выражает свойство, именно L-пустое свойство Человек И Не-Человек. Следовательно, это предложение выражает сложный интенсионал, получающийся в результате соединения этого свойства с индивидным концептом Вальтер Скотт посредством атрибутивного соединения.
Таким образом, этот интенционал есть суждение, что Скотт есть человек и нечеловек. Хотя этот интенционал, как и интенционал «He~H», не может иметь экземплификации, он все же является суждением. Идя дальше в анализе этого суждения, мы находим в качестве его компонент свойство Человек и индивидный конец от Вальтер Скотт; обе эти компоненты имеют экземплификацию и соединены в структуру суждения.

Вообще говоря, может быть, следует допустить, что десигнатор может первично выражать интенционал только в том случае, если он имеет экземплификацию. Однако раз мы имеем некоторые десигнаторы, имеющие первичный интенционал, мы можем образовать из них сложные десигнаторы, которые выражают производные, сложные интенционалы, причем не имеет значения, имеют последние экземплификацию или нет. Мы не нуждаемся в экземплификации, чтобы понять их интенционалы, потому что интенционал сложного десигнатора устанавливается семантическими правилами системы с помощью интенционалов составляющих десигнаторов и способа, которым эти десигнаторы соединяются.

Цель предшествующих замечаний — облегчить понимание нашей концепции суждений. Если, однако, читатель найдет, что эти разъяснения скорее затемняют дело, чем разъясняют его, или если он найдет их даже неприемлемыми, то он может просто не обращать на них внимания. Они не являются необходимой основой дальнейших рассуждений в этой книге, и вряд ли мы вернемся к ним опять. Почти для всех наших рассуждений, касающихся суждений, будет достаточно допустить, что они являются некоторого рода объектами, удовлетворяющими следующим условиям: (1) каждому предложению в семантической системе S по правилам S соотносится только один объект этого рода; (2) один и тот же объект соотносится в S двум предложениям, если и только если эти предложения L-эквивалентны. Если кто-либо сомневается в отношении того, существуют ли какие-либо непсихические и внеязыковые объекты, удовлетворяющие этим условиям, то он может взять в качестве суждений определенные языковые объекты, которые удовлетворяют этим условиям. Дальше мы увидим, что, например, в качестве таковых могут быть
взяты некоторые классы предложений в S (классы L-эквивалентности, см. замечание в конце § 33) или некоторые классы классов предложений в S (области, см. замечание в конце § 40).

§ 7. ИНДИВИДНЫЕ ДЕСКРИПЦИИ

(Индивидная) дескрипция есть выражение формы «(ιx) (...x...)»; оно означает: «тот индивид, для которого ...x...». Если есть один и только один такой индивид, для которого ...x..., то мы говорим, что дескрипция удовлетворяет условию единственности. В этом случае дескриптum, то есть объект, к которому относится дескрипция, есть этот единственный индивид. Логики расходятся в своих интерпретациях дескрипций в тех случаях, когда условие единственности не удовлетворяется. В этом параграфе рассматриваются метод Гильберта и Бернайса и метод Рассела; метод Фреге будет рассмотрен в следующем параграфе.

Мы употребляем термин «индивид» не для одного особого рода объектов, а скорее — по отношению к языковой системе S — для тех объектов, которые берутся как элементы универсума, о котором говорят в S, другими словами, для объектов низшего уровня (мы называем его нулевым уровнем), с которыми в S приходится иметь дело, причем не имеет значения, что представляют собой эти объекты. Для одной системы индивиды могут быть физическими вещами, для другой — пространственно-временными точками, или числами, или чем-либо еще. Поэтому мы называем переменные нулевого уровня индивидными переменными, постоянные — индивидными постоянными, а все выражения этого уровня, будь то простые (переменные и постоянные) или сложные, индивидными выражениями. Самыми важными видами сложных индивидных выражений являются: (1) заполненные выражения функций (например, «3 + 4», где «+» является функцией, а «3» и «4» индивидуальными постоянными); в наших системах выражения этого рода встречаются только в S₃, но не в S₁ и S₂; (2) индивидные дескрипции. Мы будем употреблять здесь термин «дескрипция» главным образом в смысле «индивидуальной дескрипции». Дескрипции других типов в наших системах не встречаются; несколько замечаний о них будет сделано в конце § 8.

Дескрипция в S₁ имеет форму «(ιx) (...x...)»; она интерпретируется как «тот индивид, для которого ...x...». «(ιx)» называется йота-оператором; область действия йота-опе-
ратора «...x...» есть матрица предложений с «x» в качестве свободной переменной. Например, «(i)x(Px O ¬Qx)» значит то же самое, что и «тот индивид, который есть P и не Q».

Объект, для которого дается дескрипция (если такой объект существует) будет называться дескриптотом (descriptum); здесь, в случае индивидных дескрипций, дескрипт есть индивид. В отношении данной дескрипции возможны два случая: или (1) существует только один индивид, удовлетворяющий условию, выражаемому областью действия йота-оператора, или (2) единственность не имеет места, то есть не существует ни одного, или существует несколько таких индивидов. В первом случае мы будем говорить об области действия йота-оператора и о дескрипции в целом, что они удовлетворяют условию единственности.

7-1. Определение. Пусть «...x...» будет матрицей (предложений) (в S_i) с «x» в качестве единственной свободной переменной. «...x...» и «(i)x(...x...)» удовлетворяет условию единственности (в S_i) = D (i)(x) (i)z (x) 1 ... x 2 (x ... z) истинно (в S_i). («x ≡ z» значит, что «x есть тот же самый индивид, что и z»; см. 3-3.)

В случае дескрипции, удовлетворяющей условию единственности, среди логиков имеется общее согласие относительно ее интерпретации; единственный индивид, удовлетворяющий данной матрице предложений, берется как дескрипт. Во втором случае, однако, пока согласия нет. Предлагались различные методы. Три из них мы кратко охарактеризуем: методы, предложенные Гильбертом и Бернайсом (I), Расселом (II) и Фреге (III). Затем мы попробуем применить метод Фреге к нашим системам. Следует отметить, что различные обсуждаемые здесь концепции не должны пониматься как различные точки зрения, из которых по крайней мере одна должна быть неверной, а скорее как различные предложения (proposals). Различные интерпретации дескрипций понимаются не как утверждения о значении фраз формы «тот, который...» в английском языке, а как предложения (proposals) для интерпретации и, следовательно, для дедуктивных правил, относящихся к дескрипциям в символьских системах. Следовательно, теоретического вопроса о правильности или не правильности разных концепций здесь не существует, а есть
только практический вопрос о сравнительном удобстве разных методов.

Для того чтобы сделать последующее рассмотрение более конкретным, предположим, что даны две матрицы (предложений), каждая только с одной свободной переменной; мы различаем их здесь с помощью точек и тире: «...x...» и «— y — » (напр., «Axx» и «Hy»). Мы строим дескрипцию для первой и подставляем ее вместо «y» во вторую:

7-2. «— —(ix)(...x..)— —». (Пример: «H(i[x](Axw)».)

Метод I. Гильберт и Бернайс\(^1\) в системе, индивиды которой — натуральные числа, допускают употребление дескрипций только в том случае, если они удовлетворяют условию единственности. Поскольку система строится как исчисление, а не как семантическая система, требуется, чтобы формула, выражающая единственность, была С-истинной (доказуемой)\(^2\), а не просто истинной. Этот метод, по-видимому, очень удобен для практической работы с логико-арифметической системой; в ней дескрипцию употребляют только после того, как доказана ее единственность. Однако этот метод имеет серьезный недостаток, хотя главным образом и теоретического свойства: правила образования становятся неопределенными, то есть в методе нет общей процедуры для установления того, является ли любое данное выражение формы 7-2 предложением системы (все равно, истинным или ложным, доказуемым или недоказуемым). Для систем, содержащих также фактические предложения, этот недостаток был бы еще большим, потому что здесь вопрос, является ли данное выражение предложением или нет, зависит бы, вообще говоря, от случайности фактов.

Метод II. Рассел\(^3\) рассматривает все выражение 7-2 в любом случае как предложение. Условие единственности здесь взято не как предварительное условие для того, чтобы выражение было предложением, а скорее как одно из условий его истиности — другими словами, как часть

1 [Grundlagen I], p. 384.
3 Основания для этого метода детально рассмотрены Расселом в [Denoting]; он был применен Расселом и Уайтхедом при построении системы [Р. М.]; см. I, 66 и далее, 173 и далее.
его содержания. Таким образом, перевод выражения 7-2 на язык М оказывается следующим:
7-3. «Существует индивид \(y \) такой, что \(y \) есть единственный индивид, для которого выполняется \(\ldots y \ldots \), и \(\ldots y \ldots \)» (например, «существует такой индивид \(y \), что \(y \) есть единственный индивид, являющийся автором Веверлея, и \(y \) есть человек»). Следовательно, выражение 7-2 здесь интерпретируется, как имеющее то же самое значение, что и следующее (с некоторым ограничением, см. ниже):
7-4. \((\exists y) [\langle x \rangle (\ldots x \ldots \equiv (x \equiv y)) \bullet \ldots y \ldots \)\]. (В нашем примере, \((\exists y) [\langle x \rangle (A x w \equiv (x \equiv y)) \bullet H y)\].)

Для того, чтобы выразить интерпретацию в своей системе, Рассел дает для дескрипций контекстуальное определение\(^1\), 7-2 является определяемым, а 7-4 — определяющим. Если мы предпочитаем выбрать йота-оператор как исходный, вместо того чтобы определять его, то мы можем получить тот же результат путем такой формулировки семантических правил, что любые два предложения формы 7-2 и 7-4 становятся L-эквивалентными.

В сравнении с методом Гильберта метод Рассела имеет то преимущество, что выражение формы 7-2 всегда является предложением. В сравнении же с методом Фреге, который будет рассматриваться ниже, он имеет тот недостаток, что правила для дескрипций не так просты, как правила для других индивидуальных выражений, особенно правила для индивидуальных постоянных. В частности, выводы единичных предложений из общих, ведущие от \(\langle (y) \rangle (\ldots y \ldots \rangle \) к \(\ldots a \ldots \), и выводы экземплярного обобщения, ведущие от \(\ldots a \ldots \) к \((\exists y)(\ldots y \ldots \rangle \), не имеют, вообще говоря, силы, если дескрипция подставляется на место индивидуальной постоянной \(a \); здесь предложение, выражающее единственность дескрипции, должно рассматриваться как добавочная посылка. Второй недостаток метода Рассела следующий: предложение, подобное \(\langle (Q)(ix)(Px) \rangle \), может быть преобразовано двумя способами.

\(^1\) Контекстуальным определением выражения называется определение контекстов, содержащих данное выражение. — Прим. ред.
Или все это предложение в целом рассматривается как 7-2 и преобразуется в соответствующее предложение формы 7-4, или его часть "Q(i)(Px)" рассматривается как 7-2, преобразуется в соответствующее предложение формы 7-4 и затем опять снабжается спереди знаком отрицания. Получающиеся в результате два предложения не L-эквивалентны (в отличие от метода Фрего); отсюда Расселу приходится формулировать добавочное условие, которое определяет бы для каждого отдельного случая то, что должно быть взято как контекст 7-2.

§ 8. МЕТОД ФРЕГЕ ДЛЯ ДЕСКРИПЦИЙ

Для наших систем мы применяем метод, предложенный Фрего для интерпретации индивидных дескрипций в случаях неединственности. Этот метод состоит в выборе раз навсегда одного индивида, который должен рассматриваться как дескрипт для всех таких случаев.

Метод III. Фрего\(^1\) считает дефектом логической структуры естественных языков то, что в некоторых случаях выражение грамматической формы "тот, который..." является именем\(^2\) одного объекта, а в других случаях не является таковым; в нашей терминологии это означает, что некоторые дескрипции имеют дескрипт, а другие не имеют. Поэтому он предлагает, чтобы правила языковой системы были сконструированы таким образом, чтобы каждая дескрипция имела дескрипт. Для этого требуется некоторые соглашения, являющиеся более или менее произвольными, но этот недостаток ничтожен по сравнению с приобретаемым для правил этой системы преимуществом простоты. Например, вывод единичного предложения из общего и экзистенциальное обобщение сохраняются здесь также и для дескрипций (по крайней мере в экстенсиональных контекстах).

Требование Фрего может быть выполнено разными способами. Выбор удобной процедуры зависит от особенностей языковой системы, особенно от области значений соответствующих переменных. Существует главным образом два метода, заслуживающих внимания; мы назовем их

\(^1\) [Sinn], p. 39—42.
\(^2\) По вопросу о переводах терминов Фрего на английский язык см. ниже, § 28, прим. 21.
IIа и IIб. Мы объясним их, а затем используем IIIб для наших систем.

Метод IIа. Сам Фреге строит систему без различия в типах между индивидами и классами; это значит, что он считает как классы, так и их элементы предметами (objects), то есть значениями (values) индивидных переменных. Любой из тех дескрипций, которые не удовлетворяют условию единственности, он сопоставляет в качестве дескрипта класс тех объектов, которые удовлетворяют ее матрице. Таким образом, различные дескрипции этого рода могут иметь различные дескрипты.

Метод IIб. Более простая процедура заключается в выборе раз навсегда определенного объекта (entity) из области значений соответствующих переменных и определении его в качестве дескрипта для всех дескрипций, которые не удовлетворяют условию единственности. Это было сделано разными способами.

(I) Если индивидами системы являются числа, то выбор числа 0 является, по-видимому, самым естественным. Уже Фреге упоминает об этой возможности. Она была использована Гёделем для его эпсилон-оператора и мной для K-оператора.

(II) Для переменных, к значениям которых принадлежит пустой класс A, выбор этого класса является, по-видимому, самым удобным. Этот выбор был сделан Куйном, в системе которого, как и у Фреге, нет различия в типах между индивидами и классами.

(III) Как можно применить метод IIб к языковой системе, индивиды которой суть физические вещи или события? На первый взгляд кажется невозможным сделать здесь сколько-нибудь естественный выбор индивида в качестве общего дескрипта для всех индивидных дескрипций, которые не удовлетворяют условию единственности. Выбор, скажем, Наполеона был бы столь же произвольным,

1 [Grundgesetze], I, 19.
2 [Sinn], p. 42.
4 [Syntax], § 7.
5 [M. L.], p. 147.
как и выбор вот этой пылинки на моей бумаге. Однако естественное решение напрашивается, если мы построим систему так, что одним из ее понятий будет пространственно-временное отношение части к целому. Каждый индивид такой системы, то есть каждая вещь или событие, соответствует классу пространственно-временно-временных точек в системе с пространственно-временными точками в качестве индивидов. Следовательно, можно, хотя это и не принято в обычном языке, считать среди вещей так же и пустую вещь (null thing), которая соответствует пустому классу пространственно-временных точек. В формальном языке, говорящем о вещах, она характеризуется как вещь, которая является частью каждой вещи. Пусть \(a_0 \) будет именем для пустой вещи; другие вещи могут быть названы непустыми вещами. Если некоторая система \(S \) включает \(a_0 \) в число своих индивидов, то \(a_0 \) представляет, по-видимому, естественный и удобный выбор дескрипта для тех дескрипций, которые не удовлетворяют условию единственности. Правда, эта процедура требует для форм предложений в \(S \) некоторых отклонений от обычного языка; но эти отклонения меньше, чем мы могли бы ожидать с первого взгляда. Для большинства общих предложений и экзистенциальных предложений перевод в \(S \) оказывается непосредственным, то есть без изменений в структуре; в других случаях должно вводиться слово «непустой». (Примеры. Предложение: «Не существует такой вещи, которая была бы тождественна с королем Франции в 1905 году» —

2 В системе Мартина, упомянутой в предыдущем примечании, нулевая вещь действительно вводится (см. op. cit., p. 3 и D7, p. 9), тогда как в статье Леонарда и Гудмена содержится явный «отказ постулировать нулевой элемент» (op. cit., p. 46).
§ 8. Метод Фреге для дескрипций

переводится в предложение системы С формы: «Не существует непустой вещи...». С другой стороны, такого изменения в форме не нужно для предложения «Все люди смертны» и даже для «Не существует человека, который был бы тождествен с королем Франции в 1905 году», потому что из всякого пригодного определения «человека» следует, что каждый человек есть непустая вещь.)

В наших дальнейших обсуждениях мы допускаем для нашей системы S_1, что применяется метод Фреге IIIb и что индивидуальная постоянная «а» употребляется для общего дескрипта всех дескрипций, которые не удовлетворяют условию единственности. Мы оставляем открытым вопрос о том, какой индивид имеет в виду под «а»; он может быть пустой вещью a_0, если последняя принадлежит к числу индивидов в S_1; он может быть 0, если числа являются индивидами (как, например, в S_3), но он может с таким же успехом быть и любым другим индивидом. Следовательно, предложение, содержащее дескрипцию, интерпретируется теперь иначе, чем у Рассела. Перевод 7-2 в M теперь является следующим (вместо 7-3):

8.1. «Или существует индивид u такой, что u — единственный индивид, для которого удовлетворяется $...y...$ и $...y...$; или такого индивида нет и $...a...$».
(В прежнем примере: «Или существует такой индивид u, что u является единственным автором Веверлея, и u есть человек; или такого индивида u нет (то есть или нет какого автора или есть несколько авторов Веверлея), и a есть человек».)

Следовательно, предложение 7-2, содержащее дескрипцию, является L-эквивалентным в S_1 следующему предложению (вместо 7-4):

8.2.

$\forall (\exists x \forall y \forall (x \equiv y))$ (x)... $y...$ \lor $\neg (\exists y \forall x (x \equiv y))$ (x)... $a...$ \lor $\neg (\exists y \forall x (x \equiv y))$ (x)... $Ha...$.

Здесь опять, как и в методе Рассела, мы можем установить либо контекстуальное определение для 7-2 с 8-2 в качестве определяющего (definiens), либо такие семантические правила для йота-оператора как неопределенного знака, что 7-2 становится L-эквивалентным 8-2.
Приводимая ниже таблица дает обзор различных только что разъясненных методов для трактовки дескрипций в том случае, когда имеет место неединственность. Случай единственности не представлен, потому что его трактовка у всех авторов одинакова.

<table>
<thead>
<tr>
<th>Гильберт — Бернайс</th>
<th>Рассел</th>
<th>Фрего (a)</th>
<th>Куайн (b)</th>
<th>Система вещей</th>
<th>Система S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Метод 1</td>
<td>Метод II</td>
<td>Метод IIIa</td>
<td>Метод IIIb</td>
<td>Метод IIIb</td>
<td>Метод IIIb</td>
</tr>
<tr>
<td>Дескрипция не имеет смысла</td>
<td>Нет дескрипта; предложение имеет смысл, но ложно</td>
<td>$x (\ldots x \ldots)$</td>
<td>0</td>
<td>A</td>
<td>Пустая вещь a_0</td>
</tr>
</tbody>
</table>

Можно сделать несколько кратких замечаний о дескрипциях с переменными не индивидного типа, особенно с предикаторными переменными, функциональными переменными и с переменными предложениями. (Это — отступление от исследования наших систем S_1 и т. д., содранных только индивидные переменные.) Здесь легко сделать естественный выбор значения переменной как дескрипта для дескрипций, не удовлетворяющих условию единственности. Если в типе индивидов был выбран а* (это может быть a_0, или 0, или что-нибудь еще), тогда мы можем называть один объект в каждом типе пустым объектом этого типа по следующему правилу: в типе индивидов это будет а*; в любом предикаторном типе — пустой класс или пустое отношение этого типа, например: для уровня I и степени 1 — пустой класс A; в типе суждений — L-ложное суждение; в любом типе функций — та функция, которая имеет в качестве значения для всех аргументов пустой объект рас-
сматриваемого типа. Затем мы можем взять в качестве дескрипта в случае неединственности пустой объект типа соответствующей переменной в дескрипции.

Ради простоты приводимые ниже объяснения ограничиваются экстенсиональными системами. Пусть «f» и «g» будут предикаторными переменными уровня I и степени I. Пусть «— $\cdots (f \cdot \cdots)$ — — » обозначает, по аналогии с 7-2, предложение, содержащее дескрипцию типа «f», следовательно, дескрипцию для класса или свойства. Это предложение L-эквивалентно следующему, по аналогии с 8-2:

$$
((\exists g)(f \cdots (f \cdot g)) \circ g \rightarrow [\forall (\exists g)(f \cdots (f \cdot g)) \circ g \rightarrow \Lambda \rightarrow \Lambda]).$
$$

Входящее в это предложение условие единственности говорит, что существует свойство g, такое, что для всех тех и только для тех f, которые эквивалентны g, $\cdots f \cdots$; другими словами, существует только один класс g, такой, что $\cdots g \cdots$. Следовательно, здесь единственность применяется к экстенсионалам, а не к интенсионалам. Это аналогично 7-1 и 7-3; ибо, как мы увидим ниже, экстенсионалами индивидуальных выражений являются индивиды.

Однако если система содержит лямбда-операторы для образования предикаторов, то дескрипции с предикаторными переменными не необходимы, они могут быть заменены лямбда-выражениями. В этом случае мы можем преобразовать L-эквивалентное выражение не только предложение, содержащее дескрипцию, как в приводимом выше случае, но и самую дескрипцию. Дескрипция $\langle (f) (\cdots f \cdots) \rangle$ L-эквивалентна лямбда-предикатору $\langle (\lambda x)(\exists g)(f \cdots (f \equiv \equiv g)) \circ gx \rangle$.

Подобным же образом для каждой дескрипции функции (содержащей йота-оператор с функционарной переменной) имеется L-эквивалентный функционар, образованный с помощью лямбда-оператора. А для каждой дескрипции, содержащей йота-оператор с переменной типа предложения, имеется L-эквивалентное предложение без йота-оператора; однако в экстенсиональной системе эти дескрипции с переменными предложениями являются совершенно бесполезными.

Ввиду этих результатов представляется удобным в число исходных знаков системы (по крайней мере экстенсиональной) ввести йота-оператор (если он вообще вводится)
только для индивидуальных дескрипций, а затем употреблять лямбда-оператор для образования предикаторов и функций 1.

§ 9. ЭКСТЕНСИОНАЛЫ И ИНТЕНСИОНАЛЫ ИНДИВИДУНЫХ ВЫРАЖЕНИЙ

В согласии с нашими ранее упомянутыми соглашениями в качестве экстенсионала индивидного выражения мы рассматриваем тот индивид, к которому оно относится. Интенсоналом индивидного выражения является концепт нового рода; он называется индивидуальным концептом.

Рассмотрим несколько примеров F-эквивалентности и L-эквивалентности индивидных выражений. Следующее мы считаем историческим фактом:

9-1. Допущение. Существует один и только один индивид, который является автором Веверлея, и этот индивид есть тот же самый, что и Вальтер Скотт.

Тогда дескрипт выражения \((ix)(Axw)\) есть тот индивид, который является автором Веверлея, а не \(a^*\), а выражение \((ix)(Axw) \equiv s\), в соответствии с правилом 3-3, оказывается истинным, но не L-истинным; следовательно, оно F-истинно. Согласно определениям 3-5, это ведет к следующему результату:

9-2. \((ix)(Axw)\) эквивалентно \(s\), но не L-эквивалентно, следовательно, F-эквивалентно.

С другой стороны, сравним две дескрипции \((ix)(Hx \bullet A x w)\) и \((ix)(R A x \bullet A x w)\). Посмотрим, что мы найдем в отношении их, пользуясь правилами S1, в частности правилом 1-2, но не пользуясь при этом никаким историческим или другим фактическим знанием. Если существует только один индивид, являющийся и человеком — или, что одно и то же, разумным животным — и автором Веверлея, то дескриптом каждой из этих двух дескрипций является этот индивид; в иных случаях дескриптом каждой из них является \(a^*\). Таким образом, во всяком случае, дескриптом первой дескрипции является тот же индивид, что и у второй дескрипции. Следовательно, согласно правилу 3-3, предложение \((ix)(Hx \bullet A x w) \equiv (ix)(R A x \bullet A x w)\) оказывается истинным; более того, оно является и L-истинным.

nym, потому что мы установили его истинность, используя один только семантические правила. Следовательно, эти две дескрипции L-эквивалентны.

Выше мы нашли, что индивидные выражения эквивалентны, если и только если они суть выражения для одного и того же индивида (3-12). Следовательно, согласно определению тождества экстенсионалов (5-1), индивидные выражения имеют один и тот же экстенционал, если и только если они являются выражениями для одного и того же индивида. Поэтому в качестве экстенсионалов индивидных выражений естественно рассматривать сами индивиды.

9-3. Экстенционалом индивидного выражения является тот индивид, к которому оно относится (следовательно, дескрипт, если это выражение — дескрипция).

Так как мы выбрали метод Фреге, то каждая дескрипция имеет только один дескрипт. Следовательно, на основе только что принятого соглашения не остается никакой двусмысленности в отношении экстенционала индивидного выражения. Например, экстенционалом «s» является индивид Вальтер Скотт, и это же самое остается в силе для каждой из трех дескрипций, разобранных выше в качестве примеров. Если бы не было ни одного или было бы несколько авторов Веверлея, то экстенционалом выражения «(ix)(Axw)» был бы индивид a*.

Будем теперь искать объекты, которые мы могли бы считать интенционалами индивидных выражений. В соответствии с нашим определением для тождества интенсионалов (5-2) интенционал должен быть чем-то таким, что L-эквивалентные индивидные выражения (например, две вышеприведенные дескрипции, содержащие «н» и «RA») имеют общим. Выше мы нашли объекты, которые оказались подходящими в качестве интенционалов десигнаторов других типов; для предложений — суждения; для предикаторов — свойства или отношения; для функций — функции. Таким образом, в этих случаях интенционалами являются те объекты, которые иногда рассматриваются как значения данных выражений; а в случае предикаторов и функций интенционалами являются концепты определенных типов. Мне кажется естественным в случае индивидных выражений говорить также о концептах, но о концептах особого типа — индивидного типа. Хотя и не совсем
обычно говорить здесь о концептах в этом смысле, все же это не намного отклоняется от обычного словоупотребления. Для этого типа концепта я предлагаю употреблять термин «индивидуальный концепт». Таким образом, мы говорим:
9-4. Интенсиналм индивидуального выражения является выражаемый им индивидуальный концепт.

Примеры:
9-5. Интенсиналм «s» является индивидуальный концепт Вальтер Скотт.
9-6. Интенсиналм выражения «(x)(Axw)» является индивидуальный концепт Автор Веверлеа.

(Здесь и дальше при переводе дескрипций на язык М мы для краткости опускаем фразу «или a*, если не существует такого единственного индивида».) Вместо того чтобы говорить с помощью обычной, но двусмысленной терминологии, что рассмотренные выше две L-эквивалентные дескрипции имеют одно и то же значение, мы теперь говорим, что они имеют один и тот же интенсинал и что их общий интенсинал является индивидуальный концепт Человек Автор Веверлеа, который есть то же самое, что и индивидуальный концепт Разумное Животное Автор Веверлеа. С другой стороны, следующие концепты являются тремя разными индивидуальными концептами: один — только что упомянутый, другой — индивидуальный концепт Вальтер Скотт и третий — индивидуальный концепт Автор Веверлеа. Здесь опять интенсиналы данных выражений и тождество или нетождество этих интенсиналов могут быть установлены на основе одних только семантических правил.

Выше мы видели, как содержащее предикатор предложение может быть различными способами переведено на M, то есть на английский язык. Таким образом, для предложения «Hs», в добавление к простому переводу «Скотт — человек», мы имели еще два более явных перевода, в одном из которых использовался термин «свойство», а в другом — термин «класс» (см. 4-2 и 4-3). В этих двух явных переводах «s» все еще переводился просто словом «Скотт». Теперь, однако, мы видели, что различию между классами и свойствами соответствует в случае индивидуальных выражений различение между индивидами и индивидуальными концептами. Следовательно, в M вместо слова «Скотт» мы можем употреблять более явное сочетание слов
«Индивид Скотт» и «индивидуальный концепт Скотт». Так как это различение, возможно, ясней для дескрипции, чем для индивидной постоянной, то вместо «His» мы возьмем предложение «H(ix)(Axw)». В добавление к простому переводу «автор Веверлея — человек» мы получим здесь еще четыре более явных переводов, в которых и к «Автору Веверлея» и к «Человеку» добавляется характеризующее слово. Два из этих переводов — чистые и два — смешанные. Из двух чистых первый содержит две ссылки на экстенционалы, а второй — две ссылки на интенционалы; эти переводы следующие:

«Индивид Автор Веверлея принадлежит к классу Человек»

«Индивидный концепт Автор Веверлея субсумируется свойством (подводится под свойство) Человек». Поскольку неприлично говорить об индивидных концептах, постольку в обычном словоупотреблении нет слова для обозначения отношения между индивидным концептом и свойством, соответствующего отношения принадлежности между индивидом и классом; для этого отношения мы употребили здесь слово «субсумируется» (в смысле «правильно субсумируется»), но мы не будем употреблять его дальше. Из двух смешанных переводов, содержащих и ссылку на экстенционал, и ссылку на интенционал, мы дадим хотя бы один, потому что он не слишком отступает от обычного словоупотребления:

«Индивид Автор Веверлея имеет свойство Человек». Таким образом, мы находим здесь известную множественность возможных переводов на язык М, причем некоторые из них довольно громоздки и выглядят необычно. Эта множественность, по-видимому, неизбежна, пока мы намерены проводить явное различение между классами и свойствами и между индивидами и индивидными концептами. Вопрос о том, может ли и если может, то какими средствами, быть редуцирована эта кажущаяся множественность объектов и соответствующая ей множественность формулировок, будет рассматриваться ниже (§ 33 и далее).

1 В оригинале здесь — термин «individual expressions», что является очевидным недосмотром; должно быть «individual concepts». — Прим. ред.

6*
§ 10. ПЕРЕМЕННЫЕ

Выше мы нашли, что экстенсоналом предикатора «P» является класс, а его интенсоналом — свойство. Поэтому переменная одного и того же типа (например, «/x») относится как к классам, так и к свойствам; мы говорим, что классы являются экстенсоналами ее значений, а свойства — интенсоналами ее значений. По аналогии с этим для переменной типа предложений (например, «p») экстенсоналами значений являются логические валентности, а интенсоналами значений — суждения. Наконец, экстенсоналами значений индивидной переменной (например, «x») являются индивиды, а интенсоналами ее значений являются индивидуальные концепты.

Куайн неоднократно указывал на тот важный факт, что если мы хотим выяснить, какие объекты кто-либо признает, то мы должны обратить внимание больше на употребляемые им переменные, чем на постоянные и закрытые выражения. «Онтология, к которой обязывает человека употребляемый им язык, охватывает именно те объекты, которые он рассматривает как входящие... в область значений его переменных»\(^1\). По существу, я согласен с его взглядом, как я сейчас и поясню. Но сначала я хочу указать на одно сомнение, касающееся формулировки Куайна. Мне не вполне ясно, не является ли поставленный вопрос вопросом просто терминологического характера. Я предполагал бы не употреблять слова «онтология» для признания объектов посредством допущения переменных. Это словоупотребление кажется мне ведущим по меньшей мере к недоразумению; оно может пониматься так, как будто решение употреблять определенные переменные должно быть основано на онтологических, метафизических убеждениях. С моей точки зрения, однако, выбор определенной языковой структуры и, в частности, решение употреблять определенные типы переменных является практическим, подобным выбору инструмента; он зависит главным образом от тех целей, для которых инструмент — в данном случае язык — предназначен, и от свойств этого инструмента. Я допускаю, что выбор языка, подходящего для целей физики и математики, связан с проблемами, совершенно отличными от проблем, связанных с выбором подходящего мотора для грузового аэроплана; но

\(^1\) Quine, [Notes], p. 118; см. также его [Designation].
§ 10. Переменные

и те и другие являются в некотором смысле проблемами инженерными, и я не вижу оснований, почему метафизика должна входить в первые в большей степени, чем во вторые. Кроме того, я, как и многие другие эмпиристы, рассматриваю связанные с этим вопросы и ответы, встречающиеся в традиционных спорах между реалистами и номиналистами и касающиеся онтологической реальности универсалов или каких-либо других объектов, как псевдо-вопросы и пеcевдоутверждения, лишенные познавательного смысла. Я согласен, конечно, с Куайном, что проблема «номинализма», как он ее истолковывает, является проблемой, имеющей смысл; это вопрос о том, может ли вся естественная наука быть выражена «номиналистическим» языком, то есть языком, содержащим только индивидуальные переменные, значениями которых являются конкретные объекты, а не классы, свойства и т. п. Однако я сомневаюсь в целесообразности перенесения на эту новую в логике и семантике проблему ярлыка «номинализм», происходящего от старой метафизической проблемы.

Смысл, в котором я согласен с тезисом Куайна, что «быть — значит быть значением переменной», станет яснее из следующего примера: допустим, что некто конструирует язык не только как предмет теоретического исследования, но и для целей общения. Допустим, далее, что он решает употреблять в этом языке переменные «м», «н» и т. д., вместо которых разрешается подставлять все (натуральные) числовые выражения (например, «0», «3», «2+3» и т. д.) и только их. Из этого решения мы видим, что этот человек признает натуральные числа в следующем смысле: он намеревается говорить не только об индивидуальных числах (например, «7 есть простое число»), но также — и это решающий пункт — и о числах вообще. Он будет, например, высказывать предложения, подобные следующему: «для каждого м и н, м + н = н + м» и «между 7 и 13 есть м, которое является простым числом». Последнее предложение говорит о существовании некоторого простого числа. Однако понятие существования здесь не имеет ничего общего с онтологическим понятием существования или реальности. Упомянутое предложение значит совершенно

1 [Designation], p. 708.
Глава 1. Метод экстенсонала и интенсонала

tо же самое, что и предложение «неверно, что для каждого \(m \) между 7 и 13, \(m \) не есть простое число». По тому же самому знаку мы, кроме того, видим, что тот, кто употребляет этот язык, намерен признавать понятие Число. Вообще говоря, если какой-либо язык (обычной структуры) содержит определенные переменные, то мы можем определить в нем десигнатор для области значений этих переменных. В данном случае этим определением является: «Число \(= r_1 (\cdot m)(m=m) \) или, если язык, о котором идет речь, не содержит операторов абстракции, «Число \((m)=v_r \ m=m \)». (В определяющем выражении может быть употреблена любая L-универсальная матрица \(\ldots m \ldots \), то есть та-кая, что \(\langle m\rangle(\ldots m\ldots) \) L-истинно.) Важно подчеркнуть отмеченный пункт, что раз вы допускаете определенные переменные, вы обязаны допустить и соответствующее общее понятие. Мне кажется, что некоторые философы (но не Куайн) не обращают на это внимания; они без колебаний допускают в язык науки обычные переменные вроде переменных предложений (\(p \), \(q \) и т. д.), числовых переменных, возможно, также переменных предикаторов, по крайней мере первого уровня, и других видов переменных, в то же самое время, однако, они испытывают сильное предубеждение против таких слов, как «суждение», «число», «свойство» (или «класс»), «функция» и т. д., потому что они подозревают, что в этих словах таится опасность абсолютистской метафизики. С моей точки зрения, однако, обвинение в абсолютистской метафизике или в незаконных гипотезированиях в отношении некоторых объектов, ска- жем, суждений, не может быть выставлено против какого-либо автора просто потому, что он употребляет переменные какого-нибудь из упомянутых типов (например, \(p \) и т. д.) и соответствующее общее слово («суждение»); обви- нение такого рода должно основываться не на этом, а на анализе тех предложений или псевдопредложений, которые он делает с помощью этих знаков.

Тезис Куайна и мои замечания в связи с ним касаются языка, который кто-либо не только анализирует, но и употребляет, следовательно, они — в отношении семан- тических обсуждений — касаются метаязыка. Теперь по-смотрим на роль переменных в языке-объекте \(S \). Если \(S \) д-ин, тогда метаязык \(M \), предназначенный для семантиче-
§ 10. Переменные

ского анализа S, должен быть достаточно богат по отношению к S. В частности, M должен содержать переменные, области значений которых включают области значений всех переменных в S (и, как показал Тарский, даже выходят за их пределы для того, чтобы сделать возможным определение «истинно в S»). Предположим далее, как и в вышеприведенных обсуждениях, что M позволяет нам говорить в общих терминах об экстенсиналах и интенсиналах предикаторов, предложений и индивидных выражений S.

Пусть S (в отличие от S_0) содержит не только индивидные переменные, но также переменные других типов. Начнем с переменных $/f$, g и т. д. типа предикаторов уровня 1 и степени 1. В отношении предикатора, скажем «Н» в S_1, мы провели различие между его экстенсиналом, классом Человек, и его интенсиналом, свойством Человека. Предложение «..Н..», содержащее «Н», может быть переведено на M разными способами; мы можем употребить или одно слово «человек», или фразу «класс Человек» или «свойство Человек» (см., как пример, переводы «Hs» в § 4); мы видели, что различие здесь — только в формулировке. В S_1 из предложения «..Н..» мы можем теперь вывести экстенсинальное предложение «(Э/)(..f..)». Для перевода этого предложения на M мы опять имеем три формы, соответствующие трем формам, упомянутым для перевода предложения «..Н..».

(I) «Существует / такое, что ..f..»,
(II) «Существует класс / такой, что ..f..»,
(III) «Существует свойство / такое, что ..f..».

Как «Н» является выражением и для класса Человек и для свойства Человек, так и $/f$ является переменной как для классов, так и для свойств. Поскольку мы рассматриваем класс Человек как экстенсинал «Н», постольку мы будем теперь рассматривать его как один из экстенсиналов значений $/f$ и аналогично будем рассматривать свойство Человек, как один из интенсиналов значений $/f$. Назовем замкнутые выражения, пригодные для подстановки вместо определенной переменной некоторого рода, выражениями значений этой переменной. Тогда нижеследующее будет иметь силу вообще для переменных любого рода.
является одним из экстенсоналов значений этой переменной. 10.2. Интенсонал выражения значения переменной является одним из интенсоналов значений этой переменной.

(I) «Существует p такое, что ...p...».

(II) «Существует логическая валентность p такая, что ...p...».

(III) «Существует суждение p такое, что ...p...».

Трактовка индивидных переменных не отличается существенно от трактовки других видов переменных. Но благодаря необычности индивидных концептов наша концепция здесь может на первый взгляд показаться менее естественной. Выше мы рассматривали предложение «H(ix) (Axw)», содержащее дескрипцию. В добавление к простому его переводу «автор Веверлея — человек» мы имели несколько более развернутых переводов, содержащих слова «индивид» и «индивидный концепт» (в конце предшествующего раздела). Из предложения с дескрипцией (или из более простого предложения «Hs») мы можем вывести «(∃x) (Hx)». В соответствии с вышеприведенными переводами прежнего предложения мы имеем следующие переводы этого экзистенциального предложения:

(I) «Существует x такой, что x есть человек».

(II) «Существует индивид x такой, что x принадлежит к классу Человек»,
(III) «Существует индивидный концепт x такой, что x подводится под свойство Человек».
(IV) «Существует индивид x такой, что x обладает свойством Человек».

Таким образом, экстенционалы значений индивидных переменных суть индивиды, а интенционалами значений для них являются индивидные концепты. Множественность формулировок и необычность некоторых из них таковы же, что и в предшествующем разделе. Делаемая нами ниже попытка упрощения будет применима также и к данной ситуации.

§ 11. ЭКСТЕНЦИОНАЛЬНЫЕ И ИНТЕНЦИОНАЛЬНЫЕ КОНТЕКСТЫ

Выражение, входящее в предложение, мы называем взаимозаменимым с другим выражением, если логическая валентность предложения остается неизменной, когда первое выражение заменяется вторым. Если, кроме того, интенциональ предложения остается неизменным, то об этих двух выражениях говорится, что они L-взаимозаменимы. Мы говорим, что предложение является экстенциональным относительно входящего в него выражения, или что выражение входит в предложение в экстенциональном контексте, если выражение взаимозаменяемо в этом месте с любым другим выражением, эквивалентным ему. Мы говорим, что предложение интенционально относительно выражения или что выражение входит в предложение в интенциональном контексте, если контекст не экстенционален и выражение является L-взаимозаменяемым в этом месте с каждым другим выражением, L-эквивалентным ему. (Определения, даваемые дальше в этом разделе, шире, чем указанные здесь; они относятся не только к предложениям, но и к десигнаторам любого типа.) В соответствии с обычными концепциями оказывается, что все предложения системы S_1, которые содержат только обычные конкеторы и кваанторы, но не содержат никаких модальных знаков, являются экстенциональными, и что предложение в S_2 формы «N(...)», где «N» есть знак логической необходимости, является интенциональным.

Предположим, что мы замещаем выражение (десигнатор или какое-либо иное), входящее в десигнатор, другим выражением. Может случиться, что экстенционал десигнатора от этого не изменится; в этом случае мы называем эти два выражения взаимозаменяемыми в десигнаторе. Если, кроме того, интенционал десигнатора остается неизменным, то мы говорим, что эти два выражения являются L-взаимозаменяемыми в десигнаторе. Последующие определения для этих понятий, даваемые в технических терминах
(11-1a), относятся не к экстенсионалу и интенсионалу, а к эквивалентности и к L-эквивалентности. Определяются и еще два понятия (11-1b), применяемые в том случае, когда упомянутые условия выполняются для всех предложений. Система S, к которой относятся эти и дальнейшие определения (11-2), может быть одной из наших систем S_1, S_2, S_3, или подобной системой с теми же самыми ти-
пами десигнаторов; предполагается, что S содержит дескриптивные предикаты, и, следовательно, фактические предло-
жения1, а также индивидуальные дескрипции с этими предикатами. (Так, система S может быть PM', но не PM, в § 26; она может быть ML', но не ML, в § 25.) S может, в отличие от наших систем, содержать также переменные для неиндивидуальных типов десигнаторов.

11-1. Определения.

a. Вхождение выражения \mathfrak{A}_j в выражении \mathfrak{A}_i (1) взаи-
мозаменимо, (2) L-взаимозаменимо с \mathfrak{A}_j (в $S)=D_1$
\mathfrak{A}_i — десигнатор и (1) эквивалентен, (2) L-эквивален-
тен выражению \mathfrak{A}_i, построенному из \mathfrak{A}_j путем замены рассмотриваемого вхождения выражения \mathfrak{A}_j выражением \mathfrak{A}_j.

b. \mathfrak{A}_j (1) взаимозаменимо, (2) L-взаимозаменимо c \mathfrak{A}_j в системе $S=D_1$ любое вхождение выражения \mathfrak{A}_j

1 На факт необходимости ограничения этого рода указал мне Алоизо Чёрч (Church). Если S есть система модальной логики, которая, подобно системе строгой импликации Льюиса (Lewis) не содержит дескриптивных предикатов и, следовательно, не содержит, и фактических предложений, тогда любые два эквивалентные предложения являются L-эквивалентными и, следовательно, являются L-взаимозаменяемыми даже в пределах модального предложения формы «N(...). Таким образом, последнее предложение удовлетворяло бы условию экстенсиональности, установленному ниже, в 11-2 b; на самом деле, однако, модальное предложение должно, конечно, рассматриваться как интенциональное в обычном смысле. Для того, чтобы дать определения терминов «экстенсионально» и «интенционально», которые были бы применимы также к системам, содержащим только L-детерминированные предложения или не содержащим вообще никаких замкнутых предложений, было бы необходмо ссылаться не только на замкнутые десигнаторы, входящие как части, но также и на значения десигнаторных переменных и на соответствие значения пропозициональных (функций) (propositional functions), выражаемых матрицами (например, на значения «р» и соответствующие значения «Nр»). Для того, чтобы избежать этого ущербления в нашем настоящем обсуждении, мы ограничиваем системы S, как указано в тексте.
в любом предложении системы S (1) взаимозаменительно, (2) L-взаимозаменямо с \mathcal{A}_i.

Рассмотрим некоторое индивидуальное вхождение десигнатора \mathcal{A}_i в десигнатор \mathcal{A}_i. Ситуация может быть такой, что экстенсионал \mathcal{A}_i зависит только от экстенсионала \mathcal{A}_i, то есть остается неизменным, если \mathcal{A}_i замещается любым другим выражением с тем же самым экстенсионалом. В этом случае мы скажем, что \mathcal{A}_i является экстенциональным относительно этого вхождения выражения \mathcal{A}_j (11-2а). Мы должны здесь ссылаться на индивидуальное вхождение выражения; ибо если \mathcal{A}_i содержит несколько вхождений \mathcal{A}_i, то может случиться, что одно вхождение удовлетворяет вышеприведённому условию, тогда как другое — не удовлетворяет. Если условие удовлетворяется, мы будем также иногда говорить, что \mathcal{A}_i входит в \mathcal{A}_i на рассматриваемом месте в экстенциональном контексте.

11-2. Определения.

а. Выражение \mathcal{A}_i является экстенциональным относительно определенного вхождения выражения \mathcal{A}_i в \mathcal{A}_i (в системе S) $\Rightarrow_{\mathcal{A}_i}$ и \mathcal{A}_i — десигнаторы; рассматривающее вхождение выражения \mathcal{A}_i в \mathcal{A}_i взаимозаменямо с любым выражением, эквивалентным \mathcal{A}_j (в S).

б. Выражение \mathcal{A}_i является экстенциональным (в S) $\Rightarrow_{\mathcal{A}_i}$ — десигнатор (в S); \mathcal{A}_i является экстенциональным относительно любого вхождения любого десигнатора в \mathcal{A}_i (в S).

в. Семантическая система S является экстенциональной $\Rightarrow_{\mathcal{A}_i}$ каждое предложение в S является экстенциональным.

Если условие, данное в 11-2а, или б, или с, не удовлетворяется, то мы будем употреблять термин «некстенциональный». Термин «интенциональный» (11-3) будет употребляться не как синоним «некстенционального», как это иногда делается, а в более узком смысле, именно в тех случаях, в которых условие экстенциональности не удовлетворяется, но удовлетворяется аналогичное условие в отношении интенционала. Последнее условие значит, что интенционал целого остается неизменным, если выражение, входящее в качестве части, замещено другим с тем же самым интенционалом; техническое определение (11-3) не упоминает об интенционале, но вместо него использует понятия L-эквивалентности и L-взаимозаменяемости.
11-3. Определения.

а. Выражение \mathcal{A}_i является интенсиональным относительно определенного входления выражения \mathcal{A}_j в \mathcal{A}_i (в S) $=_{\text{Di}} \mathcal{A}_j$ и \mathcal{A}_j — десигнаторы; \mathcal{A}_j не экстенционален относительно данного входления выражения \mathcal{A}_i в \mathcal{A}_i; это входление \mathcal{A}_j в \mathcal{A}_i L-взаимозаменямо с любым выражением, L-эквивалентным \mathcal{A}_j (в S).

б. Выражение \mathcal{A}_i является интенсиональным (в S) $=_{\text{Di}} \mathcal{A}_i$ — десигнатор; \mathcal{A}_i по отношению к любому входлению любого десигнатора в \mathcal{A}_i или экстенционален, или интенционален, и относительно, по крайней мере, одного входления некоторого десигнатора интенционален.

в. Семантическая система S является интенсиональной $=_{\text{Di}}$ каждое предложение в S или экстенционально, или интенционально, и, по крайней мере, одно является интенциональным.

Иногда мы будем называть экстенциональным действующий на предложения коннектор 1 или предикаторную постоянную, если каждое производное от них предложение 2 является экстенциональным по отношению к аргументным выражениям; аналогичным образом мы будем употреблять и термин «интенциональный».

Отметим, что термины «экстенциональ» и «интенциональ» встречаются только в неформальных объяснениях, но не в самих определениях 11-1, 11-2 и 11-3. Таким образом, эти определения не предполагают никаких проблематических объектов. Вместо этого в них употребляются термины «эквивалентный» и «L-эквивалентный», которые, как упо-

1 У Карнапа здесь употреблен термин «sentential conettive». Смысл его правильно передается в русском языке словами «коннектор» действующий на предложения. Поскольку этот термин далее не используется, мы предпочли воспользоваться указанным русским выражением и не вводить термин «сентенциальный коннектор», чтобы не осложнить без нужды терминологию. — Прим. ред.

2 То есть предложение, получаемое заполнением мест аргументных выражений при данном символе (коннектора или постоянного предикатора) выражениями постоянных соответствующих типов. Карнап употребляет здесь термин «full sentence» of it, смысл которого мы и передаем (когда контекст в целом не делает понятным более дословный перевод «полное предложение от него») словами «предложение, производное от него».— Прим ред.
мньюто выше (§ 5), свободны от проблематичности и могут быть определены точно.

Термины «взаимозаменимый», «L-взаимозаменимый», «экстенциональный» и «интенциональный» были здесь определены общим образом так, что все выражение Ø₁ в целом может быть десигнаратором любого из типов, встречающихся в наших системах. Однако эти термины находят себе самое важное применение в тех случаях, где Ø₁ является предложением; и в наших дальнейших рассуждениях мы будем употреблять их главным образом для случаев этого рода.

Только что определенные понятия станут яснее с помощью нескольких примеров. Во всех этих примерах все выражение Ø₁ в целом является предложением. В первых трех примерах входящее в него выражение Ø₁ является предложением; в последних примерах оно является десигнаратором другого типа.

Пример I. Предложение «.. ∨ — —» экстенционально относительно каждой из его компонент. И вообще, как хорошо известно, любое полное предложение с обычными коннекторами «~», «∨», «Θ», «≡» и «=» экстенционально относительно его (непосредственной) компоненты или компонент. Эти коннекторы и соединения, обозначаемые ими, действительно часто называются экстенциональными¹; вслед за Расселом эти соединения обычно называют функциями истинности (truth-functions)².

Пример II. Предваряя даваемые ниже пояснения (гл. V), употребим здесь систему S₂, содержащую знаки системы S₁ и, кроме того, «N», как модальный знак логической необходимости, так что если «...» — любое L-истинное предложение, то «N(...)» истинно и, более того, L-истинно; и если «...» — любое не L-истинное предложение, тогда «N(...)» есть ложное и, более того, L-ложное предложение (см. 39-3). Пусть «С» будет сокращением для F-истинного предложения (например, для «Hs»); тогда «С» истинно, но не L-истинно. Как хорошо известно (см. пример,

¹ Понятие экстенциональности соединений и коннекторов и соответствующее понятие L-экстенциональности более детально обсуждаются в [11], § 12.
² В терминологии нашего перевода их следует называть функциями логических валентностей. Далее в тексте перевода принят этот последний термин. — Прим. ред.
данный вслед за 2-2) «C ∨ ∼C» L-истинно. Следовательно: 11-4. «C» и «C ∨ ∼C» эквивалентны, но не L-эквивалентны. Согласно данным для «N» объяснениям, мы имеем:
11-5. «N(C ∨ ∼C)» истинно и, кроме того, L-истинно.
С другой стороны, поскольку «C» не является L-истинным, поскольку «N(C)» ложно. Следовательно, «N(C ∨ ∼C)» и «N(.)» не эквивалентны. Из этого следует, согласно определению 11-1a, что вхождение «C» в «N(C)» не взаимозаменимо с «C ∨ ∼C». Это, вместе с 11-4 и определением 11-2а, ведет к следующему результату:
11-6. «N(C)» является нежесткенсональным по отношению к «C».
Этот результат хорошо известен; вообще предложения, производные от модальных знаков, являются нежесткенсональными относительно их компонент; говоря в обычных терминах, модальности не являются функциями логических валентностей 1. Это же самое соображение показывает, что

1 Результаты 11-6 и 11-7 опровергают мнение Чёрча, что (при определенном предположении, см. ниже) «карнаповское определение понятия «экстенсональный» имеет тот дефект, что согласно ему всякий язык (всякая семантическая система) оказывается экстенсональным, и даже те языки, которые содержат имена предложений и модальные операторы» ([Review C.], p. 304). Определение «экстенсонального», на которое здесь делается ссылка, дано в [1], D10-20 и D10-21, p. 43; по существу оно то же самое, что и 11-1 и 11-2 в настоящем параграфе; однако там было опущено ограничение системами с фактическими предложениями. Чёрч прав в критике этого упущения (см. прим. 1 на стр. 90). Однако если это определение применяется к системам, содержащим также и фактические предложения, как это имеет место в примерах систем в моей более ранней [1] и в настоящей книге, то это определение кажется мне адекватным; во всяком случае упомянутые здесь примеры показывают, что, конечно, не верно, будто, согласно этому определению (или в прежней, или в настоящей формулировке), все предложения и все семантические системы выполняют условие экстенсональности. Чёрч ограничивает свое утверждение следующим условием: «Если десигнат предложения всегда является логической валентностью». (Здесь термин «десигнат», как показывают предшествующие разъяснения Чёрча, понимается в том же смысле, в котором я буду употреблять в этой книге термин «номинат» (§24); этот смысл отличается от того, в каком я употреблял термин «десигнат» в [1], см. ниже, §37). Однако это ограничение не меняет положения вещей. Любое предположение о том, что представляют собой десигнаты (номинаты) предложений, не существенно для вопроса о том, являются ли, на основании моего определения, примеры, даваемые в 11-6, 11-7 и 13-4, экстенсональными или нет, потому что в этом определении понятие десигната (номината) предложения не употребляется.
выражение \(C \lor \sim C \) в \(N(C \lor \sim C) \) не взаимозаменяемо с \(C \).
Таким образом, мы получаем (снова с помощью 11-4):
11-7. \(N(C \lor \sim C) \) неэкстенсивально по отношению к входящему в него предложению \(C \lor \sim C \).
Далее, пусть \(D \) будет любое предложение, \(L \)-эквивалентное предложению \(C \lor \sim C \). Тогда \(D \) является также \(L \)-истинным; и, следовательно, \(N(D) \) тоже. Мы нашли, что \(N(C \lor \sim C) \) \(L \)-истично (11-5). Поскольку любые два \(L \)-истинные предложения выполняются в одних и тех же описаниях состояний (2-2), постольку они \(L \)-эквивалентны друг другу (2-6). Таким образом, \(N(C \lor \sim C) \) и \(N(D) \) \(L \)-эквивалентны. Поэтому, согласно определению 11-1а, предложение \(C \lor \sim C \) в \(N(C \lor \sim C) \) \(L \)-взаимозаменяемо с любым предложением, которое \(L \)-эквивалентно предложению \(C \lor \sim C \). Это вместе с 11-7 и определением 11-3а дает:
11-8. \(N(C \lor \sim C) \) интенсивально относительно входящего в него предложения \(C \lor \sim C \).
Пример III. Предложение \(Hs \) истинно в \(S_i \); оно остается истинным, если \(H \) заменяется любым эквивалентным предикатором, например \(FGB \), и точно так же, если \(s \) заменяется любым эквивалентным индивидуальным выражением, например дескрипцией \((x)(Axw) \) (9-2). Следовательно:
11-9. \(Hs \) экстенсивально относительно как \(H \), так и \(s \).
Пример IV. Можно легко показать, что каждое предложение в \(S_i \), составленное из предикаторов постоянных (вроде упомянутых в правиле 1-2), индивидуальных постоянных (вроде упомянутых в 1-1), коннекторов, упомянутых в примере I, кванторов общности и существования и йоты- и лямбда-операторов экстенсивально относительно любых десигнаторов, входящих в него, и следовательно, экстенсивно (11-2а). Система \(S_i \) должна содержать только так построенные предложения. Следовательно, согласно определению 11-2а:
11-10. \(S_i \) есть экстенсивная система.

§ 12. ПРИНЦИПЫ ВЗАИМОЗАМЕНЕМОСТИ

Формулируются некоторые теоремы, относящиеся к взаимозаменяемости и \(L \)-взаимозаменяемости в экстенсивальных и интенсивальных контекстах.
Следующие теоремы, которые мы называем принципами взаимозаменяемости, вытекают из наших данных выше определений взаимозаменяемости и L-взаимозаменяемости (11-1), экстенсиональности (11-2) и интенсиональности (11-3). Предполагается, что система S, к которой относятся теоремы этого раздела, является или одной из систем S_1, S_2, S_3, или подобной системой, как оговорено выше (см. разъяснения, предшествующие 11-1).

12-1. Первый принцип взаимозаменяемости. Пусть $\mathcal{U}_j \ldots$ — предложение (в системе S), экстенсиональное относительно некоторого вхождения десигнатора \mathcal{U}_j; и $\mathcal{U}_k \ldots$ соответствующее предложение со вхождением в него \mathcal{U}_k вместо \mathcal{U}_j; аналогично и для $\ldots u \ldots$ и $\ldots v \ldots$ в c.

а. Если \mathcal{U}_j и \mathcal{U}_k эквивалентны (в S), то данное вхождение \mathcal{U}_j в $\ldots U_j \ldots$ взаимозаменено с \mathcal{U}_k (в S).

б. $(\mathcal{U}_j \equiv \mathcal{U}_k) \Rightarrow (\ldots U_j \ldots \equiv \ldots U_k \ldots)$ истинно (в S).

c. Предположим, что S содержит переменные, скажем $\langle u \rangle$ и $\langle v \rangle$, вместо которых можно подставлять \mathcal{U}_j и \mathcal{U}_k; тогда $\langle(u)(v)[(u = v) \Rightarrow (\ldots u \equiv \ldots v \ldots)]\rangle$ истинно (в S).

Утверждение 12-1а непосредственно следует из определения 11-2а; а б и с следуют из а по общему определению эквивалентности (3-5а). Формы б и с имеют то преимущество, что в них этот принцип представлен предложением в самом языке-объекте S. Форма с требует соответствующих переменных. В системе S_1, например, применимость формы с ограничена случаем индивидуальных переменных и, следовательно, утверждает только взаимозаменяемость индивидуальных выражений, тогда как формы а и б применимы также и к предикаторам и к предложениям в системе S_1.

12-2. Второй принцип взаимозаменяемости. Пусть $\ldots \mathcal{U}_j \ldots$ предложение (в S), которое или экстенсионально, или интенсионально относительно некоторого вхождения десигнатора \mathcal{U}_j, а $\ldots \mathcal{U}_k \ldots$ — соответствующее предложение с \mathcal{U}_k.

а. Если \mathcal{U}_j и \mathcal{U}_k L-эквивалентны (в S), то данное вхождение \mathcal{U}_j в $\ldots \mathcal{U}_j \ldots$ L-взаимозаменяемо и, следовательно, взаимозаменено с \mathcal{U}_k (в S). Формулировки второго принципа b и с, аналогичные 12-1б и с, возможны только с привлечением модального знака, следовательно, только по отношению к некстенсиональной языковой системе. Они будут даны ниже (39-7б и с).
§ 13. Предложения о мнениях

Следующие теоремы вытекают из этих только что сформулированных двух принципов с помощью определений экстенсональной и интенсональной систем (11-2с и 11-3с):

12-3. Пусть S экстенсональная система (например, S₁, см. пример IV в § 11).

a. Эквивалентные выражения взаимозаменяемы в S

b. L-эквивалентные выражения L-взаимозаменяемы в S.

Примеры. a. Эквивалентность и, следовательно, взаимозаменяемость в S₁ имеют место для следующих пар выражений: (I) «H» и «FotB» (см. 3-8); (II) «Hs» и «(FotB)(s)»; (II) «s» и «(ix)(Axw)» (см. 9-2). b. L-эквивалентность и, следовательно, L-взаимозаменяемость в S₁ имеют место для следующих пар выражений: (I) «H» и «RA» (см. 3-11); (II) «Hs» и «RAs»; (III) «(ix)(HxotAxw)» и «(ix)(RAX_{ot}Axw)» (см. § 9).

12-4. Пусть S — интенсональная система (например, S₂ с модальным знаком «N», см. пример II в § 11 и § 39).

а. Эквивалентные выражения взаимозаменяемы в S, за исключением случаев, когда они входят в интенсональном контексте (например, в системе S₂; за исключением вхождений в контексте формы «N(...)»).

b. L-эквивалентные выражения L-взаимозаменяемы в S.

b. Для упомянутых выше пар L-эквивалентных выражений в S₁ L-эквивалентность в S₂ и, следовательно, L-взаимозаменяемость в S₂ точно так же имеют место.

§ 13. ПРЕДЛОЖЕНИЯ О МНЕНИЯХ¹

Мы исследуем предложения формы «Джон считает, что...». Если здесь собственная часть «...» заменяется другим предложением, L-эквивалентным ей, то может сложиться, что все предложение в целом изменяет свою логическую валентность. Поэтому предложение о мнениях в целом

¹ Карпант употребляет в одном и том же смысле два термина «предложение о мнении» ("sentence about beliefs") и «предложение мнения» ("belief sentence"). — Прим. ред.
не является ни экстенсональным, ни интенсональным по отношению к собственной части «...». Следовательно, интерпретация предложения о мнениях, как относящихся или к предложениям, или к суждениям, не вполне удовлетворительна. Для более адекватной интерпретации нам нужно отношение между предложениями еще более сильное, чем L-эквивалентность. Такое отношение будет определено в следующем разделе.

Мы нашли, что «... ∨ — — —» экстенсонально относительно собственной части, обозначенной точками, и что «N(...)» интенсонально относительно нее. Но возможен ли контекст, который не был бы ни экстенсональным, ни интенсональным? Так обстояло бы дело в случае, если (но не только если) замещение предложения, составляющего собственную часть, L-эквивалентным предложением изменило бы логическую валентность, а, следовательно, также и интенсональ всего предложения в целом. В наших системах этого не может случиться; каждое предложение в S₁ (и точно так же в S₂, что будет разъяснено ниже) экстенсонально, а каждое предложение в S₂ — или экстенсонально, или интенсонально. Однако так бывает в предложениях очень важного вида с психологическими терминами, подобных предложению «я считаю, что будет дождь». Хотя предложения этого вида на первый взгляд кажутся совершенно ясными и не проблематичными и действительно употребляются и понимаются в повседневной жизни без всяких затруднений, они, однако же, поставили в тупик логиков, пытавшихся их проанализировать. Посмотрим, не сможем ли мы пролить на них некоторый свет с помощью наших семантических понятий.

Чтобы сформулировать примеры, мы берем здесь в качестве нашего языка-объекта S не символическую систему, а некоторую часть английского языка. Мы допускаем, что S сходен по структуре с S₁, за исключением того, что он содержит предикатор «...считает, что — — —» и некоторые математические термины. Мы не уточняем здесь правил системы S; мы допускаем, что семантические правила S таковы, что упомянутый предикатор имеет свое обычное значение и, далее, что наши семантические понятия, особенно «истинно», «L-истинно», «эквивалентно» и «L-эквивалентно», определяются для S в соответствии с нашими прежними соглашениями. Теперь мы рассмотрим
следующие два предложения о мнениях; «D» и «D'» здесь — сокращения для двух предложений в S, которые будут сейчас указаны:

(I) «Джон считает, что D».

(II) «Джон считает, что D'».

Допустим, что мы опрашиваем Джона, пользуясь обширным перечнем предложений, L-истинных в S; среди них имеются, например, переводы на английский язык теорем системы [P.M.] и даже более сложных математических теорем, которые могут быть доказаны в этой системе и, следовательно, являются L-истинными на основании принятой интерпретации. Для каждого предложения или его отрицания мы спрашиваем Джона, согласен ли он с тем, что оно говорит, или не согласен. Так как мы знаем, что он правдив, мы рассматриваем его утвердительный или отрицательный ответ как свидетельство его согласия или несогласия. Среди простых L-истинных предложений будет, конечно, несколько таких, с которыми Джон выразит согласие. Мы берем в качестве «D» любое из них, скажем «Скотт — или человек, или нечеловек». Таким образом, предложение (I) истинно. С другой стороны, так как Джон есть существо с ограниченными способностями, мы найдем несколько L-истинных предложений в S, с которыми Джон не сможет выразить согласия. Это не обязательно означает, что он совершает ошибку и соглашается с их отрицаниями; может быть, он не сможет дать ответа ни в какой форме. Мы берем в качестве «D'» некоторое предложение этого рода; это значит, что «D'» L-истинно, но (II) ложно. Таким образом, два предложения о мнениях (I) и (II) имеют разные логические валентности; они не являются ни эквивалентными, ни L-эквивалентными. Следовательно, определения взаимозаменяемости и L-взаимозаменяемости (11-1а) ведут к следующим двум результатам:
13-1. Вхождение «D» в (I) не является взаимозаменимым с «D'».
13-2. Вхождение «D» в (I) не является L-взаимозаменимым с «D'».

«D» и «D'» оба L-истинны; следовательно:
13-3. «D» и «D'» эквивалентны и L-эквивалентны.

Исследуя первое предложение о мнении (I) в отношении его собственной части «D», мы видим из 13-1 и 13-3, что
условие экстенсиональности (11-2a) не выполнено; а из 13-2 и 13-3 мы видим, что условие интенсональности (11-3a) также не выполнено:
13-4. Предложение о мнении (I) не является ни экстенсональным, ни интенсональным относительно его собственной части «D».

Хотя «D» и «D’» имеют один и тот же интенсонал, именно L-истинное или необходимое суждение, и, следовательно, один и тот же экстенсонал, логическую валентность «истина», их взаимозамена преобразует первое предложение о мнении (I) во второе (II), не имеющее того же экстенсонала, не говоря уже о том же интенсонале.

Тот же самый результат, что и 13-4, имеет место также и в том случае, если вместо «D» берется любое другое предложение, в частности любое фактическое предложение.

Попробуем теперь ответить на много раз обсуждавшийся вопрос о том, как нужно анализировать предложение, сообщающее о мнении и, в частности, о том, является ли такое предложение предложением о суждении, или о предложении, или о чем-либо еще. Мне кажется, что в некотором смысле мы можем сказать, что (I) говорит о предложении «D», но также, в некотором другом смысле, что (I) говорит о суждении, что D. При интерпретации (I), относящейся к предложению «D», было бы, конечно, неправильно преобразовывать его в предложение «Джон расположен к утверждительному ответу на предложение «D»», потому что это может быть ложным, хотя и предполагалось, что (I) истинно; может, например, быть, что Джон не понимает того языка, на котором высказано это предложение, а выражает свое мнение на другом языке. Поэтому мы попытаемся дать следующую, более осторожную формулировку:

(III) «Джон расположен к утвердительному ответу на некоторое предложение на некотором языке, которое L-эквивалентно «D».

Аналогичным образом при интерпретации (I), относящейся к суждению, что D, формулировка «Джон расположен к утвердительному ответу на любое предложение, выражающее суждение, что D», была бы неверной, потому что
она предполагает, что Джон понимает все языки. Даже если это утверждение ограничивается предложениями того языка или тех языков, которые Джон понимает, то оно все-таки ложно, потому что, например, "D'", или любой перевод его, точно так же выражает суждение, что D, но Джон не дает утвердительного ответа на него. Таким образом, мы видим, что здесь опять мы должны употребить более осторожную формулировку, подобную (III):

(IV) «Джон расположен к утвердительному ответу на некоторое предложение на некотором языке, выражающее суждение, что D».

Однако мне кажется, что даже формулировки (III) и (IV), являющиеся L-эквивалентными, должны рассматриваться не иначе, как первое приближение к правильной интерпретации предложения о мнении (I). Верно то, что каждая из этих формулировок следует из (I), по крайней мере, если мы понимаем здесь «мнение» как «мнение, доступное выражению», оставляя в стороне проблему мнения в более широком смысле, как бы интересна она ни была. Однако (I) не следует ни из одной из них Это легко видеть, если мы заменим «D» на «D'». Тогда (III) остается истинным вследствие 13-3; с другой стороны, предложение (I) превращается в (II), которое ложно. Ясно, что мы должны интерпретировать (I) как говорящее все то, что говорит (III), но несколько более того; а это добавочное содержание, по-видимому, трудно сформулировать. Если (I) правильно интерпретировано в соответствии с его обычным значением, тогда из (I) следует, что существует предложение, на которое Джон ответил бы утвердительно и которое не только L-эквивалентно «D», как говорит (III), но имеет еще более сильную связь с «D»: другими словами, предложение, которое, кроме интенционала, имеет и еще что-то общее с «D». Эти два предложения должны, так сказать, пониматься одинаковым образом; они не только должны быть L-эквивалентными в целом, но и должны состоять из L-эквивалентных частей, и оба должны быть построены из этих частей одинаковым образом. Если это имеет место, то мы скажем, что эти два предложения имеют одну и ту же интенциональную структуру. Это понятие будет эксплицировано в следующем разделе и применено к анализу предложений о мнениях в § 15.
§ 14. ИНТЕНСИОНАЛЬНАЯ СТРУКТУРА

Если два предложения построены одинаковым образом из десигна-торов (или десигнаторных матриц), таких, что любые два соответствую-щие друг другу десигнатора L-эквиваленты, то мы говорим, что эти два предложения интенционально изоморфны или что они имеют одну и ту же интенциональную структуру. Понятие L-эквивалентности может употребляться и в более широком смысле для десигнаторов в различ-ных языковых системах; и понятие интенционального изоморфизма мо-жет тогда быть подобным же образом расширено.

Мы обсудим здесь то, что мы называем анализом интен-циональных структур десигнаторов, в особенности пред-ложений. Это понимается как семантический анализ, осу-ществляемый на основе семантических правил и имеющий целью показать, скажем, для какого-либо предложения, каким способом оно построено из десигнаторов и что пред-ставляют собой интенциональности этих десигнаторов. Если два предложения построены одинаковым способом из соот-ветствующих десигнаторов с одними и теми же интенцио-налами, то мы будем говорить, что они имеют одинако-вую интенциональную структуру. Мы, может быть, могли бы также использовать для этого отношения термин «си-монимический», потому что, как мы увидим в следующем разделе, он употребляется в подобном смысле другими ав-торами (например, Лэнгфордом, Куайном и Льюисом). Мы попытаемся теперь эксплицировать это понятие.

Рассмотрим в качестве примера выражения «2 + 5» и «II sum V» в языке S, содержащем числовые выра-жения и арифметические функции. Предположим, что из семантических правил системы S мы видим, что как «+», так и «sum» являются функциями для функции Sum1 и, следовательно, L-эквивалентны; и далее, что входя-щие в эти выражения числовые знаки имеют свое обычное значение и что, следовательно, «2» и «II» L-эквивалентны друг другу, и точно так же «5» и «V». Тогда мы будем говорить, что эти два выражения интенционально изоморфны или что они имеют одну и ту же интенциональную структуру, потому что они не только L-эквивалентны в целом, будучи оба L-эквивалентными «7», но и состоят из трех частей таким образом, что соответствующие

1 Сумма.— Прим. ред.
их части L-эквивалентны друг другу и, следовательно, имеют один и тот же интенционал. Представляется, по-видимому, целесообразным применять понятие интенционального изоморфизма в несколько более широком смысле, так, чтобы оно имело место также и между выражениями, подобными «2 + 5» и «sum (II, V)», так как употребление во втором выражении функтора, предшествующего двум знакам аргументов, вместо функтора, стоящего между ними, или скобок и запятой может рассматриваться как несущественная синтаксическая деталь. По аналогии с этим, если знак «» и «Больше» L-эквивалентны, как и знаки «3» и «III», то мы рассматриваем выражение «5 > 3» как интенционально изоморфное выражению «Больше (V, III)». Здесь опять мы рассматриваем два предикатора «» и «Больше» как соответствие друг другу независимо от их мест в предложениях; далее, мы соотносим первое аргументное выражение при «» с первым при «Больше», а второе—со вторым. Далее, выражение «2 + 5 > 3» изоморфно выражению «Больше [sum (II, V), III]», потому что соответствующие выражения «2 + 5» и «sum (II, V)» не только L-эквивалентны, но и изоморфны. С другой стороны, выражение «7 > 3» и выражение «Больше [sum (II, V), III]» не изоморфны. Верно, что здесь опять два предикатора «» и «Больше» L-эквивалентны и что соответствующие аргументные выражения в них точно так же L-эквивалентны; но соответствующие выражения «7» и «sum (II, V)» не изоморфны. Для изоморфизма двух выражений необходимо, чтобы анализ обоих выражений вплоть до самых простых составляющих десигнаторов вел бы к аналогичным результатам.

Выше (§ 1) мы сказали, что в качестве десигнаторов в системе S удобно рассматривать по крайней мере все те выражения в S, но не обязательно только те, для которых имеются соответствующие переменные в метаязыке M. Для сравнения интенциональных структур представляется, по-видимому, целесообразным идти как можно дальше и рассматривать в качестве десигнаторов все те выражения, которые служат предложениями, предикаторами, функторами или индивидуальными выражениями любого типа независимо от того, содержит М соответствующие переменные или нет. Таким образом, например, мы, во всяком случае, хотим
рассматривать как изоморфные выражения \(p \lor q \) и \(Apq \), где \(A \) есть знак дизъюнкциии (или альтернативности), как он употреблялся польскими логиками в их бесскобочной символике, даже если \(M \), как обычно, не содержит переменных типа коннекторов. Мы будем, далее, рассма-
тривать знаки \(\lor \) и \(A \) как L-эквивалентные коннекторы, потому что любые два предложения, производные от этих коннекторов, с одними и теми же аргументами выражени-
ями являются L-эквивалентными.

Часто бывает, что мы хотим сравнить интенциональные структуры двух выражений, принадлежащих разным языкам системам. Это вполне возможно, если понятие L-эквивалентности определяется для выражений обоих языков таким образом, что по аналогии с нашими вышеизложе-
ными соглашениями выполняются следующие требовани:
ие: выражение в \(S \) L-эквивалентно выражению в \(S' \), если и только если семантических правил систем \(S \) и \(S' \), взятых вместе, без использования какого-либо знания о (внеязыко-
вых) фактах, достаточно, чтобы показать, что эти два выражения имеют один и тот же экстенсонал. Таким образом, L-эквивалентность имеет место, например, межде \(\langle a \rangle \) в \(S \) и \(\langle a' \rangle \) в \(S' \), если из правил обозначения для этих двух индивидуальных постоянных мы видим, что обе обозначают один и тот же индивид; точно так же дело обстоит и между \(\langle P \rangle \) и \(\langle P' \rangle \), если мы видим из одних только правил, что эти предикаторы удовлетворяются для одних и тех же индивидов; она также имеет место между двумя функторами \(\langle + \rangle \) и \(\langle \text{sum} \rangle \), если из одних только правил мы видим, что они одним и тем же аргументом отно-
сят одни и те же значения — другими словами, если их полные выражения с L-эквивалентными аргументными выражениями [например, \(\langle 2 + 5 \rangle \) и \(\langle \text{sum} (\Pi, V) \rangle \)] L-экви-
валентны; для двух предложений, если мы видим из одних только правил, что они имеют одну и ту же логическую валентность (например, Rom ist gross — по-немецки и «Rome is large» — по-английски). Таким образом, даже в том случае, если предложения \(\langle 2 + 5 \rangle \geq 3 \) и «Больше [\(\text{sum} (\Pi, V), \Pi] \rangle» принадлежат к двум различным системам, мы находим посредством установления L-эквивалентности соответствующих знаков, что они интенционально изо-
морфны.
Вхождение переменных делает анализ несколько более сложным, но понятие изоморфизма все же может быть определено. Мы не будем давать здесь точных определений, а просто покажем с помощью некоторых простых примеров тот метод, который должен применяться в определениях L-эквивалентности и изоморфизма матриц. Пусть $\langle x \rangle$ будет такой переменной в S, которая может входить в квантор общности $\langle x \rangle$ и также в оператор абстракции $\langle (i.x) \rangle$, а $\langle u \rangle$ пусть будет переменной в S', которая может входить в квантор общности Πu и также в оператор абстракции $\langle \dot{u} \rangle$. Если $\langle x \rangle$ и $\langle u \rangle$ имеют одну и ту же область значений (или, точнее, интенционалов значений, § 10), например, если оба являются переменными для натуральных чисел (имеют концепты натуральных чисел в качестве интенционалов значений (value)), то мы будем говорить, что $\langle x \rangle$ и $\langle u \rangle$ L-эквивалентны, а также, что $\langle (x) \rangle$ и $\langle \Pi u \rangle$ L-эквивалентны и что $\langle (i.x) \rangle$ и $\langle \dot{u} \rangle$ L-эквивалентны. Если даны две матрицы (предложений или какие-либо другие) степени n, одна в S и другая в S', то мы говорим, что они L-эквивалентны по отношению к определенному соответствию между переменными, если соответствующие выражения абстракции являются L-эквивалентными предикаторами. Так, например, $\langle x>y \rangle$ в S и «Больше (u, v)» в S' суть L-эквивалентные матрицы (по отношению к соответствию $\langle x \rangle$ с $\langle u \rangle$ и $\langle y \rangle$ с $\langle v \rangle$), потому что $\langle (i.x.y) \rangle \langle x>y \rangle$ и $\langle \dot{u} \dot{v} \rangle$ [Больше (u, v)] суть L-эквивалентные предикаторы. Интенциональный изоморфизм матриц (предложений или каких-либо других) может тогда быть определен по аналогии с интенциональным изоморфизмом замкнутых десигнаторов, так что он имеет силу, если эти матрицы построены одинаковым способом из соответствующих выражений, которые являются или L-эквивалентными десигнаторами, или L-эквивалентными матрицами. Так, например, матрицы $\langle x+5 \rangle y \rangle$ и «Больше [sum (u, V, v)] у не только L-эквивалентны, но также и интенционально изоморфны; таковыми же являются и (L-ложные) предложения $\langle x \rangle(y) \langle x+5 \rangle y \rangle$ и $\Pi \Pi u$ [Больше [sum (u, V, v)]].

Эти рассуждения приводят к следующему определению, являющемуся рекурсивным по отношению к построению сложных десигнаторных матриц из простых. Оно формулируется в общих терминах по отношению к десигнаторным
матрицам; эти матрицы включают замкнутые десигнаторы и переменные как особые случаи. Это определение предполагает расширенное употребление термина «L-эквивалентный» по отношению к переменным, матрицам и операторам, которое было показано в вышеприведенных примерах, но не было формально определено. Приводимое определение не претендует на точность; точное определение должно было бы ссылаться на одну или две семантические системы с полностью сформулированными правилами.

14-1. Определение интенсионального изоморфизма.

a. Пусть даны две десигнаторные матрицы в одной и той же или в двух разных семантических системах, такие, что ни одна из них не содержит никакой другой десигнаторной матрицы в качестве собственной части. Они интенсионально изоморфны — они L-эквивалентны.

b. Пусть даны две сложные десигнаторные матрицы, причем каждая из них состоит из одной главной подматрицы (типа предикатора, функциона или коннектора) и n аргументных выражений (и, возможно, вспомогательных знаков вроде скобок, запятых и т.д.). Эти две матрицы интенсионально изоморфны — для главных подматриц интенсионально изоморфны, и (2) для любого m от 1 до n m-е аргументное выражение в первой матрице интенсионально изоморфно с m-м аргументным выражением во второй матрице (выражение «m-е» относится к тому порядку, в котором аргументные выражения стоят в матрице).

c. Пусть даны две сложные десигнаторные матрицы, причем каждая из них состоит из оператора (квантора общности или существования, оператора абстракции, или оператора дескрипции) и области его действия, которая представляет собой десигнаторную матрицу. Эти две матрицы интенсионально изоморфны — для области действия интенсионально изоморфны относительно определенного соответствия переменных, имеющихся в них, (2) два оператора L-эквивалентны и содержат переменные, поставленные друг другу в соответствие.

В соответствии с нашим прежним рассмотрением экспликанда, правило b в этом определении учитывает тот порядок, в котором входят аргументные выражения, но не учитывает места главного из составляющих десигнаторов. В проти-
воположность чisto синтаксической структуре для интенсинальной структуры существен только порядок применения, а не порядок или способ написания.

§ 15. ПРИМЕНЕНИЕ ПОНЯТИЯ
ИНТЕНСИОНАЛЬНОЙ СТРУКТУРЫ

Понятие интенсинальной структуры сравнивается с понятиями синонимичности, обсуждавшимися Куайном и Льюисом. Затем это понятие употребляется для интерпретации предложений о мнениях, что, по-видимому, является более адекватным, чем интерпретации, обсужденные выше (§ 13). Далее, что же самое, понятие помогает при решении так называемого парadoкса анализа.

Логиками часто отмечалось, что для выяснения некоторых обычных понятий, по-видимому, требуется более сильное отношение значений, чем тождество интенсиналов. Но обычно это более сильное отношение не определяется. Ясно, что во многих из этих случаев можно было бы использовать отношение интенсинального изоморфизма. Например, если мы требуем точного перевода данного утверждения, скажем, точного перевода научной гипотезы или показаний свидетеля в суде с французского языка на английский, то нам обычно следовало бы потребовать гораздо большего, чем согласования в интенсиналах предложений, то есть чем L-эквивалентности предложений. Даже если мы ограничиваем наше внимание только десигнативным (познавательным) значением — оставляя в стороне другие компоненты значения, такие, как эмоциональные и побудительные, хотя они часто оказываются очень важными для перевода даже теоретических текстов, — L-эквивалентности предложений оказывается недостаточно; необходимо, чтобы по крайней мере некоторые десигнаторы-компоненты были L-эквивалентными, другими словами, чтобы интенсинальные структуры были одинаковыми или по крайней мере подобными.

Куайн, не давая определения, объясняет понятие синонимичности, которое отличается от понятия L-эквивалентности и, по-видимому, оказывается сильнее его. Он говорит: «Понятие синонимичности це явно фигурирует также всегда, когда мы пользуемся методом косвенного цитирования. В косвенном цитировании мы не требуем
буквально повторения слов цитируемого лица, но требуем синонимичного предложения; мы требуем воспроизведения значения. Такая синонимичность отличается даже от логической эквивалентности; и как раз то, что она представляет собой, остается неуточненным» 1. Мы можем думать, что экспликация этого понятия синонимичности подобен нашему понятию интенционального изоморфизма. Сам Куайн, по-видимому, думает, что экспликация будет найдена не в семантике, а в том, что мы назвали бы прагматикой, потому что он говорит, что понятие синонимичности «требует определения или критерия в психологических и лингвистических терминах».

Льюис (C. I. Lewis) 2 дает такое определение понятия синонимичности, которое обнаруживает поразительное сходство с нашим понятием интенционального изоморфизма, хотя эти два понятия были разработаны независимо друг от друга. Так как интересно рассмотреть, что в этих понятиях совпадает и что различно, то я приведу прямую цитату из его пояснений. «Не каждая пара выражений, имеющих одно и то же содержание, может называться синонимичной; и для этого имеется достаточное основание. Обычно говорят, что два выражения синонимичны (или, в случае суждений, эквивалентны), если они имеют одно и то же содержание и если это содержание не является ни пустым, ни универсальным содержанием. Но утверждение, без какого-либо уточнения, что два выражения с одним и тем же содержанием имеют одно и то же значение, имело бы то аномальное следствие, что любые два аналитических суждения были бы эквивалентными и любые два противоречивых суждения были бы также эквивалентными». Для преодоления этой трудности Льюис вводит новое понятие: «Два выражения эквивалентны в аналитическом значении, (1) если по крайней мере одно является элементарным [то есть не сложным] и если они имеют одно и то же содержание или (2) если они, будучи оба сложными, могут быть так разложены на составляющие, что (a) для каждой составляющей, выделяемой в каждом

1 [Notes], p. 120.
2 [Meaning], p. 245 и далее. Другие понятия, употребляемые Льюисом, будут обсуждены в следующем разделе.
выражении, имеется соответствующая составляющая в другом, имеющая то же содержание, (b) ни одна составляющая, выделяемая в каждом выражении, не имеет пустого или универсального содержания, и (c) порядок соответствующих составляющих тот же самый в обоих выражениях или может быть сделан одним и тем же без изменения содержания каждого выражения в целом». В качестве примеров Льоис утверждает, что «круглое отверстие» и «отверстие в форме круга» эквивалентны в аналитическом значении, тогда как «равносторонний треугольник» и «равноугольный треугольник» не эквивалентны, хотя они и имеют одно и то же содержание. Он продолжает: «Наше словоупотребление будет соответствовать правильному, если мы скажем, что два выражения являются синонимичными или эквивалентными, (1) если, они имеют одно и то же содержание и если это содержание не является ни пустым, ни универсальным, или (2) если при пустом или универсальном содержании они эквивалентны в аналитическом значении».

Таким образом, понятие синонимичности Льоиса очень похоже на наше понятие интенционального изоморфизма во всем, кроме одного пункта: он применяет это более сильное отношение только к двум крайним случаям интенционала, например в области предложений только к L-детерминированым, а не к фактическим предложениям. Эта дискриминация мне кажется несколько произвольной и нецелесообразной. Рассмотрим следующие примеры (в языке, который, в отличие от S, содержит также выражения для конечных количественных чисел и для их отношений и свойств):

(I) «два есть четное простое число»;
(II) «два заключено между одним и тремя»;
(III) «число книг на этом столе есть четное простое число»;
(IV) «число книг на этом столе заключено между одним и тремя».

Предложения (I) и (II) имеют один и тот же интенционал, но не являются эквивалентными в аналитическом значении (интенционально изоморфными). Это же самое имеет силу и для (III) и (IV). Таким образом, согласно определению Льоиса, (I) и (II) несинонимичны, потому что они
являются L-истинными, аналитическими, тогда как (III) и (IV) синонимичны, потому что они оказываются фактическими, синтетическими. Мне кажется, что было бы естественнее рассматривать (III) и (IV) так же, как несиномичные предложения, поскольку разница между ними по существу та же, что и между (I) и (II). Логическая операция, которая ведет от (I) к (II), та же самая, что и та, которая ведет от (III) к (IV); эта операция есть преобразование предложения «n есть четное простое число» в предложение «(количество число) n заключено между одним и тремя».

Теперь вернемся к проблеме анализа предложений о мнениях и посмотрим, как понятие интенциональной структуры может быть использовано в этом анализе. По-видимому предложение «Джон думает, что D» в S может быть интерпретировано посредством следующего семантического предложения:

15-1. «Имеется предложение E_i в некоторой семантической системе S', такое, что (a) E_i в S' является интенционально изоморфным предложению «D» в S и (b) Джон расположен к утвердительному ответу на E_i, как на предложение в S'.

Эта интерпретация может быть еще не окончательной, но она представляет собой лучшее приближение, чем интерпретации, обсужденные выше (в § 13). В качестве примера предложим, что Джон понимает только немецкий язык и что он утвержденно отвечает на немецкое предложение «Die Anzahl der Einwohner von Chicago ist grösser als 3 000 000»¹, но не отвечает ни на предложение «Die Anzahl der Einwohner von Chicago ist grösser als $2^6 \times 3 \times 5^6$», ни на любое интенционально изоморфное ему предложение, потому что он недостаточно быстро соображает, чтобы понять, что второе предложение L-эквивалентно первому. Тогда наша интерпретация предложений о мнениях, сформулированная в 15-1, позволяет утверждать предложение «Джон думает, что число жителей Чикаго больше чем три миллиона», и отрицать предложение «Джон думает, что число жителей Чикаго больше чем $2^6 \times 3 \times 5^6$».

¹ «В Чикаго больше чем 3 000 000 жителей».— Прим. перев.
Мы можем сделать это без противоречия, потому что два немецких предложения, как и только что приведенные их переводы, имеют различные интенциональные структуры. [Кстати, этот пример показывает и другой недостаток льоносовского определения эквивалентности в аналитическом значении. Согласно части (1) его определения, эти два немецких предложения эквивалентны в аналитическом значении, если мы рассматриваем «3 000 000» как один знак.] С другой стороны, интерпретация предложений о мнениях в терминах суждений как предметов миссий [подобных (IV) в § 13] в этом случае была бы неадекватной, поскольку эти два немецких предложения и два переводных предложения выражают одно и то же суждение.

Аналогичная интерпретация имеет силу и для других содержащих психологические термины предложений о знании, сомнении, надежде, страхе, удивлении и т. д. с придаточными предложениями с союзом «что», следовательно, вообще для предложений указанного рода о том, что Рассел называет пропозициональными установками (attitudes), а Дюкасс — познавательными установками (epistemic attitudes). Проблема логического анализа этого рода предложений много обсуждалась¹, но удовлетворительное решение ее пока еще не найдено. Предлагаемый здесь анализ еще не является полным решением, но, возможно, может рассматриваться как первый шаг. Остается провести, во-первых, уточнение данного здесь анализа в терминах языковых реакций и затем анализ в терминах предрасположений (dispositions) к неязыковому по- ведению.

Понятие интенциональной структуры может также оказаться помощь в выяснении трудной и неразрешенной ситуации, названной «парадоксом анализа». Его недавно сформулировал Мур², а затем проанализировали Лэнгфорд³.

¹ Рассел [Inquiry] дает детальный разбор этой проблемы в широком смысле, включая мнения, не выраженные в языке; он исследует проблему как в теоретико-познавательном, так и в логическом аспекте (по нашей терминологии — в прагматическом и семантическом аспекте), не всегда ясно различая эти два аспекта. О концепции Дюкасса см. его статью «Propositions, Opinions, Sentences, and Facts», Journal of Philosophy, XXXVII (1940), 701—711.

³ «The Notion of Analysis in Moore’s Philosophy», ibid., p. 321—342.
Макс Блэк¹ и Морган Уайт². Лэнгфурд³ формулирует этот парадокс следующим образом: «Если словесное выражение, представляющее анализируемое (analysandum), имеет то же значение, что и словесное выражение, представляющее анализирующее (analysans), то анализ просто устанавливает тождество и является тривиальным; если же эти два словесных выражения имеют не одно и то же значение, то анализ оказывается неправильным». Рассмотрим следующие два предложения:

«Понятие Брат тождественно с понятием Единородный».

«Понятие Брат тождественно с понятием Брат».

Первое является предложением, дающим полезную информацию, хотя и логического, а не фактического характера; оно формулирует результат анализа анализируемого, то есть понятия Брат. Второе же предложение совершенно тривиально. Мур был поставлен в затруднение следующим: если первое предложение истинно, тогда второе, по-видимому, утверждает то же самое, что и первое (исходя из того, что если два понятия тождественны, то ссылка на одно означает то же самое, что и ссылка на другое, а следовательно, одно выражение может быть замещено другим); «но очевидно, что эти два предложения не являются одним и тем же», говорит он. Блэк пытается показать, что эти два предложения выражают не одно и то же суждение; он подкрепляет свое утверждение указанием на тот факт, что первое предложение или, скорее, та перефразировка, которую он дает вместо него («понятие Брат есть конъюнкция понятия Мужчина и понятия Единородность»), относится к некоторому нетождественному отношению (трехместному отношению Конъюнкция), тогда как второе является простым тождеством. Уайт считает, что это не является достаточным основанием для данного утверждения. Ни один из этих четырех авторов не формулирует своего критерия тождества «значения», «утверждения» или «суждения»; это является главной причиной того, что их дискуссия не дала никакого решения проблемы. Если мы возьмем, следуя употребляемой в этой книге терминологии, L-эквивалентность как усло-

¹ Mind, LIII (1944), 263—267 and L.IV (1945), 272 и далее.
² Mind, LIV (1945), 71 и далее, 357—361.
³ «The Notion of Analysis in Moore’s Philosophy», ibid., p. 323.
вие тождества суждений, то Уайт, конечно, прав; так как эти два предложения L-истинны и, следовательно, L-эквивалентны друг другу, то в нашем смысле они выражают одно и то же суждение. С другой стороны, Блэк, подобно Миру и Лэнгфорду, правильно думает, что имеется серьезное различие в значении между этими двумя предложениями благодаря различию в значении между двумя выражениями анализируемого (analysandum) («понятие брать») и анализирующего (analysans) («понятие Единородный»).

Парадокс может быть разрешен, если мы сможем точно сформулировать, что представляется собой это различие в значении и как оно совмещается с тождеством значения в другом смысле. В терминах наших понятий решение здесь очень простое: различие между этими двумя выражениями и, следовательно, между этими двумя предложениями есть различие в интенциональной структуре, которое существует, независимо от тождества интенционаллов. Лэнгфорд видел, как это включается различие; он говорит1, что анализирующее более разложено, чем анализируемое, что оно является грамматической функцией более чем одной идее; эти два выражения не синонимичны, а «познавательно эквивалентны в некотором соответствующем смысле». Мне кажется, что эта познавательная эквивалентность эксплицируется посредством нашего понятия L-эквивалентности и что синонимичность, которая не имеет места для этих выражений, эксплицируется с помощью интенционального изоморфизма.

§ 16. МЕТОД АНАЛИЗА ЗНАЧЕНИЙ ПО ЛЬЮИСУ

В добавление к понятиям объема (extension) и содержания (intension), которые сходны с нашими, Льюис употребляет понятие понимания (comprehension), которое предполагает дополнение недействительных, возможных вещей. Употребление этого понятия представляется нецелесообразным, потому что оно требует новой, более сложной языковой формы. Различение, которое Льюис хочет провести, может быть сделано лучше по отношению к интенционалам, чем по отношению к вещам.

1 «The Notion of Analysis in Moore’s Philosophy», ibid., p. 326.
Я хочу вкратце рассмотреть некоторые понятия, которые недавно были предложены К. И. Льюисом\(^1\), в качестве средств семантического анализа значения. Между этими понятиями и нашими понятиями экстенсонала и интенсонала имеется поразительное сходство. Это сходство обусловлено общей целью сделать некоторые традиционные понятия — особенно понятия объема и содержания, означения (denotation) и соозначения (connotation) — более общими в их применении и в то же самое время более ясными и точными.

Льюис объясняет свои главные семантические понятия следующим образом: «Все термины имеют значение в смысле или модусе означения или экстенсивном модусе; и все они имеют значение в модусе соозначения или интенсивном модусе. Означение термина есть класс всех действительных или существующих вещей, к которым этот термин правильно применяется. Понимание (comprehension) термина есть совокупность всех непротиворечиво мыслимых вещей, к которым этот термин мог бы быть применен правильно... Например, понимание «квадрата» включает все воображаемые, так же как и все действительные квадраты, но не включает круглые квадраты... Соозначение, или содержание, термина отграничивается любым конкретным его определением».

По-видимому, понятия объема и содержания у Льюиса близко соответствуют нашим понятиям. Это очевидно для случая предикаторов, но, возможно, также имеет место

\(^2\) В оригинале, в тексте цитаты употреблен термин «classification», очевидно, в связи с желанием не употреблять в данном случае термин «class». В русском языке термин «классификация» не имеет нужного здесь значения. Поэтому применён термин «совокупность». Прим. ред.
§ 16. Метод анализа значений по Льюису

для предложений и индивидуальных выражений. Остается вопрос о необходимости и полезности третьего понятия Льюиса — понятия починения (comprehension). По-видимому, Льюис следует за Мейноном 1 в делении (1) всех вещей (в самом широком смысле) на невозможные, или немыслимые, вещи (например, круглые квадраты) и возможные вещи; и (2) возможных вещей на действительные (например, Платон) и недействительные (например, Аполлон, единороги). (Льюис явно производит второе деление. Проделывает ли он также и первое деление и, следовательно, допускает ли, подобно Мейнону, невозможные вещи, не столь ясно, но, по-видимому, на это указывает формулировка, что понимание «не включает круглых квадратов». Согласно обычной концепции, в отличие от концепции Мейнонга, круглые квадраты вообще не существуют, даже в каком-либо особом роде объектов; следовательно, было бы излишним говорить, что понимание «не включает круглых квадратов».) Концепция Мейнонга подверглась критическому разбору Рассела 2 и была им отвергнута. Главным основанием Рассела для ее отвержения явилось то, что невозможные объекты нарушают принцип противоречия; например, круглый квадрат сразу и круглый и некруглый, так как он — квадрат. Рассел безусловно прав в следующем отношении: в пределах логических рамок нашего обычного языка мы не можем непротиворечиво применять концепцию невозможных вещей или даже концепцию возможных, но недействительных вещей. И насколько я знаю, ни Мейнон, ни Льюис, ни какой-либо другой философ не построил и даже не очертил схему языка новой структуры, который был бы приспособлен к таким объектам. То, что такой язык должен отличаться от обычного языка, видно из следующего примера: в обычном языке мы говорим: «не существует белых ворон и круглых квадратов». В новом языке мы вместо этого должны были бы сказать: «Белые вороны существуют; однако они являются не действительными, а только возможными. И круглые квадраты существуют; однако они являются не действительными и невозможными, а невозможными». Я не сомневаюсь,

1 A. M e i n o n g, Untersuchungen zur Gegenstandstheorie und Psychologie, 1904.
2 [Denoting], p. 482 и далее.
что какой-либо изобретательный логик мог бы легко сконструировать непротиворечивую языковую систему такого рода, если бы это было нужно; он должен был бы сформулировать правила квантификации, отличающиеся от обычных правил так, как подсказывают примеры. Главный вопрос — не в технической возможности такого языка, а скорее в его полезности. Только в том случае, если будут доказаны его большие преимущества по сравнению с обычной языковой структурой, стоило бы подумать о нем, несмотря на его значительное отклонение от обычного и его большую сложность.

Я не вижу достаточных оснований для этого изменения. Различия, которые Мейнинг и Льюис имеют в виду, важны, но их можно учитывать и другим способом. Вместо деления объектов на (I) действительные, (II) недействительные, но возможные, и (III) невозможные, мы проводим аналогичные различения, во-первых, между тремя соответствующими видами интенсоналов. Покажем это, во-первых, для предикаторов. Вместо того чтобы говорить о трех видах объектов способом, подобным следующему: (I) «(некоторые) кони суть действительные объекты», (II) «единороги суть недействительные, но возможные объекты», (III) «круглые квадраты суть невозможные объекты», мы предпочитаем говорить о трех видах предикаторов: (I) «предикатор «конь» не является пустым», (II) «предикатор «единорог» F-пуст, то есть пуст, но не L-пуст», (III) «предикатор «круглый квадрат» L-пуст». Затем мы применяем эти же термины к соответствующим интенсоналам (это является перенесением терминов из семантического в несемантическое употребление, аналогичным перенесению терминов «эквивалентно» и «L-эквивалентно», § 5): (I) «свойство Конь не пусто», (II) «свойство Единорог F-пусто, то есть пусто, но не L-пусто», (III) «свойство Круглый Квадрат L-пусто».

Аналогичное различение может быть сделано и для индивидуальных выражений, например для дескрипций. (Мы применяем здесь не ту специальную интерпретацию дескрип-
§ 16. Метод анализа значений по Льюису

ции, которую мы применили в § 8 вследствие ее технических преимуществ, а обычную интерпретацию, согласно которой дескрипция имеет дескрипт только в том случае, если выполняется условие единственности.) Тогда вместо следующих формулировок, относящихся к объектам:

(I) «конь Александра (то есть именно тот конь, которого Александр имел в такое-то время) есть действительный объект»,

(II) «единорог Александра есть недействительный, но возможный объект»,

(III) «круглый квадрат Александра есть невозможный объект»,

мы предпочитаем употреблять следующие, касающиеся индивидных выражений (сингулярных терминов по Льюису):

(I) «дескрипция «конь Александра» не пуста»,

(II) «дескрипция «единорог Александра» F-пусть» (по терминологии Льюиса она имеет пустое значение, но не пустое понимание),

(III) «дескрипция «круглый квадрат Александра» L-пусть» (она имеет пустое понимание).

А затем мы делаем аналогичные утверждения, касающиеся соответствующих индивидных концептов (по терминологии Льюиса соозначений сингулярных терминов):

(I) «индивидуальный концепт Конь Александра не пуст»,

(II) «индивидуальнд концепт Единорог Александра F-пуст»,

(III) «индивнддный концепт Круглый Квадрат Александра L-пуст».

Таким образом, наш метод не пренебрегает различиями, указанными Мейнонгом и Льюисом. Однако он применяет это различие к интенсоналам, тогда как эти философы применяют его к объектам и тем самым нарушают то правило обычного языка, которое рассматривает добавление понятия «действительный» к общему имени как излишнее. Например, в обычном языке считается, что сочетания слов, такие, как «действительные лошади», «реальные лошади», «существующие лошади» и т. д. (где «действительный» и т. д. значит не «имеющий место в настоящее время», а «имеющий место в некоторое время, прошедшее, настоящее или будущее»), значит то же самое, что и «лошади»,
отличаясь от этого последнего термина только акцентированием; и точно так же фраза «действительные единороги» рассматривается как значащая то же самое, что и понятие «единорог», и вследствие этого говорят: «никаких единорогов нет (в любой точке пространства-времени)».

Если мы, таким образом, отвергаем такие различия между видами объектов, то понятие понимания у Льюиса больше не может быть определено. Жертвуем ли мы благодаря этому полезным средством семантического анализа значения? Я этого не думаю. Льюис правильно подчеркивает различие между пониманием и объемом. Но, по-видимому, нет большого различия в назначении понятий понимания и содержания [intension в смысле Льюиса]. Если мы примем льюисовскую форму языка, то оба эти понятия законны и, конечно, не тождественны. Но все, что говорится в терминах понимания, может непосредственно быть переведено в термины содержания, потому что и понимание и содержание логически взаимно устанавливаются друг другом. Если вы укажете мне понимание какого-либо китайского слова, то я непосредственно узнаю, каково его содержание, и наоборот; следовательно, нет никакого преимущества в том, чтобы иметь оба понятия. С другой стороны, если вы сообщите мне содержание какого-либо китайского слова, то я еще не буду знать его объема (если оно не является L-детерминированным); а если вы сообщите мне только его объем, то я не смогу вывести из него содержание этого слова. Следовательно, полезно иметь оба понятия — как понятие содержания, так и понятие объема.

Мы приходим к этому же результату — отказу от недействительных, возможных объектов и от концепции понимания — также и при подходе с другой точки зрения, с точки зрения модальной логики. Ниже (§ 42 и далее) мы найдем, что логические модальности должны применяться к интенсионалам, а не к экстенсионалам. Таким образом, мы можем говорить о невозможном (или L-ложном) суждении, но не о невозможной логической валентности; о невозможном (или L-пустом) свойстве, но не о невозможном (или L-пустом) классе. Аналогичным образом мы можем говорить о невозможном (или L-пустом) индивидуумом
концепте, но не о невозможном индивиде (объекте, вещи), потому что индивиды (объекты, вещи) суть экстенсоналы, а не интенсоналы; другими словами, с индивидами связаны вопросы применения, а не вопросы значения в строгом смысле слова. (Мы берем здесь, конечно, обычное понятие экстенсоналов, а не то, которое будет обсуждаться в § 23 и согласно которому экстенсоналы строятся как особый вид интенсонала.)

Подводя итоги сказанному, я не думаю, что концепции возможных и невозможных объектов и понимания можно упрекнуть в нарушении логики или в том, что они необходимо приводят к противоречиям. Однако остается вопрос, являются ли эти концепции настолько полезными, чтобы компенсировать их недостаток — необходимость употребления необычной и более сложной языковой структуры.

§ 17. L-ДЕТЕРМИНИРОВАННЫЕ ДЕСИГНАТОРЫ

Вообще говоря, для установления логической валентности некоторого данного предложения нужно знание фактов. Однако если предложение является L-детерминированным (§ 2), то для установления его логической валентности или, другими словами, его экстенсонала достаточно семантических правил. Понятие L-детерминированности будет теперь распространено на десигнаторы других видов. Мы условимся, что определение этого понятия для других видов должны быть такими, чтобы десигнатор оказывался L-детерминированным, если и только если для установления его экстенсонала достаточно семантических правил. Определения, удовлетворяющие этому требованию, будут построены в дальнейших разделах этой главы.

Ранее мы нашли, что интенсоналом предложения «Hs» в системе S_1 является суждение, что Скотт — человек
§ 17. L-детерминированные десигнаторы

и что его экстенсоналом является его логическая валентность — истина. Теперь рассмотрим вопрос, в каком знании мы нуждаемся в этом и в других случаях для того, чтобы установить интенсонал и экстенсонал данного предложения. Ясно, что для установления интенсонала требуются только семантические правила системы S_1. Для каждого предложения в S_1 эти правила дают интерпретацию и тем самым говорят нам, какое суждение является интенсоналом предложения. Таким образом, упомянутый результат относительно интенсонала предложения «Hs» устанавливается на основе тех правил, которые дают интерпретацию для «Hs»; таковыми являются правила обозначения для «H» и для «s» (см. 1-1 и 1-2) и правило истинности для атомарных предложений (1-3). С другой стороны, для установления экстенсонала, то есть логической валентности, предложения «Hs» знания одних только семантических правил явно недостаточно. Мы нуждаемся, кроме того, в знании фактов. Это фактическое знание основывается на наблюдении вещи, называемой Вальтером Скоттом; эти наблюдения ведут к тому результату, что эта вещь имеет свойства, характерные для человека и, следовательно, что предложение «Hs» истинно.

Однако мы видели, что имеется особый вид предложений, для установления логической валентности которых достаточное основание дают семантические правила — без какого-либо знания фактов. Таковыми являются L-детерминированные предложения, то есть L-истинные и L-ложные предложения (см. пояснение, предшествующее 2-7). Таким образом, для этих предложений семантических правил достаточно, чтобы установить не только их интенсоналы, но также и их экстенсоналы. Теперь мы расширим значение термина «L-детерминированный» так, чтобы по аналогии с его применением к предложениям сделать его применимым к десигнаторам вообще. Для этой цели естественно положить в основу следующее соглашение для любой семантической системы S:

17-1. Десигнатор является L-детерминированным в S, если и только если его экстенсонал может быть установлен на основании одних только семантических правил S, без какой-либо ссылки на факты.
Это соглашение само не является определением "L-детерминированно". Оно понимается только как неформальная характеристика экспликанда; другими словами, как требование, которому определение должно удовлетворить. Определение L-детерминированности для предложений уже было дано (2-3). Проблемы построения определений L-детерминированности для других видов десигнаторов будут рассмотрены в последующих разделах. Но даже если это условие рассматривается только как требование, то и тогда настоящая формулировка, данная в 17-1, по рассмотрении ее, оказывается недостаточной. Фраза «экстенсонал устанавливается некоторыми правилами» может быть понята в двух совершенно различных смыслах. Мы должны узнать, какой смысл является подходящим здесь.

Связанное с этим затруднение, вероятно, лучше всего может быть выяснено в случае какого-либо предикатора. Интенсонал предикатора «H» может, очевидно, быть установлен с помощью одних только семантических правил; из правила обозначения для «H» (1-2) мы видим, что его интенсоналом является свойство Человек. Но разве это не имеет значения также и для экстенсонала? Разве мы не видим из того же самого правила, что экстенсоналом предикатора «H» является класс Человек? Разве мы сказали бы тогда, в соответствии с нашим условием, что предикатор «H», как и всякий другой предикатор, является L-детерминированным? Это, очевидно, не соответствовало бы тому значению этого термина, которое имелось в виду.

Для преодоления этой трудности мы должны провести одно различение, которое легко может быть сделано ясным для предложений, а затем перенесено на десигнаторы других видов. Допустим, что мы задаем вопрос: «Каков экстенсонал, то есть логическая валентность предложения «Hs»?» Рассмотрим следующие предложения, приводимые в 17-2 и 17-3, принадлежащие к метаязыку М. Исследуем, могут ли они рассматриваться как удовлетворительные ответы на наш вопрос.

17-2. a. «Экстенсоналом «Hs» является логическая валентность истина».
b. ««Hs» истино».
c. «Скотт — человек»,
d. «Экстенсионал «Hs» тот же самый, что и экстенсионал «H≡H».

e. «Hs» эквивалентно «H≡H».

17-3. a. «Экстенсионал «Hs» есть логическая валентность того, что Скотт — человек».

b. «Hs» истинно, если и только если Скотт — человек».

Каждое из этих семи предложений истинно (см. 6-3). И о каждом из них можно сказать, что оно в некотором смысле дает ответ на наш вопрос. Однако между предложениями 17-2 и предложениями 17-3 есть важное различие. Допустим, что мы понимаем предложения системы S₁, но не имеем фактического знания о вещах, о которых говорится в этих предложениях; тогда мы не знаем, истинно «Hs» или нет, другими словами, является ли Скотт человеком или нет. Допустим, далее, что целью нашего вопроса было найти это недостающее знание. Тогда предложение 17-2a — вполне удовлетворительный ответ, потому что оно дает ту самую информацию, которая нам нужна; таким же является и 2b, представляющее лишь более простую формулировку 2a; точно так же обстоит дело и с 2c, доставляющим ту же самую информацию без употребления семантических терминов. (О том, что 2b и 2c значит одно и то же, см. пояснения, предшествующие 1-7.) С другой стороны, ответ 3а, хотя и правильный, не удовлетворяет нашей цели: мы ответим водоизмененной формулировкой нашего первого вопроса: «Да, но какова логическая валентность того, что Скотт человек?» Подобным же образом мы ответим и на 3b: «Да, но есть ли Скотт человек или нет?» Мы можем сформулировать это различие, сказав, что 2a, 2b и 2c действительно дают логическую валентность предложения «Hs», тогда как 3а и 3b не дают, а только описывают ее в том смысле, что дают для нее дескрипцию (в Расселовском смысле «дескрипции»). Мы можем сделать это, введя сочетание слов «дает логическую валентность» таким способом, который не понимается как точное определение. Пусть Ξₓ будет истиным предложением в М (это может быть также определением или правилом или группой истиных предложений, определений или правил). Мы будем говорить, что логическая валентность предложения Ξₓ в системе S дана предложением Ξₓ, если или
предложение «\exists_i истино (в S)», или его отрицание следует из \exists_i (в M) без использования какого-либо фактического знания, не доставляемого предложением \exists_i. [Слова «...следует из — — — (в M)» можно понимать как значащие то же самое, что и «...L-имплицируется предложением — — — (в M)», если мы допускаем, что L-термины в отношении M были определены в метаметаязыке MM. Ради простоты мы употребляем буквы немецкого готического шрифта с нижними индексами не только в M для выражений в S, но также и в MM для выражений в M и выражений в S.]

Примем теперь этот критерий к предложениям, данnym в 17-2 и 17-3. Во-первых, предложение 2b выполняет этот критерий самым тривиальным образом; следовательно, оно дает экстенсионал «Hs». Более того, каждое из предложений 2a и 2c, и даже 2d и 2e, дает вместе с семантическими правилами S_i логическую валентность «Hs», потому что 2b следует из каждого из этих предложений, взятого вместе с правилами. То, что 2b следует из 2a, очевидно. Далее, 2c следует из 2b, взятого вместе с 3b, основывающимся на семантических правилах для «H», «s» и атомарных предложений (1-2, 1-1, 1-3). Предложение 2d выводится из 2a и, тем самым, из 2b, взятого вместе с тем, что «$H \equiv H$» L-истинно, что, в свою очередь, основывается на семантических правилах. То же самое верно и для предложения 2e, являющегося лишь другой формулировкой для 2d, согласно определению 5-1.

С другой стороны, каждое из предложений 3a и 3b, взятое вместе с семантическими правилами, не дает экстенсионала «Hs», а просто описывает его, потому что в этом случае для вывода 2b мы нуждаемся в фактическом знании, что Скотт — человек.

Рассмотрим теперь, в противоположность «Hs», L-детерминированное предложение, например L-истинное предложение «$s \equiv s$» или L-ложное предложение «$(s \equiv s)$». Здесь в добавление к семантическим правилам не требуется никакого фактического предложения \exists_i, для того, чтобы дать логические валентности этих двух предложений. Нижеприведенные два предложения в M следуют только из семантических правил системы S_i: «$s \equiv s$» истинно (в S_i), «$(s \equiv s)$ не истинно (в S_i)».
По аналогии с этими результатами для предложений мы заменяем теперь вышеприведенное соглашение 17-1 следующим:

17-4. Десигнатор является L-детерминированным в S, если и только если одни лишь семантические правила S, без добавления фактического знания, дают его экстенсонал.

Это, однако, все еще не составляет определения "L-детерминировано", а является только требованием, которому определение должно удовлетворить. Для предложений прежнее определение L-детерминированности (2-3d) находится в соответствии с этим соглашением в силу нашего объяснения слов "... дает экстенсонал, то есть логическую валентность предложения — — —". Нашей задачей будет теперь найти адекватные определения L-детерминированности для других видов десигнаторов. Для каждого из этих видов мы должны будем рассмотреть условия, при которых их экстенсоналы действительно даны, а не просто описываются; как и в случае предложений, слова "дат экстенсонал" будут лишь ин формально объяснены, а не точно определены. А затем определение L-детерминированности будет построено так, чтобы требование 17-4 было выполнено. Если десигнатор не является L-детерминированным, мы называем его L-недетерминированным.

Этот термин был определен для предложений (2-7); однако в случае предложений мы обычно употребляем синонимический термин "фактический". Согласно условию 17-4, десигнатор является L-детерминированным, если его экстенсонал может быть дан только с помощью некоторого утверждения о фактах (в M).

§ 18. ПРОБЛЕМА L-ДЕТЕРМИНИРОВАННОСТИ ИНДИВИДУНЫХ ВЫРАЖЕНИЙ

Здесь исследуются условия, при которых индивидуальное выражение может рассматриваться как L-детерминированное. Попытка основать определение L-детерминированности на различении между (подлинными) собственными именами и дескрипциями отвергается как не достигающая цели. Затем анализу подвергается координатный язык Sₜ. Его индивидами являются положения, следующие одно за другим в дискретном, линейном порядке. "о", "о" и "о" и т. д. суть так называемые стандартные индивидуальные выражения для этих положений в их основном порядке. Каждое из этих выражений своей формой указывает свой координату в основном порядке; следовательно, оно само показвает свой собственный экстенсонал и может рассматриваться как L-детерминиро-
Мы начинаем с индивидных выражений, потому что, как мы увидим дальше, решение проблемы L-детерминированности для предикаторов предполагает решение ее для индивидных выражений.

По аналогии с вышепоставленным вопросом: «Какова логическая валентность Hs?» — мы рассмотрим теперь вопрос: «Какой индивид является экстенсионалом (\(\langle x \rangle (Axw)\))?» и возможные ответы на него. По аналогии с рассмотренным случаем вообразим себе, что мы не знаем, имеется ли точно один автор Веверлея, и если так, то кто он; и что целью нашего вопроса является узнать это от кого-либо знающего. Очевидно, что ответ «экстенсионалом упомянутой дескрипции является автор Веверлея» не удовлетворил бы нас даже несмотря на то, что он истинен; он полностью тривиален. (Заметим, что, согласно одному из прежних соглашений, слова «автор Веверлея» должны пониматься как сокращение для «это индивид, который является автором Веверлея, или a*, если таких индивидов нет, или если их несколько.») Ответ «искомым экстенсионалом является автор Айвенго» истинен и не тривиален; тем не менее он не удовлетворил бы нас, потому что он не дает той специальной информации, которую мы ищем; мы опять могли бы сказать здесь, что этот ответ только описывает экстенсионал, но не дает его. Экстенсионал действительно и прямо дается ответом «экстенсионалом является Вальтер Скотт». Косвенным образом он дается ответами вроде следующих: экстенсионал \((\langle x \rangle (Axw)\) тот же, что и экстенсионал \(s\)» или \((\langle x \rangle (Axw) \equiv s\) истинно; из этих предложений мы получаем прямой ответ с помощью семантического правила (1-1), которое говорит нам, что экстенсионалом \(s\) является Вальтер Скотт.

На основе этих соображений мы, возможно, склонны были бы предложить следующее решение. Будем говорить, что экстенсионал индивидного выражения дан, а не просто описан, посредством \(\exists\), если \(\exists\) употребляет собственное имя в M (например, «Вальтер Скотт») или, в отличие от дескрипции, относится к собственному имени.
в S (например, «x»). Однако легко видеть, что это еще не удовлетворительное решение. Предположим, что предложение «x есть кинжал и Брут употребил x для убийства Цезаря» может быть переведено на язык S_1; соответствующее символическое выражение может быть обозначено «...x...». Допустим, что кто-то на наш вопрос: «Каков экстенсиональ дескрипции $\langle (i:x)(...x...) \rangle$?» — дает ответ: «Этот экстенсонал тот же, что и экстенсонал «b», где «b» есть индивидуальная постоянная в S_1 такая, что предложение $\langle (i:x)(...x...) \equiv b \rangle$ истинно. Тогда ответ будет истинным. Согласно нашему пробному решению, мы сказали бы, что этот ответ дает экстенсонал предложения $\langle (x)(...x...) \rangle$ независимо от того, как сформулировано семантическое правило для b. Но допустим теперь, что это правило гласит, что «b» есть символический перевод слов «кинжал, которым Брут убил Цезаря». Тогда вышеприведенный ответ говорит другими словами, что экстенсоналом $\langle (x)(...x...) \rangle$ является кинжал, которым Брут убил Цезаря; таким образом, этот ответ просто описывает экстенсонал. Причина этого в том, что интерпретация постоянной «b» дается в M с помощью дескрипции. Мы, может быть, могли бы сказать, что, следовательно, «b» есть не настоящее, а только кажущееся собственное имя. И мы могли бы попытаться исправить предложенное решение, потребовав, чтобы употреблялись настоящие собственные имена, а не те, которые определяются или интерпретируются посредством дескрипций. Эта попытка, однако, привела бы нас к серьезному затруднениям. Многого размышления достаточно, чтобы убедиться, что большинство вещей не имеет собственных имен. Некоторые логики — например, Рассел и Куайн — не признавают индивидуальные постоянные персональными знаками, а считают их только сокращениями сложных выражений. Таким образом, различие между настоящими и кажущимися собственными именами индивидов является довольно проблематическим. Даже если для некоторых индивидов и существуют настоящие собственные имена, то как должен быть дан экстенсонал дескрипции, в которой

1 Язык Рассела содержит имена для качеств, но не для отдельных предметов, то есть индивидов в нашем смысле (см. [Inquiry], p. 117).
2 Куайн рассматривает все индивидуальные постоянные как сокращения для дескрипций (см. [M. L.], p. 149 и далее).
дескрипт не имеет собственного имени? Ясно, что предпринятая попытка решения в ее нынешней форме не достигает цели.

Однако я думаю, что той цели, для которой предназначалось различение между собственными именами и дескрипциями, может послужить другое различение. Для простоты анализа возьмем систему не такую, как S_1, индивидуальными постоянными которой являются имена вещей, а языковую систему описанного ниже рода. Индивидуами являются положения в некоторой упорядоченной области. Среди индивидуальных выражений имеются некоторые особые, называемые выражениями стандартной формы, удовлетворяющие следующему условию: (1) если даны два выражения стандартной формы, то из их форм мы можем видеть позиционное отношение между обоими положениями. Для систем простой структуры (например, для системы S_3, обсуждаемой в этом разделе, в противоположность языку физики, обсуждаемому в следующем разделе) выполняется следующее дополнительное условие: (2) для каждого положения имеется в точности одно выражение стандартной формы. Языки этого рода могут быть названы координатными языками (coordinate languages) в отличие от именных языков вроде S_1. В качестве примера возьмем языковую систему S_3, в которой основной порядок положений имеет простую структуру прогрессии, дискретный линейный порядок с начальным положением, но без конца. Пусть «» будет индивидуальной постоянной для начального положения; если индивидуальное выражение любой формы — стандартной или нет — дано как выражение некоторого положения, то выражение для ближайшего следующего положения образуется из него посредством добавления штриха "'. В качестве индивидуальных выражений стандартной формы мы берем «» вместе с выражениями, состоящими из «», за которым следует один или несколько штрихов. Так «», «'», «''», «'''» — стандартные выражения для первых четырех положений.

Пусть S_3 содержит предикаторные знаки для качественных свойств положений, скажем «B» для свойства Синее,

1 [Syntax], § 3. Система S_3, описываемая в тексте, сходна с языком 1, рассмотренным в [Syntax], часть 1.
«С» — для Холодное, «S» — для Мягкое. Кроме того, S₃, подобно S₁, содержит обычные коннекторы, индивидуальные переменные с кванторами и индивидуальные дескрипции. В качестве общего дескрипта для всех дескрипций, которые не удовлетворяют условию единственности, мы, конечно, берем начальное положение; следовательно, «ο» играет роль «а*» (см. § 8). Так, например, дескрипция «(ιx)(BxοCx)» обозначает то же самое, что и «то положение, которое является и синим и холодным (или положение о, если ни одно положение не является и синим и холодным или несколько положений являются и синими и холодными)». (Как и выше, мы обычно будем опускать фразу, заключенную здесь в скобки.)

Для последующих примеров мы предлагаем следующее допущение фактического характера:
18-1. Второе положение (ο') есть единственное положение и синее и холодное, а также единственное и синее и мягкое.

Согласно этому допущению, имеет силу следующее:
18-2. «(ιx)(BxοCx)≡ο'» истинно (и, кроме того, F-истинно).
18-3. «(ιx)(BxοSx)≡ο'» истинно (и, кроме того, F-истинно).

Допустим, что мы задаем вопрос: «Каков экстенсонал дескрипции «(ιx)(BxοCx)», потому что мы не знаем фактов (18-1) и хотим узнать, какое положение является дескриптом. Рассмотрим следующие ответы:
18-4. а. «Экстенсоналом упомянутой дескрипции является то положение, которое является и синим и холодным».

б. «Экстенсонал упомянутой дескрипции тот же, что и экстенсонал «(ιx)(BxοSx)»».

Ответ 18-4а, хотя и истиный, представляется, конечно, неудовлетворительным; мы можем возразить: «Да, но что это за положение?» Предложение 4b точно так же является истинным ответом на наш вопрос в силу 18-1. Это не такой тривиальный ответ, как 4a, но он все-таки не дает той информации, которая нам нужна. Он не говорит нам прямо, какое положение является дескриптом, а только качественно характеризует его. Получив ответ 4b, мы точно так же, как и в случае 4a, все еще нуждаемся в наблюдении.
фактов относительно качеств положений, чтобы обнаружить, какое положение является дескриптом в первоначальной дескрипции.

В противоположность этим ответам каждая из следующих двух формулировок сообщает нам то, что мы действительно хотим знать:

18-5. а. «Экстенсионалом дескрипции является второе положение».

б. «Экстенсионал дескрипции тот же, что и экстенсионал «о’».

То же самое имеет силу и для 18-2. Каждый из этих трех ответов дает информацию непосредственно. Но имеются другие формулировки, которые дают эту же самую информацию косвенным образом. Для того чтобы построить пример, допустим, что «…х…» — некоторая, не слишком простая матрица в S₃, не содержащая нелогических постоянных, которая удовлетворяется только для положения o’. [Мы можем рассматривать индивидуальные выражения в S₃, как выражения натуральных чисел («о» для Нуля, «о’» для Единицы и т. д.) Затем мы можем ввести арифметические символы, например, «/>» для отношения Больше и «×» для функции Произведение, соответственно]. Пусть «…х…» — матрица «(x>o)ο(x×x≡x)», которая удовлетворяется только для числа Один, следовательно, только для o’]. Тогда имеет силу следующее:

18-6. «(x)(…x…)=o’» истинно (и, кроме того, L-истинно). (Упомянутое предложение L-истинно, потому что оно выполняется во всех описаниях состояний, различающихся только распределением качественных свойств. Истинность этого предложения может быть доказана с помощью одних только семантических правил; в число последних входят правила, определяющие основную структуру, и связанные с ними явные и рекурсивные определения. Отсюда мы получаем:

18-7. Экстенсионал «(x)(…x…)» тот же, что и экстенсионал «о’».

Отсюда в силу 18-5b, верно также следующее:

1 Эти и другие арифметические символы могут быть введены в систему, подобную S₃, обычным путем с помощью рекурсивных определений (см., например [Syntax], § 20).
§ 18. L-детерминированность индивидуальных выражений

18-8. Экстенсионал первоначальной дескрипции \((\varepsilon x)(Bx \circ Scx) \) тот же, что и экстенсинал \((\varepsilon x)(\ldots x\ldots) \).

Можем ли мы рассматривать это утверждение 18-8 как полный ответ на наш вопрос? Следует признать, что оно характеризует экстенсонал первоначальной дескрипции лишь косвенно; это является у него общим с 18-4b. Однако в другом отношении, фундаментальным по своей природе, 18-8 отличается от того первого ответа и сходно с теми формулировками, которые мы рассматриваем как полные ответы, то есть с 18-5a и b и с 18-2. Если мы получаем 18-8 в качестве ответа, то, чтобы вывести из него полный и прямой ответ 18-5a или b, нам не нужно делать наблюдений относительно качеств положений, как в случае ответа 18-4b; все, что мы должны сделать, это — выполнить определенную логико-арифметическую процедуру, а именно тута, которая ведет к результату 18-6. Таким образом, существует такое фундаментальное различие: 18-6 утверждает L-истинность, тогда как 18-3 утверждает F-истинность.

Следующие два результата вытекают из только что приведенных (18-9 из 18-6, 18-10 из 18-3), согласно определениям L- и F-эквивалентности (3-5b и c):

18-9. \((\varepsilon x)(\ldots x\ldots) \) и \(\varepsilon' \) L-эквивалентны.
18-10. \((\varepsilon x)(Bx \circ Scx) \) и \(\varepsilon' \) F-эквивалентны.

Благодаря L-эквивалентности, установленной в 18-9, мы говорим также, что 18-8 действительно дают экстенсонал, хотя и косвенным образом. Таким образом, становится ясно, что различие между ответом, дающим экстенсонал, и ответом, только описывающим его, состоит не только в различии между употреблением стандартного выражения и употреблением дескрипции. Если употребляется стандартное выражение, то экстенсонал, конечно, дается; но он может также даваться и дескрипцией, если только эта дескрипция L-эквивалентна стандартному выражению, что, согласно 18-9, имеет место для \((\varepsilon x)(\ldots x\ldots) \). Если, с другой стороны, дескрипция не является L-эквивалентной какому-нибудь стандартному выражению, тогда, употребляя ее, мы не даем, а только описываем соответствующий экстенсонал. Отметим, что каждое индивидуальное выражение есть выражение только одного положения и, следовательно, эквивалентно только одному стандартному выражению.
Глава II. L-детерминированность

Следовательно, если выражение F-эквивалентно какому-либо стандартному выражению, как, например, «(ix)(Bx•Sx)», согласно 18-10, то оно не может быть L-эквивалентно какому-нибудь стандартному выражению.

Полученные здесь результаты помогут нам в следующем разделе построить определение L-детерминированности индивидуальных выражений.

§ 19. ОПРЕДЕЛЕНИЕ L-ДЕТЕРМИНИРОВАННОСТИ ИНДИВИДУНЫХ ВЫРАЖЕНИЙ

Для простого координатного языка, подобного S_2 (§ 18), мы определяем как L-детерминированные те индивидуальные выражения, которые L-эквивалентны стандартным выражениям. Вкратце обсуждается проблема определения L-детерминированности для более сложных координатных языков, подобных языку физики S_p. Наконец показывается, как понятие L-детерминированности может применяться также и к именным языкам, если метаязык является координатным.

В предшествующем разделе мы анализировали индивидуальные выражения в системе S_3, которая была избрана как пример координатного языка простой структуры. Аналогичные соображения имеют силу и для других систем, в которых имеются индивидуальные выражения стандартной формы, удовлетворяющие обоим вышеприведенным условиям (1) и (2). Приводимое ниже определение L-детерминированности предполагает, что S — система, для которой определена стандартная форма, удовлетворяющая вышепомянутым условиям. Это определение подсказано результатами нашего обсуждения в предшествующем разделе.

19-1. Определение. Индивидуальное выражение в системе S L-детерминировано = д1 оно L-эквивалентно индивидуальному выражению стандартной формы в S. (Это, очевидно, включает и самые стандартные выражения.)

Что это определение удовлетворяет нашему вышеприведенному требованию, 17-4, видно из следующего: если данное индивидуальное выражение L-эквивалентно стандартному выражению, тогда семантических правил, на которых основывается эта L-эквивалентность (другими словами, L-истинность соответствующего \(\equiv\)-предложения), достаточно, чтобы дать его экстенсионал, а именно положение,
соответствующее стандартному выражению. С другой стороны, если данное индивидуальное выражение не является L-эквивалентным какому-то стандартному выражению, тогда оно, как мы видели, оказывается F-эквивалентным некоторому стандартному выражению. Следовательно, в этом случае семантических правил недостаточно, чтобы дать его экстенсиял; он может быть дан только некоторым утверждением фактического характера.

Следует заметить, что в общем случае не существует эффективной процедуры разрешения для того что определенного понятия L-детерминированности. В еще меньшей степени можно говорить о существовании общей эффективной процедуры для определения значения любого заданного L-детерминированного индивидуального выражения, то есть для его преобразования в L-эквивалентное стандартное выражение. Возвращаясь к примеру системы S₃ с арифметическими символами (см. пояснения, предшествующие 18-6), \((ix)(x ≡ o'' × o'')\) может быть преобразовано в \(o''''\) просто посредством вычисления, то есть посредством повторного применения рекурсивных определений. С другой стороны, преобразование \((ix)(..x..)\), то есть \((ix)[(x>o)⊙(x × x ≡ x)]\) в \(o'\) требует доказательства общей арифметической теоремы, устанавливающей, что ни одно число, кроме 1, не имеет свойства, выражаемого данной матрицей; ясно, что не может быть фиксированной эффективной процедуры для нахождения доказательств этого рода. В случаях, подобных двум только что данным примерам в S₃, L-детерминированность легко устанавливается благодаря тому, что обе дескрипции не содержат никаких нелогических постоянных. Если, однако, нелогические постоянные входят, тогда у нас, вообще говоря, нет эффективной процедуры для решения вопроса о L-детерминированности.

Основной порядок положений в координатном языке S может быть совершенно другим по сравнению с прямым порядком в S₃; но процедура, ведущая к определению L-детерминированности, по существу будет все-таки той же самой. Сначала мы выбираем среди индивидуальных выражений системы те, которые мы хотим рассматривать как выражения стандартной формы. В основном этот выбор есть вопрос согласования, если только выполнено, по крайней мере, первое из сформулированных выше требований. На
Глава II. L-детерминированность

выбор будет обычно влиять простота форм и возможность распознавания позиционных отношений. Если исходные постоянные языковой системы делятся на логические и дескриптивные (то есть нелогические) постоянные (см. § 21), тогда в качестве стандартной формы будут браться только те выражения, в которых все постоянные являются логическими.

В качестве примера системы с другим основным порядком рассмотрим вкратце координатный язык физики S_p, опуская технические детали. Здесь индивидами являются пространственно-временные точки в координатной системе, выбранной по соглашению. Сначала должна быть выбрана стандартная форма для выражений действительных чисел в S_p. Здесь это является гораздо более сложной задачей, чем в случае натуральных чисел (как в S_a). Стандартные выражения должны позволить нам находить с любой желаемой степенью точности координаты положений и расстояние между двумя положениями. Это означает, что для представления действительных чисел систематическими (например, десятичными или двоичными) дробями мы должны располагать эффективной процедурой для вычисления любого требуемого числа цифр. Поскольку пространственно-временная точка определяется тремя пространственными и одной временными координатами, постольку индивидное выражение в S_p будет состоять из четырех стандартных выражений действительных чисел.

1 Это требование может быть сформулировано в точных терминах следующим образом. Для каждого действительного числа существует единственный способ его представления в десятичной системе, если мы исключим те десятичные дроби, которые, начиная с определенного места, содержат только цифру "9". Целая часть есть натуральное число; дробная часть соответствует функции $f(n)$, значение которой дает n-ю цифру после запятой. (Например, для $\pi=3.1415\ldots$, $f(1)=1, f(2)=4, f(3)=1, f(4)=5$ и т. д.). Если, далее, выражение действительного числа состоит из выражения его целой части (скажем, в обычном десятичном обозначении) и выражения для функции f, соответствующей его дробной части, то это выражение действительного числа является вычислимым, если выражение для f вычислимо в смысле А. М. Тюринга [On computable Numbers, Proc. London Math. Soc., Vol. XI.11 (1937)]. Тюринг показал, что это понятие вычислимости функции совпадает с лямбда-определимостью Чёрча и с понятием общей рекурсивности, введенным Эрбраном и Гёдelem и разработанным Клини (см. Turing, Computability and λ-Definability, Journal of Symbolic Logic, Vol. II, 1937).
§ 19. L-детерминированность индивидных выражений

Континуальный координатный язык, подобный $S\gamma$, в некоторых отношениях фундаментальным образом отличается от дискретного координатного языка, подобного $S\beta$. Первое серьезное отличие состоит в том, что ни один язык (с выражениями конечной длины) не может содержать выражений для всех действительных чисел 1. Следовательно, $S\rho$ не может содержать индивидных выражений для всех индивидов, то есть пространственно-временных точек, — не говоря уже об индивидных выражениях стандарной формы. Таким образом, здесь второе из двух условий для стандартных выражений не может быть выполнено; требуется лишь выполнение первого. Другое различие состоит в следующем: не существует общего эффективного метода, который позволил бы нам решить для любых двух стандартных индивидных выражений, являются ли они эквивалентными, то есть относятся ли они к одному и тому же положению — другими словами, является ли их (четырехмерное) расстояние равным 0. Однако, если два стандартных выражения даны, то мы можем определить их расстояние в виде вычислимой функции. Следовательно, для любого положительного рационального числа δ, как бы мало оно ни было, мы можем установить или что расстояние $\geqslant \delta$ и, следовательно, положения различны, или что расстояние $\leqslant \delta$, то есть что эти положения или тождественны или отстоят одно от другого, во всяком случае, не далее чем на δ.

Мы не можем здесь дальше вникать в технические детали проблемы L-детерминированности индивидных выражений в $S\rho$. Проблемы, подлежащие исследованию, следующие. Ясно, что не все индивидные выражения в $S\rho$ могут быть эквивалентными стандартным выражениям. Должен быть исследован вопрос о том, может ли стандартная форма быть выбрана так, чтобы по крайней мере все индивидные выражения, не содержащие нелогических постоянных, были эквивалентны (и, следовательно, L-эквивалентны) стандартным выражениям. Если так, то L-детерминированность может быть определена для $S\rho$, как в 19-1. В ином случае, быть может, попадется более сложное определение; но во всяком случае оно будет таким, что L-эквиан

1 См. [Syntax], § 60d.
лентность стандартному выражению будет достаточным, хотя, возможно, и не необходимым условием для L-детерминированности.

Пока мы применяли понятие L-детерминированных индивидных выражений только к координатным языкам. Теперь рассмотрим именные языки, подобные, например, S_1. В языке такого рода мы не имеем таких индивидных выражений, позиционные отношения которых видны не-посредственно из их формы. Мы можем иметь индивидуальные выражения в форме дескрипций, использующих качественные свойства; более того, здесь могут быть индивидуальные постоянные, которые являются или исходными, или, возможно, введенными с помощью определений, служащих для сокращения дескрипций. Однако даже исходная индивидная постоянная в именном языке S может, при известных условиях, быть L-детерминированной, если метаязык M является координатным. Для каждой исходной индивидной постоянной в S имеется правило обозначения в M, которое говорит нам, какой индивид обозначается выражением. Это правило ссылается на индивид посредством индивидного выражения в M. Если теперь M есть координатный язык, а индивидное выражение, употребленное в правиле, является L-детерминированным в M в раннее разъясненном для координатных языков смысле, тогда мы подобным же образом можем рассматривать и индивидную постоянную в S как L-детерминированную. Это расширенное употребление термина «L-детерминированный» кажется естественным, поскольку оно удовлетворяет нашему прежнему требованию 17-4. Семантические правила дают экстенционал постоянной, то есть координаты того положения, к которому эта постоянная относится.

Это можно иллюстрировать следующим примером. Допустим, что выражения «о», «о'», «о''» и т. д. встречаются не в языке-объекте S, с индивидными постоянными «а», «б» и т. д., а в M, и что они относятся, как объяснено выше для S, к положениям в дискретном линейном порядке. Допустим, далее, что среди семантических правил S находятся следующие два правила, сформулированные в M; они являются правилами обозначения для исходных постоянных «а» и «б»:
19-2. a. «а» обозначает положение о''.
b. «б» обозначает или то положение, которое является и синим и холодным, или положение о, если ни одно положение не является или несколько положений являются синим и холодным.

В этом случае мы построили бы определение L-детерминированности так, что «а» называлось бы L-детерминированным, а «б» — нет. (Мы опускаем здесь самую конструкцию определения.) Эти результаты будут тогда в согласии с требованием 17-4. Из правила 19-2а мы видим, что экстенсиналом «а» является третье положение. С другой стороны, семантические правила не дают экстенсинала «б», а просто описывают его (в правиле 19-2б); он может быть дан только посредством добавления к правилам некоторого фактического утверждения. Таким образом, первая часть фактического утверждения 18-1 вместе с правилом 19-2b говорит нам, что экстенсиналом «б» является второе положение (о'').

§ 20. L-ДЕТЕРМИНИРОВАННОСТЬ ПРЕДИКАТОРОВ

О предикаторе (в координатном языке, подобном S_1) говорится, что он L-детерминирован, если каждое производное от него предложение с индивидуальными выражениями стандартной формы является L-детерминированным. Это имеет силу, если интенсонал предикатора является позиционным или математическим, а не качественным свойством. Вкратце указывается аналогичное определение для функторов.

Понятие экстенсонала предикатора, особенно если мы рассматриваем предикаторы степени 1, кажется полностью ясным и непроблематичным. Например, экстенсиналом предикатора «H» в системе S_1 является класс Человек, потому что его интенсонал является свойство Человек. Мы начали изложение метода экстенсонала и интенсонала с обычного и, по-видимому, ясного и простого различения между классами и свойствами (§ 4). Мы взяли это различение в качестве образца и провели различения между экстенсоналом и интенсоналом предложений и индивидуальных выражений по аналогии с ним (§ 6 и 9). Более близкое изучение, однако, показывает, что даже с понятием экстенсонала предикатора связано очень серьезное затруднение. В наших прежних рассуждениях мы могли оставить это затруднение в стороне, но для нашей настоящей цели
мы должны обратиться к нему и попытаться его преодолеть. Для того чтобы найти адекватное определение для L-детерминированности предикаторов, мы должны выяснить те средства, с помощью которых может быть дан класс. Сейчас мы увидим, что эта проблема не может быть разрешена без предварительного разрешения проблемы способа, которым может быть дан экстенсионал индивидного выражения. Это и было основанием для обсуждения сначала, в двух предшествующих разделах, индивидных выражений.

Допустим, что мы обращаемся к кому-нибудь за информацией об экстенсионале членства клуба C; это значит, что мы хотим узнать, кто является и кто не является членом C. Ответ: «этим экстенсионалом является класс членов C», — хотя и правилен, однако вполне тривиален и, следовательно, не удовлетворил бы нас. Не удовлетворил бы нас и такой ответ, как «класс тех мальчиков города, которые имеют возраст между пятнадцатью или шестнадцатью годами и имеют рыжие волосы». Хотя этот ответ и не тривиален, он все же не дает экстенсионала, а просто описывает его с помощью другого сложного свойства, имеющего тот же экстенсионал. То, что нам нужно — это не косвенная характеристика членов клуба посредством интенционала, а список членов. Всякий ли список членов удовлетворит нас? Легко видеть, что некоторые списки нас не удовлетворяют. Таким образом, встает вопрос: какой список членов действительно дает экстенсионал? Допустим, что нам задано некоторое предложение, перечисляющее всех членов клуба, но в формулировках, подобных следующим: «Старший сын м-ра Джонса», «приятель Мэри» и т. д. Мы опять-таки отвергли бы этот перечень, хотя он и перечисляет всех членов, так как он делает это с помощью дескрипций. Таким образом, мы видим, что некоторый класс действительно дается перечнем, а не просто описывается, если этот перечень (1) ссылается на каждого из членов класса и (2) делает это посредством индивидуальных выражений, в свою очередь, не только описывающих, но и дающих индивиды,— другими словами, посредством употребления L-детерминированных индивидуальных выражений. Это доказывает, что понятие L-детерминированности предикаторов предполагает понятие L-детерминированности индивидуальных выражений.
§ 20. L-детерминированность предикаторов

Для последующих рассуждений мы предполагаем, что S есть координатный язык простой структуры, сходный с S_3, как объяснено в начале § 19; что для S определена стандартная форма индивидуальных выражений и что L-детерминированность индивидуальных выражений в S определена посредством нашего прежнего определения (19-1).

Условие. сформулированное выше для предложений, дающих класс, достаточно, но не необходимо. Предложение не обязано давать перечисление всех членов класса; если бы это было необходимо, тогда могли бы быть даны только конечные классы. Достаточно, а также и необходимо, чтобы это предложение логически имплицировало истинность каждого истиинного сингулярного (единичного) предложения в S, говорящего о некотором индивиде, что он является или что он не является членом класса, причем входящие в него индивидуальные выражения L-детерминированы.

Было бы даже достаточно потребовать этого только для всех индивидуальных выражений стандартной формы в S; легко видеть, что тогда это имеет силу также и для всех L-детерминированных индивидуальных выражений, потому что они, согласно определению 19-1, являются L-эквивалентными стандартным выражениям.

Чтобы привести примеры, вернемся к координатному языку с «о», «о'», «о''» и т. д. в качестве стандартных выражений. Предположим, что утверждение «положения о и о''» и только они являются синими» истинно. Тогда оно дает экстенсиональ предикатора «B», потому что из этого утверждения вместе с семантическими правилами мы можем вывести, что $B(o)$ и $B(o''')$ истинны, тогда как все другие предложения, производные от «B», со стандартным выражением на месте аргумента ложны. Введем в S_3 обычное обозначение «{..., ..., ...}» для конечного класса, указанного перечислением его членов; определение может быть следующим образом записано с помощью лямбда-опператора:

20-1. Сокращение. «{$x_1, x_2, \ldots x_n$}» есть сокращение для

$\langle(\lambda y)[(y \equiv x_1) \lor (y \equiv x_2) \lor \ldots \lor (y \equiv x_n)]\rangle$.

Тогда экстенсиональ «B» в вышеупомянутом примере может быть дан также посредством следующего утверждения: «экстенсиональ «B» тот же, что и экстенсиональ «{o, o'''}»».
Эти соображения подсказывают следующее определение для L-детерминированности предикаторов в системе S (вида, указанного выше). Оно предполагает определение L-детерминированности для предложений (2-2d).

20-2. Определение. Предикатор в S L-детерминирован, если каждое производное от него предложение с индивидуальными выражениями стандартной формы на местах аргументов L-детерминировано.

Легко видеть, что это определение выполняет наше прежнее требование 17-4; получившее определение понятие приложимо к предикатору, если и только если одних семантических правил, без какого-либо знания фактического характера, достаточно, чтобы дать экстенсионал предикатора в разъясненном выше смысле, потому что предложение является L-детерминированным, если и только если семантических правил достаточно для определения его логической валентности (соглашение 2-1).

Мы видим, что любой предикатор в S_3 формы $(\lambda x)(\ldots x\ldots)$, где ...$x$... — любая молекулярная комбинация (или матриц с x) и стандартными выражениями L-детерминирован. Следовательно, $\{\emptyset, o'''\}$ L-детерминирован и точно так же — любой другой предикатор формы $\{\ldots\}$, где все входящие индивидуальные выражения имеют стандартную форму. Определим обычным образом знаки `λ` и `γ` соответственно пустого и универсального класса или, точнее, L-пустого свойства и L-универсального свойства соответственно:

20-3. Сокращения.

а. `λ` есть сокращение для $(\lambda x)[\neg(x\equiv x)]$.

б. `γ` есть сокращение для $(\lambda x)[x\equiv x]$.

Мы непосредственно видим, что два определенных здесь предикатора L-детерминированы, потому что все предложения, производные от `λ`, L-ложны, а все производные от `γ` L-истинны. Но имеются и другие, более сложные предикаторы, которые также являются L-детерминированными, и среди них — все ламбда-выражения с любыми чисто арифметическими определяющими условиями. В качестве примера возьмем предикатор $(\lambda x)[\text{Простое}(x)]$, где «Простое» определяется так, что оно выполняется для всех простых чисел (это значит, для всех
положений с простой координатой)\(^1\). Этот пример показывает, что даже такой предикатор, экстенсональ которого бесконечен и, следовательно, не может быть дан перечислением, может быть L-детерминированным. Это бывает, если интенсональ имеет скорее математическую, чем эмпирическую природу; другими словами, если интенсональ является скорее позиционным, чем качественным свойством. То, что, например, положение \(o''\), соответствующее числу Три, принадлежит к экстенсоналу «Простое», обнаруживается с помощью чисто логико-математической процедуры, то есть процедуры, основанной на семантических правилах и не предполагающей качественных свойств этого или любого другого положения. С другой стороны, для установления того, что положение \(o''\) принадлежит к экстенсоналу «В», нам нужны не только семантические правила, но в дополнение к ним и наблюдение, доставляющее тот результат, что это положение Синее.

Здесь опять для понятия L-детерминированного предикатора нет эффективного метода разрешения, поскольку нет его и для понятия L-детерминированных предложений, на котором оно основывается. Например, пусть \(x\) называется экспонентом Ферма (Fermat), если \(x > 2\) и если имеются положительные целые числа и \(u, v, w\), такие, что \(u^x + v^x = w^x\). Предикатор для этого свойства, скажем «Fer», легко может быть определен в \(S_3\). «Fer» есть L-детерминированный предикатор, потому что каждое производное от него предложение со стандартным индивидуальным выражением на месте аргумента — L-детерминированное предложение. В отношении большинства из этих предложений в настоящее время неизвестно, являются ли они истинными или ложными, и не существует никакого метода решения для установления их логической валентности. Тем не менее они являются L-детерминированными, потому что их логические валентности не зависят от цвета или каких-либо других качественных свойств соответствующих положений. О числе Три и о некоторых других известно, что они не являются экспонентами Ферма. Это было показано

\(^1\) Арифметические понятия этого рода могут быть определены в языке, подобном \(S_3\), с помощью рекурсивных определений (см. например, [Syntax], § 20).
посредством математического доказательства; таким образом, этот результат не зависит от качественных свойств положений. Следовательно, предложение «~Fer(о’’’)» выполняется в каждом описании состояния и, следовательно, является L-истинным в S₃.

Заметим, кстати, что для функций и сложных функциональных выражений можно дать определение L-детерминированности, совершенно аналогичное определению для предикаторов (20-2). Здесь точно так же требовалось бы, чтобы каждое производное предложение, в котором аргументные выражения и выражение значения имеют стандартную форму, было L-детерминированным. Таким образом, все знаки или выражения для арифметических функций являются L-детерминированными. Например, функция «+» в S₃ является L-детерминированным, потому что каждое производное предложение со стандартными выражениями на местах аргументов является L-детерминированным; пример, «о’’ + о’’’ = о’’’» L-истинно. С другой стороны, функция для физической величины, например, температуры (скажем, в языке физики, Sₚ) не является L-детерминированным, потому что предложение, говорящее, что температура в определенной пространственно-временной точке имеет определенное значение, не является L-детерминированным.

§ 21. ЛОГИЧЕСКИЕ И ДЕСКРИПТИВНЫЕ ЗНАКИ

В этом разделе мы используем обычное различение между логическими и дескриптивными (нелогическими) знаками. Для системы S₃ (при ограничении исходными знаками) классификация проста: исходные предикаты являются дескриптивными, все остальные знаки — логические. Если десягнатор в S₃ содержит только логические знаки, тогда он является L-детерминированным. Десягнатор в S₃ является L-детерминированным, если и только если он L-эквивалентен десягнатору, содержащему одни только логические знаки. Это можно было бы взять в качестве альтернативного способа определения L-детерминированности.

В этом разделе мы проводим обычное различие между логическими и дескриптивными, то есть нелогическими знаками. С помощью этого различения мы проведем затем соответствующее различие для выражений, особенно важ-

1 Более детальные пояснения см. [1], § 13.
§ 21. Логические и дескриптивные знаки

ноге для десигнаторов. Затем мы исследуем отношение между этим различением и различением между L-детерминированными и L-недетерминированными десигнаторами. Понятия логических и дескриптивных знаков будут редко употребляться в дальнейшем изложении.

Мы определим упомянутые понятия для двух примеров систем — для координатного языка и для именного языка. В качестве координатного языка мы берем систему S_3 предыдущего раздела; она содержит $\langle \circ \rangle$, $\langle \circ' \rangle$ и т. д. как индивидуальные выражения стандартной формы. В качестве именного языка мы берем систему S_1, которая подобна нашей системе S_1, за исключением следующего пункта: мы предполагаем, что индивидуальные постоянные в ней, сказем $\langle a^* \rangle$, $\langle a \rangle$, $\langle b \rangle$ и т. д., интерпретируются с помощью семантических правил системы S_1, как относящиеся не к вещам, как в S_1 (см. правило 1-1), а к положениям в некотоей упорядоченной области (как, например, указано в правиле 19-2а). Следовательно, эти постоянные, как объяснено выше (в конце § 19), L-детерминированы. При этом предполагается, что обе системы содержат только исходные знаки, а не знаки, введенные определениями. Предполагается, что предикаты в обоих системах должны интерпретироваться с помощью семантических правил как обозначающие качественные свойства, или отношения, вроде Синий, Холодный, Холоднее и т. п. (как объяснено для S_3, в § 18).

Различие между логическими и дескриптивными знаками систем S_3 и S_1 проводится посредством перечисления отдельных знаков и видов знаков следующим образом.

21-1. Следующие знаки рассматриваются как логические:
а. Индивидуальные переменные.
б. Коннекторы; знаки операторов $\langle \exists \rangle$, $\langle \forall \rangle$, $\langle \neg \rangle$; скобки.
в. В S_1 индивидуальные постоянные; в S_3 $\langle \circ \rangle$ и $\langle \circ' \rangle$.

21-2. Предикаты рассматриваются как дескриптивные знаки. Соответствующее различие для выражений определяется теперь в 21-3; быть дескриптивным — рассматривается, так сказать, как доминантное свойство, быть логическим — как рецессивное свойство.

21-3. Определения.
а. Выражение является логическим, если оно содержит только логические знаки.
b. Выражение является дескриптивным = D1; оно содержит по крайней мере один дескриптивный знак.

Таким образом, стандартные выражения "о", "о'" и т. д. в S₃ рассматриваются как логические. Это представляется оправданным, потому что они здесь относятся не к вещам, а к положениям в некотором основном, заранее предполагаемом порядке. Мы можем даже интерпретировать их как относящиеся к чистым числам. В словесном переводе выражения "В(о'')" выражение "о'" соответствует при этой интерпретации закуривленной части в "положение, соответствующее числу Три", является синим", тогда как предикат "В" соответствует всей остальной части этого предложения ¹. Эта интерпретация столь же адекватна, как и обычная интерпретация посредством "положение, соответствующее числу Три", является синим". Мы даже сказали бы, что это только две разные формулировки одной и той же интерпретации, поскольку перевод всего предложения в обоих случаях один и тот же и, следовательно, условие истинности предложения остается точно тем же самым.

В добавление к индивидуальным выражениям стандартной формы в S₃ (например, "о'"') и в S₁ (здесь мы берем индивидуальные основные как стандартную форму) обе системы содержат индивидуальные дескрипции.

Следующие результаты относятся к S₃. Они имеют силу точно так же и для S₁ в предположении, что основной порядок ее универсума индивидов или тот же самый, что и в S₃ или имеет сходную простую структуру, и что правила обозначения в M для индивидных постоянных в S₁ используют только индивидуальные выражения стандартной формы; эта стандартная форма в M может, например, быть той же, что и в S₃.

21-4. Каждое предложение в S₃, содержащее только логические знаки, или L-истинно, или L-ложно; и существует эффективный метод разрешения вопроса, что же именно (истинность или ложность) имеет место в каждом отдельном случае.

¹ Эта интерпретация имеет, кроме того, то преимущество, что предложение, говорящее, что университет индивидов бесконечен, является (в таком случае. — Ред.) не фактическим, а L-истинным. Таким образом, затруднение, обычно связанные с так называемой Аксиомой Бесконечности, здесь устраняется (см. [Syntax], p. 141).
21-5. Каждая (замкнутая) дескрипция в S_3 L-детерминирована; и существует эффективная процедура для преобразования ее в индивидуальное выражение стандартной формы.

21-6. Каждое замкнутое лямбда-выражение в S_3 L-детерминировано; и существует метод разрешения для любого предложения производного от лямбда-выражения с любым индивидуальным выражением стандартной формы на месте аргумента.

Доказательства этих теорем и упомянутые методы разрешения не могут быть даны здесь, но они достаточно просто. Они основываются на следующем: (1) поскольку входящий предикат нет, последними компонентами являются \exists-матрицы; (2) \equiv-предложение с двумя стандартными выражениями L-истинно, если эти два стандартных выражения одинаковы, иначе оно L-ложно.

Эти три результата могут быть соединены в один следующим образом:

21-7. Всякий десигнатор в S_3, содержащий только логические знаки, является L-детерминированным.

Имеются, однако, также L-детерминированные десигнаторы, содержащие дескриптивные знаки. Например, «$P(\forall x) \sqrt{\neg P(0)}$» L-истинно; «$(\forall x)(P x \sqrt{\neg P x})$» L-универсально и, следовательно, L-эквивалентно \exists» (20-30б); а «$(\forall x) (P x \sqrt{\neg P x})$» L-эквивалентно \forall; таким образом, все эти три десигнатора являются L-детерминированными.

Из 21-7 следует, что любой десигнатор, L-эквивалентный другому, содержащему только логические знаки, точно так же является L-детерминированным. Теперь можно показать, что и предложение, обратное к этому, также имеет силу. (I) Если какое-либо предложение L-детерминировано, то оно или L-истинно или L-ложно; следовательно, оно L-эквивалентно или \exists, или отрицанию этого предложения. (II) Если какая-либо дескрипция L-детерминирована, то она L-эквивалентна стандартному выражению, согласно определению 19-1. (III) Можно показать, что если какое-либо замкнутое лямбда-выражение в S_3 L-детерминировано, то или его экстенсональный, или дополнение

1 Дальнейшие подробности см. в [Modalities], § 11 и 12, особенно T12 2.
его экстенсинала является конечным, следовательно, это
ламбда-выражение L-эквивалентно ламбда-выражению фор-
мы $((x)(x))$, в котором область действия (x) строится с
помощью коннекторов из \equiv-матрицы с x и стандартных
выражений. Таким образом, имеет силу следующее:
21-8. Десигнатор в S_3 является L-детерминированным,
если и только если он L-эквивалентен десигнатору, содержа-
щему только логические знаки.
Для S_3 и сходных систем L-детерминированность для
десигнаторов вообще могла бы быть определена с помощью
dостаточного и необходимого условия, сформулированного
в 21-8. Этот альтернативный метод предполагает только
понятия логических знаков (21-1) и L-эквивалентности
dесигнаторов (3-5b), следовательно, L-истинности предло-
жений (2-2); это заменило бы три выше данных отдельных
определения L-детерминированности для предложений, ин-
dивидных выражений и предикаторов (2-3d, 19-1, 20-2).
Теперь мы можем легко видеть, что если два десигнатора
в S_3, содержащие только логические знаки, L-эквивалентны,
то они и L-эквивалентны. Поскольку они L-эквивалентны,
постольку \equiv-предложение, содержащее их в качестве
компонент, истинно (3-5a) и, следовательно, L-истинно
согласно 21-4; следовательно, они и L-эквивалентны (3-5b).
Из этого результата с помощью 21-8 и транзитивности L-
эквивалентности и L-эквивалентности может быть получена
следующая более обшая теорема:
21-9. Если два L-детерминированных десигнатора в S_3
эквиваленты, то они и L-эквивалентны.

§ 22. L-
ДЕТЕРМИНИРОВАННЫЕ ИНТЕНСИОНАЛЫ
Если некоторый десигнатор L-детерминирован, то все десигнаторы,L-эквивалентные ему, также L-детерминированы. Об общем интенси-
oнале этих десигнаторов мы будем говорить, что он L-детерминирован-
ный интенсионал. Для любого экстенсонала существует вообще много
соответствующих интенсоналов, но среди них — только один L-де-
tерминированный интенсионал.

Результаты, которые будут здесь установлены, могут
быть точно доказаны для системы S_3. Но неформально
можно показать, что они имеют силу также и для любой
§ 22. L-детерминированные интенсионалы

системы S, если только понятия L-истинности и L-детерминированности определяются для S таким образом, что наши требования для этих двух понятий (2-1 и 17-4 соответственно) выполняются. В последующем обсуждении предполагается, что эти требования выполняются.

22-1. Если два L-детерминированные десигнатора в S эквивалентны, то они и L-эквивалентны.

В применении к S_3 это совпадает с теоремой 21-9, доказанной с помощью различения между логическими и дескриптивными знаками. В справедливости общей теоремы для системы S можно убедиться следующим образом, не предполагая такого различения. Поскольку два десигнатора эквивалентны, поскольку они имеют один и тот же экстенсионал (5-1). Поскольку они L-детерминированы, семантических правил достаточно для установления того, что оба имеют один и тот же экстенсионал (17-4), что, следовательно, они эквиваленты (5-1) и что, следовательно, для них \equiv-предложение истинно (3-5a); следовательно, это \equiv-предложение L-истинно (2-1); следовательно, эти два десигнатора L-эквивалентны (3-5b).

22-2. Если какой-либо десигнатор в S L-эквивалентен L-детерминированному десигнатору, то он сам является L-детерминированным.

Для S_3 это следует из 21-8 в силу транзитивности L-эквивалентности. Тот, что это имеет силу вообще для S, видно из следующего: если условие 22-2 выполнено, то семантических правил достаточно для установления экстенсионала второго десигнатора и то касается экстенсионалов для этих двух десигнаторов, и, в силу этого, экстенсионала первого десигнатора.

Допустим, что задан L-детерминированный десигнатор в S. Он обладает некоторым интенсионалом: Любой другой десигнатор, имеющий этот же интенсионал, L-эквивалент ей первому и, следовательно, согласно 22-2, так же L-детерминирован. Назовем интенсионал этого рода L-детерминированным интенсионалом. Таким образом, го орм приближенно, L-детерминированный интенсионал таков, что он сообщае нам свой экстенсионал. Для каждого экстенсионала существует в общем много собственных уточняющих интенсионалов; но среди них есть только один L-детерминированный интенсионал, могущий в некоем смысле...
ле рассматриваться как представитель этого экстенсионала (конечно, не в том смысле, в каком о десигнаторе можно сказать, что он представляет экстенсионал или относится к нему). Это одно-однозначное соотношение между экстенционалами и L-детерминированными интенционалами станет яснее после нескольких примеров.

Для предложения имеется только два экстенсионала, две логические валентности: Истина и Ложь. Имеется много L-детерминированных предложений, экстенционалом которых является Истина, именно, все L-истинные предложения, например: «Рa ∨ ¬Рa» (в S1). Поскольку они L-эквивалентны друг другу, они имеют один и тот же интенционально, именно L-истинное или необходимое суждение. Таким образом, это суждение является одним L-детерминированным интенционалом, соответствующим экстенционалу Истина. По аналогии с этим L-ложное или невозможное суждение есть L-детерминированный интенционал, соответствующий экстенционалу Ложь. Для предикаторов имеется бесконечно много экстенционалов, именно классов индивидов. Если, как в S1 и S2, число индивидов является счетно-бесконечным, то число классов индивидов является несчетным; поскольку число (конечных) выражений в любом языке системы S является, самое большое, счетным, постольку не все классы индивидов могут быть экстенционалами предикаторов в S. Для экстенционала, к которому относится предикатор в S, не всегда имеется соответствующий L-детерминированный интенционал, выраженный предикатором в S, потому что не всякий предикатор имеет эквивалентный L-детерминированный предикатор. Выражается ли некоторый L-детерминированный интенционал предикатором в S или нет, зависит от средств выражения в S. L-детерминированным интенционалом, соответствующим пустому классу индивидов, является L-пустое свойство; в S1 и S3 этот интенционал выражается, например, посредством «(∀x)¬(x = x)». L-детерминированным интенционалом, соответствующим универсальному классу, является L-универсальное свойство, выражаемое посредством «(∀x)(x = x)». L-детерминированный интенционал, соответствующий классу, единственными членами которого являются положения 0, 0″ и 0‴, есть свойство быть одним из этих трех положений, выражаемое в S3 посредством
«\((\lambda x)[(x \equiv o) \lor (x \equiv o^\prime) \lor (x \equiv o^\prime\prime)]\)». Допустим, с другой стороны, что упомянутые выше исходные знаки системы S₃ суть единственные знаки в S₃' и что S₃' конструируется из S₃ посредством добавления некоторых рекурсивно определяемых функций и предикаторов, среди них предикатора «Простой» для свойства Простое Число. Допустим далее, что все положения простых чисел и только они одни являются синими. Тогда экстенционалом «В» является класс положений простых чисел, а соответствующим L-детерминированным интенционалом является свойство быть положением простого числа. Этот интенционал выражается в S₃' L-детерминированным предикатором «Простой»; но в S₃ он не выражается никаким предикатором.

Экстенционалами индивидных выражений служат индивиды, являющиеся в S₃ положениями. Например, экстенционалом дескрипции «\((i)(Bx \circ Cx)\)» в нашем прежнем примере является второе положение (то есть положение, следующее за начальным положением, 18-5а). Следовательно, соответствующим L-детерминированным интенционалом является индивидный концепт Второе Положение, который в S₃ выражается L-детерминированным индивидным выражением «\(\circ\)». Вообще говоря, для каждого индивида в S₃ имеется один L-детерминированный интенционал, именно индивидный концепт этого положения; этот интенционал в S₃ выражается по крайней мере одним L-детерминированным индивидным выражением, например стандартным выражением («\(\circ\)», «\(\circ\)' и т. д.).

§ 23. СВЕДЕНИЕ ЭКСТЕНЦИОНАЛОВ К ИНТЕНЦИОНАЛАМ

Одно-однозначное соответствие между экстенционалами и L-детерминированными интенционалами подсказывает отождествление экстенционалов с соответствующими L-детерминированными интенционалами. Согласно этому методу, обсуждаемому в данном разделе, но не употребляемому в остальном изложении в этой книге, класс строится как позиционное свойство. Это ведет к явным определениям классов и отличие от контекстуальных определений, употребляемых Уайтхедом и Расселом (определений употребления. — Ред.).

Введенный в первой главе метод экстенционала и интенционала приписывает экстенционал и интенционал каждому десигнатуру. Таким образом, наш семантический
анализ десигнаторов допускает, по-видимому, два вида объектов — экстensionы и интенционалы. Выше было упомянуто, что такого допущения не делается, что фактически мы лишь употребляем два способа выражения, которые, в конце концов, могут быть сведены к одному. Для такого сведения имеется несколько возможностей; они могут быть в основном разделены на три вида: (I) экстensionы сводятся к интенционалам; (II) интенционалы сводятся к экстensionам; (III) и экстensionы и интенционалы сводятся к объектам, являющимся, так сказать, нейтральными. Дальше мы разъясним несколько методов первого вида. Главное требование, которому такой метод должен удовлетворять, состоит в том, что различных, но эквивалентных интенционал должны определять один и тот же экстension. Методы этого рода, которые будут разъяснены позже (§ 33, методы (2) и (3)), дают не явное, а только контекстуальное определение [определение употребления.— Ред.]. Это значит, что сочетания слов, вроде «класс Синий», сами не переводятся в сочетания слов, обозначающие свойства; вместо этого дается правило для преобразования любого предложения, содержащего слова «класс Синий», в предложение, относящееся только к свойствам.

Введение понятия L-детерминированного интенционала (в предыдущем разделе) делает возможным определение экстensionов в терминах интенционалов. Этот метод требует, чтобы в рассматриваемом универсуме индивидов основной порядок был представлен так, чтобы можно было применить понятие L-детерминированности. При этом не требуется, чтобы язык-объект был координатным; основной порядок не обязательно должен быть представлен индивидуальными выражениями объективного языка; достаточно, чтобы его можно было выразить в метафизике. Для последующих определений мы предполагаем, как делали это и в предшествующем разделе, что понятия L-истинности и L-детерминированности определяются для системы S так, что наши требования к этим двум понятиям (2-1 и 17-4) выполняются.

Приемущества применяемого здесь метода заключается в том, что он предоставляет явные определения. Он основан на следующих трех, ранее полученных, результатах:
(I) каждому интенсоналу соответствует только один L-детерминированный интенсонал; (II) L-детерминированные интенсоналы, соответствующие любым двум эквивалентным интенсоналам, имеющим, следовательно, один и тот же экстенсонал, тождественны; (III) следовательно, между экстенсоналами и L-детерминированными интенсоналами имеется одно-однозначное соответствие.

Предлагаемый метод заключается просто в отождествлении экстенсоналов с соответствующими L-детерминированными интенсоналами.

23-1. Определение. Экстенсонал десигнатора в S\(\equiv_{DL}\) L-детерминированный интенсонал, эквивалентный интенсоналу десигнатора.

Употребленное в этом определении понятие эквивалентности интенсоналов было введено (определение 5-3) с помощью понятия эквивалентности десигнаторов; последнее же понятие было определено (3-5a) посредством истинности \(\equiv\)-предложений и, следовательно, заранее не предполагает понятия экстенсонала.

Наше основное требование для экстенсоналов состояло в том, чтобы они были тождественны для эквивалентных десигнаторов (5-1). Это требование выполняется настоящим определением 23-1 (см. (II) выше).

Хотя мы обычно говорили об интенсоналах только как интенсоналах десигнаторов, все же упоминалось об интенсоналах, независимо от того, выражаются или не выражаются они десигнаторами в рассматриваемой системе. Поэтому, может быть, полезно иметь также следующее определение для экстенсонала интенсонала (или соответствующего интенсоналу, или устанавливаемого им); в нем о десигнаторах не упоминается.

23-2. Определение. Экстенсонал какого-либо данного интенсонала\(\equiv_{DL}\) L-детерминированный интенсонал, эквивалентный данному интенсоналу.

Применяя эти определения к примерам в системе \(S_3\), данным в предыдущем разделе. Начнем с предикаторов, потому что здесь понятие экстенсонала, то есть класса, более знакомо, чем в других случаях. Классы теперь отождествляются с L-детерминированными свойствами, то есть с позиционными свойствами. Положим, например, что синими являются положения \(o, o'', o'''\) и только они.
На основе этого допущения экстенсоналом предикатора "B" в S_3, согласно определению 23-1, является интенсонал выражения $\forall (x) (x = o) \lor (x = o') \lor (x = o'')$, то есть свойство положения быть или o, или o', или o''. И точно так же, согласно определению 23-2, мы говорим, что экстенсоналом свойства Синее является только что упомянутое позиционное свойство. Следует, однако, заметить, что эти два результата являются фактическими утверждениями, основанными на упомянутом фактическом предположении. Наши определения никоим образом не говорят, что сочетания слов "экстенсонал "B"" и "экстенсонал свойства Синее", к которым мы можем добавить еще и третье, синонимичное, "класс Синий", значат то же самое, что и "свойство быть или o, или o', или $o''". Последнее сочетание слов только эквивалентно каждому из первых трех. Определение 23-1 на самом деле говорит, что сочетание слов "экстенсонал "B""" означает то же самое, что и "L-детерминированный интенсонал, эквивалентный интенсоналу "B"", — другими словами, "позиционное свойство, эквивалентное (качественному) свойству Синее". Что позиционным свойством, эквивалентным свойству Синее, является именно свойство быть или o, или o', или $o''" — это факт, а не логическая истина.

Допустим далее, что ни одно положение не является и синим и холодным. Тогда экстенсоналом предикатора "B ⊕ С" в S_3 является пустой класс; это теперь отождествляется с L-пустым свойством, которое в S_3 выражается предикатором $\forall (x) (\neg (x = x))$. Предположим, что синими являются все положения простых чисел и только они. Тогда экстенсонал "B" есть класс положений простых чисел. Этот класс отождествляется теперь со свойством Положение Простого Числа.

Сначала может показаться несколько странным рассматривать классы не как отдельные объекты, каким-либо образом соответствующие свойствам, а как свойства особого рода. Но рассмотрение данных примеров устранит или смажит это впечатление. Например, не может казаться очень неестественным рассматривать интенсонал выражения $\forall (x) (x = o) \lor (x = o') \lor (x = o'')$ как класс, если мы примем во внимание тот факт, что этот интенсонал в противоположность L-недетерминированным интенсоналам сам
§ 23. Сведение экстенсионалов к интенсонаям

по себе дает ответ на вопрос относительно тех индивидов, для которых он удовлетворяется, и тех, для которых он не удовлетворяется.

Теперь мы собираемся применить наши определения к предложениям. Если мы подойдем к вопросу наивно, без тщательного анализа природы этих объектов, то, может быть, будем склонны сказать, что знаем, по крайней мере приблизительно, что мы имеем в виду под экстенсиналом предикатора (степени 1), то есть знаем, что это класс. Однако если говорят, что экстенсиналом предложения является логическая валентность, то совсем не ясно, какие объекты должны рассматриваться в качестве логических валентностей. В нашем прежнем обсуждении (§ 6) мы оставили в стороне связанное с этим затруднение, но теперь попробуем исследовать и разрешить его. Мы имеем в виду здесь языки, которые говорят о внеязыковых индивидах, или о физических вещах с физическими свойствами, как в S_1, или о положениях с физическими свойствами, как в S_3 (например, «второе положение холодное»). Как интенсонали, так и экстенсонали предикаторов оказываются явно внеязыковые объекты; как свойства индивидов, так и классы индивидов (безразлично, рассматриваемые ли обычным путем, или, согласно предлагаемому здесь методу, как свойства особого рода) относятся к этим индивидам, а не к выражениям в языке. Это же самое относится к экстенсоналам и интенсоналам индивидных выражений; как индивиды, так и индивидные концепты, какова бы ни была их специфическая природа, являются, безусловно, внеязыковыми объектами. Поэтому представляется естественным ожидать по аналогии, что интенсоналы и экстенсоналы десинхронизаторов всех видов — внеязыковые объекты. Это и имеет место для интенсоналов предложений, то есть для суждений. Но как обстоит дело с их экстенсоналами? Какого рода объектами являются логические валентности, рассматриваемые нами как экстенсоналы предложений? Мы, возможно, были бы склонны ответить, что логическими валентностями являются истинность и ложность и что эти два термина должны пониматься в их семантическом смысле. Однако истинность в семантическом смысле есть определенное свойство предложений, следовательно, языковый объект. (Это не значит,
что истиность есть только нечто лингвистическое; истиность зависит от внеязыковых фактов; следовательно, ее определение должно упоминать о внеязыковых объектах. Однако здесь мы касаемся не вопроса об объектах, о которых определение упоминает, а скорее вопроса о роде (логическом типе) того объекта, к которому относится понятие истиности. А здесь ответ следующий: это свойство предложений.) Следовательно, истиность и ложность не принадлежат к той области, к которой принадлежат все другие интенционалы и экстентионалы. Однако положение не заключает в себе ничего такого, что заставляло бы нас рассматривать (семантические) истиность и ложность как экстенционалы, предложений. Требуется только, чтобы экстенционалом всех истиных предложений был один и тот же объект и чтобы экстенционалом всех ложных предложений был тоже один и тот же объект, но несколько отличный от первого. Очевидно, что имеется много различных возможностей не слишком произвольного выбора двух внеязыковых объектов, таких, чтобы один был прямым способом связан со всеми истиными предложениями, а другой — со всеми ложными. Какой тип внеязыковых объектов должны мы выбрать? Самым естественным кажется выбрать или два свойства суждений, или два суждения. Рассмотрим некоторые возможности этих двух родов. Самыми естественными, подлежащими рассмотрению свойствами суждений, очевидно, были бы истиность и ложность суждений. В отличие от истиности и ложности предложений эти два понятия являются не семантическими, а независимыми от языка. Их отношение к семантическим понятиям истиности и ложности то же самое, что и отношение эквивалентности интенционалов к эквивалентности десигнаторов; см. определение 5-3 и предшествующие объяснения, включая подстрочное замечание. Они являются односторонними логики-функциональными соединениемами.

1 По терминологии [1] они являются абсолютными понятиями; для их определений см. [1], D17-1 и D17-2.

2 «Истино» в этом смысле есть коннектор с характеристикой TF и, следовательно, небольшую (например, «суждение», что Скотт есть человек, истино» и «Скотт — человек» суть L-эквивалентные предложения в M); «ложно» имеет характеристику FT и, следовательно, является знаком отрицания (ср. [11], § 10). [Характеристики TF и FT — сокращенные записи таблиц логических истина.

— Ред.]
§ 23. Сведение экстенсионалов к интенсионалам

Было бы проще взять два суждения. С одной стороны, мы могли бы, например, взять суждение \(p_t \), выражаемое классом всех истинных предложений в \(S \), и, с другой стороны, отрицание суждения \(p_t \). [В системах, подобных \(S_1 \) и \(S_3 \), где мы имеем описания состояний (§ 2), суждение \(p_t \) выражается проще посредством одного истинного описания состояния.] Этот способ был бы, возможно, привлекательен для философов, рассматривающих истину как охватывающую, в некотором смысле, весь мир\(^1\). В то время как этот метод рассматривает в качестве экстенсионалов два фактических (случайных) суждения, наш собственный метод (23-1) избирает два L-детерминированных суждений. При этом экстенсионалом любого истинного предложения является L-истинное (необходимое) суждение; а экстенсионалами любого ложного предложения — L-ложное (невозможное) суждение. Здесь точно так же мы, вероятно, испытываем сначала некоторое внутреннее соотношение тому, чтобы рассматривать суждения как логические валентности или экстенсионалы. Однако связь между двумя L-детерминированными суждениями и тем, что мы обычно рассматриваем как логические валентности, настолько тесна и естественна, что, возможно, не слишком искусственно рассматривать эти суждения как экстенсионалы предложений.

Теперь попробуем применить этот новый метод к индивидальным выражениям. Положим опять, что одно только второе положение \(o' \) в \(S_3 \) является одновременно и сним и холодным. Выше мы сказали, что на основании этого предположения экстенсионалом дескрипции \((x)(Bx \cdot Cx) \) является второе положение. Вместо этого мы теперь говорим, что экстенсионалом этой дескрипции является индивидный концепт Второе Положение. В некотором смысле это может рассматриваться как простое изменение формулировки. Мы можем даже воспользоваться той же формулировкой,

\(^1\) Lewis ([Meaning], p. 242) придерживается подобной концепции. Означением или экстенсионал суждения «является не то ограниченное состояние вещей, о котором говорит суждение, а род полного положения вещей, называемого нами миром... Все истинные суждения имеют один и тот же объем, а именно эту действительную вселенную; и все ложные высказывания так же имеют один и тот же объем, а именно пустой объем».

Я не намереваюсь здесь решать вопрос, является ли этот метод выбора L-детерминированных интенсоналов в качестве экстенсоналов естественным или нет. Может быть, достаточно показать, что этот метод отвечает формальным требованиям к решению проблемы экстенсоналов. Этот метод не будет далее предполагаться в рассуждениях в этой книге; большинство рассуждений будет независимо от какого-либо особого определения природы объектов, избираемых в качестве экстенсоналов, за исключением общего требования, чтобы эквивалентные десигнаторы имели один и тот же экстенсонал (5-1).
Глава III

МЕТОД ОТНОШЕНИЯ ИМЕНОВАНИЯ

Метод отношения именования является другой альтернативой метода семантического анализа, более обычной, чем метод экстенсонала и интенсонала. Он состоит в том, что выражения рассматриваются как имена (конкретных или абстрактных) объектов в соответствии со следующими принципами (§ 24): (1) каждое имя имеет только один номинат (nominatum), то есть объект, который оно именует; (2) каждое предложение говорит о номинатах входящих в него имен; (3) если имя, входящее в какое-либо истинное предложение, заменяется другим именем с тем же самым номинатом, то предложение остается истинным. Исследование этого метода показывает, что его основное понятие заключает в себе неоднозначность (§ 25) и что оно не ведет к ненужному удвоению выражений в языке-объекте (§ 26, 27). Самый серьезный недостаток этого метода заключается в том, что третий из вышепомянутых принципов, хотя и кажется вполне приемлемым, ведет в некоторых случаях к противоречию, если его применить без ограничений; мы называем это противоречие антиномией отношения именования (§ 31). Нетрудно устранить это противоречие; логиками предлагались различные способы этого устранения, но все они имеют определенные недостатки. Здесь детально обсуждается метод Фреже (§ 28—30). Его главной чертой является различие между номинатом и смыслом выражения. Во многих случаях это то же самое, что мы соответственно называем экстенсоналом и интенсоналом. Однако в противоположность этим последним понятиям номинат и смысл выражения изменяются в зависимости от контекста, в котором это выражение входит. Оказывается, что метод Фреже, если его применять последовательно, ведет к бесконечному множеству новых объектов и новых выражений, являющихся их именами, и, таким образом, приводит в результате к очень сложной структуре языка-объекта. Все это остается в силе в еще большей степени для варианта метода Фреже, предложенного Чёрчом. Рассел и Куайн избегают антиномии тем, что не считают именами некоторые выражения (хотя эти выражения в нашем методе являются L-эквивалентными тем выражениям, которые они считают именами); таким образом, они требуют ненужного ограничения области применения семантического анализа значения (§ 32). Тот факт, что все формы метода отношения именования ведут к усложнениям или ограничениям, вызывает сомнение относительно пригодности этого метода для семантического анализа.
§ 24. ОТНОШЕНИЕ ИМЕНОВАНИЯ

Обычный метод анализа значения считает выражение именем для (конкретного или абстрактного) объекта, который мы называем его nominatōm (nominalum). Этот метод в его обычном применении основывается на трех принципах, обычно не высказываемых в явной форме: на принципах однозначности, предметности и взаимозаменяемости.

В главе I были введены и обсуждены понятия эквивалентности и L-эквивалентности вместе с производными понятиями экстенсонала и интенсонала выражения. Эти понятия были предложены как средства для семантического анализа значения. С нашим методом экстенсонала и интенсонала мы теперь сопоставим тот метод анализа, который принят многими, может быть, даже большинством логиков; он характеризуется использованием в качестве основного понятия отношения именования (name-relation). В этой главе мы выявили допущения, лежащие в основании этого метода отношения именования, и рассмотрим следствия его употребления. Будет показано, что этот метод ведет к некоторым затруднениям, одно из которых будет называться антиномией отношения именования. Некоторые из этих затруднений были признаны различными логиками, и для их устранения были предложены разные способы, ведущие, таким образом, к различным формам метода отношения именования. Исследование этих форм покажет, что каждый из них имеет серьезные недостатки, например присущую употребляемым терминам неоднозначность, ненужное умножение объектов, ведущее к усложнению языковой структуры, или ненужные ограничения в конструкции языков. Будет видно, что метод экстенсонала и интенсонала свободен от недостатков, которые обнаруживает, по крайней мере в своих известных формах, обычный метод отношения именования.

Онашение именования обычно понимается как отношение между выражением в языке и конкретным или абстрактным объектом, именем которого это выражение является. Таким образом, в нашей терминологии это отношение есть семантическое отношение. Для выражения этого отношения используются различные фразы, например: «x есть имя
§ 24. Отношение именования

y, «x означает (denotes) y», «x обозначает (designates) y», «x есть обозначение y», «x есть знак для (signifies) y», и так далее. В этой книге я буду иногда употреблять кроме «x есть имя y» также и «x именует y»; эта сокращенная форма не приведет к какой-либо двусмысленности, поскольку ее обычное значение («некто называет какой-то объект») вряд ли здесь встретится. Часто бывает удобно иметь короткий термин для обратного отношения; вместо «объект, именуемый (выражением) x», я буду часто говорить «нормат x'а»; я буду употреблять этот термин также в формулировках концепций других авторов, которые его не употребляют.

Логики, по-видимому, сильно расходятся друг с другом в вопросе о видах выражений, которые могут рассматриваться как имена. Почти все включают в число имен такие слова, как «Наполеон» или «Чикаго»; быть может, большинство включит в число имен также слова, такие, как «зеленый» (или «зеленость»), «дом» и «семья»; многие включат также (декларативные) предложения. Не будем сейчас обращать внимания на эти различия, касающиеся области применения этого отношения, и посмотрим лучше на способ его применения. Мне кажется, что многие логики упот-

1 Сочетание слов «x означает (denotes) y» часто употребляется в совершенно другом смысле, а именно - в том случае, когда x является предикатором для некоторого свойства (например, слова «человек»), а y является объектом, имеющим это свойство (например, человек Вальтер Скотт). Это семантическое отношение является отношением несколько особого рода, поскольку оно применимо не к десигнаторам вообще, а только к предикаторам и, кроме того, лишь к предикаторам степени 1, если только не рассматривать в качестве означаемого объекта кортеж объектов. Как термин для этого отношения можно также рассматривать выражение «x удовлетворяется для y» и соответствующее имя существительное «удовлетворяемость». Во всяком случае, слово «означает» [denotes] в настоящее время употребляется многими логиками в смысле отношения именования (см. Churche [Dictionary], p. 76). Рассел [Denoting] употребляет это слово в этом смысле и для формулирования своей собственной концепции (он употребляет, например, термин «означающая фраза» для дескрипций и подобных выражений), и как перевод термина Фреге «bezeichnet» (см. ниже, § 28, примечание 21). Чёрч точно так же употребляет это слово для формулирования своей концепции, основанной на концепции Фреге. Следуя за Расселом и Чёрчем, я употреблял слово «означает» (denote) для отношения именования в первоначальном тексте этой книги. Однако ввиду того, что описанной двусмысленности я предпочитаю теперь избегать его.
Глава III. Метод отношения именования

реблюют отношение именования для семантического обсуждения, то есть для того, чтобы говорить о выражениях и их значениях с соблюдением следующих трех принципов. Если какой-либо автор выполняет эти условия, то мы скажем, что он употребляет метод отношения именования, независимо от того, каковы термины, употребляемые для этого отношения. Иногда тот или иной автор формулирует эти принципы явно; чаще же нам приходится на основании того, как автор употребляет это отношение, заключать, что он считает их верными.

Принципы отношения именования

24-1. Принцип однозначности. Каждое выражение, употребляемое в качестве имени (в определенном контексте), является именем только одного объекта; мы называем его номинатом выражения.

24-2. Принцип предметности. Предложение говорит (имеет дело, включает в свой предмет) о номинатах входящих в него имен.

24-3. Принцип взаимозаменяемости (или подставимости). Этот принцип встречается в каждой из следующих двух форм:

a. Если два выражения именуют один и тот же объект, то истинное предложение остается истинным, когда одно из этих выражений заменяется в нем другим; в нашей терминологии (11-1b) эти два выражения взаимозаменяемы (повсюду).

b. Если предложение тождества «...=———» (или «...» тождественно с «———», или «...» есть то же самое, что и «———») истино, то два аргументных выражения «...» и «———» взаимозаменяемы (повсюду).

Принцип однозначности применяется, конечно, только к правильно построенному языку, не имеющему неоднозначностей; выполнение его может действительно рассматриваться как определяющее однозначность в смысле отсутствия неоднозначности. (Язык этого рода может, например, быть искусственно построенной системой или модифицированным английским языком, в котором обычные неоднозначности элиминированы или носредством придания неоднозначному слову только одного из его обычных значений,
или посредством замены его различными терминами для различных значений, например «вероятность», «вероятность».

Принцип предметности довольно неопределен, но для наших целей достаточно ясен. Он иногда употребляется для обоснования применений третьего принципа. И в самом деле, если кто-либо признает первые два принципа, то он вряд ли отвергнет третий. Ибо если \(A_j \) и \(A_k \) имеют один и тот же номинат и если предложение \(..A_j.. \) говорит нечто истинное об этом номинате, то предложение \(..A_k.. \), говорящее то же самое и о том же самом номинате, также должно быть истинным. Форма b третьего принципа на первый взгляд, кажется, совсем не включает отношения именования. Но на самом деле она неявно предполагает его в понятии знака тождества или предложения тождества. Мне кажется, что в 24-3б молчающе предполагаются следующие определения этих понятий:

24-4. Определения.

а. Предикатор \(\Phi_i \) есть выражение тождества (для некоторого типа) \(=_{df} \) для любых замкнутых выражений (имен) \(A_j \) и \(A_k \) данного типа, предложение, производное от \(\Phi \) с \(A_j \) и \(A_k \) в качестве аргументных выражений [то есть \(\Phi, (A_j, A_k) \) или (\(A \)) \(\Phi, (A) \)], истинно, если и только если \(A_j \) и \(A_k \) именуют один и тот же объект.

b. \(\Sigma_i \) есть предложение тождества \(=_{df} \Sigma_i \) есть предложение, производное от выражения тождества.

На основе этих определений форма b принципа взаимозаменяемости непосредственно следует из формы a. Таким образом, если эти определения адекватны, то форма b столь же приемлема, как и форма a. Я думаю, что Чёрч\(^1\) выражает общепринятую концепцию, когда говорит, что взаимозаменяемость синонимичных выражений, то есть, тех, которые являются именами одних и тех же объектов следует из «того, что, по-видимому, представляет собой неизбежные семантические и синтаксические правила для «=»».

Образец метода именного отношения мы находим в процедуре Фреге. Его различие между номинатом и смыслом детально обсуждается ниже (§ 28—30). Он формулирует принцип взаимозаменяемости в первой форме (24-3а) следующим образом:

\(^1\) [Review C.], p. 300.
\(^2\) [Sinn], p. 36.
24-5. «Логическая валентность предложения остается неизменной, если мы заменяем в нем выражение другим, именующим тот же самый объект».

Другой пример этого метода — анализ Куайна в [Notes]; он употребляет термины «обозначает» и «десигнат» в смысле наших терминов «именует» и «номинат». Принцип взаимозаменяемости во второй форме (24-3b) он называет принципом подставимости и формулирует его следующим образом:

24-6. «Если дано истинное предложение тождества, то один из его двух терминов может быть подставлен вместо другого в любом истинном предложении».

Куайн понимает этот принцип не как правило, имеющее характер соглашения для знака тождества в искусственной системе, а скорее как явную формулировку процедуры, обычно применяемой в обыкновенном словесном языке на основе обычной интерпретации слов. Куайн проводит различие между десигнатом и значением выражения; это различие, как обнаружил Чёрч, в некоторых отношениях очень похоже на различие Фреге.

Различия между методом отношения именования и методом экстенсонала и интенсонала будут ниже подробно обсуждены. Здесь же я хочу сделать только несколько замечаний в связи с тремя принципами. Понятие экстенсонала выражения, как мы увидим ниже, в некоторых отношениях сходно с понятием его номината. Поэтому посмотрим, насколько аналоги этих трех принципов имеют силу для понятия экстенсонала. Аналог принципа однозначности имеется, так как каждый десигнатор имеет только один экстенсонал. Имеется также аналог принципа предметности, но с ограничениями. Вообще предложение, содержащее десигнатор \(\Psi \), может интерпретироваться как говорящее об экстенсонале десигнатора \(\Psi \); однако оно может быть интерпретировано иначе, как говорящее об интенсонале \(\Psi \), и, как мы увидим далее, последняя интерпретация иногда бывает более подходящей. Решающее различие возникает в отношении принципа взаимоза-

[Notes], р. 113.
2 [Review Q.], р. 47.
менимости. Для экстенсионалов, вместо аналога 24-3а, имеет силу только ограниченный принцип 12-1. Он говорит, что если два выражения имеют один и тот же экстенсионал, другими словами, если они эквивалентны, то они взаимозаменимы в экстенциональных контекстах. Принцип 24-3б говорит о тождестве. Однако на основании метода экстенсионала и интенционала мы не можем просто говорить о тождестве, а должны различать тождество экстенсионала и тождество интенционала, другими словами, эквивалентность и L-эквивалентность. Следовательно, вместо принципа 24-3б для тождества мы имеем в нашем методе два принципа: один для эквивалентности и другой для L-эквивалентности; таковыми являются принципы 12-1 и 12-2.

§ 25. НЕОДНОЗНАЧНОСТЬ В МЕТОДЕ ОТНОШЕНИЯ ИМЕНОВАНИЯ

Предикатор в словесном языке (например, «gross» в немецком языке) или в символическом языке (например, выражение абстракции в системе Куайна) может рассматриваться как имя класса, а также и как имя свойства. Это показывает неоднозначность, присущую отношению именования. Ее последствия будут обсуждены ниже.

Теперь я исследую более детально некоторые черты метода отношения именования и, в особенности, попытаюсь показать, что основное понятие этого метода совсем не так просто, ясно и недвусмысленно, как обычно думают.

По-видимому, является общепризнанным, что если мы понимаем какое-то выражение, то мы по крайней мере знаем, к какому роду объектов принадлежит его номинат; иногда мы знаем также, каким объектом является его номинат, хотя в других случаях для этого требуется фактическое знание. Например, если мы понимаем немецкий язык, то мы знаем, что «Rom» — имя города Рима, а «drei» — имя числа Три. О «der Autor von Waverleи» мы знаем, по крайней мере, что оно именует — если оно вообще что-либо именует — (физический) объект; а если мы имеем достаточные исторические познания, то знаем, что оно есть имя человека Вальтера Скотта. Аналогично, о «die Anzahl der Planeten» мы знаем, по крайней мере, что оно именует число, а с помощью астрономических сведений мы узнаем,
что оно — имя числа Девять. Вообще говоря, если имеется полное понимание данного языка, в частности какого-либо имени в нем, и, кроме того, полное фактическое знание о данном случае, то мы должны были бы ожидать, что не может быть никакого сомнения или спора относительно номината этого имени. Однако, как будет сейчас показано, дело обстоит не так.

Пусть G — часть немецкого языка, состоящая только из декларативных предложений, из которой элиминированы все сомнительные выражения и неоднозначности (см. разъяснения 24-1) и где, в частности, имеется слово «gross» в его буквальном значении, говорящем о пространственной протяженности. Вообразим двух логиков, L₁ и L₂, интересующихся семантическим анализом G. Прежде чем начать теоретический анализ, они практически удовлетворятся в однозакости интерпретации или понимания языка G; например, каждый согласен с любым переводом предложения языка G на английский язык, который делает другой. Затем они начинают свой семантический анализ G, согласно методу отношения именования, основанному на трех принципах (24-1, 2, 3). Они исследуют предложение на языке G: «Rom ist gross». У них нет ни сомнения, ни разногласия относительно значения этого предложения; это видно из того, что оба они согласны, что перевод этого предложения на английский язык есть «Рим — большой». Затем они применяют к выражениям данного предложения анализ в терминах отношения именования. Оба согласны, что «Rom» есть имя города Рима в G. Но теперь предположим, что в отношении слова «gross» (или сочетания слов «ist gross») возникает следующий спор: L₁ говорит: «Предложение «Rom ist gross» означает, что Рим принадлежит классу Больной. Следовательно, это предложение говорит о вещи Рим и о классе Большой. Значит, согласно принципу предметности, «gross» есть имя класса Большой; и, следовательно, согласно принципу однозначности, не может быть именем никакого другого объекта. Против этого L₂ возразит: «Данное предложение означает, что Рим обладает свойством Большой. Следовательно, это предложение говорит о вещи Рим и свойстве Большой. Значит, согласно принципу предметности, «gross» есть имя свойства Большой; и, следовательно, согласно принципу одно-
значности, его номинатом не может быть никакой другой объект, в частности им не может быть класс Большой».

Мы, вероятно, могли бы попытаться примириить этих двух логиков, указав на то, что на самом деле неважно, скажут ли они «это предложение значит, что Рим принадлежит к классу Большой», или «это предложение значит, что Рим обладает свойством Большой», поскольку оба эти утверждения истинны и различаются только в формулировке. Но даже если эти два логика захотели бы согласиться с нами в этом пункте, разногласие относительно номината слова «gross» не было бы разрешено. Здесь, в отличие от вопроса относительно всего предложения в целом, они не могут просто согласиться, что они оба правы и что неважно, скажут ли они, что номинатом является класс Большой или что им является свойство Большой; ибо они оба признают принципы отношения именования; следовательно, они должны согласиться и с тем, что в соответствии с принципом однозначности слово «gross» (в G) может иметь только один номинат. И, далее, они согласны, что класс Большой не то же самое, что свойство Большой; они согласны вообще в признании различия между свойством и соответствующим классом, как это выражено, например, в 4-7 и 4-8.

Может быть, кто-нибудь подскажет этим двум логикам, что их неразрешимое разногласие происходит просто от выбора неподходящего языка-объекта; что естественный язык, вроде G, даже после элиминации явных неоднозначностей, все-таки еще недостаточно точен для однозначного семантического анализа и что, следовательно, они должны ограничить свой анализ правильно построенной символической системой с точными правилами. Я сомневаюсь в том, что это разногласие проистекает только от несовершенств языка G; но посмотрим, что получится, если эти два логика последуют этому совету. Пусть ML будет системой, сконструированной Куайном в [M.L.], а ML' — системой, построенной из ML посредством добавления, во-первых, некоторых знаков, введенных Куайном в его книгу и получивших определения, но которые он не считается частью своей системы, и, во-вторых, нескольких нелогических атомарных матриц. Два логика согласны
Глава III. Метод отношения именования

со следующей интерпретацией системы ML': исходные знаки ML интерпретируются в соответствии с объяснениями Куайна; на этой основе интерпретации определяемых знаков в ML' устанавливаются их определениями; для интерпретации нелогических атомарных матриц формулируется следующее правило (подобное 1-2):

25-1. Правила обозначения (для ML').

a. «Нх» есть перевод предложения «x есть человеческое существо (thing)».
b. «Fx» — «x есть бесперый предмет».
c. «Bx» — «x есть двуногий предмет».

«Предмет» (thing) понимается здесь в смысле «физический предмет». ML' интерпретируется таким образом, что предметы рассматриваются как индивиды в смысле Куайна. Согласно правилам 25-1, три упомянутые атомарные матрицы выполняются только для объектов (entities), являющихся предметами и, следовательно, как индивидами, так и элементами в куйновском смысле.

Два логика соглашаются в том, чтобы не рассматривать «Н», «F» и «B», введенные в 25-1 как имена, так как ясно, что иначе немедленно возникает тот же спор относительно номинатов, как это уже было со словом «gross» в G (ср. переводы «Hs» в 4-2 и 4-3). Они соглашаются рассматривать как имена только те выражения, которые Куайн называет замкнутыми терминами, а среди них, в особенности, замкнутые выражения абстракции, то есть выражения формы \(\forall x (\ldots x \ldots) \) без свободных переменных.

Теперь эти два логика исследуют следующее предложение в ML': \(\forall x (Hx \leq x (Bx)) \), которое мы называем \(\exists_1 \). У них нет ни сомнения, ни разногласия относительно значения этого предложения. Они согласны, что в соответствии с правилами ML' \(\exists_1 \), L-эквивалентно предложению \((x) (Hx \supset Bx) \), и, следовательно, может быть переведено в предложение «для каждого x, если x есть человек, то x — двуногое» (см. 4-4; мы допускаем здесь, что «человек» означает «че-
§ 25. Неоднозначность в методе отношения именования

ловеческое существо», а «двуногое» — «двуногий предмет»). Однако как только они поднимут вопрос о том, что является номинатом выражения абстракции \(x(Hx) \), входящего в \(\Sigma \), возникнет разногласие, совершенно аналогичное вышеприведенному относительно слова «gross» в \(G \), несмотря на то, что мы имеем здесь точную систему \(ML' \). \(L_1 \) говорит: «Мы согласны относительно значения \(\Sigma \), именно что оно переводится так, как только что установлено; но оно точно так же переводится и в предложение «класс Человек является подклассом класса Двуногое» (4-6). Следовательно, \(\Sigma \) говорит о классе Человек и классе Двуногое. Значит, согласно принципу предметности, выражение «\(x(Hx) \)» есть имя класса Человек; следовательно, согласно принципу однозначности, оно не может быть именем никакого другого объекта». \(L_2 \) возражает: «Поскольку \(\Sigma \) переводится так, как установлено раньше, оно точно так же переводится и в предложение: «свойство Человек имплицирует (материально) свойство Двуногое» (4-5). Следовательно, \(\Sigma \), говорит о свойстве Человек и о свойстве Двуногое. Значит, согласно принципу предметности, выражение «\(x(Hx) \)» есть имя свойства Человек; и, следовательно, согласно принципу однозначности, оно не может быть именем никакого другого объекта; в частности, оно не может быть именем класса Человек». Так как оба логика согласны в том, что класс Человек есть не то же самое, что свойство Человек, то, в силу принципа однозначности, они должны признать их утверждения относительно номината выражения «\(x(Hx) \)» несовместными. В пользу своего утверждения \(L_1 \) может указать на тот факт, что Куайн, автор системы \(ML \), сам говорит, что термины суть имена классов, что «\(\subseteq \)» есть знак включения для классов и, что весь язык имеет дело с классами. \(L_2 \) может возразить, что он допускает, что способ выражения, употребляемый Куайном и \(L_1 \), может применяться непротиворечиво; но дело в том, что это же самое относится и к другому способу выражения, который употребляет он. Однако то, что делает спор неразрешимым, сводится к следующему: расхождение между

1 [М. Л.], р. 119.
2 Там же, стр. 185.
L₁ и L₂, которое вначале является не чем иным, как различием в способе выражения, именно различием между переводами Ε₁ в терминах классов и в терминах свойств, ведет на основе принципов отношения именования к двум несовместным утверждениям относительно номината «x (Hx)».

Теперь L₁ обнаруживает новый способ, который, как он думает, должен привести к недвусмысленному разрешению этой запутанной проблемы. Так как различие между классами и свойствами коренится в различии условий тождества, то должно быть проанализировано предложение тождества У₁ = У₂ в ML’, где У₁ и У₂ суть выражения абстракции; установив условия истинности этого предложения, мы должны были бы видеть, как он думает, являются ли два выражения У₁ и У₂ именами классов или свойств. Поэтому он предлагает рассмотреть следующее предложение в ML’: «x(Hx)=x(Fx•Bx)», которое мы называем Ε. Здесь снова имеется полное согласие между нашими двумя логиками относительно значения этого предложения. Они согласны, что в соответствии с правилами ML¹ предложение Ε₂ L-эквивалентно предложению «(x)(Hx=Fx•Bx)» и, следовательно, на основе биологического факта 3-6 Ε₂ истинно. Далее, оба согласны, что данные два класса на самом деле тождественны (см. 4-7), тогда как два свойства не тождественны (см. 4-8). Теперь L₁ ведет доказательство следующим образом: «Предложение тождества может относиться только к двум классам; так как если бы оно относилось к двум свойствам, оно было бы ложным, потому что они не тождественны». L₂ возражает: «Ва, как и автор системы, взяли «=» как знак тождества классов. Я допускаю, что это находится в согласии с правилами системы ML’. Но тогда «=» может с таким же успехом называться знаком эквивалентности свойств (как «≡» в S; см. замечание к 5-3). A так как два данных свойства хотя и не тождественны, но действительно эквивалентны (см. 5-5), то Ε₂ истинно также и на основе этого анализа, интерпретирующего эти два выражения абстракции как имена свойств». L₁, возможно, спросит, не гаран-

¹ См., в частности, определения D₁₀ и D₁₀ в [M. L.], р. 136 и 133.
§ 25. Неоднозначность в методе отношения именования

тируется ли характер "==" в системе МЛ' как собственно знака тождества, а не только лишь знака эквивалентности, подобного "≡" в Сₙ, тем фактом, что МЛ' содержит принцип взаимозаменяемости (называемый принципом подставимости тождественных ¹). На это L₂ дает отрицательный ответ. Взаимозаменяемость на основе "≡" имеет место также и в Сₙ (см. 12-3а); таким образом, и в этом отношении знак "==" в МЛ' также подобен знаку "≡" (между предикаторами) в С. Правда, неограниченная взаимозаменяемость на основе "≡" в некоторых системах не имеет силы, например в С₂; но она имеет силу во всех экстенсональных системах (12-3а). Таким образом, действие принципа взаимозаменяемости в МЛ' (и МЛ) заключается просто в том, что он делает МЛ' (и МЛ) экстенсональными языками, подобным S.; этот принцип мешает введению в МЛ интенсональных предикаторов или коннекторов, например знака логической необходимости (как "N" в С₂, см. § 11, пример II). Но оно никоим образом не мешает интерпретации выражений абстракции в МЛ' (или МЛ) как имен свойств.

Теперь сделаем заключение из нашего исследования спора между двумя логиками. Отметим, что этот спор не является примером хорошо известной множественности интерпретаций, то есть того факта, что для данной логической системы (исчисления) вообще имеется несколько интерпретаций, каждая из которых согласуется с правилами системы. L₁ и L₂ применяют одну и ту же интерпретацию к их языку-объекту G и затем точно так же к языковой системе МЛ'. Даже когда L₁ говорит, что знак "==" в МЛ' есть знак тождества классов, а L₂ говорит, что "==" есть знак эквивалентности свойств, то это показывает не на различие в интерпретациях, а только на различие в выборе семантических терминов, употребляемых для описания одной и той же интерпретации; ибо эквивалентность свойств есть то же самое, что и тождество классов (или, говоря точнее, предложения "свойства, выраженные двумя предикаторами эквивалентны" и "соответствующие классы тождественны" являются L-эквивалентными в М). То обстоятельство, что L₁ и L₂ применяют к МЛ' (так же как и к G)

¹ Quine [M. I...], § 29*, 201; о соответствующем принципе в отношении словесного языка см. выше, 24-6.
одну и ту же интерпретацию, значит, что любому данному предложению в ML они приписывают одно и то же значение, или, другими словами, одно и то же условие истинности. Решающим пунктом является скорее следующее: несмотря на согласие в интерпретации, для L₁ и L₂ сохраняется возможность придерживаться разных концепций относительно того, что представляют собой номинаты входящих имен,— концепций, которые несовместимы друг с другом, хотя каждая из них сама по себе непротиворечива. Мне кажется, это показывает, что метод отношения именования заключает в себе присущую ему неоднозначность, поскольку основной термин этого метода «быть именем» оказывается неоднозначным, хотя вообще считается, что он вполне ясен и недвусмыслен. Это означает не то, что логик вообще употребляет эти термины неоднозначно, а только то, что некоторые логики могут употреблять их различными способами. Например, L₁ употребляет этот метод непротиворечиво и недвусмысленно, как и L₂. Затруднение заключается в том, что если один логик думает, что найденные им на основе его концепции результаты должны быть приняты всеми другими, то он ошибается, потому что может случиться, что эти результаты не пригодны для другой концепции отношения именования.

Мы обсудили эту неоднозначность только относительно предикатов, где в качестве номинатов могут быть взяты или классы, или свойства. По аналогии для десигнатора другого рода в качестве его номинатов могут быть взяты или его экстенсионал, или его интенсионал. Таким образом, имеющихся на самом деле способов употребления отношения именования гораздо больше чем два. И множественность способов, кроме того, значительно увеличивается потому, что некоторые логики рассматривают одни предикаты как имена классов, а другие предикаты того же типа как имена свойств (см. § 26), и потому, что некоторые логики рассматривают даже одно и то же выражение как имя экстенсионала в одном контексте и как имя интенсионала — в другом (например, Фреге, см. ниже, § 28, 29). Пока достаточно указать на большое число различных способов употребления метода отношения именования, другими словами, на те многие различные смысли,
в которых употребляется термин «имя» или подобные ему термины. Некоторые из этих способов будут обсуждены ниже, чтобы показать те осложнения, с которыми они связаны.

§ 26. НЕНУЖНОЕ УДВОЕНИЕ ИМЕН

Многие системы содержат различные имена для свойств и для соответствующих классов. Это обсуждается для примеров, взятых из системы «Principia Mathematica». Анализируя эти имена методом экстенсионала и интенсонала, мы находим, что имя для свойства Человек и другое имя для класса Человек имеют не только один и тот же экстенсонал, но также и один и тот же интенсонал. Следовательно, удвоение имени, к которому ведет метод отношения именования, оказывается ненужным.

Теперь будет рассмотрено другое следствие обычного употребления метода отношения именования. Принцип предпочтности (24-2) гласит, что если предложение содержит имя объекта, то оно говорит нечто об этом объекте. И этот метод обычно понимается так, что, обратно, если предложение должно говорить о некотором объекте, то оно должно содержать имя этого объекта. Тогда, в силу принципа однозначности (24-1), следует, что для того, чтобы говорить о двух различных объектах, мы должны употребить два разных выражения в качестве их имен.

С другой стороны, ситуация оказывается совершенно иной на основе метода экстенсонала и интенсонала. Десигнатор здесь рассматривается как имеющий непосредственное семантическое отношение не к одному, а к двум объектам — его экстенсоналу и его интенсоналу, — так, что предложение, содержащее десигнатор, может быть построено как говорящее и об одном и о другом объекте. Таким образом, здесь если предложение должно говорить об объекте, являющемся экстенсоналом, то требуется выражение, экстенсонал которого является этот объект; а если мы хотим говорить об объекте, являющемся интенсоналом, то требуется выражение, интенсоналом которого является этот объект. Следовательно, для того, чтобы говорить сначала о некотором интенсонале, а затем о соответствующем экстенсонале, для этого метода требуется только одно выражение, тогда как метод отношения именования потребовал бы двух и, следовательно, привел бы к ненужному удвоению в символике.
Это удвоение лучше всего может быть выяснено в случае предикаторов. Метод экстенсонала и интенсонала нуждается только в одном предикаторе для того, чтобы говорить как о некотором свойстве, так и о соответствующем классе. Метод же отношения именования в его обычной форме нуждается для этой цели в двух разных выражениях, в имени свойства и имени класса. В качестве примера возьмем символическую систему РМ, построенную Уайтхедом и Расселом в [Р.М.]: РМ включает не только исходные знаки, но также и (логические) знаки, введенные посредством определений так, как они даны этими авторами. Пусть РМ’ состоит из РМ и, кроме того, нескольких нелогических предикаторов или атомарных матриц. Пусть РМ’ интерпретируется следующим образом: исходные логические знаки интерпретируются в соответствии с объяснениями авторов [Р.М.]; интерпретации получивших определение знаков устанавливаются посредством их определений; нелогические знаки интерпретируются с помощью 25-1 как правила обозначения для РМ’.

Выражения, употребляемые в системе РМ’ в качестве имени для свойств (построенных как пропозициональные функции) и в качестве имени для классов, различны. В качестве примера возьмем следующие четыре утверждения относительно двух пар выражений в РМ’:

26-1. «Нх» есть имя свойства Человек.
26-2. «х(Нх)» есть имя класса Человек.
26-3. «Fx•Bх» есть имя свойства Бесперое Двуногое.
26-4. F(Fx•Bх) есть имя класса Бесперое Двуногое.

Для настоящего обсуждения мы можем оставить в стороне тот факт, что Рассел не делает допущения о существовании, кроме свойств, еще и классов как отдельных объектов; он вводит выражения классов посредством контекстуальных определений на основе выражений свойств. Ниже (§ 33) будет обсуждена проблема как этой, так и обратной редукции. Для нашей настоящей проблемы достаточно того, что автор говорит в своем метахыке как о свойствах (качествах, пропозициональных функциях степени I), так и о классах (различаемых обычным образом), что в своем языке-объекте он употребляет два различных вида выражений и что, согласно ему, выражения первого вида понимают-
съ как выражения свойств, а выражения второго вида — как выражения классов.]

Данные четыре утверждения выражают результаты семантического анализа некоторых выражений в РМ' по методу отношения именования. Если же вместо этого мы анализируем РМ' методом экстенсионала и интенсонала, то мы приходим к следующим результатам, включающим соответствующие вышеприведенным и дополненным новыми. Вместо 26-1 мы имеем здесь:

26-5. Интенсоналом «Нx» является свойство Человек.

К этому утверждению, однако, добавляется другое, из него вытекающее:

26-6. Экстенсоналом «Нх» является класс Человек.

Вместо 26-2 мы здесь имеем:

26-7. Экстенсоналом «х(Нх)» является класс Человек.

К этому мы добавляем:

26-8. Интенсоналом «x(Нх)» является свойство Человек.

В то время как 26-6 прямо следует из 26-5, нельзя сказать того же о 26-8 и о 26-7; каждый интенсонал единственным образом устанавливает экстенсонал, но не наоборот. Утверждение 26-8 основывается, скорее, на правиле 25-1a и на том обстоятельстве, что, согласно правилам РМ', предложение «(y)(y ∈ x(Нх) ≡ Нy)» L-истинно в РМ'. Аналогичны, конечно, результаты, соответствующие 26-3 и 26-4.

Таким образом, с точки зрения нашего метода оказывается, что два выражения «Нх» и «x(Нх)» в РМ' имеют один и тот же экстенсонал, а также один и тот же интенсонал. Поэтому не необходимо иметь в системе обе формы. Эти два выражения в некотором смысле являются L-эквивалентными предикаторами. Правда, ни один из них не может быть просто заменен другим: таково действие некоторых ограничивающих правил относительно двух видов предикаторов. Во-первых, имеется следующее несущественное различие, являющееся только случайной синтаксической чертой систем РМ и РМ'. Правила требуют, чтобы выражение аргумента для предикатора первого вида (например, «Н» или «Нх») следовало за ним (давая в результате «Нх»), а выражение аргумента для предикатора второго вида
Глава III. Метод отношения именований

предшествовало ему со вставленным знаком «∈» (например, s ∈ x(Hx)). Другое различие более существенно. Оно касается предложений тождества, построенных при помощи знака «≡». В качестве примеров рассмотрим следующие два предложения:

26-9 «х (Hx) ≡ х (Fx ⋅ Bx)».

26-10. «Hx = Fx ⋅ Bx».

Согласно разъяснению, данному в [P.M.], предложение 26-9 говорит, что два данных класса тождественны; следовательно, это предложение истинно (см. 4-7). С другой стороны, предложение 26-10 говорит, что два данных свойства тождественны; следовательно, это предложение ложно (см. 4-8). Таким образом, 26-9 и по символической записи и по значению в точности таково же, как и ранее рассмотренное предложение в ML’ (Σ 2 в § 25). Подобным же образом его L-эквивалентность предложению «(х)(Hx ≡ Fx ⋅ Bx)» сохраняется и для PM’. Следовательно, возражение логика L2, что знак «≡» в 26-9 подобен знаку «≡» в S1 (или S2) и, следовательно, является просто знаком эквивалентности, применимо также и здесь. С другой стороны, «≡» в 26-10 есть знак тождества или L-эквивалентности свойств; следовательно, в отличие от «≡» в 26-9 он является незэкстенсиональным знаком. (Это признается Уайтхедом и Расселом.) 1 Следовательно, он не может соответствовать какому-либо знаку в экстенсиональном языке S1; но он в точности соответствует модальному знаку «≡» в S2, который будет введен ниже (см. 39-6; соответственно ложное предложение 26-10 L-эквивалентно 42-2bA без знака отрицания). Таким образом, метод экстенционала и интенционала учитывает различие между 26-9 и 26-10. На основе этого метода, в отличие от метода отношения именования, первые компоненты в двух предложениях (то есть предикаторы «Hx» и «х(Hx)») в некоторых отношениях приравниваются друг к другу, и так же справедливо для вторых. Тем не менее различие сохраняется, так как вхождения «≡» в 26-9 и 26-10 имеют в этих случаях различные значения. Первое интерпретируется как знак эквивалентности,

1 [P. M.], I, 84.
или, другими словами, как тождество экстенсионалов; второе — как знак L-эквивалентности, или, другими словами, как тождество интенсоналов.

Мы видим, что ситуация относительно двух обсуждаемых методов следующая: вначале имеется только различие процедуры в описании семантических черт данных языковых систем. Обычный метод делает это в терминах номинатов; наш же метод делает это в терминах экстенсоналов и интенсоналов. С первого взгляда можно подумать, что оба метода нейтральны для структуры языковых систем в том смысле, что как один, так и другой методы одинаково применимы к любой системе. Если так, то выбор одного или другого метода семантического анализа не имел бы никакого влияния на выбор структуры для конструируемой системы. Однако это не так. Согласно первому методу, говорят, что два выражения «Нх» и «х(Нх)» имеют разные номинаты; и это обстоятельство затем естественно рассматривается как определение для решения ввести оба выражения в систему, как это и делается в системе РМ'. С другой стороны, согласно второму методу об этих двух выражениях говорят, что они имеют один и тот же экстенсонал и один и тот же интенсонал. Это ведет к тому взгляду, что включение обоих выражений было бы ненужным удвоением, и, следовательно, к решению строить систему таким образом, чтобы она содержала вместо этих двух выражений только одно, как в системах S1 и S2 (и во многих системах, построенных другими логиками)1. Соответственно двум выражениям в РМ', S1 и S2 имеют один предикатор «(х)(Нх)» (конечно, вместо этого также можно было бы взять любую из двух символических записей в РМ'). То, что мы могли обойтись в прежних примерах (например, 3-8) без i-выражений, объясняется только простотой примеров. Вообще же предложение тождества для

1 Тот факт, что не нужно особых выражений классов в добавление или к простым предикаторным знакам и их комбинациям, или к выражениям свойств, был уже замечен несколькими логиками. Относительно исторического развития этого взгляда и относительно возможности формы языка без особых выражений классов см. [Syntax], § 38 и 37. Рассуждение в этой книге подтверждает эту концепцию посредством обоснования ее более общей концепцией метода экстенсонала и интенсонала для денсигнаторов вообще.
классов в \(\text{RM}' \) (подобное 26-9) будет переводиться на \(S_1 \) и \(S_2 \) в форме \((\ldots)(\ldots)(\ldots)(\ldots)\)\(\equiv\)(\ldots)(\ldots)(\ldots)(\ldots)\), а соответствующее предложение тождества для свойств (подобное 26-10) будет переводиться на \(S_2 \) в форме \((\ldots)(\ldots)(\ldots)(\ldots)\)\(\equiv\)(\ldots)(\ldots)(\ldots)(\ldots)\) с теми же самыми двумя \(i \)-выражениями, как и первое предложение.

Наше заключение, что удвоение предикаторов в \(\text{RM} \) и \(\text{RM}' \) излишне, имеет силу также для систем, которые употребляют операторы двух различных видов для образования выражений абстракции, соответствующих классам [например, \(\langle x(x\ldots) \rangle \)] и для функциональной абстракции\(^1\), то есть для образования выражений абстракции, соответствующих свойствам, построенным в этом случае как пропозициональные функции [например, \(\langle (x)(x\ldots) \rangle \)]. Здесь так же, если одна и та же матрица \(\langle \ldots x \ldots \rangle \) входит как область действия в оба выражения, то они имеют один и тот же экстенсионал и один и тот же интенсионал; однако они имеют разные условия тождества. Таким образом, они соответственно аналогичны \(\langle x(Hx) \rangle \) и \(\langle Hx \rangle \) в \(\text{RM}' \).

Поскольку выбор семантического метода и выбор формы языка взаимосвязаны, то мы можем также рассуждать и в обратном направлении: наше предпочтение какой-либо языковой структуры может повлиять на наше предпочтение одного из двух семантических методов. Если языковая система с одним только видом предикатора действительно является не только столь же эффективной (для целей как математики, так и эмпирической науки), как и система с двумя видами, подобная \(\text{RM}' \), но также и более простой и, следовательно, более удобной, то я думаю, что метод отношения именования должен рассматриваться по крайней мере как способный вводить в заблуждение, если не как неадекватный.

§ 27. ИМЕНА КЛАССОВ

Имя для класса должно вводиться по правилу, которое относится только к одному свойству; иначе значение нового знака и тех предложений, в которые он входит, не будет устанавливаться единственным образом. Это доказывает, что семантическое правило для знака первоначально устанавливает его интенсионал, и только затем, с помощью существенных для этого фактов,— его экстенсионал. Показывается, что

\(^1\) См., например, C h u r c h [Dictionary], p. 3.
общее употребление разных видов переменных для свойств и для клас-
сов так же излишне, как и употребление разных имен. Удвоение имен
и переменных для первого уровня ведет к еще большей множественности
имен и переменных на более высоких уровнях. Понятия математики мо-
gут быть определены без употребления выражений специальных классов
и переменных классов. Это показывается на определениях числа «2»
и понятия «количественное число».

В предыдущем разделе мы видели, что выражения в
системе РM, рассматриваемые авторами системы как имена
некоторых классов, не только имеют эти классы в качестве
своих экстенсоналов, но в то же самое время имеют и не-
которые свойства в качестве интенсоналов (см. 26-8).
Здесь можно было бы поставить вопрос, не может ли в ка-
кой-либо системе получиться так, что предикатор имеет
только экстенсонал и не имеет интенсонала; другими
словами, что он относится к классу и не относится ни к од-
ному из тех свойств, которым этот класс соответствует
в качестве экстенсонала. Я думаю, что это невозможно
в семантической системе, то есть в системе, интерпретация
которой полностью дана. Прежде всего, невозможно иметь
dело с классом, не обращаясь, по крайней мере, к одному
из соответствующих свойств. Это сохраняет силу даже и
в том случае, если класс задается перечислением его чле-
нов, например таким сочетанием слов, как «класс инди-
видов а, b и с», или в символическом языке S₁: «(x)[(x=a) ∨
(x=b) ∨ (x=c)]». Этот предикатор не лишен интенсонала:
им является свойство быть (тождественным) или a, или b,
или с. У нас может появиться вполне правомерное сообра-
жение, что это не свойство в том смысле, в каком свой-
ствами являются Синее и Человек; оно является (если
«а», «b» и «с» интерпретируются как L-детерминированные
постоянные для положений в упорядоченной области, § 19)
позиционным, а не качественным свойством; по нашей
предыдущей терминологии (§ 22) оно является L-детермини-
рованным свойством; но во всяком случае оно является
интенсоналом.

Могло бы казаться, что имя класса, не имеющего ин-
tенсонала, можно было бы ввести в систему, если усло-
виться, что оно должно быть именем класса, являющегося
общим для таких-то и таких-то эквивалентных свойств;
при этом ссылка на несколько свойств привела бы к тому,
что ни одно из них не было бы собственно интенсоналом.
имени. Рассмотрим, например, следующее правило в качестве семантического для имени класса «K» в S₁.
27-1. «K» должно быть именем одновременно для класса Человек и для класса Бесперое Двуногое, который является тем же самым классом.

Это правило не содержит противоречия, так как упомянутые в нем классы на самом деле тождественны (см. 4-7). Однако оно недостаточно в качестве семантического правила для «K»; 27-1 не дает полной интерпретации «K», или, другими словами, не дает полного его значения, а лишь ограничивает его некоторыми возможностями. Правда, этого правила вместе с правилами для других знаков в S₁ и знанием существенных для этого фактов достаточно, чтобы установить логическую валентность любого предложения в S₁, в которое входит «K». Например, обнаруживается, что «Ks» должно быть истинно на основе исторических фактов, которые и делают два предложения «Hs» и «FσBs» истинными. Решающим моментом является то, что, хотя логические валентности, экстенсиональные предложений, содержащих «K», устанавливаются, их интенциональны, в общем, не устанавливаются. Например, остается неустановленным, какое суждение выражается «Ks»; является ли оно тем же самым, что и суждение, выраженное «Hs» или «FσBs», или их дизъюнкцией, или конъюнкцией? Это четыре различных суждения. Иными словами, данного К-правила (27-1) вместе с правилами для других знаков недостаточно для применения L-понятий к предложениям, содержащим «K». Например, не устанавливается, L-истинно «Ks≡Hs», или F-истинно. Следовательно, строго говоря, на основе К-правила и других правил мы не можем понимать предложений, подобных «Ks» или «Ks≡Hs», хотя мы можем установить их логические валентности. Основанием для выдвинутого здесь возражения против K-правила является не то, что оно вводит «K» как имя класса, а, скорее, то, что оно не делает это со ссылкой на одно-единственное свойство. В противоположность 27-1 следующее правило было бы полным семантическим правилом для «K»:
27-2. «K» должно быть именем для класса Человек.

Ибо это говорило бы то же самое, что и предложение «K» должно быть именем класса, который является экстен-
§ 27. Имена классов

сияналом свойства Человек»; а это предложение, в свою очередь может быть понимаемо как: «К» должно быть знаком, интенсивал которого — свойство Человек; следовательно, его экстенсионал — класс Человек. Первой части этого последнего предложения было бы достаточно в качестве правила; вторая же часть («следовательно ...») есть семантическое утверждение, вытекающее из правила. Это показывает, что семантическое правило для знака должно первоначально устанавливать его интенсивал; экстенсионал же вторичен в том смысле, что он может быть найден, если даны интенсивал и существенные для этого факты. С другой стороны, если дан лишь экстенсионал вместе со всеми этими фактами, то интенсивал не будет установлен однозначно.

В предыдущем разделе мы видели, как метод отношения именования ведет к употреблению двух видов предикаторов в одном и том же типе (например, уровне 1 степени 1). На основе этого метода, особенно принципа предметности, такое удвоение предикаторов рассматривается как необходимое, если мы хотим говорить как о классах, так и о свойствах. Аналогичная ситуация возникает относительно переменных. Для того чтобы говорить об отдельных объектах, употребляются имена; и, таким образом, этот метод ведет к именам классов и именам свойств. С другой стороны, для того чтобы говорить вообще об объектах какого-либо рода, употребляются переменные; таким образом, здесь метод отношения именования приводит к введению двух видов предикаторных переменных для одного и того же типа; значениями переменных первого вида являются классы, значениями же переменных второго вида являются свойства. Так, например, система РМ употребляет «x», «y» и т. д. как переменные для классов, а «φ», «ψ» и т. д. как переменные для свойств (пропозициональных функций). С точки зрения метода экстенсонала и интенсивала это удвоение аналогично удвоению замкнутых предикаторов и является столь же излишним. В системе РМ' «x(Hx)» есть выражение значения для «x». Мы видели, что на основе нашего метода «x(Hx)» имеет не только экстенсионал — класс Человек (см. 26-7), но также и интенсивал — свойство Человек (см. 26-8). Следовательно, помимо того, что класс Человек приналжит, согласно 10-1, к экстенсоналам значений «x»,
согласно 10-2 к интенционалам значений «о» принадлежит свойство Человек. Но совершенно то же самое имеет силу и относительно «о», согласно 26-6 и 26-5, так как Нх есть выражение значения для «о». Таким образом, оба вида переменных имеют одни и те же экстенциональные значения — классы индивидов и одни и те же интенциональные значения — свойства индивидов. Следовательно, удвоение переменных является ненужным, как и удвоение замкнутых предикаторов. Для данного типа предикаторов достаточно употреблять один вид переменных; экстенциональные значения для них являются классами, а интенциональные значения — свойства (см. § 10). Следовательно, они служат для того, чтобы говорить вообще как о классах, так и о свойствах. [Так, относительно примеров в § 10, предшествующих 10-1, предложений как формы (II), так и формы (III) переводятся на символический язык с помощью одной и той же переменной «о» в форме «(∃н)(...ф...)».

Положение с переменными других видов теоретически такое же самое, но практически другое; в то время как многие логики употребляют разные переменные для классов и для свойств, едва ли найдется логик, который предложит употреблять разные переменные для суждений и для логических валентностей или разные переменные для индивидов и для индивидных концептов. Таким образом, наш метод не отклоняется здесь от обычной процедуры.

Если рассуждение на основе метода отношения именования, ведущее к употреблению двух видов предикаторов в пределах простейшего типа, доводится до более высоких уровней, оно без меры увеличивает множественность предикаторов одного и того же типа. С нашей точки зрения, это увеличение, как и удвоение, с которого оно начинается, излишне. Ради простоты ограничим рассмотрение предикаторами степени 1, то есть будем говорить только о классах и свойствах, не касаясь отношений. Если на первом уровне различение делается между именами классов и именами свойств, то на втором уровне должны различаться четыре вида предикаторов, именно:

имена классов классов,
имена свойств классов,
имена классов свойств,
имена свойств свойств.
Чтобы дать примеры в системе РМ, начнем со следующей матрицы, которая содержит переменный класс «x» как единственную свободную переменную:

\[\forall x \forall y [\sim (x = y) \circ (z) (z \in \alpha \iff z = x \lor z = y)]^*\.

В качестве сокращения этого в последующих примерах будем просто писать «...x...». Эта матрица говорит, что класс \(\alpha\) имеет в очерченности два члена, или, как мы можем сказать для краткости, что \(x\) есть парный класс. Пусть «...φ...»—сокращенная запись этой матрицы в РМ, аналогичная вышепомянутой, но содержащая переменное свойство \(\phi\) вместо \(x\) (это значит, что \(z \in x\) заменяется выражением \(\phi z\)). Следовательно, \(\phi\) говорит, что имеется в точности два индивида, которые имеют свойство \(\phi\), или, как мы можем сказать, что \(\phi\) является парным свойством. Теперь исследуем следующие четыре выражения в РМ:

(1) \(\exists z (...)\).
(II) \(\sim \alpha \ldots\),
(III) \(\exists \phi (...)\),
(IV) \(\sim \phi \ldots\),

где точки указывают на только что описанные матрицы. Выражение (I) является именем класса Парный Класс и, следовательно, принадлежит к первому из четырех видов предикаторов на вышепомянутом втором уровне; (II) есть имя свойства Парный Класс и, следовательно, принадлежит ко второму виду; (III) есть имя класса Парное Свойство и, следовательно, принадлежит к третьему виду; (IV) есть имя свойства Парное Свойство и, следовательно, принадлежит к четвертому виду. Номинат первого вида (I), то есть класс всех классов, которые имеют в точности два члена, в РМ рассматривается как количественное число Два и, следовательно, «2» вводится как сокращение для него. Выражения (II), (III) и (IV) не встречаются в книге [Р.М.], но они строятся согласно правилам системы РМ. Эти четыре выражения принадлежат к одному и тому же типу; они являются предикаторами уровня 2 и степени 1. Если бы нам нужно было на основе нашего метода экстенсио-

* См. комментарий.
налана и интенсонала построить систему с предикаторной переменной «/>», то вместо четырех выражений РМ она содержала бы только одно, именно «(/)(..f..)».

Умножение видов предикаторов на основе метода отношения именования увеличивается на более высоких уровнях. На уровне n будет 2^n разных видов предикаторов в пределах одного и того же типа. Считается, что они требуются как имена 2^n видов объектов. На основе же нашего метода в каждом типе имеется только один вид предикатора; 2^n соответствующих предикаторов первого метода здесь заменяются одним.

На основе нашего метода все математические понятия могут быть определены способом, аналогичным способу, применяемому в [Р.М.] с тем отличием, что выражения специальных классов и переменных классов не употребляются. Предположим, что S — система, которая содержит не только индивидуальные переменные, но также и такие переменные, вместо которых могут быть подставлены предикаторы различных уровней, скажем «/» и «g», как переменные уровня 1, и «m» и «n», как переменные уровня 2. Тогда, например, количественное число Два может быть определено в S как свойство свойств следующим образом:

27-3. «2» сокращение для «((l f) [(E x) (H y) [~ (x = y) • (z) (f z = (z = x) ∨ (z = y))]]).»

Правда, для того чтобы понятие количественного числа было адекватным, нужно, чтобы любым его экспликацией были выполнены определенные требования экстенсиональности. Однако нет необходимости требовать, чтобы количественные числа были экстенциональными; достаточно потребовать, чтобы всякое предложение, приписывающее количественное число данному свойству (или классу), было экстенциональным. Это требование также выполняется нашим методом, потому что количественные числа определяются здесь как свойства свойств, которые являются экстенциональными. То, что, например, 2, по определению 27-3, есть экстенциональное свойство свойств, не явно формулируется в определении, но видно из того, что следующее предложение доказуемо с помощью определения 27-3:

«(f) (g) [(f = g) ⇒ (2 (f) = 2 (g))].»
Общее понятие количественного числа точно так же может быть определено в системе S без употребления выражений специальных классов. В то время как Рассел эксплицитирует количественные числа как классы классов, Фреге рассматривает их как классы свойств. Так как мы хотим рассматривать их как свойства свойств, то мы можем до половины пути следовать за Фреге. Подобно Фреге, мы говорим, что свойство \(f \) равноколичество \(g \) (в символах: \(\text{Equ}(f, g) \)), если между индивидами, имеющими свойство \(f \), и индивидами, имеющими свойство \(g \), имеется одно-однозначное соответствие. Тогда мы определяем количественное число свойства \(f \) как свойство (второго уровня) Равноколичество \(f
\)

27-4. \(\text{«Nc}^f \) сокращение для \((\lambda g) \left[\text{Equ}(g, f) \right] \).

[Фреге берет в качестве определяющего (definiens) не «свойство Равноколичество \(f \)», а «объем свойства Равноколичество \(f \)», что значит то же самое, что и «класс Равноколичество \(f \)». Интересно, что Фреге добавляет к этому определению подстрочное примечание (цит. соч., стр. 80), в котором он говорит: «Я полагаю, что вместо «объем (extension) свойства» мы могли бы сказать просто «свойство». Но это могло бы вызвать два возражения... Я считаю, что оба эти возражения можно устранить; но это завело бы нас слишком далеко». Таким образом, Фреге учитывает здесь возможность более простой процедуры, которую мы теперь и применяем. Он, по-видимому, рассматривает ее как осуществимую, но не развивает ее дальше. В своей более поздней работе 2 он снова определяет количественное число вышеустановленным способом, даже не упоминая об альтернативной возможности. Главное основание, в силу которого он считает количественные числа классами свойств, а не свойствами свойств, сводится, по-видимому, к тому его взгляду, что количественные числа — независимые объекты, в сочетании с его общей концепцией, что классы — независимые объекты, тогда как свойства таковыми не являются. Однако я нахожу его рассуждения по этому вопросу не вполне ясными и далеко не убедительными.] Наконец, подобно Фреге, определяем \(\langle n \) есть

1 [Grundlagen], p. 73—79, 83—85.
2 [Grundgesetze], I, 57.
3 [Grundlagen], p. 67—72.
количественное число» (в символах: «\(\text{NC}(n)\)») посредством «существует свойство \(f\), такое, что \(n\) есть количественное число \(f\)»:

27-5. «\(\text{NC}\)» сокращение для «(\(n\) \((\exists f)(n \equiv \text{NC}\{f\})\)».

Допустим, что свойства \(f\) и \(g\) равночислены. На основе своих определений Фреге доказывает, что в этом случае количественное число \(f\) равно количественному числу \(g\). Последнее утверждение интерпретируется им как гово-рящее, что класс Равночисленно \(f\) является тем же самым, что и класс Равночисленно \(g\). Таким образом, он экспли-цирует равенство чисел как тождество. Здесь наше определение 27-4, по-видимому, содержит трудность, потому что даже в том случае, если \(f\) и \(g\) равночислены, свойство Равночисленно \(f\) не обязательно является тем же самым, что и свойство Равночисленно \(g\). Однако, хотя эти два свойства, которые в нашем методе рассматриваются как коли-чественные числа, не тождественны, они все же эквива-лентны (в смысле 5-3; см. пример 5-5). Таким образом, трудность исчезает, если мы эксплицируем равенство чисел как эквивалентность, а не как тождество и, следовательно, выразим его символически посредством знака «\(\equiv\)».

Таким образом, например, предложение

«число планет=9»

было бы следующим образом переведено в систему \(S\), если взять «\(P\)» в качестве предикатора для свойства Пла-нета:

27-6. «\(\text{NC}\{P\}\equiv 9\)».

(Определение «9», конечно, аналогично определению «2» в 27-3.)

Мы сказали, что эксплицируем количественные числа как свойства второго уровня, в противоположность Фреге и Расселу, которые рассматривают их как классы второго уровня. Но эта формулировка является уступкой обыч-ному взгляду, основанному на отношении именования, согласно которому предикатор является именем или клас-са, или свойства и не может относиться сразу и к тому и к другому. Согласно методу экстенсионала и интенсио-нала, было бы более адекватным сказать, что мы вводим выражения количественных чисел как предикаторы второго
уровня и что эти предикаторы имеют в качестве интенсоналов свойства второго уровня, а в качестве экстенсоналов — классы второго уровня. Так, например, «2» есть предикатор второго уровня; его интенсоналом является свойство (второго уровня) Два, которое мы могли бы назвать числовым интенсоналом Два, или числовым концептом Два; а его экстенсоналом является класс (второго уровня) Два, который мы могли бы назвать числовым экстенсоналом Два. Так как предложение «НсР = 9» истинно, но не L-истинно, то предикаторы «НсР» и «9» эквивалентны, но не L-эквивалентны. Следовательно, числовой экстенсонал Число Планет тот же самый, что и числовой экстенсонал Девять, тогда как числовой интенсонал Число Планет не тот же самый, но эквивалентен числовому интенсоналу Девять. Таким образом, мы видим, что в нашем методе, так же как и в методах Фреже и Рассела, равенство чисел может рассматриваться как тождество определенных объектов, не числовых интенсоналов, а числовых экстенсоналов.

Таким образом, вся система математики, построенная на основе логики Фреже и Рассела, может быть перестрочена в более простой форме без употребления выражений классов, отличных от выражений свойств, и без переменных классов, отличных от переменных свойств.

§ 28. РАЗЛИЧИЕ НОМИНАТА И СМЫСЛА У ФРЕЖЕ

Для любого имени Фреже проводит различие между его номинатом, то есть именуемым объектом, и его смыслом, то есть способом, посредством которого объект задается этим именем. Из рассуждения Фреже мы видим, что его понятие номината удовлетворяет сформулированным выше (§ 24) принципам отношения именования; таким образом, его метод семантического анализа является частной формой того, что мы называем методом отношения именования. Согласно Фреже, номинатом изолированного предложения является его логическая валентность, а его смыслом — выраженное им суждение. Однако, если предложение стоит в контексте (то есть неэкстенсональном) контексте, то его номинатом является это же самое суждение.

Фреже¹ провел очень интересное различие между номинатом выражения и его смыслом². Это различение будет

¹ [Sinn].
² Я даю здесь перечень английских терминов, которые буду употреблять как переводы терминов Фреже, следуя в большинстве случаев
Глава III. Метод отношения именования

сейчас разъяснено, а затем, в следующем разделе, сравнено с нашим различением между экстенсивным и интенсивным. Будет видно, что в некоторых отношениях между этими двумя видами различения имеется близкое сходство; именно эти два понятия Фреге впервые привели меня к понятиям экстенсивного и интенсивного применительно к десигнатурам вообще. С другой стороны, мы найдем и различия между этими двумя концепциями, основанные главным образом на том, что концепция Фреге — особая форма того, что мы уже назвали методом отношения именования.

Цель работы Фреге, описанной здесь в современной терминологии, заключается в проведении семантического анализа некоторых видов выражений в обычном словесном языке и в том, чтобы предложить, исследовать и применить семантические понятия в качестве инструментов этого анализа. Мне кажется, что его рассуждений имеют большое значение для метода логического анализа; но, как и другие его работы, эта работа не обратила на себя того внимания, которого она заслуживает. За исключением Рассела (Denoting), который детально обсуждал анализ Фреге, но отверг его большую часть, работу Фреге оставили без внимания на протяжении почти полстолетия,

за Расселом [Denoting] и Чёрчем (см. примечание 1 на стр. 187) «Ausdrücken» переводится словом «to express» (выражать) «to connote» (означать), может быть, также можно было бы принять во внимание по аналогии с «to denote» (означать), хотя это слово в обычном употреблении часто имеет совершенно другой смысл, относящийся не к обозначающим компонентам значения, а к другим, особенно ассоциативным и эмоциональным; «Sinn» — «Sense» (смысл) так переводят Чёрч: Рассел употребляет «meaning» (значение), можно было бы также рассматривать «connotation» (соозначаемое) или «connotation» (соозначение): «bezeichnet» — «to be a name of» (быть именем), или «to name» (именовать) (Рассел и Чёрч: «to denote» (означать): см. замечание о двусмысленности этого термина в примечании 1 § 24); «Bedeutung» — «nominatum» (назвать) (Рассел и Чёрч: «denotation»); «Begriff» — «Property» (свойство) (Фреге употребляет «Begriff» только для атрибутов степени 1; для атрибутов вообще он употребляет фразу «Begriff oder Beziehung»; «Gedanke» — «Proposition» (суждение) (см. соображение в пользу этого перевода у Чёрча [Review Q. I, p. 47]; «gewöhnlich» (Rede, Bedeutung, Sinn) «ordinary» (обычный); «ungerade» (Rede, Bedeutung, Sinn) «oblique» (косвенный); «Gegenstand» — «Object» (объект); «Wertverlauf» — «value distribution» (распределение значений); «Behauptungssatz» — «(declarative) sentence» (декларативное предложение).
пока Аланзо Чёрч\(^1\) несколько лет назад не начал постоянно указывать на значение концепции Фрэге, защищая ее основную идею и развивая в то же время дальше детали ее применения.

Проводимое Фрэге различение между номинатом и смыслом заключается в следующем. Некоторые выражения являются именами объектов (эти термин должен пониматься в широком смысле, включая как абстрактные, так и конкретные объекты), и о них можно сказать, что они именуют ("bezeichnen") объекты. От номината выражения, то есть объекта, именуемого им, мы должны отличать его смысл, то есть способ, которым номинат задается выражением. Это иллюстрируется следующим примером:

28-1. Два выражения "утренняя звезда" и "вечерняя звезда" имеют один и тот же номинат.

Это верно потому, что оба выражения являются именами одной и той же вещи — некоторой планеты; другими словами, следующее есть истинное предложение об астрономическом факте:

28-2. Утренняя звезда есть то же самое, что и вечерняя звезда. С другой стороны, верно и следующее:

28-3. Выражения "утренняя звезда" и "вечерняя звезда" имеют не один и тот же смысл.

Основанием этого является то, что два выражения относятся к их общему номинату, этой планете, разными способами. Если мы понимаем язык, то мы можем понять и смысл этих выражений; например, мы тогда знаем, что смысл выражения "утренняя звезда" тот же самый, что и смысл фразы "тело, которое иногда появляется утром перед восходом солнца в восточной части неба в виде ярко сверкающей точки". Однако номинат не дается смыслом, а только, как выражается Фрэге, освещается с одной стороны ("einseitig beleuchtet"). Чтобы прийти к результату 28-1, требуется больше, чем простое понимание смысла выражений (а именно наблюдение фактов).

Объясним вообще это различие, Фрэге переходит к применению его к предложениям. В (деclarative) предложении мы выражаем суждение ("Gedanke"). Является ли

\(^1\) В обозрениях в "Journal of Symbolic Logic", V (1940), 162, 163; VII (1942), 101; см. также резюме его работы, там же, VII, 47; далее, более детально в [Dictionary] статье "Descriptions" (Review C) и (Review Q).
суждение, выражаемое предложением, его смыслом или номинатом? В результате долгого и тщательного анализа Фреге приходит к следующим двум положениям: 28-4. (Обычным) смыслом предложения является выражаемое им суждение. 28-5. (Обычным) номинатом предложения является его логическая валентность.

Таковы результаты для обычных случаев; они, в частности, имеют силу для любого изолированного предложения, то есть для такого, которое не является частью другого, более общирного предложения; исключения будут разобраны ниже. Для наших целей самый важный возникающий здесь вопрос — вопрос о методе, с помощью которого Фреге пришел к этим двум результатам (и к исключениям из них). Ясно, что они понимаются не просто как соглашения, как, так сказать, часть определений терминов «смысл» и «номинат». Если бы намерение Фреге было таково, он, вероятно, выбрал бы простое общее правило, не усложненное исключениями. Из его рассуждения становится ясно, что положение иное. Фреге исходит из того, что он вполне отчетливо знает, что он имеет в виду под «смыслом» и «номинатом», то есть что он знает способ, которым он намерен употреблять эти термины. На основе этого знания он исследует, как эти термины применяются к различным видам выражений. Благодаря этому он открывает объективные результаты и по мере того, как находит их, сообщает о них, все равно, являются ли они простыми или сложными. Однако для читателя не так ясно, как для самого Фреге, что следует понимать под его двумя терминами. Предварительные разъяснения, которые он дает, конечно, недостаточны для того, чтобы привести к этим результатам или даже для того, чтобы сделать их правдоподобными. Номинат выражения разъясняется, например, как то, именем чего является выражение. Это объяснение, однако, никоим образом не делает результат 28-5 более правдоподобным. Я думаю, что всякий неподготовленный читатель был бы склонен рассматривать предложение скорее как имя суждения, чем как имя логической валентности, если, действительно, он вообще хочет рассматривать предложение как имя чего-либо. Другое объяснение, которое Фреге дает для «номината», заключаета
в том, что предложение говорит о номинатах входящих в него выражений (мы выше назвали это принципом предметности, 24-2). Но мне кажется, что и это объяснение не делает 28-5 более правдоподобны. Например возьмем ложное предложение «Hw» (см. правила 1-1 и 1-2), как часть предложения «¬Hw». (Согласно Фреге, это обычный случай, то есть 28-4 и 28-5 имеют также силу и для «Hw» в этом контексте.) Вопрос здесь состоит в том, являться ли номинат предложения «Hw», как части предложения «¬Hw», (I), ложью, или (II) (ложным) суждением, что книга Беверлей есть человеческое существо. Согласно принципу предметности, предложение «¬Hw» в случае (I) есть предложение о лжи (говорящее, по предположению, что ложь не имеет места), а в случае (II) — об упомянутом суждении (говорящее, по предположению, что оно не имеет силы). Я думаю, что первая альтернатива, являющаяся результатом Фреге 28-5, показалась бы всякому неподготовленному читателю гораздо менее естественной, чем вторая.

Приведенные соображения никаким образом не имеют целью опровергнуть или возразить против результатов Фреге. Имеется в виду только показать, что предварительные разъяснения терминов, данные им, оказываются недостаточными в качестве основания для его результатов. Чтобы понять специфический смысл, который Фреге вкладывает в свои термины, надо обращать внимание не столько на его предварительные разъяснения, сколько на рассуждения, с помощью которых он приходит к своим результатам. Когда мы поступаем таким образом, мы обнаруживаем, что Фреге использует некоторые допущения, как если бы они были самоочевидны, или по крайней мере хорошо известны и правдоподобны, не формулируя их явно как основные принципы своего метода. Эти допущения можно сформулировать как принципы взаимозаменяемости следующим образом:

Причины взаимозаменяемости Фреге.

Пусть — сложное имя, содержащее вхождение имени . . .; а — соответствующее выражение с именем . . . вместо 28-6. Первый принцип. Если . . . и . . . имеют один и тот же номинат, то . . . и имеют один и тот же номинат. Другими словами, номинат всего выражения есть функция номинатов имен, входящих в него.
Глава III. Метод отношения именования

28-7. Второй принцип. Если \(\mathcal{A}_j \) и \(\mathcal{A}_k \) имеют один и тот же смысл, то \(\ldots \mathcal{A}_j \ldots \) и \(\ldots \mathcal{A}_k \ldots \) имеют один и тот же смысл. Другими словами, смысл всего выражения есть функция смыслов входящих в него имен.

Теперь посмотрим, как Фреге с помощью первого принципа получает свои результаты 28-4 и 28-5. Его проблема такова: что является номинатом и что является смыслом (изолированного) предложения? Он говорит: «Если мы заменим одно слово в предложении другим словом с тем же самым номинатом, но с другим смыслом, то эта замена не может иметь никакого влияния на номинат всего предложения»\(^1\). Здесь, очевидно, заранее молчаево предполагается первый принцип. Возьмем два предложения, которые сходны во всем, кроме того, что в одно входит словосочетание «утренняя звезда», а в другое — «вечерняя звезда». Согласно нашим прежним предложениям (28-1 и 28-3), это как раз то, о чем идет речь. Следовательно, согласно только что цитированному рассуждению Фреге, эти два предложения имеют один и тот же номинат. Что же тогда можно считать этим общим номинатом? Суждения, выражаемые этими двумя предложениями, могут, очевидно, быть различными. Следовательно, они не могут быть номинатами; следовательно, рассуждает Фреге, они должны быть смыслами этих предложений. [Здесь молчаево делается другое допущение, что выражаемое этим предложением суждение должно быть или номинатом, или смыслом предложения, так как оно явно имеет близкое (семантическое) отношение к этому предложению.] С другой стороны, сбда предложения имеют одну и ту же логическую валентность (по крайней мере в обычных случаях). Следовательно, логическая валентность и может рассматриваться как общий номинат. Так достигаются результаты 28-4 и 28-5 (для обычных случаев).

Самым важным применением двух принципов Фреге является применение их к случаям, в которых все выражение \(\ldots \mathcal{A}_j \ldots \) в целом есть изолированное предложение (тогда как \(\mathcal{A}_j \) может быть или предложением, или именем другой формы). Для этих случаев принципы принимают следующие специальные формы, если результаты 28-4 и 28-5 применяются к целым предложениям:

\(^1\) [Sinn], p. 32.
§ 28. Различение номината и смысла у Фреге

Принципы Фреге взаимозаменимости внутри предложений.

Пусть \(\mathfrak{A}_j \) — изолированное предложение, содержащее вхождение имени \(\mathfrak{A}_j \), и \(\mathfrak{A}_k \) — соответствующее предложение с именем \(\mathfrak{A}_k \) вместо \(\mathfrak{A}_j \).

28-8. Первый принцип. Если \(\mathfrak{A}_j \) и \(\mathfrak{A}_k \) имеют один и тот же номинат, то \(\mathfrak{A}_j \) и \(\mathfrak{A}_k \) имеют одну и ту же логическую валентность. По нашей терминологии (11-1), имена, которые имеют один и тот же номинат, взаимозаменяются друг с другом.

28-9. Второй принцип. Если \(\mathfrak{A}_i \) и \(\mathfrak{A}_k \) имеют один и тот же смысл, то \(\mathfrak{A}_i \) и \(\mathfrak{A}_k \) выражают одно и то же суждение. По нашей терминологии, имена, которые имеют один и тот же смысл, являются взаимозаменяющимися друг с другом.

Наши ссылки в последующем будут делаться на эти специализированные формы двух принципов Фреге.

То, что Фреге имеет в виду под «номинатом» и «смыслом», становится более ясным из этих принципов, чем из его предварительных пояснений. Первый принцип Фреге, 28-8, есть то же самое, что и 24-3а, принцип взаимозаменимости для отношения именования. Так как рассуждение Фреге показывает, что принципы 24-1 и 24-2 также имеют силу для его понятия номината, то его метод есть частная форма того, что мы назвали методом отношения именования. Как мы видели выше, 24-3а вполне правдоподобен; следовательно, и первый принцип Фреге вполне правдоподобен. Трудно сказать, будет ли это верно и для второго принципа. Но я думаю, что он не оказывается неправдоподобным, если мы считаем его раскрывающим тот факт, что Фреге понимает термин «смысл» так, что смысл сложного выражения и, в частности, предложения устанавливается с помощью смыслов входящих в него имен.

С одной стороны, принципы Фреге приводят его, как мы видели, к результатам 28-4 и 28-5 для обычных случаев — например для изолированных предложений. С другой стороны, эти же самые принципы заставляют его считать некоторые случаи исключениями относительно этих результатов и тем самым делают его схему довольно сложной. Этими исключениями являются случаи, в которых имя входит в косвенном контексте (что, по нашей терминологии, примерно то же самое, что и неэкстенсиональный
контекст, 11-2а). Возьмем, например, вхождение (ложного) предложения
(I) «Орбиты планет суть окружности» в косвенном контексте
(II) «Коперник утверждает, что орбиты планет суть окружности».
Заключающаяся здесь проблема осталась бы, конечно, той же самой, если бы вместо «утверждает» стоял такой термин, как «считает» (believes); следовательно, этот пример подобен рассмотренным выше (§ 13) предложениям о мнениях. Согласно результатам Фреже (28-5 и 28-4), обычный номинат (I), то есть тот номинат, который имеет это предложение, когда входит или изолированно, или в обычный, некосвенный контекст, есть его логическая валентность, которая, оказывается, должна быть ложью; а обычный смысл предложения (I) есть суждение, что орбиты планет суть окружности. Далее Фреже говорит, что предложение (I) в косвенном контексте (II) имеет не обычный свой номинат, а другой, который он называет его косвенным номинатом, и не обычный свой смысл, а другой, который он называет его косвенным смыслом. Относительно косвенного номината Фреже делает следующие два утверждения; второе утверждение есть частный случай, вытекающий из первого:
28-10. Косвенный номинат имени есть то же самое, что его обычный смысл.
28-11. Косвенным номинатом предложения является не его логическая валентность, а суждение, являющееся его обычным смыслом.
Таким образом, для приведенного выше примера имеет силу следующий результат:
28-12. Косвенным номинатом предложения (I), то есть объектом, именуемым предложением (I) в косвенном контексте, подобном (II), является суждение, что орбиты планет суть окружности.
Для этого результата Фреже приводит два аргумента в разных местах своей статьи.
(1) «В косвенном способе выражения говорят о смысле, например, высказывания другого лица. Отсюда ясно, что... в этом способе выражения слово не имеет своего обычно го номината, а именует то, что является его смыслом»1.

1 [Sinn], p. 28.
§ 28. Различение номината и смысла у Фрего

Я понимаю здесь соображение Фрего применительно к приведенному выше примеру следующим образом. Он, по-видимому, молча произносит не принцип предметности (24-2). Согласно этому принципу, все предложение (II) в целом говорит о номинате его собственной части (I). Однако ясно, что (II) не говорит о предложении (I), потому что Коперник мог употребить не (I), а другие слова и даже другой язык. Предложение (II) не говорит также и о логической валентности утверждения Коперника, а скорее, о его смысле, потому что (II) говорит, что Коперник утверждает определенный смысл, определенное суждение, то суждение, которое является обычным смыслом (I). Следовательно, это суждение должно быть номинатом (I) в (II).

(2) Что номинат предложения в косвенном контексте — не логическая валентность, а суждение, «видно, — говорит Фрего, из того (обстоятельства), что истинность предложения в целом не зависит от того, истинно или ложно суждение»¹. Здесь, вероятно, имеется в виду следующее. Согласно первому принципу Фрего, номинат, то есть логическая валентность предложения (II) в целом, является функцией номината его собственной части (I). Если теперь последний номинат был бы логической валентностью, то логическая валентность (II) зависела бы от логической валентности (I). Однако это не так; для того чтобы установить, что (II) истинно, нам не нужно знать, является ли (I) истинным или ложным. Следовательно, номинат (I) в (II) не может быть его логической валентностью; следовательно, он должен быть суждением. (Для этого последнего шага опять-таки молча произносится некоторое допущение.)

В одном отношении понятие суждения («Gedanke») у Фрего не совсем ясно; он не устанавливает условия тождества для суждений. В предшествующем рассмотрении я допустил, что он берет то же самое условие тождества, что и мы, а именно L-эквивалентность (см. § 6 и [1], p. 92). Однако в этом случае его анализ предложений с такими терминами, как «утверждается», «считается» и т. д., не совсем правилен; потому что предложение этого рода может изменить свою логическую валентность и, следовательно,

¹ [Sinn], p. 37.
a fortiori, свой смысл, если собственная его часть заменяется L-эквивалентным ему предложением (см., например, рассмотрение предложений о мнениях в § 13, особенно 13-4). Его анализ был бы правильным, если бы он имел в виду более сильное условие, чем L-эквивалентность, что-либо подобное разъясненному выше (§ 14) понятию интенциональной структуры. В этом случае наша вторая формулировка 28-9, которая понималась как перевод второго принципа Фреге в нашу терминологию, должна быть опущена.

§ 29. НОМИНАТ И СМЫСЛ: ЭКСТЕНСИОНАЛ И ИНТЕНСИОНАЛ

Пара понятий у Фреге (номинат и смысл) сравнивается с нашей парой (экстенционал и интенционал). Эти две пары совпадают в обычных (экстенциональных) контекстах, но не в косвенных (некстенциональных) контекстах. Это приводит не к несовместимости или теоретическому различию во мнениях, а только к практическому различию в методах. Пара понятий Фреге предназначена быть экспликатом для определенного традиционного различения, а наша пара — экспликатом для другого различения.

Теперь мы сравним различие Фреге между номинатом и смыслом выражения с нашим различением между экстенционалом и интенционалом выражения.

Наша пара понятий, как и понятия Фреге, предназначена служить для целей семантического анализа значения. Эти наши два понятия могут рассматриваться, подобно понятиям Фреге, как представляющие две компоненты значения (в широком смысле). Понятия смысла и интенционала отнесутся к значению в строгом смысле, как то, что схватывается, когда мы понимаем выражение, не зная фактов; понятия номината и экстенционала относятся к выполнению выражения, зависящему от фактов.

Решающее различие между нашим методом и методом Фреге состоит в том, что наши понятия в отличие от понятий Фреге не зависят от контекста. Выражение в правильно построенной языковой системе всегда имеет один и тот же экстенционал и один и тот же интенционал; но в некоторых контекстах оно имеет свой обычный номинат и свой обычный смысл, а в других контекстах — свой косвенный номинат и свой косвенный смысл.
Сравним сначала экстенсонал выражения с его обычным номинатом; по-видимому, эти понятия совпадают. Для предикаторов Фреге, по-видимому, не объяснил, как применяются его понятия; однако я думаю, что Чёрч

1 находит в согласии с намерениями Фреге, когда считает класс (обычным) номинатом предикатора (степени 1), например, имени нарицательного, и свойство его (обычны) смыслом. В качестве примера Чёрч утверждает, что номинат «единорога» — пустой класс, а его смысл — свойство единорогости. И здесь экстенсоналом точно так же является данный класс. Что касается предложения, то его логическая валентность является как обычным номинатом, так и экстенсоналом. А в случае индивидуального выражения обычным номинатом и экстенсоналом является данный индивид. Таким образом, мы имеем следующий результат: 29-1. Для любого выражения его обычный номинат (в методе Фреге) есть то же самое, что и его экстенсонал (в нашем методе).

Труднее уяснить, что составляет обычный смысл в методе Фреге. Как упоминалось выше, это получилось из-за отсутствия точного объяснения, и особенно формулировки условия тождества смысла; мы допустим опять, что Фреге согласился бы в качестве этого условия выбрать L-эквивалентность. Тогда обычным смыслом предложения является выражаемое им суждение, следовательно, оно есть то же самое, что и его интенсонал. Для предикатора (степени 1) обычным смыслом является данное свойство, и его интенсонал — то же самое. Фреге не употребляет никакого специального термина для смысла индивидуального выражения 2. Но он говорит, что смысл предложения не изменяется, если индивидуальное выражение, входящее в обычный контекст, заменяется другим выражением с тем же самым смыслом. Следовательно, по-видимому, разумно предполагать, что то, что Фреге имеет в виду под смыслом индивидуального выражения, есть приблизительно то же самое, что мы имеем в виду под индивидуальным концептом. Следовательно, на

1 [Review C.], p. 301.
2 Чёрч употребляет термин «дескрипция», который, однако, более обычен для индивидуального выражения, построенного с йота-оператором, чем для его смысла.
основании нашего понимания объяснений Фреге, по-видимому, имеет место следующее:
29-2. Для любого выражения его обычный смысл (в методе Фреге) есть то же самое, что и его интенционал (в нашем методе).

Таким образом, для обычных вхождений выражений наши два понятия совпадают с понятиями Фреге. Различие возникает только для выражения в косвенном контексте. Здесь наши понятия ведут к тем же самым объектам, как и для обычных вхождений тех же самых выражений, тогда как понятия Фреге ведут к другим объектам. Как мы видели выше, это усложнение вводится Фреге не произвольно, а как неизбежное следствие его общих принципов, особенно первого.

Вводя различение между номинатом и смыслом, Фреге, по-видимому, имел намерение сделать более отчетливым известное различие, которое делалось в разных формах в традиционной логике. Таким образом, задачей была экспликация (в смысле, поясненном в начале §2). Предлагаемые им экспликаты — понятия номината и смысла. Теперь вопрос заключается в следующем: каковы были его экспликаны, то есть для какой пары традиционных понятий предложил Фреге свои экспликаты? Ч.р.ч. 1 ссылается в этой связи, во-первых, на различие между «объемом» и «пониманием» в логике Пор-Рояля и, во-вторых, на различие между «означением» (denotation) и «соозначением» (connotation) у Дэйна Стоуарта Милля. Мне кажется, что в историческом развитии мы находим две пары соотносительных понятий, появляющиеся в разных формах. Эти пары тесно связаны друг с другом и могут иногда даже сливат-ся. Тем не менее я вообще думаю, что их можно различать. (1) В традиционной логике мы часто находим два соотно-сительных понятия: с одной стороны, то, что называется «объемом» или «означением» (в смысле Дж. Ст. Милля) термина, или понятия; с другой стороны, то, что называ-лось его «содержанием», «пониманием», «значением» или «соозначением» 2. Мне кажется, что Фреге своим различе-

1 [Review C.], p. 301.
2 Детальный разбор и сравнение концепций Милля и других авто-рсов см. Ralph M. Eaton, General Logic (1931), chap. VI.
нием между распределением значений (value-distribution) пропозициональной функции и самой пропозициональной функцией намеревался дать экспликацию этой пары понятий; в случае степени 1 это различение есть известное различение между классом и свойством. Наше различение между экстенсоналом и интенсоналом также понимается как экспликация этой же пары понятий, поскольку дело касается предикатов, и одновременно как расширение области применения обычных понятий к другим видам десигнаторов. (2) Вторая пара понятий отправляется от отношения именования. В повседневном языке, например, говорят, что выражение «Вальтер Скотт» есть имя человека Вальтера Скотта. Логики расширяют применение этого отношения. Они считают именами также и индивидные дескрипции, например выражение «автор Веверлея», они считают именем того же самого человека Вальтера Скотта, что обычно не принято в повседневном языке. Более того, они строят даже в качестве имен выражения типа, отличного от индивидуального; они считают их импликами абстрактных объектов, например, классов или свойств, отношений, функций, суждений и т. д. (Другие термины, употребляемые как синонимы выражения есть имя, были упомянуты в начале § 24.) Относительно любого выражения, рассматриваемого как имя, здесь проводится различение между тем объектом, именем которого является данное выражение, и значением или смыслом этого выражения. По-видимому, второе понятие в этой паре весьма похоже на второе понятие в первой паре; для обоих иногда употребляется термин «значение».

Мне кажется, что тем экспликандом, который Фреге намеревался эксплицировать своим различением между номинатом и смыслом, была скорее вторая пара понятий, чем первая. Я интерпретирую также и некоторые рассуждения Кувайна в [Notes] как попытку выяснения и экспликации понятий второй пары. Поскольку рассуждения Чёрча в недавних публикациях, особенно в [Review C.] и [Review Q.], имеют целью защиту и развитие различения Фреге, я считаю их также принадлежащими в большей степени к второй исторической линии, чем к первой. Однако эти две исторические линии, две пары понятий, рассматриваемых как экспликации, тесно связаны друг с другом. Я подчеркнул
различие между ними только для того, чтобы сделать яснее различие между проблемой, которую намеревался разрешить Фреге, и моей проблемой, или, точнее, различие между экспликацией, взятой Фреге в качестве основы его различения между номинатом и смыслом (если я правильно его понимаю), и экспликацией, для которого предназначается мое различение между экстенсионалном и интенсоналном.

Таким образом, становится ясным — и я хочу подчеркнуть этот пункт,— что различие между методом Фреге и предлагаемым здесь методом не является различием во мнениях. Другими словами, это не такое положение, когда на один вопрос дается два разных и несовместимых ответа. Здесь два вопроса; точнее, это даже не теоретические вопросы, а только практические цели. В то время как общая цель одна и та же — построение пары понятий, пригодных как средство для семантического анализа,— специальные цели различных. Фреге пытается достичь общей цели экспликацией одной пары понятий, а я — экспликацией другой пары. Принципы Фреге не являются утверждениями, которые можно опровергнуть или в которых можно сомневаться. Они должны рассматриваться скорее как часть характеристики двух его понятий и, следовательно, аналитически имеют силу для этих понятий. Если бы кто-нибудь сказал — чего я не делаю,— что не согласен с принципами Фреге, он сказал бы только то, что понимает два термина «номинат» и «смысл» иначе, чем Фреге,— другими словами, что он употребляет другие понятия,— и, следовательно, здесь не было бы настоящего разногласия. Результаты, полученные Фреге, включая и усложнение в случае косвенных контекстов,— следствия его принципов и потому разделяют их аналитическую значимость (если считать, что Фреге не допустил ошибки в процессе вывода результатов из принципов). Следовательно, я вполне согласен с результатами Фреге в следующем смысле: они верны для его понятий. Это же самое и на том же основании относится и к результатам Чёрча.

Как мы видели выше, два понятия, употребляемые в нашем методе, в некоторых случаях совпадают с понятиями Фреге, тогда как в других случаях такого совпадения нет. Поскольку наши понятия, как признано, от-
личаются от понятий Фреге, это не является противоречием между двумя теориями. Здесь, скорее всего, имеет место следующее: предположим, что кто-либо делит всех животных на водяных, воздушных и земных; кто-либо другой делит их на рыб, птиц и остальных. Эти две классификации до некоторой степени совпадают, потому что рыбы — водяные животные, а птицы — воздушные; но они совпадают не во всем. Один включает китов в свой первый класс, тогда как другой этого не делает. Это, однако, не создает различия во мнениях или теоретического противоречия, потому что два данных понятия, как признано, различаются. Поскольку эти две классификации и основывающиеся на них утверждения не несовместимы, постольку теоретически было бы возможным употреблять их обе одновременно. Однако вследствие того, что одновременное использование их обеих оказывается без необходимости сложным, возникает практическая несовместимость или конкуренция. В этом случае решающим вопросом является следующий: какая из этих двух троек понятий более плодотворна для цели классификации животных, для которой они обе предназначены?

Положение для пары понятий Фреге и предлагаемых здесь мной понятий мне кажется аналогичным. Я думаю, хотя и не вполне в этом уверен, что для семантического анализа вряд ли было бы весьма полезным использовать одновременно обе пары понятий. А если это так, то, несмотря на теоретическую совместимость, возникает практическая конкуренция или конфликт. Этот конфликт может, например, появиться в следующем пункте, о котором уже говорилось: логик, рассуждающий в терминах понятий Фреге, был бы склонен, хотя и не вынужден, построить логическую систему таким образом, чтобы она содержала разные выражения для классов и для свойств, тогда как логик, рассуждающий в терминах экстенсионала и интенсонала, был бы, вероятно, меньше склонен к этому.

§ 30. НЕДОСТАТКИ МЕТОДА ФРЕГЕ

Частная форма метода отношения именования у Фреге предполагает еще некоторые усложнения. Начиная с любого обычного имени, она ведет к бесконечному числу объектов и к бесконечному числу выражений в качестве имен для них, тогда как метод экстенсонала и интен-
сияла нуждается только в одном выражении и говорит только о двух объектах. Более того, согласно методу Фреге, одно и то же имя, входящее в разные контексты, может иметь бесконечное число различных номинатов, а иногда даже одно и то же вхождение имени может одновременно иметь несколько номинатов.

Недостатки пары понятий Фреге по сравнению с предлаляемой здесь парой относятся к понятию номината. Понятие смысла Фреге очень похоже на понятие интенционала; мы могли бы даже сказать, что, когда мы рассматриваем только эти два понятия, трудно увидеть какое-либо основание для их различения. Различие вызывается фрежевской дифференциацией между обычным и косвенным смыслом имени. Нелегко сказать, каковы были его основания для того, чтобы считать их различными. Может быть, он был вынужден произвести это различение благодаря первоначальному различению между обычным и косвенным номинатом. Мне, по крайней мере, не кажется, что было бы неестественным или неправдоподобным приписывать имени его обычный смысл в косвенном контексте. Однако Фреге не мог этого сделать, потому что он уже употреблял этот обычный смысл как номинат в косвенном контексте. А так как он допускает, что номинат и смысл всегда должны быть различны, он должен, таким образом, ввести третий объект — косвенный смысл. Кстати, Фреге, кажется, нигде не объясняет в более обычных терминах, что представляет собой этот третий объект.

Так как метод Фреге — специальная форма того, что мы назвали методом отношения именования, то он обладает также и теми недостатками, которые мы в этом методе обнаружили выше. Мы нашли (§ 25), что понятие номината заключает в себе некоторую неоднозначность, которая переносится также и на другие семантические понятия, например на понятия предложения тождества и знака тождества.

Далее мы видели (§ 26, 27), что метод отношения именования может привести к развителенному удвоению или множественности имени, в пределах одного и того же типа. Если принять фрежевскую форму метода, то положение становится даже еще более сложным. Прочитайте пример из двух примеров. (См. диаграмму, где стрелка с «N» указывает на отношение именования, а стрелка с «S»
§ 30. Недостатки метода Фреге

Имена:
Пример (1): \(n_1 \) "Hs"
Пример (2): \(n_2 \) "H"

Объекты:
Пример (1): логическая валентность Истина
Пример (2): класс Человек

Суждение, что
свойство Человек

\(e_1 \)
\(e_2 \)
\(e_3 \)
\(e_4 \)

на смысловое отношение.) Пример (1): Начнем с имени \(n_1 \), скажем, с предложения «Hs». Согласно методу Фреге, существует объект \(e_1 \), именуемый этим именем; это — логическая валентность «Hs». И есть другой объект, \(e_2 \), который является смыслом «Hs»; это — суждение, что Скотт есть человек. Это суждение \(e_2 \) тоже может иметь имя; если мы хотим говорить об этом объекте, то нам нужно иметь для него имя. Это имя отличается от \(n_1 \), потому, что \(n_1 \) есть имя объекта \(e_1 \) и, следовательно, в правильно построенном языке оно не должно одновременно употребляться как имя другого объекта. Пусть новое имя есть \(n_2 \). Как и всякое имя, \(n_2 \) имеет смысл. Этот смысл \(n_2 \) должен отличаться от номината \(n_2 \), это — новый объект, \(e_3 \), не встречающийся в обычных анализаах. Для того чтобы говорить о \(e_3 \), нам нужно иметь новое имя \(n_3 \). Смысл имени \(n_3 \) есть новый объект \(e_4 \) и так далее ad infinitum.

Пример (2): Аналогичное положение получается, если первое имя \(n_1 \)— имя другого типа, например предикатор, скажем «H». Объектом \(e_1 \), именуемым \(n_1 \), здесь является класс Человек; смыслом, \(e_2 \), — свойство Человек. Имя \(n_2 \) вводится как имя для свойства Человек, а новый объект \(e_3 \) — смысл этого имени. Имя \(n_3 \) есть имя этого смысла \(c_3 \); \(e_4 \) есть смысл этого имени \(n_3 \) и т. д. Вообще говоря, если мы начинаем с любого имени обычной формы, то мы имеем сначала два известных нам объекта: его обычный поминат и его обычный смысл; они соответственно представляют
собой то же самое, что и его экстенсионал и интенсионал. Метод Фреге ведет, далее, к бесконечному числу объектов новых и неизвестных видов; а если мы хотим иметь возможность говорить о них всех, то наш язык должен содержать бесконечное число имен для всех этих объектов. Обеспечить возможность этой бесконечной последовательности имен является, таким образом, на основе метода Фреге, естественным решением. И Ч...рч, действительно, в своем развитии метода Фреге принимает это решение, объявляя желательным, «чтобы язык-объект содержал для каждого имеющегося в нем имени еще имя связанного с ним смысла».

На основе же метода экстенсионала и интенсионала, вместо бесконечной последовательности выражений, нам нужно в языке-объекте только одно выражение (например, в первом примере — «Hs», во втором — «H»); и в метаязыке мы говорим только о двух объектах в связи с одним выражением — о его экстенсionale и его интенсionale (и даже эти объекты являются, как мы увидим ниже, только разными способами выражения одного и того же).

Тот факт, что, согласно методу Фреге, одно и то же имя может иметь разные номинаты в различных контекстах, уже упоминался как недостаток. Но увеличение числа объектов идет намного дальше фрегевского первоначального различения между обычным и косвенным номинатом имени. Действительно, эти два номината составляют только начало бесконечной последовательности номинатов для одного и того же имени. Если мы применим метод Фреге к кратно-косвенным предложениям, то мы должны будем различать обычный номинат имени, его первый косвенный номинат, его второй косвенный номинат и т. д. Для того чтобы построить пример, предположим, что система S содержит, подобно S₂ (см. § 11, пример II), не только модальные знаки, скажем «Np» для выражения «необходимо, что p», и «□p» для выражения «возможно, что p», но также психологические термины, скажем «Jp», для выражения «Джон считает, что p». Теперь рассмотрим ряд предложений, каждое из которых входит в следующее в простом косвенном контексте:

1 [Review Q.], p. 47.
§ 30. Недостатки метода Фреде

(I) «Н» («Скотт — человек»);
(II) «◊(Hs) («возможно, что Скотт — человек»);
(III) «J◊(Hs)» («Джон считает, что возможно, что Скотт — человек»);
(IV) «¬N(J◊(Hs))» («не необходимо, что Джон считает, что возможно, что Скотт — человек») и т. д.

Посмотрим, что является номинатом первоначального предложения «Hs» в этих различных контекстах. Согласно нашему прежнему разъяснению метода Фреде, номинатом изолированного предложения «Hs» является его логическая валентность, следовательно, объект е₁ в предыдущей диаграмме; а номинатом его вхождения в (II) является суждение, что Скотт есть человек; следовательно, объект е₂ в диаграмме. Далее, посредством анализа, который мы не будем описывать здесь в деталях, можно показать, что номинатом «Hs» в (III) является е₃, его номинатом в (IV) — e₄ и т. д. Таким образом, одно и то же выражение «Hs» имеет бесконечное число различных объектов в качестве номинатов, когда оно входит в разные контексты.

Это обстоятельство — что различные вхождения имени могут иметь различные номинаты, — конечно, является недостатком. Это — причина того, почему Чёрч предлагает некоторое изменение метода Фреде, благодаря чему эта множественность номинатов избегается (см. § 32, метод III).

Худшим, чем множественность номинатов в различных случаях употребления имени, является то обстоятельство, что, согласно собственному анализу Фреде, в некоторых контекстах одно и то же предложение имеет одновременно два разных номината. В качестве примера Фреде берет предложение «Bebel wähnt, dass...», что значит (употребляя «A» как сокращение для длинной собственной части предложения) «Бебель имеет иллюзию, что A», или «Бебель ошибочно считает, что A». Фреде интерпретирует, и без сомнения правильно, это предложение, как «Бебель считает, что A; и не A». Здесь у нас два вхождения «A»: первое — в косвенный контекст, второе — в обычный контекст, с разными вследствие этого номинатами. Таким образом, Фреде приходит к заключению, что в первоначальном предложении «Бебель ошибочно считает, что A», собственная часть «A», «строго говоря, должна браться дважды...
дь с разными номинатами, из которых один является суждением, а другой — логической валентностью»¹. Аналогичное положение получается в случае, подобном «Джон знает, что A», потому что это имплицирует «Джон считает, что A; и A».

Этот двойной номинат имени не для разных вхождений, как в предыдущих случаях, а для одного и того же вхождения является поразительным результатом метода Фреге. Предложения, о которых идет речь, кажутся совершенно ясными. На первый взгляд не кажется правдоподобным, что собственная часть «A» является одновременно именем двух различных объектов. Легко заметить, что обсуждаемая здесь особенность не имеет ничего общего с обычными неоднозначностями, часто встречающимися в естественных словесных языках, но встречается также в точной символической системе модальной логики. Модальный знак «CT» для случайной (contingent) истины суждений (которая не является семантическим понятием, см. § 23) может быть введен в S₂ на основе «N» (см. § 11, пример II) следующим образом:

30-1. Сокращение. «CT(p)» есть сокращение для «p≡N(p)».

На этом основании предложение «CT(Hs)» L-эквивалентно предложению «Hs ≡ N(Hs)», что значит: «Скотт — человек, но не необходимо, что Скотт — человек»; или короче: «Факт тот, что Скотт — человек». Согласно анализу Фреге, предложение «Hs» внутри предложения «CT(Hs)» имеет сразу два различных номинатов так же, как знаки «Н» и «S»; и это же самое имеет силу для слов «Скотт» и «человек» в предложении «Факт тот, что Скотт — человек». Это довольно неудовлетворительный результат.

Если же вместо метода Фреге употребить метод экстенсонала и интенсонала, то положение становится гораздо проще. Всякое выражение всегда имеет один и тот же экстенсонал и один и тот же интенсонал независимо от контекста. Проблемы, связанные с модальными контекстами, будут разобраны ниже (гл. V).

¹ [Sinn], p. 48.
§ 31. АНТИНОМИЯ ОТНОШЕНИЯ ИМЕНОВАНИЯ

Третий принцип отношения именования (24-3) позволяет заменить одно имя другим именем того же объекта. Хотя этот принцип кажется вполне правдоподобным, он все же не всегда верен. На это указывали Фрего, Рассел и Кун. Противоречие, которое иногда возникает, если такая замена производится в неэкстенсимальном контексте, называетя здесь антиномией отношения именования.

Принципы, характеризующие метод отношения именования (24-1, 2 и 3), кажутся вполне правдоподобными; это же относится и к обеим формам принципа взаимозаменимости, причем одна из них использует понятие отношения именования (24-3а), а другая — понятие тождества (24-3б). Поэтому при наивном подходе без более детального исследования мы можем подвергнуться искушению считать эти принципы верными вообще, без каких-либо ограничений. Однако если мы поступим таким образом и, в частности, если мы примем принцип взаимозаменимости в любой его форме к неэкстенсимальным контекстам, то придем к противоречию. Я предлагаю назвать это противоречие антиномией отношения именования. [Мой выбор этого термина, конечно, мотивируется тем, что, с моей точки зрения, ответствен за эту антиномию именно метод отношения именования. Другие логики, рассматривающие этот метод как безопасный и не вызывающий возражений и думающие, что источник затруднения лежит скорее в употреблении модальных контекстов или, говоря общее, интенсимальных контекстов, или, еще общее, косвенных (то есть неэкстенсимальных) контекстов, возможно, предпочут называть это противоречие антиномией модальности, или интенсимальности, или косвенностности.]

Антиномия отношения именования может быть построена, как мы увидим, в любой из двух форм; первая использует первую форму принципа взаимозаменимости (24-3а), вторая — его вторую форму (24-3б). Вторая форма антиномии может, возможно, называться антиномией тождества, или антиномией тождественных номинатов, или антиномией синонимичности (если только термин «синонимичный» понимается не в смысле «интенсимально изоморфный» (14-1), а в смысле «имеющий тот же самый номинат»).
Фрего был первым, кто указал на то обстоятельство, что принцип взаимозаменяемости (см. 24-5) в его применении к обычным номинатам имен не имеет силы для косвенных контекстов. Хотя формулировка Фрего и не дана в терминах противоречия, его результат составляет основу того, что я предлагаю называть антиномией отношения именования.

Антиномический, парадоксальный характер этой ситуации был, по-видимому, впервые замечен Расселом. Он излагает эту антиномию в ее второй форме в отношении взаимозамещения индивидных выражений, как первую из трех «головоломок», которые, как он говорит, должна решить каждая теория обозначения (отношения именования). Он формулирует вторую форму принципа взаимозаменяемости (24-3_b) следующими словами: «Если а тождественно b, то все, что истино об одном, истино и о другом, и каждое из них может быть заменено другим в любом суждении без изменения истинности или ложности этого суждения».

В качестве примера он берет предложение «Георг IV хотел знать, был ли автором Веерлея Скотт». Если в этом предложении, на основе истины предложения тождества «автор Веерлея тождествен со Скоттом» (9-1), дескрипция «автор Веерлея» заменяется «Скотт», то получающееся в результате предложение является, по-видимому, ложным.

Куайн точно так же указывает на вторую форму антиномии относительно индивидных выражений. Его первые примеры — психологические предложение со словосочетаниями «не знает, что» и «считает, что» похожи на пример Фрего — «Коперник утверждает, что...» (см. выше, § 28) и на только что упомянутый пример Рассела. Дальнейшие примеры, приводимые Куайном, являются модальными предложениями. Первый гласит: «Необходимо, что если на вечерней звезде есть жизнь, то на вечерней звезде есть жизнь». Если здесь, на основе предложения тождества «Утренняя звезда есть то же самое, что и вечерняя звезда» (28-2), которое в результате астрономи-
§ 31. Антиномия отношения именования

ческих наблюдений оказывается истинным, одно вхождение «вечерняя звезда» заменить на «утренняя звезда», то получится ложное предложение. (Если же вместо истинного предложения тождества 28-2 употребить семантическое утверждение 28-1, то мы получим первую форму антиномии.) В другом примере модального предложения Куайн пользуется числовыми выражениями:

«9 необходимо больше, чем 7».

Если здесь, на основе истинного предложения тождества, «чИсло планет=9» «9» заменить на «число планет», то в результате получится следующее ложное предложение:

«число планет необходимо больше, чем 7».

Теперь для предикаторов я дам пример антиномии в обеих формах. Выше мы нашли неоднозначность в понятии номината предикатора (например, немецкое слово «gros» может рассматриваться как имя класса Большой или свойства Большой, см. § 25). Для того чтобы показать, что антиномия отношения именования не зависит от этой неоднозначности, будет сформулирован пример со словосочетанием формы «класс...», причем в качестве номинатов этих словосочетаний выбираются только классы. Следующее предложение является истинным (слово «необходимо» здесь, как и в предыдущих примерах, употребляется в смысле «логически необходимо»):

«Необходимо, что класс Бесперое двуноего является подклассом класса Двуногое».

Теперь заменим в этом предложении «класс Бесперое Двуноего» на «класс Человек»; эта замена может основываться, согласно 24-3б, на том, что предложение тождества «класс Бесперое Двуногое есть то же самое, что и класс Человек» истинно (4-7), или, согласно 24-3а, на том, что словосочетания «класс Бесперое Двуногое» и «класс Человек» имеют один и тот же номинат. Результатом этой замены является предложение:

«Необходимо, что класс Человек является подклассом класса Двуногое».

Поскольку, однако, то, что человеческие существа имеют две ноги, есть случайный биологический факт, и логически не необходимо, постольку верно следующее:

«Необходимо, что класс Человек есть подкласс класса Двуногое».
Противоречие между этими двумя результатами является примером антиномии отношения именования.

Те логические ситуации, которые называются логическими антиномиями (в современном, а не кантовском смысле) или логическими парадоксами, характеризуются тем, что существуют два метода рассуждения, которые, будучи оба правдоподобными и согласующимися с обычными способами мышления, ведут все же к противоречивым заключениям. Всякое разрешение антиномии, то есть устранение противоречия, состоит поэтому в том, чтобы ввести соответствующие изменения в процедуру рассуждения; по крайней мере одно из его допущений или правило, несмотря на правдоподобность, должно быть отброшено или ограничено так, чтобы нельзя было больше получить двух непосредственных заключений. Иногда отбрасывается или ограничивается определенная форма вывода. Иногда предпринимается более радикальный шаг, заключающийся в отказе от определенных форм предложений, которые раньше рассматривались как осмысленные и безопасные. Так, например, разрешение Расселом антиномии, носящей его имя, состояло в запрете предложений формы «а ∈ а». Иногда обнаруживаются некоторые другие способы решения данной антиномии. Раскрытие того, каким следствиям ведет каждое из этих решений, а особенно того, какими из обычных и вполне правдоподобных способов выражения или дедукции приходится при этом жертвовать, является делом теоретического исследования. Но вопрос о том, какое решение мы выберем для построения системы языка, в конце концов решается практически, под влиянием, конечно, результатов теоретического исследования.

§ 32. РЕШЕНИЯ АНТИНОМИИ

Здесь рассматривается шесть процедур для разрешения антиномии отношения именования. В первых пяти еще применяется метод отношения именования. Фреге и Чёрч разработали конкретные формы этого метода, введя некоторые различия, которые, однако, ведут к более сложному языку. Рассел в значительной степени ограничивает применение метода отношения именования и тем самым семантического анализа значения выражений. Куллис делает то же самое, но в меньшей степени. Антиномия была бы также устранена посредством ограничения языка экстенсиональными предложениями; но в настоящее время не-
известно, может ли вся логика и наука быть выражена языком такого рода. Наконец, метод экстensionала и интенсонала избегает антиномии тем, что избегает понятия номината. Понятие экстensionала, хотя и сходно с понятием номината, тем не менее устраняет противоречие без неестественных ограничений и усложнений.

Теперь мы объясним некоторые решения антиномии от ношения именования, которые предлагались или рассматривались логиками. Назовем их методами I—VI. Во-первых, рассмотрим пять решений, сохраняющих, по крайней мере до некоторой степени, метод отношения именования. Они могут рассматриваться как особые формы этого метода. Мы найдем, что каждое из них имеет серьезные недостатки. Затем мы рассмотрим возможность решения антиномии путем отказа от метода отношения именования.

Метод I. Фреге. Фреге, по-видимому, отдавал себе отчет в том, что принцип взаимозаменяемости (в форме 24-3а) приведет к противоречию, если обычные номиналы имен будут приписываться также их вхождениям в косвенной речи, и что противоречие не возникает, если этим вхождениям приписываются другие номиналы. В этом смысле мы можем сказать, что Фреге предлагает решение антиномии отношения именования. Правда, Фреге явно не говорит о необходимости устранения противоречия; он приводит другие основания для своего различения между обычным и косвенным номинатом имени. Ход его рассуждения создает впечатление, что это различение казалось ему естественным само по себе, без отношения к какому-либо возможному противоречию. Однако я думаю, что множеству читателей это различение едва ли покажется очень естественным и что они, как и я сам, увидят самый сильный аргумент в пользу метода Фреге, скорее, в том факте, что он является способом решения антиномии.

Недостатки метода Фреге были разъяснены выше (§ 30). Мы видели, что ненужное умножение объектов и имен, являющееся общим следствием метода отношения именования, имеется здесь место даже в еще большей степени. Более того, вхождения одного и того же имени могут иметь разные номиналы — фактически их может быть бесконечное число; а в некоторых контекстах одно и то же вхождение имени может одновременно иметь несколько номинатов.
Метод II. Куайн. Куайн⁠¹ для отношения именования употребляет термин «обозначение». О вхождении некото-
рого выражения в неэкстенсиональный контекст (как, например, «вечерняя звезда» в первом и «9» во втором
из двух его примеров, цитированных в предыдущем разделе) он говорит, что оно «не является толь-
ко обозначающим» и что оно не просто указывает на обозначаемый объект (номинат). Он думает, что неэкстенсиональные контексты коренными образом отличаются от экстенсиональных кон-
текстов и больше похожи на контексты, помещаемые в кавычках; и, в частно-
сти, что обычные логические правила вывода единичного из общего и экстенсионального обоб-
щения не имеет силы для неэкстенсиональных контекстов (это будет рассмотрено ниже, § 44). Таким образом,
его решение согласуется с решением Фреге в том, что оно не приписывает обычного номината имени, входящему
в неэкстенсиональный контекст. Но там, где Фрего при-
писывает другой номинат, Куайн не приписывает вообще
никакого. Следовательно, Куайн объявляет принцип взаи-
мозаменяемости (см. его формулировку 24-6) не применимым
к этим вхождениям имени, и антиномия таким образом
устраивается.

Преимущества метода Куайна по сравнению с методом
Фрего состоит в избежании чрезмерного умножения объек-
тов и соответствующих имен, к которому ведет метод Фрего.
Но метод Куайна дорого расплачивается за это упро-
шение ограничением отношения именования («обозначения») экстенсиональными контекстами и соединением в одну
группу всех неэкстенсиональных контекстов и контекстов,
помещаемых в кавычки, и, кроме того, сильными ограничи-
нениями употребления переменных в модальных предло-
жениях. В особенности те логики, которые интересуются
построением или семантическим анализом систем модаль-
ной логики, едва ли будут склонны принять этот метод.

Метод III. Чёрн. Чёрн⁠² считает метод Фрего более пред-
почтительным по сравнению с методом Куайна в двух
отношениях: во-первых, поскольку он предусматривает,
что имя всегда имеет номинат⁠³ даже в неэкстенсиональных

¹ [Notes].
² [Review Q.]
³ Там же, стр. 46.
контекстах, и, во-вторых, поскольку фрегевская концепция смысла имен, как чего-то находящегося вне языка (например, суждений или свойств) кажется более естественной, чем Куайновский способ построения смысла (значения) имени как класса его L-эквивалентности (см. конец § 33). Однако Чёрч принимает метод Фреге не просто в его первоначальной форме; он предлагает существенные изменения в нём. Он согласен с заключением Фреге, что номинат косвенного (неэкстенционального) вхождения имени должен отличаться от обычного номината имени и должен быть тождественным его обычному смыслу. По Чёрч принимает это, но-видимому, только как результат анализа неэкстенциональных предложений, как они встречаются в естественных словесных языках и в системах модальной логики обычной формы. Однако в правильно построенном языке эта множественность номинатов одного и того же имени должна быть устранена. Поэтому Чёрч предлагает для семантических рассмотрений в естественных словесных языках «принять какое-либо средство записи, отличающее косвенное употребление имени от его обычного употребления»\(^1\); это было бы аналогичным обычному употреблению кавычек. Однако простых отличительных знаков в символической языковой системе недостаточно; здесь мы должны были бы сделать ещё один шаг, как мы делаем, когда употребляем не кавычки, а специальные символы как имена знаков. «В формализованной логической системе имя было бы представлено особыми символами в его обычном и в его косвенном употреблении».

Я согласен, что если употреблять метод отношения именования, то предлагаемые Чёрчем изменения в способе записи действительно являются усовершенствованием. С другой стороны, эти изменения, по-видимому, привели бы к дополнительному усложнению в системе модальной логики. Например, появилось бы бесконечное число типов, соответствующих типу предложений в методе экстенционала и интенционала.

Хотя метод Чёрча и избегает множественности номинатов одного и того же имени, он все же разделяет другие усложнения первоначальной формы метода Фреге, выяс-\(^1\) [Review Q.], p 46.
ненные в § 30. Это, однако, не является аргументом против метода Чёрча по сравнению с другими формами метода отношения именования. Напротив, я думаю, что Чёрчевская форма этого метода проводит основные идеи метода отношения именования наиболее непротиворечиво и совершенно, устраняя черты, неприменимые в правильно построенной системе, не ограничивая чрезмерно область применения основных понятий метода. Поэтому те большие усложнения, к которым он ведет, должны рассматриваться скорее как аргумент против метода отношения именования вообще — если только существует какой-либо другой удобный метод, избегающий этих усложнений.

Метод IV. Рассел. Рассел строит антиномию отношения именования относительно индивидуальных выражений; в его примере (см. предыдущий раздел) дескрипция «автор Всеверлея» замещается собственным именем «Скотт». Согласно концепции Рассела, дескрипция сама по себе не имеет значения, но предложение, содержащее дескрипцию, имеет значение и это последнее может быть выражено без употребления дескрипции. Контекстуальное определение дескрипции (см. выше, § 7, метод II) является правилом для преобразования предложения, содержащего дескрипцию, в предложение с тем же значением, которое больше не содержит дескрипцию. Хотя в случае индивидуальной дескрипции, выполняющей условие единственности, мы можем рассматривать один индивид (дескрипт) как номинат дескрипции, тем не менее предложение, содержащее эту дескрипцию, говорит об этом индивиде. (Таким образом, принцип предметности, 24-2, отвергается в отношении дескрипций.) То, что предложение в действительности означает, видно только из его развернутой формы. Собственные имена (например, «Вальтер Скотт») рассматриваются как сокращения дескрипций. Таким образом, при записи в исходных синтаксических фразах не встречаются ни собственные имена, ни дескрипции. Поэтому принцип взаимозаменяемости для индивидуальных выражений не применим, и та форма антиномии, которая возникает при взаимозаменении индивидуальных выражений, устраняется. Вполне аналогична

1 [Denoting].
2 Там же, стр. 480.
ситуация и в случае выражений абстракции для классов (напри мер, \(x(Hx)\) см. объяснения выше, в начале § 26). Эти выражения точно так же вводятся на основании контекстуальных определений и не рассматривают я как имеющие сами по себе какое-либо значение. Значение предложения, содержащего выражение класса, показывается посредством его развертывания в запись, состоящую только из исходных символов, куда не входят никакие выражения класса. Таким образом, и в отношении выражений классов принцип взаимозаменяемости не применим, и антиномия не появляется.

Если Рассел вообще рассматривает предложения как имена, то он, вероятно, рассматривает их как имена суждений; во всяком случае, он не рассматривает их как имена логических валентностей. Таким образом, окончательный вывод в отношении Расселовского применения отношения именования можно сформулировать следующим образом: хотя индивидуальные выражения и выражения классов могут в некотором смысле рассматриваться как наименования индивидов или классов, они не встречаются при записи в одних только исходных символах, но являются неполными символами, лишенными самостоятельного значения. Номинатами в строгом смысле слова не являются ни индивиды, ни классы, ни логические валентности, следовательно, ни один из тех объектов, которые мы называем экстенсионалами. Антиномия отношения именования возникает из взаимозамещения двух выражений с одним и тем же номинатом. Во всех основных видах примеров этой антиномии — включая все примеры упомянутые в этой книге, и все примеры, приводимые упомянутыми авторами,— общим номинатом является экстенсионал. Следовательно, метод Рассела, исключая экстенсиональы из области номинатов в строгом смысле, устраняет по крайней мере самые важные случаи антиномии.

О возражениях Рассела против метода Фреге можно сделать несколько замечаний. Главное возражение\(^1\) касается случая дескрипции, не удовлетворяющей условию единственности. Фреге говорит, что в этом случае дескрипция имеет смысл, но не имеет номината. Рассел считает

\(^1\) [Denoting], р. 483 и далее.
неудовлетворительным, что выражения одной и той же синтаксической формы в одном случае имеют номинат, а в другом — не имеют. Поскольку, согласно Фреге, предложение говорит о номинатах входящих в него выражений (24-2), постольку в случае, когда условие единственности не соблюдено, предложение вообще не говорит ни о каком объекте; следовательно, говорит Рассел¹, можно предположить, что такое предложение «должно быть бессмысленец; но оно не бессмысленец, поскольку оно просто ложно». Это рассуждение мне кажется убедительным; более того, я полагаю, что сам Фреге согласился бы с ним, потому что он считает упомянутую черту дефектом естественных языков². На этом основано его требование, чтобы в правильно построенном языке каждая декрипция имела номинат в силу подходящего соглашения³.

Возражение Рассела состоит в том, что эта процедура является искусственной и не дает точного анализа действительного употребления декрипции. Однако соглашение Фреге имело другую цель. Он сначала дал анализ естественного языка, а затем предложил это соглашение не как шаг к точной реконструкции естественного языка, а скорее как шаг к построению новой языковой системы, которая технически должна быть совершеннее естественного языка.

Общие возражения Рассела⁴ против фрегевского различения между номинатом и смыслом довольно темны. Это надо отнести главным образом за счет того, что Рассел смешивает употребление и упоминание выражений, что уже вызвало критические замечания Чёрча⁵.

Недостаток метода Рассела состоит в отрицании значения индивидуальных выражений и выражений классов. То, что эти виды выражений могут быть введены посредством контекстуальных определений и что, следовательно, то, что говорится с их помощью, может также быть сказано и без них,— это, конечно, результат величайшей важности, но не достаточное оправдание исключения этих

¹ [Denoting], p. 484.
² [Sinn], p. 40.
³ Там же, стр. 41, см. выше, § 8.
⁴ Там же, стр. 485—488.
⁵ [Review C.], p. 302.
выражений из области семантического анализа значения. Я думаю, следует признать, что дескрипции и выражения классов не обладают значением с высшей степенью независимости, но это распространяется также и на все другие виды выражений, кроме предложений (см. замечания в конце § 1). И, конечно, для семантического анализа значений предложений полезно применять этот анализ также к значениям, хотя бы и производным, других выражений, чтобы показать, как из них образуются независимые значения предложений.

Метод V. Экстенсиональный язык. Самый радикальный метод устранения любой антиномии, возникающей в связи с определенными формами выражений, состоит в полном исключении этих форм. В случае антиномии отношения именования это решение состояло бы в исключении всех некэкстенсональных контекстов — другими словами, в употреблении чисто экстенсонального языка (см. определение 11-2c). Построение экстенсональной языковой системы для определенных ограниченн оих целей не представляет, конечно, никаких затруднений (в качестве примеров таких систем см., например, языковую систему ML Куайна и мои системы I и II в [Syntax]). Но для рассматриваемой цели этого недостаточно. Для того чтобы устранить антиномию посредством исключения всех некэкстенсональных контекстов, необходимо было бы показать, что для целей всякого логического или эмпирического исследования может быть построена экстенсональная языковая система; другими словами, что для любой некэкстенсональной системы имеется экстенсональная система, в которую первая может быть переведена. Утверждение этого известно как тезис экстенсональности\(^1\). Вопрос о том, выполняется он или нет, еще не решен. Возможность перевода в экстенсональные предложения была показана для некоторых видов некэкстенсональных предложений. Так, например, любое простое модальное предложение является, как мы увидим ниже (§ 39), L-эквивалентным некоторому семантическому предложению в экстенсональном метаязыке, использующем L-термины\(^2\). Например, модальное предложение

1 См. [Syntax], § 67; [1], p. 249; R u s s e l l, [Inquiry], Chap. XIX.
2 Об этом переводе см. [Syntax], § 69; я определил бы сейчас L-понятия не как синтаксические, а как семантические (см. выше, § 2). Заметим,
Глава III. Метод отношения именования

«N(A)», то есть «необходимо, что A», L-эквивалентно семантическому предложению «А L-истинно» (соответственно соглашению, которое будет рассмотрено ниже). Применение этого метода перевода к предложениям с повторяющимися модальностями (например, «необходимо, что возможно, что...») связано с некоторой трудностью; эта трудность, однако, может быть преодолена, как я показал в другом месте 1. Перевод неэкстенсиональных предложений с психологическими терминами, вроде «полагает», «знает» и т. д., вероятно, так же возможен, хотя в настоящее время еще неясно, как его лучше делать (см. обсуждения в § 13 и 15). Вопрос о том, достаточен ли экстенсиональный язык для целей семантики, будет рассмотрен ниже (§ 38); утвердительный ответ на него не кажется неправоподобным, но вопрос этот все еще окончательно не решен.

Если бы мы могли доказать тезис экстенсиональности и решили бы исключить все неэкстенсиональные формы предложений, то, очевидно, антиномия отношения именования была бы устранена. Более того, различие между методом отношения именования и методом экстенсонала и интенсонала исчезло бы, поскольку, в случае экстенсиональных вхождений, номинат выражения представляет собой то же самое, что и его экстенсонал, а его смысл — то же самое, что и его интенсонал (9-1 и 2). Как ни привлекательны эти следствия, мне все же кажется, что было бы по крайней мере преждевременно предлагать сейчас метод V как решение рассматриваемой антиномии. Даже если бы тезис экстенсиональности был доказан, это было бы недостаточно в качестве сбоснования для метода V. Мы должны были бы показать, кроме того, что экстенсиональный язык для логики и науки в целом является не только возможным, но также технически более эффективным, чем неэкстенсиональные формы языка. Хотя экстенсиональные предложения следуют более простым правилам дедукции, чем неэкстенсиональные, все же неэкстенсиональный язык часто дает более простые выражения;

что при этом переводе два предложения, хотя и L-эквивалентны, но не являются интенционально изоморфными (§ 14). Перевод в строгом смысле слова, сохраняющий интенциональную структуру, очевидно, невозможно между неэкстенсиональным и экстенсиональным предложением. 1 [Modalities].
§ 32. Решения антиномии

потому даже дедуктивное оперирование с неэкстенсионным предложением часто бывает проще, чем со сложным экстенсиональным предложением, в которое оно могло бы быть переведено. Таким образом, обе формы языка имеют свои преимущества; и вопрос о том, какая из них обладает в общем большей простотой и эффективностью, все еще не решен. Прежде чем этот вопрос может быть решен, должно быть проведено гораздо больше исследований неэкстенциональных и особенно модальных языковых систем. Поэтому в настоящее время метод В в качестве решения антиномии должен быть оставлен в стороне.

Метод VI. Экстенсональ и интенсонал. Если для семантического анализа вместо метода отношения именования применяется метод экстенсонала и интенсонала, то понятие номината не встречается и, следовательно, антиномия отношения именования в ее первоначальной форме не может возникнуть. Поскольку, однако, понятие экстенсонала частично совпадает с понятием номината и во многих отношениях подобно ему, то при определенных условиях может возникнуть антиномия тождества экстенсонала, аналогичная антиномии тождества номината. Антиномия возникла бы, если бы для понятия экстенсонала был сформулирован принцип, аналогичный принципу взаимозаменимости имен (24-3). Форма, которую мы выбрали для метода экстенсонала и интенсонала, исключает антиномию, предписывающая выражениям с одним и тем же экстенсоналом, другим словами, эквивалентным выражениям, принцип взаимозаменимости, ограниченный экстенсональными контекстами (12-1). Наш второй принцип (12-2) касается L-эквивалентных выражений. следовательно, выражений с одним и тем же интенсоналом; таким образом, он сходен со вторым принципом Фрего (28-9).

Возможно, что в этом месте читатель спросит, на каком основании если ограничение взаимозаменимости экстенсональными контекстами гарантирует устранение антиномии, мы не могли бы просто сохранить два фрежевских понятия и ограничить его первый принцип экстенсональными (не косвенными) контекстами. Ответ состоит в том, что фрежевское понятие («Bezeichen») понимается в смысле отношения именования, то есть как отношение,
характеризуемое принципами 24-1 и 2; следовательно, было бы совершенно неправдоподобно и неестественно, как мы видели выше, не сохранять принцип взаимозаменяемости 24-3 в его неограниченной форме. Наоборот, если кто-либо употребляет понятие, в отношении которого принцип 24-3 не действует неограниченно, то это понятие не является отношением именования и не является понятием, которое имели в виду Фреге и многие другие логики, например Чёрч и Куайн.

Легко видеть, что метод экстенсионала и интенсионала лишен тех черт других методов, которые мы обнаружили как их недостатки. В нашем общем рассмотрении метода отношения именования мы сначала раскрыли неоднозначность понятия номината (§ 25); например, даже если мы ясно понимаем, что означает данный предикатор, мы все же можем рассматривать в качестве его номината или свойство, или класс. Понятие экстенсионала не влечет за собой никакой подобной неоднозначности; экстенсионалом любого предикатора уровня 1 и степени 1 является класс тех индивидов, для которых этот предикатор удовлетворяется. Далее, мы показали множественность выражений в языке-объекте, к которой ведет метод отношения именования (§ 26); мы видели, что при применении нашего метода эта множественность заменяется одним выражением. Далее, были объяснены усложнения, вызываемые особой формой метода, введенного Фреге (§ 30). Их общим корнем является то обстоятельство, что одно и то же выражение в разных вхождениях может иметь разные номинаты. Поскольку экстенсионал выражения всегда один и тот же и не зависит от контекста, постольку наш метод отнюдь не вызывает подобных усложнений. Недостатком метода Куайна является ограничение отношения именования экстенсиональными контекстами; в применении понятия экстенсионала подобного ограничения нет. Метод Чёрча избегает некоторых из недостатков первоначального метода Фреге, но сохраняет большинство этих недостатков; далее, его модификация метода Фреге, как бы необходима она ни была, вызывает новое усложнение, которого нет в нашем методе. Недостатком метода Рассела является то, что он отказывает в значении индивиду и выражениям и выражениям классов. В нашем методе нет та-
кого ограничения; каждому выражению этих видов приписывается экстенционал и интенционал (для выражений классов в системе РМ, см. выше, § 26).

Подведем итог проведенному в этой главе разбору метода отношения именования. Этот метод имеет разные формы у разных авторов. Большинство авторов, употребляющих понятие отношения именования, по-видимому, не дает себе отчета в связанной с ним антиномии и не развивает метода в достаточно явной форме, которую позволяла бы нам видеть, как они избегают противоречия и избегают ли они его вообще. Все процедуры, предлагавшиеся для устранения антиномии, имеют серьезные недостатки; некоторые из этих процедур ведут к большим усложнениям, другие значительно ограничивают область применения семантического анализа значения. Таким образом, сомнительно, является ли метод отношения именования подходящим методом для семантического анализа.
Глава IV

О МЕТАЯЗЫКАХ ДЛЯ СЕМАНТИКИ

В метаязыке М, которым мы пользовались до сих пор, мы говорили об экстенсионалах и интенсоналах, например о классах и свойствах. Главной целью этой главы является показать, что это различение в действительности не предполагает двух родов объектов, а является лишь различением между двумя способами выражения. Прежде всего мы обсуждаем возможные методы определения экстенсоналов в терминах интенсоналов, или, наоборот, не делая выбора в пользу какого-либо из них (§ 33). Затем мы конструируем новый метаязык М' (§ 31—36). В то время как М содержит особое выражение для экстенсонала (например, «класс Человек») и особое — для интенсонала (например, «свойство Человек»), М' содержит только одно выражение (например, «Человек»), которое является, так сказать, нейтральным, как выражение в символической системе S₁ (например, «Н»). Поэтому мы называем М' нейтральным метаязыком. Благодаря такой элиминации удвоения выражений исчезает и кажущееся удвоение объектов. Выясняется, что все предложения системы М могут быть переведены в М', включая и семантику систем, вроде S₂ (§ 37). Наконец, исследуется вопрос, может ли полное семантическое описание системы, даже такой неэкстенсиональной, как S₂, быть сформулировано в метаязыке, который в отличие от М и М' является экстенсональным; по-видимому, так и обстоит дело (§ 38).

§ 33. ПРОБЛЕМА СВЕДЕНИЯ ОБЪЕКТОВ

В метаязыке М мы до сих пор говорили так, как если бы существовало два рода объектов в каждом типе, экстенсональные и интенсональные, например, классы и свойства. Здесь обсуждается вопрос, не может ли мы избавиться от этого кажущегося удвоения объектов посредством определения одного рода в терминах другого. Обсуждается четыре метода определения экстенсоналов в терминах интенсоналов: концепция экстенсоналов как L-детерминированных интенсоналов (§ 23); расселовское контекстуальное определение классов в терминах свойств, причем выясняется, что оно связано с некоторым затруднением; модификация расселовского определения, избегающая этого затруднения; наконец, метод, употребляющий сами выражения свойств как выражения классов, но предполагающий особую структуру языка. По-видимому, невозможно определить сами интенсоналы в терминах экстенсоналов.
Однако класс всех десигнаторов, L-эквивалентных данному десигнатору, может быть выбран в качестве представителя интенсонала этого десигнатора.

В качестве метаязыка M мы пользовались частью словесного языка, известным образом измененного и дополненного (§ 1). Во всем обсуждении мы употребляли в M такие термины, как «класс», «свойство», «логическая валентность», «суждение», «индивид», «индивидный концепт», и более общие термины «экстенсонал» и «интенсонал». Этот способ выражения создает видимость того, что мы имеем дело с большим разнообразием объектов и, в частности, с двумя родами объектов в каждом типе. Как утверждалось вначале (§ 4), мы употребляли упомянутые термины только потому, что они помогают облегчить понимание, но наша теория не основывается на положении, что существуют объекты всех этих родов. Теперь, помня о бритве Оккама, попробуем показать, как кажущаяся множественность объектов может быть уменьшена наполовину. Поскольку кажущееся удвоение объектов оказываеться в действительности лишь удвоением терминологии, все, что мы должны сделать, сводится к построению другого способа выражения, избегающего терминологического расщепления на экстенсоналы и интенсоналы.

Начнем с рассмотрения предикаторов, потому что здесь различение между экстенсоналом и интенсоналом привычно и хорошо знакомо. Если мы хотим иметь язык, который не ограничивается, как S, элементарными утверждениями о вещах, а содержит более объемлющую систему логики, и особенно математики, то мы должны ввести средства для того, чтобы говорить в общих терминах не только о вещах, но также и об объектах высших уровней, скажем, о классах или свойствах. Это допускается даже теми логиками, которые в высшей степени осторожны в признании абстрактных объектов. Вопрос заключается в том, необходимо ли допускать оба рода объектов, классы и свойства, или объекты одного рода определяются с помощью объек-

1 См., например, Q u p e, [Notes], p. 125: «Всякий, кто приступает к исследованию оснований математики, должен, какому бы ни было его личные онтологические догмы, начать с предварительного допущения классов или атрибутов (то есть свойств)».
тов другого рода. Например, определяется ли одно из двух сочетаний слов (в М), «класс Человек» и «свойство Человек», с помощью другого? Явное определение не необходимо; было бы достаточно контекстуального определения, чтобы сделать одну из этих двух фраз ненужной в формулировании запаса исходных выражений.

Поищем сначала методы, которые определяют выражение классов в терминах выражений свойств.

1. Если имеется понятие L-детерминированных интенционалов (§ 22), то мы можем определить «класс й» как «L-детерминированное свойство, эквивалентное свойству й» (§ 23).

2. Если мы не хотим употреблять понятие L-детерминированных интенционалов, то можем принять во внимание возможность контекстуального определения для «класса й» с помощью общего определения на свойства, эквивалентные свойству й. Поскольку все эти свойства определяют один и тот же класс, самой естественной процедурой, по-видимому, является интерпретация предложения о классе й как предложения о всех этих свойствах. Таким образом, для системы S, содержащей предикатные переменные «й», «г» и т. д. мы могли бы сформулировать следующее контекстуальное определение для выражений классов «й (х)»:

33-1. «...х(й х)...» сокращение для «(г) [г й] ...г...]. Это определение может быть дополнено правилом, определяющим, что именно в каждом данном случае, где встречается «й (х)», должно быть взято в качестве контекста «...х (й х)...», к которому следует применить это определение. Следуя скорее за Кудайном¹, чем за Расселом (см. ниже), мы условимся, что определение должно применяться к минимальному предложению или матрице в обозначении с помощью одних лишь исходных знаков, куда входит выражение класса. Таким образом, прежде чем применить определение, мы должны элиминировать в данном предложении, содержащем выражение класса, все прежде определенные знаки с помощью их определений; затем мы развертываем каждую минимальную матрицу, в которой встречается выражение класса, с помощью определения 33-1.

¹ [M. L.], § 26.
3. Рассел был первым, кто предложил контекстуальное определение выражений классов на основе выражений свойств. Уайтхед и Рассел пользовались этим определением в их построении системы математики в [Р.М.]². Хотя метод оказался в состоянии дать хорошую рабочую основу для этого построения, все же есть в этом определении одна черта, кажущаяся мне недостатком. Данное выше определение (33-1) представляет собой в действительности не что иное, как вариант определения Рассела, измененного, однако, как раз в отношении пункта, о котором идет речь. Транскрипция этого определения из [Р.М.] с помощью наших обозначений³ имеет следующий вид:

33-2. «...₂ (f₂)...» сокращение для «(∃g)[(g ≡ f) • ...g...].»

Здесь определяющее выражение содержит квантор существования, а не квантор общности, как в 33-1. Таким образом, утверждение о классе f здесь интерпретируется как утверждение не о всех свойствах, а по крайней мере об одном, эквивалентном свойству f (в терминологии [Р.М.] «по крайней мере одна пропозициональная функция формально эквивалентная пропозициональной функции f₂ »). Рассел не излагает своих соображений в пользу избранной формы определения, кроме того, что, как он правильно говорит, определяющее выражение должно быть экстенсиональным; это, однако, имеет место и в том случае, если, как в 33-1, употребляется квантор общности.

¹ Russell, Mathematical Logic as Based on Theory of Types, American Journal of Mathematics, XXX, (1908); определение см. стр. 249.
² [Р.М.], I, 71 и далее, 187 и далее.
³ Это определение в оригинальном обозначении (стр. 249 вышеупомянутой статьи и [Р.М.], I, 76, 188) имеет следующий вид:

*20. 01. f |z(ϕz)| = : (∃ϕ):ϕ|x. = x.ϕ:x:f|ϕ|z|Df.

Наша транскрипция 33-2 отличается несущественно. Восклицательный знак опущен, потому что он необходим только тогда, если за основу принята разветвленная система типов, которая сейчас вообще рассматривается как ненужная, и потому что он во всяком случае несуществен для обсуждаемой проблемы. Контекст указывается только точками, а не переменной второго уровня, чтобы сделать определение применным также и к системам, не содержащим таких переменных. Знак материальной эквивалентности употребляется в соответствии с иным сокращением 3-1.
Форма определения с квантором существования кажется мне не только менее естественной, но также и ведущей к серьезным затруднениям, которые заставляют сомневаться, достигает ли определение поставленной цели. Чтобы показать это, рассмотрим два неэкстенсиональных свойства свойств, скажем Φ_1 и Φ_2, такие, что Φ_2 есть контрадикторная противоположность к Φ_1; следовательно, Φ_2 удовлетворяется во всех тех и только в тех случаях, в которых Φ_1 не удовлетворяется. Поскольку Φ_1 неэкстенсионально, существуют различные, но эквивалентные свойства, скажем f_1 и f_2, такие, что Φ_1 удовлетворяется для f_1, но не для f_2 и, следовательно, Φ_2 удовлетворяется для f_2. Тогда, согласно определению 33-2, и Φ_1 и Φ_2 удовлетворяются для класса $z(f_1,2)$, хотя Φ_1 и Φ_2 контрадикторно противоположны и, следовательно, логически несовместимы. Это было бы нелепым результатом, хотя и не составляющим формального противоречия, поскольку Φ_1 и Φ_2 логически исключают друг друга только в отношении свойств, тогда как их применение к классам вводится только как определенный способ выражения, который в самой формальной системе, отличие от неформальной интерпретации в терминах классов, служит лишь для сокращения.

Чтобы положение было видно яснее, попробуем построить конкретный пример. Как и выше (§ 26), пусть РМ будет системой, построенной в [Р.М.], а РМ' будет той же самой системой с некоторыми нелогическими постоянными, добавленными на основе правила 25-1. Для того чтобы найти в РМ или РМ' что-либо подобное Φ_1 и Φ_2, мы должны поискать неэкстенсиональные знаки. Среди очень немногих таких знаков, встречающихся в самой системе РМ, имеются знаки тождества «==» и нетождества «=/≠», когда они стоят или между выражениями свойств, или между выражением свойства и выражением класса. Знак «==» действительно употребляется в [Р.М.] таким образом; и авторы отдают себе отчет в том, что в этих контекстах он является неэкстенсиональным. Сначала воспользуемся системой РМ'. В качестве посылок мы берем следующие

2 Там же, стр. 84.
два предложения этой системы\(^1\):

\[(I) \quad \langle x \rangle (Fx \circ Bx \equiv Hx), \text{ или сокращенно } F \circ B \equiv H.\]

\[(II) \quad F\hat{x} \circ B\hat{x} \neq H\hat{x}.\]

Эти предложения говорят, что свойство Бесперое Двуногое и свойство Человек эквивалентны, но не тождественны. Следовательно, они истины. Теперь исследуем следующие два предложения:

\[(III) \quad \hat{\hat{x}}(H\hat{x}) = H\hat{x};\]

\[(IV) \quad \hat{\hat{x}}(H\hat{x}) \neq H\hat{x}.\]

Развернем эти предложения, применив расселовское определение 33-2, чтобы элиминировать выражение класса
\(\hat{\hat{x}}(H\hat{x})\). В этом определении мы подставляем \(\hat{\hat{x}}\) вместо \(\langle \rangle\); в качестве \(\ldots\hat{\hat{x}}(H\hat{x})\ldots\) мы берем последовательно (III) и (IV). Таким образом, (III) развертывается в

\[(V) \quad \langle \exists g \rangle [(g \equiv H) \circ (g\hat{x} = H\hat{x})].\]

Это предложение доказуем в РМ', потому что оно выво- дится посредством экзистенциального обобщения из при- мера с \(\hat{\hat{x}}\) вместо \(\langle \rangle\). Следовательно, (III) доказуем и, следовательно, истино в силу принятой интерпретации (§ 26). Теперь развернем (IV). Здесь мы должны принять во внимание правило контекста Рассела, согласно которому левой стороне определения 33-2 должно соответство- вать минимальное предложение или матрица в данном на самом деле сокращенном обозначении. Другими словами, знак \(\neq\) не должен быть элиминирован до элими- нации выражения класса и, следовательно, все предложе- ние (IV) полностью должно пониматься как \(\ldots\hat{\hat{x}}(H\hat{x})\ldots\).\(^2\)

\(^1\) Для удобства читателя мы транскрибируем обозначения [Р. М.] в наши, записывая квантор в форме \(\langle x \rangle\) вместо нижнего индекса и заменяя точки скобками. Мы сохраняем, однако, обозначение \(\hat{\hat{x}}\) для вы- ражения свойства, потому что это — существенная черта обозначения в [Р. М.] (см. выше, § 26).

\(^2\) Утверждается ([Р. М.], p. 188), что в отношении области действия выражений классов применимы те же условия, что и в случае дес- крипций. Что значит \(\neq\), встречаясь в комбинации с дескрипцией, не эли- минируется до элиминации дескрипции, видно из примера в [Р. М.], p. 173, строка вторая снизу.
Таким образом, в качестве развернутого (IV) мы получаем:

$$(VI) \; \langle (\exists g) \; [(g \equiv H) \bullet (g \hat{z} \neq H \hat{z})] \rangle.$$

Это предложение выводимо из конъюнкции наших посылок (I) и (II) посредством экзистенциального обобщения в отношении «$F \hat{z} \bullet B \hat{z}$$». Следовательно, (IV) выводится из посылок и потому также истинно. Таким образом, в результате оказывается, что предложения (III) и (IV) оба истинны, хотя они и выглядят как контрадикторные противоположности. В действительности они не составляют противоречия, потому что (IV) не понимается как отрицание (III); это видно из того, что, согласно правилам системы PM', (IV) развертывается нев в «$\sim (\hat{z}(H \hat{z})=H \hat{z})$$», а в (VI).

Тем не менее наш результат показывает, что обозначения системы PM' входят здесь в заблуждение, так как они подсказывают интерпретацию (IV) как «$\hat{z}(H \hat{z})$$ не тождественно с $H \hat{z}$$», что было бы в противоречии с (III). Правда, Рассел многократно предупреждает, что выражения классов неполны и, отдельно взятые, не имеют значения. С другой стороны, обозначения были построены со следующей целью: выражения классов должны быть таковы, чтобы с ними можно было манипулировать, как если бы они были именами объектов, и Рассел, по-видимому, полагает, что эта цель достигнута1. Наш результат делает это сомнительным.

В самой системе PM, без употребления нелогических постоянных, мы можем достигнуть сходного результата. Здесь в качестве предпосылки мы выбирам допущение, что имеются два свойства, которые являются эквивалентными, но не тождественными. Всякий частный пример — например, конъюнкция (I) и (II) — может быть сформулирован только в PM', но не в PM. Но экзистенциальное допущение может быть сформулировано в самой PM следующим образом:

$$(VII) \; \langle (\exists g) \; (\exists f) \; [(g \equiv f) \bullet (g \hat{z} \neq f \hat{z})] \rangle.$$

Способом, сходным с вышеуприведенным, мы можем получить из этой посылки в PM следующее:

$$(VIII) \; \langle (\exists f) \; [(\hat{z}(f \hat{z})=f \hat{z}) \bullet (\hat{z}(f \hat{z}) \neq f \hat{z})] \rangle.$$

1 [П. М.], р.188, II. 3-5 и 14-16; и текст, стр. 198.
Это предложение недоказуемо в РМ, но выводится из посылки (VII), несомненно, истинной на основе интерпретации, которая имеется в виду в [Р.М.]; в самом этом труде приводится пример свойств Беспорное Двуногое и Человек. Хотя (VIII) и не является в действительности противоречием, оно имеет все же вид противоречия. Это опять-таки показывает, что способ, каким вводятся на основе определения Рассела выражения классов, не вполне согласуется с преследуемой целью.

Если, вместо определения Рассела 33-2, применяется определение, включающее, подобно 33-1, квантор общности, то (II) оказывается недоказуемым. В этом случае и (III) и (IV) ложны. Это по видимости, но не в действительности нарушает принцип исключенного третьего; однако это кажется мешающим меньше, чем вышеприведенное кажущееся нарушение принципа противоречия. Если, кроме того, правило контекста для выражения класса в форме Рассела (минимальное предложение в данном на самом деле сокращенном обозначении) заменяется на форму Куайна (минимальное предложение в обозначении с помощью только исходных знаков), как это было сделано в 33-1, то (IV) развертывается в отрицание (III). В этом случае (III) ложно, а (IV) истинно, и, таким образом, здесь никакого затруднения больше нет. Если бы в [Р.М.] определение классов было изменено согласно 33-1, то только некоторые из доказательств в немногих подразделах, ссылающиеся на это определение, нуждались бы в изменении. Дальше встречаются, кажется, только экстенсиональные контексты; следовательно, теоремы и доказательства во всем основном объеме труда остались бы неизменными.

4. Допустим, рассматриваемая языковая система S такова, что каждая минимальная матрица, то есть матрица, не содержащая другой матрицы в качестве своей собственной части, экстенсиональна. Так обстоит дело, например, если неэкстенсиональными знаками являются только модальные операторы. Следовательно, это имеет место в S_2, где «N» есть единственный неэкстенсиональный знак. Здесь каждая неэкстенсиональная матрица содержит (собственную или несобственную) часть формы «N(...)» и, следовательно, матрицу «...» как собственную часть. С другой стороны, иначе обстоит дело в системе.
Глава IV. О метаязыках для семантики

PM', если мы берем ее со включением знака «==» между выражениями свойств. [Например, предложение «H₂=H₂» является минимальным, но интенциональным (см. выше).] Тогда всякое выражение класса в S после элиминации всех других, получивших определение знаков, стоит в минимальной матрице, которая экстенциональна. Следовательно, выражение класса может здесь просто быть замещено соответствующим выражением свойства, даже если рассматриваемая минимальная матрица стоит в более широком неэкстенциональном контексте. (Например «N[a ∈ x (...x..)]» или «N[ḥ(...x..)(a)]» L-эквивалентно, и, следовательно, L-взаимозаменяется с «N[(ḥx) (...x..) (a)]» и, следовательно, также с «N(...a..)».) Основание для этого следующее. Пусть минимальная матрица, содержащая определенное вхождение «ḥHx» будет «Φ[ḥ(Hx)]»). Согласно нашему определению 33-1, она L-эквивалента «(g) [(g=>H) ⇒ Φg]». Это последнее предложение, очевидно, L-имплицирует «ΦH»; но последнее также L-имплицирует первое (12-1), поскольку, согласно нашему допущению об S, «Φ» экстенционально. Следовательно, оба предложения L-эквивалентны и отсюда также L-взаимозаменяются даже в интенциональных контекстах (12-2).

Это показывает, что в системе S описанного рода мы можем просто рассматривать самые выражения свойств как выражения также и классов. Эта процедура даже еще проще, чем разъясненные выше процедура (2), пользуясь контекстуальным определением 33-1 для выражений классов.

Мы обсудили четыре метода определения классов в терминах свойств. Они могут употребляться более общим образом для определения экстенционалов любого рода в терминах интенциональных. Эти методы в данной здесь трактовке применяются к символическим языкам-объектам. Эти же методы могут, конечно, аналогичным образом применяться к словесному языку, и в частности к нашему метаязыку M. Это последнее применение было бы для нас более важным, потому что в наших символических языках-объектах мы, по разъясненным выше (§ 26) основаниям, не нуждаемся в выражениях классов в добавление к выражениям свойств, тогда как в M мы имеем сочетания
слов обеих форм «класс Человек» и «свойство Человек» и хотели бы избавиться от одной из этих форм в исходных формулировках в M. Поскольку M содержит предложения тождества для свойств (подобно PМ'), в нем не выполняется условие, требуемое для S в методе (4). Но к M мы могли бы применить метод (2). Это заключалось бы в формулировке следующих трех определений; первое соответствует 33-1, второе и третье аналогичны ему:
33-3. ...класс f... =D
1_ для каждого свойства g, эквивалентного свойству f, ...свойство g...
33-4. ...логическая валентность p... =D
1_ для каждого суждения q, эквивалентного суждению p, ...суждение q...
33-5. ...индивиду x... =D
1_ для каждого индивидного концепта y, L-эквивалентного индивидному концепту x, ...инди
dивидный концепт y...

Соглашение, устанавливающее контекст, указанный точками, было бы здесь сформулировано наподобие условия для 33-1. (Мы можем здесь игнорировать несущественные изменения этого контекста, вызываемые идиоматическими особенностями; например, «x принадлежит к классу f» изменяется в «x имеет свойство f».)

Упомянутые здесь три определения не будут на самом деле введены для M, потому что мы найдем другую, более простую форму метаязыка, которая избегает даже и того кажущегося удвоения объектов, которое имеет место в M, посредством полного устранения удвоения выражений. Это будет изложено непосредственно в следующем разделе.

Что было бы лучше — выбрать в качестве исходных свойства и определять классы в терминах свойств или взять за исходные классы и определять свойства в терминах классов? Мы разобрали четыре метода для первой альтернативы. Куайн 1 отвергает ее на том основании, что свойство является даже еще более неясным, чем класс. Но что из них оказывается более неясным, а что интуитивно яснее — вопрос спорный. Я не буду здесь обсуждать этот вопрос; он, по-видимому, является в большей степени психологическим, чем логическим. Однако, я думаю, большинство логиков согласно, что, если термины «класс» и «свойство» понимаются в их обычном смысле, то классы

1 [Notes], p. 126.
 могут быть определяемые через свойства, но едва ли можно определять свойства через классы (если эти классы, в свою очередь, не характеризуются свойствами); ибо свойство определяет свой класс однозначно, тогда как данному классу может соответствовать множество свойств. Однако в терминах классов можно определять некоторые объекты, находящиеся в одно-однозначном соответствии со свойствами или другими интенционалами, и, таким образом, могущие представлять их для многих целей. Выше мы определили класс L-эквивалентности десигнатора в S как класс всех десигнаторов в S, L-эквивалентных ему (3-15б). Легко видеть, что между классами L-эквивалентности в S и интенционалами, выразимыми в S, имеется одно-однозначное соответствие. Поэтому класс L-эквивалентности десигнатора в S может рассматриваться как его интенционал или, по крайней мере, как представитель его интенционала. Процедуры этого рода были указаны Расселом и Куйном. Рассел 1 упоминает, как возможное, определение суждения как «класса всех предложений, имеющих то же значение, что и данное предложение». Куйн 2 определяет значение выражения как класс выражений, синонимичных с ним. Понятие обладания одним и тем же значением у Рассела и понятие синонимичности у Куйна соответствуют, по крайней мере приближенно, нашему понятию L-эквивалентности; если же имеется в виду более сильное отношение, чем L-эквивалентность, например нечто подобное интенциональному изоморфизму (§ 14), то понятия являются, конечно, аналогичными.

§ 34. НЕЙТРАЛЬНЫЙ МЕТАЯЗЫК M'

В то время как некоторые символические системы (например, система Рассела) содержат различные выражения для свойств и для классов, наши системы (S₁ и S₂) содержат для тех и других только один вид выражения. Аналогичным образом мы теперь вводим «нейтральный» метаязык M'. В то время как M содержит сочетания слов, подобные «свойство Человек» и «класс Человек», M' содержит только нейтральное выражение «Человек»; подобным же образом обстоит дело и с другими типами десигнаторов. Таким способом удвоение выражений, имеющееся в M, в M', элиминируется, и кажущееся удвоение объектов исчезает.

1 [Inquiry], p. 209.
2 [Notes], p. 120.
Если бы в M из двух сочетаний слов «класс Человек» и «свойство Человек» первое было определено с помощью второго или наоборот, то в обозначении с помощью исходных знаков M мы имели бы только одно сочетание слов вместо двух и, следовательно, число объектов было бы уменьшено наполовину. Я думаю, что этой же цели можно достичь также другим и даже еще более простым способом. Выше мы видели (§ 26), что на основе метода экстенсионала и интенционала обозначения в символическом языке-объекте могут быть упрощены. Вместо одного выражения, как имени свойства (например, «H₂» в RM’), и другого, как имени соответствующего класса (например, «₂(Н.)»), достаточно употреблять одно выражение (например, «(x) (Нx)» или «H» в S). Это выражение является, так сказать, нейтральным в том смысле, что оно не рассматривается ни как имя свойства, ни как имя класса, а скорее как выражение, интенционалом которого является свойство, а экстенционалом — класс. Если мы применим аналогичную процедуру к словесному языку M, то наша цель будет достигнута. Таким образом, мы должны поискать языковую форму M’, в которой вместо двух сочетаний слов «класс Человек» и «свойство Человек» мы будем употреблять только одно из них; последнее, однако, должно быть не одним из этих двух, а скорее иным, нейтральным, то есть не содержащим ни слова «класс», ни слова «свойство». Простейшая процедура заключается в том, чтобы взять одно слово «человек» или «Человек» (форма с заглавной буквой, как и выше, должна употребляться в тех местах, где английская грамматика не допускает обычного прилагательного). Мы берем M’ как нейтральный метаязык, получающийся из M в результате этих изменений, то есть в результате элиминации терминов «класс», «свойство» и т. д. в пользу нейтральных формулировок. Нашей задачей теперь является найти подходящие формы для формулировок в M’. При этом мы будем говорить о M и M’ и, следовательно, будем говорить на метаметаязыке MM. Для более легкого понимания мы берем MM похожим скорее на M, чем на менее знакомый M’; это значит, что мы, говоря о M’, будем употреблять термины, подобные терминам «класс», «свойство», «экстенционал», «интенционал» и т. д., хотя эти термины не могут встречаться в самом M’. Непосредственно
следующее предложение будет на самом деле примером этого употребления. Термин «Человек» в \mathfrak{M}' является нейтральным в том же смысле, в каком «H» нейтрально в S, «Человек» не рассматривается ни как имя класса, ни как имя свойства; он является, так сказать, сразу и выражением класса и выражением свойства следующим образом: 34-1. Экстенционалом термина «Человек» в \mathfrak{M}' является класс Человек.

34-2. Интенционалом термина «Человек» в \mathfrak{M}' является свойство Человек.

По аналогии, вместо двух сочетаний слов «индивид Скотт» и «индивидный концепт Скотт» в \mathfrak{M}, мы имеем в \mathfrak{M}' один нейтральный термин «Скотт». Таким образом:

34-3. Экстенционалом термина «Скотт» в \mathfrak{M}' является индивид Скотт.

34-4. Интенционалом термина «Скотт» в \mathfrak{M}' является индивидный концепт Скотт.

Поскольку для классов и свойств имеют место разные условия тождества, возникает затруднение в переводе предложений тождества на \mathfrak{M}'. Возьмем в качестве примера следующие предложения в \mathfrak{M} (см. § 4):

34-5. Класс Человек является тем же самым, что и класс Бесперое Двуногое.

34-6. Свойство Человек не то же самое, что свойство Бесперое Двуногое.

34-7. Свойство Человек то же самое, что и свойство Разумное Животное.

Выше мы перевели два сочетания слов в \mathfrak{M} в «Человек», просто опустив слова «класс» и «свойство». Однако если бы нам пришлось сделать это же с 34-5 и 34-6, то в результате возникло бы явное противоречие. Вообще говоря, поскольку тождество различно для экстенционалов и интенционалов, нейтральная формулировка не может говорить о тождестве. Следовательно, сочетания слов, выражающие тождество, подобные «тождественно с» или «то же самое, что» в \mathfrak{M}' оказываются недопустимыми. Как же тогда переводить предложения тождества на \mathfrak{M}'? Здесь помогут термы «эквивалентный» и «L-эквивалентный» в их несемантическом употреблении. Как оно определено в 5-3 и 5-4; заметим, что в таком употреблении эти термы обозначают отношения не между десигнаторами, а между интен-
§ 34. Нейтральный метаязык M′

сионалами. Эти определения показывают, что тождество экстенсоналов совпадает с эквивалентностью интенсоналов, а тождество интенсоналов совпадает с L-эквива-
лентностью интенсоналов. Здесь в M′ термины «экви-
валентный» и «L-эквивалентный», в соединении с нейтральными сочетаниями слов вместо сочетаний слов для интенсоналов, могут употребляться без всякого затруднения; следовательно, мы будем говорить об эквивалентности и L-эквивалентности нейтральных объектов. Таким образом, общие правила для перевода предложений тождества (в M или в не-нейтральном языке-объекте, например РМ′) в ней-
тральные формулировки в M′ — следующие:

34-8. Предложение, утверждающее тождество экстенсоналов, переводится на M′ как предложение, утверждающее эквивалентность нейтральных объектов.
34-9. Предложение, утверждающее тождество интенсоналов, переводится на M′ как предложение, утверждающее L-эквивалентность нейтральных объектов.

Соответственно мы переводим предложения тождества
34-5, 34-6 и 34-7 в M в следующие предложения языка M′:
34-10. Человек эквивалентен Бесперому Двуногому.
34-11. Человек не L-эквивалентен Бесперому Двуногому.
34-12. Человек L-эквивалентен Разумному Животному.

Эти три предложения могут быть получены из 5-5, 5-6 и 5-7 в M посредством простого пропуска термина «свой-
ство».

Предложения 34-10, 34-11 и 34-12 следует ясно отличать от следующих предложений, сходных с ними по виду, но коренным образом отличных от них по своей природе: «Человек» эквивалентен в M′ «Бесперое Двуногое».
«Человек» не L-эквивалентен в M′ «Бесперое Двуногое».
«Человек» L-эквивалентен в M′ «Разумное Животное».

Эти предложения — семантические предложения в MM, предложения об определенных предикаторах в M′. Поэтому эти предикаторы заключены в кавычки, а предложения содержат ссылки на язык M′. Они — полные аналоги предложений 3-8 и 3-11, являющихся семантическими предложениями в M (или M′) о предикаторах в S_1. С друго-
й стороны, предложения 34-10, 34-11 и 34-12 не являются семантическими; они не говорят о предикаторах, а упот-
ребляют предикаторы для того, чтобы говорить о впяезы-
ковых объектах. Поэтому предикаторы не заключены здесь в кавычки и здесь нет ссылки на языковую систему. Эти предложения относятся к несемантической (и, более того, к несемиотической) части М', к той части, на которую могут быть переведены предложения языков-объектов. Предложение 34-10 есть перевод не только предложения 34-5 в М, но также соответствующего предложения тождества 26-9 в РМ' и в ML' (§ 25); 34-10 есть, кроме того, точный перевод тоже нейтрального предложения «H — FB» системы S1. Поскольку 34-11 и 34-12 интенциональны (в смысле 11-3b), предложений, точно соответствующих им в экстенциональном языке S1 (§ 11, пример IV), не может быть. Но такие предложения имеются в модальном языке S2, как мы увидим ниже; таким образом, «H — RA» соответствует предложению 34-12.

Теперь посмотрим, как должны строиться нейтральные формулировки предложений в М'. Перевод простых предложений, особенно атомарных предложений на M', не представляет никаких затруднений, поскольку он близко соответствует обычной формулировке. Так, например, в качестве перевода предложения «He» мы берем в M' простейший из переводов на M, именно «Скотт — человек» (который представляет собой 4-1). Другие выше разобранные переводы на M не являются нейтральными (например, 4-2, 4-3 и переводы с «индивидом» и «индивидным концептом», аналогичные упомянутым в § 9); следовательно, они исключаются из M'. Нейтральная формулировка «Скотт — человек» в М' заменяет не только вышеупомянутые ненейтральные предложения в M, но также и два ненейтральных сочетания слов «логическая валентность того, что Скотт — человек» и «суждение, что Скотт — человек» в M (см. 6-3 и 6-4). В некоторых случаях простая формулировка «Скотт — человек» не подчиняется грамматике обычного языка, например, когда встречается в качестве грамматического подлежащего. В этих случаях мы могли бы по аналогии с «Человек» писать все слова с заглавными буквами: «Скотт Есть Человек»; но это выглядело бы несколько громоздко для более длинных предложений. Другой альтернативой является добавление слова «что» (см. замечание к 6-3 и 6-4): «что Скотт есть человек». Эта формулировка должна употребляться только как часть более слож-
ных предложений, особенно в переводе предложений языка М, содержащих одну из фраз «логическая валентность того, что Скотт есть человек», или «суждение, что Скотт есть человек». В некоторых случаях эта формулировка согласуется с обычным словоупотреблением, в других — не согласуется; но мы примем ее в М' во всех случаях. Таким образом, (ложное) предложение «\(N(\text{Hs}) \) (в \(S_2 \)) переводится в «Необходимо, что Скотт есть человек». Поскольку «\(\text{Hs} \) эквивалентно \(\langle \text{F} \text{B} \rangle s \rangle \), то в М' истино следующее: 34-13. Что Скотт есть человек, эквивалентно тому, что Скотт есть бесперое двуногое.

Следует согласиться, что эта формулировка несколько громоздка. Более обычные формулировки в М, где вместо «то у» стоит «суждения», или «логической валентности того», невозможны в М', потому что они не нейтральны; к тому же недостает обычных нейтральных существительных. Поэтому мы решаемся принять в М' форму 34-13, а также и аналогичную, приводимую ниже форму 34-14. Поскольку «\(\text{Hs} \)» L-эквивалентно \(\langle \text{RAs} \rangle \), то в М' истино следующее:

34-14. Что Скотт есть человек, L-эквивалентно тому, что Скотт есть разумное животное.

Употребление терминов «эквивалентный» и «L-эквивалентный» в качестве несемантических терминов, стоящих между предложениями, как в 34-13 и 34-14, аналогично употреблению их между предикаторами (как в 34-10 и т. д.) и между индивидуальными выражениями, но здесь между предложениями оно еще больше расходится с требованиями обычной грамматики. К счастью, имеет другая, обычная и грамматически правильная формулировка; но она имеет тот недостаток, что она применима только в связи с предложениями, но не применима в связи с другими десигнатами. Вместо «эквивалентно», мы можем употреблять здесь «если и только если», а вместо «L-эквивалентно» — «что... если и только если — — —, необходимо» \(^1\).

Таким образом, следующие предложения заменяют 34-13 и 34-14:

\(^1\) Здесь «необходимо» помещено в конце лишь по той причине, что в обычном языке нет другого простого средства указать на то, что аргументом при «необходимо» является все предложение «...если и только если — — —» в целом. — Прим. ред.
34-15. Скотт — человек, если и только если Скотт — бесперое двуногое.
34-16. Что Скотт — человек, если и только если Скотт — разумное животное, — необходимо.

§ 35. M' НЕ БЕДНЕЕ, ЧЕМ M

Возникает вопрос, правильно ли описаны десигнаторы в M' как нейтральные или, быть может, на самом деле они являются именами замаскированных интенционалов. Если кто-либо захочет рассматривать слово «Человек» в M' (или «H» в S₂) как имя свойства, то против этого нет существенных возражений. Но было бы ошибкой говорить, что язык, подобный S₂ или M', содержит только имена свойств и не содержит имен классов, а следовательно, лишен важных средств выражения. На самом деле все предложения M переводятся на M'. То, что M' не беднее средствами выражения, чем M, доказывается также возможностью введения вновь ненейтральных формулировок M в M' с помощью контекстуальных определений.

Возможно, что какой-нибудь читатель, привыкший к обычному методу отношения именования, усомнится, что M' или любой другой язык может быть подлинно нейтральным; он скажет, что нейтральное слово «Человек» в M' и также соответствующий знак «H» в S₁ и S₂, чтобы не быть двусмысленным, должны ясно смыслить или же, что «свойство Человек», или то же, что «класс Человека» другими словами, оно должно быть именем или свойством, или классом (ср. комментарии Кунайна ниже, § 44). Я не могу вполне согласиться с этой формулировкой «или — или». Я думаю, следует сказать, что слово «Человек», и точно так же «H», выражает и свойство, как свой интенционал, и класс, как свой экстенционал. Однако следует признать, что эта нейтральность не вполне симметрична. Как мы видели выше (§ 27), десигнатор первоначально выражает свой интенционал; именно интенционал есть то, что действительно сообщается говорящему слушающему с помощью десигнатора, именно он есть то, что слушающий понимает. На-против, указание на экстенционал является вторичным; экстенционал относится к локализации выполнения десигнатора так, что в общем он может быть установлен слушающим не просто на основе понимания десигнатора, но лишь с помощью фактического знания. Поэтому если бы кто-нибудь настаивал на рассмотрении десигнатора как
имени или его интенционала, или его экстенционала, то первое было бы более адекватно, особенно в отношении таких интенциональных языков, как M' и S_2. Я думаю, что нет никаких существенных возражений против применения отношения именования в только что описанных границах, пример против рассмотрения "Человек" в M' и "Н" в S_2 в качестве имени свойства Человек. Единственным основанием, по которому я предпочел бы не пользоваться отношением именования даже здесь, является опасность, что это употребление могло бы навести нас на следующий шаг, уже вызывающий возражения. В соответствии с обычной концепцией отношения именования мы могли бы поддаться искушению сказать: "Если "Человек" (или "Н") есть имя свойства Человек, то где мы найдем имя для класса Человек? Мы хотим говорить не только о свойствах, но также и о классах; поэтому мы не удовлетворены языком, подобным M' или S_2, не имеющим имен для классов и других экстенционалов". Это я рассматривал бы как неверное понимание положения. M' не становится беднее, чем M, оттого, что не содержит сочетания слов "класс Человек". Все, что выражается в M с помощью этого сочетания слов, переводимо на M' с помощью термина "Человек"; а все, что выражается в нейтральном символическом языке вроде PM' с помощью выражения класса $x(Hx)$, переводимо на S_2 с помощью "Н". Простейший метод перевода на S_2 основывается на методе (4), изложенном в предыдущем разделе. Для примера возьмем не систему PM', а систему PM'', сходную с PM', за исключение того, что она содержит форму контекстуального определения классов (33-1), вместо таковой Рассела (33-2). Правила перевода из PM'' на S_2 для выражений классов следующие:

35-1. a. При переводе минимального предложения (или матрицы), экстенционального и не содержащего знака «=», как выражение свойства (например, «Нx»), так и выражение класса (например, «x(Hx)») в PM'' переводятся на S_2 посредством соответствующего нейтрального выражения (например, «Н» или «(x)(Hx)»). (Это правило основывается на методе (4), поясненном в § 33.)

b. Предложение тождества в PM'' с двумя выражениями классов (например, «x(Hx)= x(Fx&Bx)») переводится
в \(\equiv \)-предложение с соответствующими нейтральными выражениями (например, \(\langle H \equiv F \ominus B \rangle \)).

c. Предложение тождества с двумя выражениями свойств (например, \(\langle H \bar{x} = RA \bar{x} \rangle \)) переводится в соответствующее \(\equiv \)-предложение (например, \(\langle H \equiv RA \rangle \)). (Мы оставляем здесь в стороне предложения тождества с одним выражением класса и одним выражением свойства; все такие предложения Л-ложны.)

Перевод из \(M \) на \(M' \) аналогичен. Мы можем предположить, что любое минимальное предложение в \(M \), не являющееся предложением тождества, экстенсионально.

35-2. a. Во всех контекстах, кроме предложений тождества, как выражения классов (например, «класс Человек»), так и выражения свойств (например, «свойство Человек») переводятся посредством соответствующих нейтральных выражений (например, «Человек»).

b. Предложение, утверждающее тождество классов, переводится в предложение, утверждающее эквивалентность соответствующих нейтральных объектов.

c. Предложение утверждающее тождество свойств, переводится в предложение, утверждающее L-эквивалентность соответствующих нейтральных объектов.

Правила 35-2 b и с являются особыми случаями общих правил 34-8 и 34-9 для экстенсоналов и интенсоналов (см. примеры 34-10, 34-11 и 34-12).

Таким образом, мы видим, что точка зрения, согласно которой \(M' \) беднее, чем \(M \), неправильна. Поскольку формулировка: «Десигнаторы в \(M' \) являются именами интенсоналов, и в \(M' \) нет имен для экстенсоналов», — легко может привести к неправильному пониманию, она кажется мне нецелесообразной. Более адекватным и менее вводящим в заблуждение будет говорить или «каждый десигнатор в \(M' \) имеет интенсонал и экстенсонал», или «десигнаторы в \(M' \) нейтральные».

В переводах по правилу 35-2a' характеристики «класс», «свойство» и т. д. просто опускаются. Это, пожалуй, может создать впечатление, что при переходе из \(M \) в \(M' \) некоторые важные различия исчезают. Это, однако, не так. Все различия, сделанные в \(M \), сохраняются и в \(M' \); они только формулируются иначе и, как правило, проще. Это доказывается тем, что все нейтральные способы вы-
ражения в M с терминами вроде «класс», «свойство» и т. д. могли бы быть введены и в M' посредством контекстуальных определений, если бы мы хотели иметь их там. (На самом деле, конечно, нам нет надобности нарушать нейтральность M'.) Так, термины «класс» и «свойство» могли бы быть введены посредством следующих контекстуальных определений:

35-3. a. ... класс f ... $=_{Df}$ для каждого g, если g эквивалентно f, то ... g ...

b. ... свойство f ... $=_{Df}$ для каждого g, если g L-эквивалентно f, то ... g ...

(Относительно контекста, указанного точками, см. замечания, следующие за 33-5.) Если контекст, указанный точками, экстенсионален, то вместо (a) мы можем взять более простое определение:

a'. ... класс f ... $=_{Df}$... f ...

Если контекст является или экстенсиональным, или интенсональным, то вместо (b) мы можем взять более простую форму:

b'. ... свойство f ... $=_{Df}$... f ...

Контекстуальные определения для терминов «индивид», «индивиый концепт», «логическая валентность» и «суждение» аналогичны. Мы допускаем, что эти определения в некоторых случаях ведут к необычным формулировкам. Однако они не ведут к ложным результатам. Решающим моментом является то, что они также дают первоначальные неператальные формулировки из M.

Предложения тождества, подобные предложениям в M, могут точно так же быть введены в M' посредством процедуры, обратной той, которая описана в 34-8 и 34-9:

35-4. a. Класс f есть тот же самый, что и класс $g=_{Df} f$ эквивалентно g.

b. Свойство f есть то же самое, что и свойство $g=_{Df} L$-эквивалентно g.

Возможность этих определений в M' для неператальных формулировок из M показывает, что все различия в M действительно сохраняются в M', только в другой форме. Другими словами, M' не беднее средствами выражения, чем M.
§ 36. НЕЙТРАЛЬНЫЕ ПЕРЕМЕННЫЕ В М'

Некоторые символические системы имеют разные переменные для классов и для свойств; выше (§ 27) мы видели, что это не необходимо. Точно так же сочетания слов «для каждого класса» и «для каждого свойства» в М представляют собой ненужное удвоение. В М' они заменяются сочетанием слов «для каждого f», где f — нейтральная переменная, интенсия которой является свойством, а экстенсия — класса. Нейтральные переменные для других типов вводятся аналогичным образом.

В М имеются еще другие ненейтральные выражения, которые должны заменяться нейтральными выражениями в М', а именно слова, посредством которых мы вообще говорим о какого-либо рода объектах, например местоимения, подобные «каждый», «любой», «все», «необходимый», также «существует» («there is») «некоторый», в сочетании со словами, подобными «класс», «свойство» и т. д. В символическом языке сочетания слов такого рода переводятся с помощью переменных в кванторах. Выше (§ 27) мы видели, что в символическом языке излишним удвоением является не только употребление разных выражений для классов и для свойств, но точно так же и употребление разных переменных для классов и для свойств (как, например, «x» и «y» в системе PM). Вместо этого мы можем употреблять нейтральные переменные, экстенсиональные значения которых являются классы, а интенсиональные значения — свойства. Теперь мы сделаем то же самое в М' для того, чтобы сделать возможной нейтральную формулировку общих предложений. Мы дополняем словесный язык в М' следующими буквами в качестве переменных: f, g и т. д., для предикаторов уровня 1 и степени 1 как выражений значений; x, y и т. д. для индивидных выражений; p, q и т. д. для предложений. Так, нейтральная формулировка общего предложения в М, содержащего одно из двух фраз «каждый класс» (или «все классы») и «каждое свойство» (или «все свойства»), переводится в нейтральное предложение языка М' с помощью сочетания слов «для каждого f», соответствующего квантору общности. Подобным же образом экзистенциальное предложение в М, содержащее одно из сочетаний слов «некоторый класс» (или «существует класс») и «некоторое свойство» (или «существует свойство»), переводится в М' с помощью соче-
§ 37. Семантика в нейтральном метаязыке M'

тания слов «для некоторого f» (или «существует f»). Аналогично, общее предложение о суждениях или логических валентностях переводится в M' с помощью сочетаний слов «для каждого p» или «для некоторого p» (или «существует p»). А общее предложение об индивидах или индивидных концептах переводится с помощью сочетаний слов «для каждого x» или «для некоторого x» (или «существует x»). Примеры будут даны ниже (см. 43-4).

Общие предложения в M об экстенсоналах или интенсоналах вообще точно так же могут переводиться в M', если мы введем общие переменные, для которых выражениями значений являются десигнатыры всех типов. Чтобы избежать противоречий, для употребления этих общих переменных должны быть сформулированы подходящие правила, содержащие ограничения; это может быть сделано разными способами.

§ 37. О ФОРМУЛИРОВКЕ СЕМАНТИКИ В НЕЙТРАЛЬНОМ МЕТАЯЗЫКЕ M'

В M' вводятся два семантических отношения между выражениями и нейтральными объектами, обозначение и L-обозначение. Показываетя, как семантические правила и предложения в M могут при этом переводиться на M'. Отношение обозначения экстенсонально; оно употребляется для перевода предложений, относящихся к экстенсоналу данных выражений. Отношение L-обозначения незэкстенсонально, оно служит для перевода предложений, относящихся к интенсоналу выражений. Таким образом, вся семантика системы (например, S_i) может быть переведена с M на M'.

В предшествующих разделах мы обсуждали только несемантическую часть метаязыка, ту часть, на которую могут быть переведены предложения языков-объектов. Мы подходим теперь к более важной, семантической части метаязыка, к той части, в которой мы говорим о предложениях и других выражениях языков-объектов, применяя к ним семантические термины вроде «истинно», «L-истинно», «эквивалентно», «L-эквивалентно» и т. д. Большинство рассуждений в более ранних главах этой книги сформулировано в этой семантической части метаязыка M. Это

1 Исторический обзор различных методов избежания антиномий см. у Куайна: Q и і пе, [М. Л.], § 29.
относится, в частности, к тем предложениям, которые говорят о классах, свойствах, суждениях и т. д. не только в общем виде, но и в связи с выражениями некоторого языка-объекта — например, к следующим двум (§ 4):
37-1. Экстенционал «Н» в S₁ есть класс Человек.
37-2. Интенционал «Н» в S₁ есть свойство Человек.

Важен теперь вопрос, можно ли перевести также и эти семантические утверждения языка M на нейтральный мета-язык M', то есть в формулировки, которые, вместо сочетаний слов, вроде «класс Человек» и «свойство Человек», употребляют только нейтральные сочетания слов, подобные «Человек». Только в том случае, если это возможно, мы можем сказать, что мы преодолели удвоение объектов.

Мы убедимся, что и в самом деле можно перевести семантику с M на M'. Предложение 37-1 утверждает, что между классом Человек и предикатором «Н» (в S₁) имеет место отношение быть экстенционалом, а 37-2 утверждает, что между свойством Человек и тем же самым предикатором имеет место отношение быть интенционалом. Каким образом можем мы получить нейтральные формулировки в M', относящиеся к нейтральному объекту Человек, вместо формулировок, относящихся к классу и свойству? Конечно, не годится просто опустить слова «класс» и «свойство» в этих предложениях, потому что тогда об одном и том же объекте утверждалось бы, что он является одновременно и экстенционалом и интенционалом одного и того же предикатора, а это не согласовывалось бы с имеющимся в виду значением терминов «экстенционал» и «интенционал». Вместо этого мы должны использовать отношение, имеющее место между нейтральным объектом Человек и предикатором «Н», отношение, не тождественное ни с отношением быть экстенционалом, ни с отношением быть интенционалом, хотя и сходное с ним. Более тщательное исследование положения показывает, что нам нужны здесь два новых отношения, имеющих место между «Н» и Человек; первое из них относится к второму так, как какое-нибудь основное семантическое понятие (например, истинность) относится к соответствующему L-понятию (например, L-истинности). Поэтому естественно, если мы найдем подходящее слово для первого отношения, взять для второго это же слово с префиксом «L-». Первое от
нотное понимается здесь так, что оно определяется также и в экстенсональном метаязыке; но второе отношение, как мы увидим, интенционально. Поскольку первое отношение имеет место между выражением (например, "Н") и объектом (например, Человек), знаком которого служит данное выражение, постольку кажется подходящим слово, вроде «имеет в виду» «значит», «выражает», «обозначает», «означает» или что-либо подобное. Я не хочу определять точнее. Попробуем употребить термин «обозначает» для первого отношения и, следовательно, «L-обозначает» для второго. Тогда вместо 37-1 и 37-2 в М мы получим в М' в отношении S', следующее:

Это может рассматриваться как формулировка в М' правила обозначения для системы S', (соответствующего первому пункту в прежнем правиле 1-2). Первое отношение мыслится как экстенсональное; это значит, что всякое предложение с этим отношением экстенсонально относительно каждого из двух аргументных выражений. Следовательно, 37-3 экстенсонально относительно "Человек"; это значит, что входжение "Человек" в этом предложении взаимозаменяется с любым предикатором, который эквивалентен "Человек" в М'. Таким образом, согласно эквивалентностям, сформулированным в § 34, мы получаем следующие два результата:
37-4. "Н" обозначает Бесперое Двуногое;
37-5. "Н" обозначает Разумное Животное.

Употребляя нейтральную предикаторную переменную "f" (см. § 36) и "эквивалентно" как несемантический термин (см. 5-3 и § 34), мы можем выразить результат в общей форме:
37-6. Для каждого f, если f эквивалентно Человек, то "Н" обозначает f (в S').

Если сформулировать соответствующее определение для "обозначает в S', что здесь еще не было сделано, то обращение 37-6 также имеет силу:
37-7. Для каждого f, "Н" обозначает f (в S'), если и только если f эквивалентно Человек.

Мы решили употреблять для второго отношения термин "L-обозначает". Мы не будем давать для него определения. Для последующего обсуждения мы принимаем,
что он определяется в отношении какой-либо данной системы, скажем \(S_1 \), таким образом, что выполняется следующее условие 37-8; аналогичное условие имеет силу для L-истинности, по нашему соглашению 2-1, а также для других L-понятий.

37-8. Выражение \(\mathcal{U}_i \) L-обозначает объект \(i \) в \(S_1 \), если и только если можно, пользуясь одними лишь семантическими правилами системы \(S_1 \) без какой-либо ссылки на факты, показать, что \(\mathcal{U}_i \) обозначает \(i \) в \(S_1 \). (Переменная «\(i \)», употребляемая здесь в \(M' \), является общей переменной, не ограниченной типом; см. замечания в конце § 36.) Теперь применим 37-8 к 37-3, 37-4 и 37-5 по очереди. Предложение 37-3 может быть установлено на основе одних лишь семантических правил системы \(S_1 \), тривиальным образом, поскольку оно само является одним из этих правил. В отношении \(S_1 \), это дает:

То же не имеет, однако, силы для 37-4. Чтобы показать, что это предложение имеет силу, мы пользовались и должны пользоваться не только семантическим правилом 37-3, но также и тем результатом, что предикаторы «Человек» и «Бесперое Двуногое» эквивалентны в \(M' \); эта эквивалентность, как и эквивалентность соответствующих предикаторов «\(H \)» и \(F\&B \) в \(S_1 \), не есть L-эквивалентность (см. § 34), а основывается на биологическом факте (3-6). Следовательно, согласно 37-8, в \(M' \) истино следующее: 37-10. «\(H \)» не L-обозначает Бесперое Двуногое.

Поскольку «Человек» и «Бесперое Двуногое» эквивалентны в \(M' \), поскольку из 37-9 и 37-10 мы видим, что отношение L-обозначения неэкстенсионально.

Утверждение 37-5 опять-таки может быть установлено на основе одного лишь правила 37-3, без ссылки на факты, так как предполагается, что «Человек» и «Разумное Животное» значит одно и то же (см. замечание к 1-2). Следовательно, согласно 37-8, истино следующее:

37-11. «\(H \)» L-обозначает Разумное Животное.

Мы можем в общей форме сформулировать результат с нейтральной переменной «\(f \)» и с «L-эквивалентно» в качестве несемантического термина:

37-12. Для каждого \(f \) если \(f \) L-эквивалентно Человек, то «\(H \)» L-обозначает \(f \).
Если подходящее определение для "L-обозначает" сформулировано в соответствии с условием 37-8, то имеет силу также и обращение 37-12:

37-13. Для каждого \(f \) «Н» L-обозначает \(f \), если и только если \(f \) L-эквивалентно Человек.

Мы показали применимость отношений обозначения и L-обозначения к предикаторам. Применение к десигниаторам других типов совершенно аналогично. В качестве примеров в отношении индивидных выражений в \(S_1 \) по аналогии с 37-3, 37-4, 37-6 и 37-7 в \(M' \) истинны следующие предложения:

37-14. «\(s \)» обозначает Вальтер Скотт.
37-15. «\(s \)» обозначает Автор Веверлея.
37-16. Для каждого \(x \), если \(x \) эквивалентно Вальтер Скотт, то «\(s \)» обозначает \(x \).
37-17. Для каждого \(x \), «\(s \)» обозначает \(x \), если и только если \(x \) эквивалентно Вальтер Скотт.

Правило 37-14 является правилом обозначения системы \(S_1 \), соответствующим первому пункту в 1-1. Предложение 37-15 выводится из 37-14 с помощью исторического факта (9-1). Далее, по аналогии с 37-9, 37-10, 37-12 и 37-13, в \(M' \) истинны следующие предложения:

37-18. «\(s \)» L-обозначает Вальтер Скотт;
37-19. «\(s \)» не L-обозначает Автор Веверлея.
37-20. Для каждого \(x \), если \(x \) L-эквивалентно Вальтер Скотт, то «\(s \)» L-обозначает \(x \).
37-21. Для каждого \(x \) «\(s \)» L-обозначает \(x \), если и только если \(x \) L-эквивалентно Вальтер Скотт.
Предложения 37-14 и 37-16 могут рассматриваться, как переводы следующего предложения в M (§ 9):
По аналогии, в отношении предложений в S₁ в M' истинны следующие предложения; для нейтральной формулировки мы употребляем придаточное предложение (§ 34).
37-22. «Hs» обозначает, что Скотт — человек.
Это утверждение в отличие от 37-3 и 37-14 само не является семантическим правилом, но вытекает из этих правил с помощью соответствующего определения для «обозначает в S₁» в его применении к предложениям. Следующее предложение — следствие предложения 37-22, потому что «Скотт есть человек» и «Скотт есть бесперое двуногое» эквивалентны в M':
37-23. «Hs» обозначает, что Скотт есть бесперое двуногое. В общем виде с нейтральной переменной «ρ» (§ 36):
37-25. Для каждого ρ «Hs» обозначает ρ, если и только если ρ эквивалентно тому, что Скотт — человек.
(В этих двух предложениях неидиоматическое сочетание слов «эквивалентно тому, что» может быть заменено сочетанием слов «если и только если», см. пояснения к 34-13 и 34-15.)
Кроме того, для L-обозначения истинны в M' следующие предложения:
37-27. «Hs» не L-обозначает, что Скотт есть бесперое двуногое.
37-29. Для каждого ρ, «Hs» L-обозначает ρ, если и только если ρ L-эквивалентно тому, что Скотт — человек.
(В последних двух предложениях неидиоматическое сочетание слов «L-эквивалентно тому, что» может быть элиминировано путем преобразования, аналогичного преобразованию предложения 34-14 в предложение 34-16.)
Предложения 37-22 и 37-24 могут рассматриваться как переводы предложения 6-3 в М о логической валентности как экстенсионале; точно так же 37-26 и 37-28 — как переводы предложения 6-4 о суждении как интенсионале. Здесь имеют силу замечания, аналогичные сделанным ранее.

Раньше мы видели, что можно было бы ввести в М' ненейтральные термины «класс», «свойство» и т. д. контекстуальными определениями. Если бы мы применили эти термины в формулировках семантических предложений в М', то эти предложения стали бы вполне сходными с предложениями в М. Например, применьа определение «класс» (35-3а) к 37-6, мы получаем:

Точно так же, применяя определение «свойство» (35-3б) к 37-12, получаем:

Аналогичные результаты были бы получены для индивидных выражений и предложений. Эти результаты показывают, что отношение обозначения в М' соответствует отношению между десигнатором и его экстенсионалом в М, а отношение L-обозначения в М' соответствует отношению между десигнатором и его интенционалом1 в М.

1 Мое употребление терминов «обозначение» (designation) и «десигнат» (designatum) в [1] было, как я сейчас понимаю, не вполне однозначным, потому что тогда мне еще не было ясно различение, которое я теперь произвожу в M с помощью терминов «экстенсионал» и «интенционал», и в M' с помощью терминов «обозначение» и «L-обозначение». Употребление термина «десигнат» (designatum) в [1] в большинстве случаев соответствует настоящему употреблению термина «интенционал» в M (или L-десигнат в M'). Таким образом, в таблице десигнаторов (Designata) ([1], p. 18) и в поздних примерах правил обозначения в качестве десигнаторов берутся следующие объекты: свойства, отношения, атрибуты, функции, концепты и суждения. Только в отношении индивидных выражений я употреблял этот термин иначе, беря в качестве десигнаторов в таблице и в примерах не индивидуальные концепты, а индивиду. Поскольку говорить об индивидуальных концептах, какая бы термин ни употреблять, необычно, я не заметил, что к той же категории, что и свойства, суждения и т. д., относятся именно индивидуальные концепты, а не индивиду. Таким образом, то, что я рассматривал в качестве десигнаторов в случае индивидных выражений, в методе отношения именования рассматривалось бы как номината. Вероятно, поэтому Чёрч (Review C.) принимал во всех случаях моей термины «десигнат» (designatum) и смысл «номинал» (nomi-
natum), и, может быть, также и Куэйн (Notes) полагает, что находится.
Примеры в этом разделе показывают, как семантические предложения в M, устанавливающие экстенсоналы или интенсоналы предикаторов, индивидуальных выражений и предложений в S_1 могут переводиться в нейтральные формулировки в M'. Перевод семантических предложений, которые относятся не к веязываемым объектам, а только к выражениям языка-объекта, например к предложениям об истинности, L-истинности, эквивалентности и L-эквивалентности, не представляет, конечно, никаких трудностей. Таким образом, вся семантика в целом, относительно S_1 или любой другой системы, может быть переведена из M в M'.

Можно вкратце свернуть основания для нашего употребления двух метаязыков M и M'. Метаязык M в первых трех главах этой книги употреблялся, так сказать, некритически. Он дает такие пары терминов, как «класс» — «свойство» и т. п. и общие термины «экстенсонал» и «интенсонал». Употребление этих терминов составляет то, что мы назвали методом экстенсонала и интенсонала. Главное основание для употребления этих пар терминов то, что они соответствуют знаковым понятиям, обычно рассматриваемым в качестве видов абстрактных объектов. В настоящей главе мы построили нейтральный метаязык M', который не имеет таких пар терминов и, таким образом, избегает видимости удвоения объектов. Хотя термины «экстенсонал» и «интенсонал» не встречаются в M', существенные черты метода, применяемого в M', тем не менее...

в согласии с моим словоупотреблением, когда употребляет «десигнат» в этом именно смысле. Я сожалею, что недостаток ясности изложения в [1] стал причиной этих недоразумений. Этот недостаток был не случайным, но произошел от неясности длительного рассмотрения некоторых основных семантических понятий. Мне кажется, что этот недостаток удалось преодолеть только с помощью анализа, выполненном в этой книге. Утверждение Чёрча (Review С.), что десигнат (designatum) предложения есть не суждение, а логическая валентность, на основании метода отношения именования Фреге правильно для черчевского употребления термина «десигнат» в смысле «номинат»; но не для моего употребления «десигнат» в [1] в смысле «интенсонал».

§ 37. Семантика в нейтральном метаязыке M'

нее те же, что и в M; следовательно, мы все-таки могли бы назвать метод, употребляемый в M', нейтральной формой метода экстенсонала и интенсонала, или иначе (нейтральным) методом эквивалентности и L-эквивалентности, или (нейтральным) методом обозначения и L-обозначения. Различения, проводимые в M, не игнорируются в M', но представлены в другой форме. Вместо кажущегося удвоения объектов мы имеем здесь различение двух отношений между выражениями, именно эквивалентностью и L-эквивалентностью, и основанное на нем различение двух отношений между выражениями и объектами, а именно обозначения и L-обозначения. Мы видели, что в M' можно строить контекстуальные определения для ненейтральных терминов «класс», «свойство» и т. д., ведущие к формулировкам, подобным таковым в M. С одной стороны, этот результат показывает, что нейтральный метод в M' действительно сохраняет все различения, первоначально сделанные в M, и, следовательно, является эффективной заменой первоначальной формы этого метода. С другой стороны, этот результат является оправданием для M, поскольку он показывает, что кажущееся удвоение объектов в M фактически является удвоением способов выражения.

Поскольку ненейтральный способ выражения в M и нейтральный в M' относятся к одной и той же области, выбор между ними есть действительно вопрос практического преимущества. Нейтральная формулировка много проще и избегает даже видимости удвоения объектов. Поэтому такая формулировка могла бы иметь преимущество в тех случаях, в которых метаязык для семантических целей должен быть построен строгим, систематическим образом, например с помощью символического языка, или с помощью слов, употребление которых регулируется явными правилами. С другой стороны, ненейтральная формулировка в большинстве случаев является более знакомой, более соответствующей с обычным словоупотреблением. Поэтому такая формулировка может представлять собой предпочтительной для семантического обсуждения на технически не очень высоком уровне, особенно для целей вводного изложения. Таково основание для его употребления в первой части этой книги.
§ 38. О ВОЗМОЖНОСТИ ЭКСТЕНСИОНАЛЬНОГО МЕТАЯЗЫКА ДЛЯ СЕМАНТИКИ

Обсуждается вопрос, может ли полное семантическое описание системы, даже неэкстенсиональной системы, подобной S_2, быть сформулировано в экстенсиональном метаязыке, например в подъязыке M_e языка M', содержащем только экстенсинальные предложения M'. Оказывается, что большинство семантических правил (правила образования, истинности и области) может быть сформулировано в M_e без всяких затруднений. Ситуация не так проста в отношении правил обозначения; но эти правила, по-видимому, могут также быть адекватно сформулированы в M_e.

Мы сформулировали семантические предложения в двух разных метаязыхах, M и M'. Оба эти языка являются неэкстенсональными. Возникает вопрос, можно ли сформулировать семантику в экстенсональном метаязыке — точнее, можно ли построить экстенсональный метаязык, достаточный для формулирования полного семантического описания даже неэкстенсонального языка-объекта (как, например, S_2). Семантическое описание языка-объекта полно, если оно, будучи дано в качестве единственной информации об этом языке, позволяет нам понять любое предложение этого языка α, следовательно, определить, является ли оно L-эквивалентным некоторому данному предложению нашего метаязыка или нет. Ответа на этот вопрос пока еще нет. Однако на основании некоторых проведенных мной исследований мне кажется, что утвердительный ответ не невероятен. Здесь я дам только несколько указаний.

Легко видеть, что предложение в M, говорящее, что является интенсональным определенно выражение, неэкстенсонально. Например, предложение «интенсональ «Н» в S_1 является свойство Человек» (4-17) является неэкстенсональным в отношении «свойства Человек», потому что, если этот предикатор заменяется ему эквивалентным, «свойство Бесперное Двуногое», то это истинное предложение превращается в ложное. Такого рода предложения существенны для употребления нашего метоязыка в M. Поэтому если мы хотим найти экстенсональные семантические предложения, то кажется более обещающим искать их среди нейтральных формулировок в M'. Термин «интенсональ» не встречается в M'; не встречаются в нем также и те интенсональные предложения языка M, которые устанавливают тождественность или нетождествен-
ностью свойств или других интенсоналов (например, 4-8 и 4-9). Тем не менее M' не является экстенсональным языком; семантические формулировки, которые мы употребляли в M', содержат следующие три и только три не-экстенсональных (и, кроме того, интенсональных) термина. Первым является модальный термин «необходимо» (см., например, 34-16). Вторым является термин «L-эквивалентно» в его носемантическом употреблении, встречающемся, например, в 34-11, 34-12 и 34-14; легко видеть, что каждое из этих предложений нейэкстенсонально относительно обоих аргументных выражений. Этот термин определям на основе термина «необходимо» (ср., например, 34-14 и 34-16). (Кстати заметим, что семантический термин «L-эквивалентно в системе S» экстенсонален. Так «предложение S', L-эквивалентно S_2 в системе S_1» экстенсонально; в противоположность 34-14 оно не содержит предложений в качестве своих частей, а содержит только имена предложений.) Третий нейэкстенсональный термин в M' «L-обозначает» (см. замечание, следующее за 37-10).

Пусть M_e будет метаязыком, содержащим все экстенсональные предложения языка M' и никаких других; мы можем построить его исходя из M', опуская все предложения, содержащие упомянутые три нейэкстенсональных термина. Мы спросим: что из семантики, скажем, экстенсональной системы S_1 и интенсональной системы S_2, может быть сформулировано в M_e?

Полная система семантических правил для S_1 или S_2, не данная в этой книге, состояла бы из следующих видов правил:

(I) Правил образования на основе классификации знаков; эти правила составляют определение «предложения».
(II) Правил обозначения для исходных дескриптивных постоянных, именно индивидуальных постоянных и предикатов.
(III) Правил истиности.
(IV) Правил областей.

Легко видеть, что правила видов (I), (III) и (IV) могут быть сформулированы в экстенсональном метаязыке, подобном M_e. Мы здесь должны рассмотреть эти правила в их точной формулировке. Обозначения выражений языка-объекта должны быть образованы не с помощью кавычек, как мы делали ради удобства в более ранних приме-
рах семантических правил и утверждений, а как описания с помощью букв немецкого готического шрифта. Для этой цели добавим букву «Ψ» как обозначение в M_e модального знака N в S_2. В качестве примера правила образования для S_2 в M_e возьмем правило для N-матриц: «Если Ψ_i есть матрица в S_2, то $\Psi (\Psi_i)$ есть матрица в S_2». В примечении к «Hs» это правило гласит, что если «Hs» есть матрица, как это есть на самом деле, согласно другому правилу, то «N(Hs)» есть матрица. Заметим, однако, что само правило не содержит выражения Ψ_i, например «Hs», а только указывает на это выражение, используя для него имя «Ψ_i» (по существу — переменную, вместо которой может быть поставлен какое-либо имя, скажем «Ψ_i»). Среди правил истинности мы пока оставим в стороне правило для атомарных предложений, потому что оно содержит термин «обозначает» (или «относится к», см. 1-3), который будет обсужден ниже. Примером одного из прочих правил истинности (1-5) является следующее: «Дизъюнкция двух предложений Σ_i и Σ_j (что значит — предложение, состоящее из поставленного в скобки Σ_i, сопровождаемого знаком дизъюнкци, за которым следует поставленное в скобки Σ_j) истинна, если и только если Σ_i или Σ_j, или оба истинны». Ясно, что эта формулировка экстенсиональна. Это же самое распространяется и на правила областей для S_2, которые будут даны в § 41. Эти правила определяют «предложение Σ_i выполняется в описании состояния Ψ_{r,Σ_i}»; Ψ_{r,Σ_i} есть класс предложений. Заметим, что предложение Σ_i, не говоря уже о классе Ψ_{r,Σ_i}, само не встречается в этом правиле; встречаются лишь имена (или переменные) «Σ_i» и «Ψ_{r,Σ_i}». Таким образом, ясно, что отношение выполнения является экстенсиональным. Правила областей относятся, кроме того, к отношениям; соответствие есть функция, сопоставляющая переменной и описанию состояния, как аргументам, индивидуально постоянную в качестве значения. Только экстенсональ этих функций существенны для правил и предложений, основанных на правилах; это значит, что, если ссылку на одно соответствие в истинном предложении заменить ссылкой на другое эквивалентное соответствие (то есть такое, которое сопоставляет каждой паре аргументов то же значение, что и первое соответствие), то получающееся в результате

Теперь вернемся к правилам обозначения. Здесь для нашей проблемы выразимости семантики системы S₂ в Мe имеется один критический пункт. В M' мы различали два отношения между десигнаторами и нейтральными объектами, именно отношения обозначения и L-обозначения. Отношение обозначения экстенсионально и, следовательно, входит в Мe; но отношение L-обозначения экстенсиональным не является. Таким образом, мы должны исследовать вопрос, достаточно ли отношение обозначения для описания значений выражений в языках-объектах. Например, значением «ин» в S₁ и S₂ является (свойство) Человек, но не Бесперое Двуногое; значение «s» есть Вальтер Скотт, но не Автор Беверлея. В M' мы легко можем выразить это различие с помощью термина «L-обозначение» предложением 37-9 и 37-10, 37-18 и 37-19. Но как можем мы сделать это в Мe, где мы располагаем лишь термином «обозначение»? Трудность состоит в том, что для отношения обозначения верны оба следующих утверждения (37-3 и 37-4):

38-1. «Н» обозначает Человек.
38-2. «Н» обозначает Бесперое Двуногое.

И то же имеет силу для следующих двух утверждений (37-14 и 37-15):

38-3. «s» обозначает Вальтер Скотт.
38-4. «s» обозначает Автор Беверлея.

Ввиду этого факта на первый взгляд могло бы казаться, что в Мe невозможна информация о значениях, которые имеются в виду для «Н» и «s». Я, однако, считаю, что это не невозможно. Мы формулируем в Мe, среди правил обозначения для S₁ и S₂, 38-1 и 38-3. Далее, предложение 38-2, хотя оно также истино, фундаментально отлично от 38-1, так как оно не является ни семантическим правилом, ни выводимым из одних лишь семантических правил; оно было выведено из правила 38-1 в биологического факта (3-6). Если метаметаязык ММ, в котором мы говорим здесь
Глава IV. О метаязыках для семантики

о Мe и других метаязыках, содержит L-термины, то мы можем формулировать рассматриваемое различие так: 38-1 L-истинно в Мe, но 38-2 лишь F-истинно. Соотношение между 38-3 и 38-4 аналогично. Но даже в самом Мe мы можем описать ситуацию и в более явных терминах. Если мы захотим добавить к 38-1 отрицательное утверждение в Мe, то может быть выбрано следующее (3-8): 38-5, "H" и "Фob" не L-эквивалентны (в S1 и S2).

Это утверждение вместе с 38-1 и некоторыми другими семантическими правилами в некотором смысле соответствует отрицательному утверждению 37-10 в М.

Сами правила обозначения относятся только к исходным индивидуальным постоянным и предикаторным постоянным. Но экстенсивное отношение обозначения может также определяться в Мe и в более широком смысле так, чтобы его можно было применять ко всем десигнаторам, включая сложные индивидуальные выражения, предикаторы и предложения, а также интенсивные предложения в S2. Тогда, например, в Мe будут верны следующие два предложения (37-22 и 37-23): 38-6, "Hs" обозначает, что Скотт — человек, 38-7. "Hs" обозначает, что Скотт — беспереое двуногое.

Разница между этими двумя утверждениями аналогична разнице между 38-1 и 38-2: утверждение 38-6, хотя само и не является правилом, вытекает из одних только семантических правил, тогда как для вывода 38-7 нужна фактическая посылка.

Вышеуприведенное обсуждение показывает, что если кто-либо не обладает никакой другой информацией относительно S1 и S2, кроме семантических правил для этих систем, сформулированных в Мe, то он, тем не менее находится в положении, позволяющем ему знать значения — то есть не только экстенсивные, но также и интенсивные, которые и являются в виду, во-первых, для исходных дескриптивных постоянных и, во-вторых, для всех десигнаторов. Все, что он должен сделать, это, во-первых, посмотреть на сами правила обозначения и, во-вторых, на те предложения об обозначении, которые вытекают из одних лишь семантических правил, оставляя в стороне все те утверждения в Мe, которые, хотя и истинны, могут быть получены, однако, только с помощью знания фактов.
§ 38. Экстенсиональный метаязык для семантики

Другими словами, он должен принять во внимание только те предложения об обозначении, которые являются L-истинными в M_e.

Иногда говорят, что метаязык, в котором должна формулироваться семантика языка-объекта S, должен содержать переводы всех выражений, или по крайней мере всех десигнаторов в S. Если бы это было правильно, то M_e был бы недостаточным в качестве семантического языка для S_2, потому что M_e не может, конечно, содержать выражение, L-эквивалентное интенциональному знаку «Н» в S_2. Но упомянутое требование только приблизительно верно, строго говоря, оно слишком сильно Метаязык, действительно, должен для каждого предложения в S содержать L-эквивалентное предложение; более того, он должен быть в достаточной мере богат переменными и дескриптивными выражениями. Нет, однако, необходимости, чтобы он содержал L-эквивалентное выражение для каждого логического знака в S. Хотя M_e и не может содержать перевод «N», он может содержать семантическое правило для «N», например вышеупомянутое правило областей. Если S_i есть предложение в S_2, содержащее «N», то экстенсиональный язык, подобный S_1 или M_e, не может, конечно, содержать перевод S_i в строгом смысле предложения с той же интенциональной структурой (§ 14). Но можно показать, что S_1, а следовательно, также и M_e всегда содержит предложение, L-эквивалентное S_i. (Для предложений, производных от «N», это вытекает просто из того обстоятельства, что они либо L-истинны, либо L-ложны (см. 39-2); однако поскольку предложения могут содержать несколько вхождений «N» и кванторы в любой комбинации, постольку общее доказательство несколько сложно.) Далее, S_1 и S_2 содержат одну и те же переменные и дескриптивные знаки. Следовательно, если M_e достаточен для формулирования семантики в S_1, то он также достаточен для формулирования семантики и в S_2.

На основе этих соображений я склонен думать, что можно дать полное семантическое описание даже интенциональной языковой системы, подобной S_2 в экстенсиональном метаязыке, подобном M_e. Однако эта проблема требует дальнейшего исследования.
ГЛАВА V

О ЛОГИКЕ МОДАЛЬНОСТЕЙ

В этой главе мы исследуем логические модальности, такие как необходимость, возможность, невозможность. Мы вводим знак «N» как символ необходимости; с его помощью могут быть определены другие модальные понятия, включая необходимую импликацию и необходимую эквивалентность. Добавлением «N» к нашей прежней системе S₁ (§ 39) строится модальная система S₂, и формулируются семантические правила для S₂ (§ 41). Анализ переменных, встречающихся в модальных предложениях, показывает, что они должны интерпретироваться как имеющие интенциональные в качестве своих значений (§ 40); следовательно, словесный перевод должен даваться в терминах интенционалов (в метаязыке M) или в нейтральных терминах (в M') (§ 43). Обсуждаются взгляды Квайна на возможность комбинирования модальностей с переменными (§ 44). Наконец, кратко резюмируются главные результаты обсуждений, нашедших себе место в этой книге (§ 45).

§ 39. ЛОГИЧЕСКИЕ МОДАЛЬНОСТИ

Мы образуем модальную систему S₂ из нашей прежней системы S₁, посредством добавления модального знака «N» для обозначения логической необходимости. Мы рассматриваем суждение как необходимое если любое выражающее его предложение является L-истинным. В терминах необходимости могут быть определены другие модальности, например невозможность, возможность, случайность. С помощью «N» мы определяем символы для необходимой импликации и необходимой эквивалентности; последний символ может рассматриваться как знак тождества для интенционалов.

В предыдущих главах иногда приводились в качестве примеров модальные предложения, особенно предложения о необходимости или возможности, записанные в словах (например, в § 30 и 31) или в символах (например, § 11, пример 11). Мы употребляем «N» как знак логической необходимости; «N(A)» является символической записью для «(логически) необходимо, что A».
Большое число различных систем модальной логики было построено К. И. Льюисом (см. библиографию) и др. Эти системы отличаются друг от друга своими основными допущениями, касающимися модальностей. Например, ставился вопрос, являются ли истинными все предположения формы \(\text{N}p \equiv \text{NN}p \), в словесной форме: «если необходимо, что \(p \), то необходимо, что необходимо, что \(p \)». Некоторые из упомянутых систем дают утвердительный ответ на этот вопрос, другие же дают или отрицательный ответ, или оставляют вопрос без решения. Логики расходятся не только друг с другом в этом вопросе, но иногда бывает и так, что один и тот же логик строит несколько систем, отличающихся друг от друга именно в этом пункте, вероятно, потому, что он сомневается, должен ли он рассматривать упомянутые предложения как истинные или как ложные. Далее имеются и еще пункты различия между системами. Я думаю, что все эти различия происходят от недостаточной ясности понятия логической необходимости; оно может, например, быть понимаемо так, что упомянутые предложения будут истинными, но может пониматься и так, что они или некоторые из них окажутся ложными.

Нашей задачей будет найти ясные и точные понятия для замены неточных понятий модальностей, употребляемых в обычном языке и в традиционной логике. Другими словами, мы ищем экскликации для модальностей. Мне кажется, что простой и удобный способ экскликации состоит в обосновании модальностей семантическими L-понятиями. Понятие логической необходимости, как экскликанд, по-видимому, обычно понимается в том смысле, что оно применяется к суждению \(p \), если и только если истинность \(p \) основывается на чисто логических основаниях и не зависит от случайности фактов; другими словами, если допущение \(\text{not-}p \) привело бы к логическому противоречию независимо от фактов. Таким образом, мы видим близкое сходство между двумя экскликациями, логической необходимостью суждения и логической истинностью предложения. Но для последнего понятия мы обладаем точным

1 Для библиографических справок до 1938 года см. библиографию Чёрна в «Journal of Symbolic Logic», Vol. I, III; относящиеся к данному вопросу справки даются в III, 199 («Modality») и 202 («Strict Implicati-
экспликатом в семантическом понятии L-истинности, определяемом на основе понятий описания состояния и области (2-2). Поэтому самым естественным путем, как мне кажется, является рассмотрение в качестве экспликаата для логической необходимости того свойства суждений, которое соответствует L-истинности предложений. В соответствии с этим мы формулируем следующее соглашение для «Н»: 39-1. Для любого предложения «...», «Н(...)» истинно, если и только если «...» L-истинно.

Построим систему S₂, добавив к системе S₁ знак «Н» с соответствующими правилами, обеспечивающими выполнение сформулированного соглашения (§ 41). Это соглашение может считаться правилом истиности для предложений, производных от «Н». Система S₂, таким образом, содержит все знаки и предложения системы S₁.

На основе предложенной интерпретации «Н», заданной соглашением 39-1, могут быть разрешены старые споры. Допустим, что «L-истинно в S₂» определяется так, что выполняется наше прежнее соглашение 2-1, говорящее, что предложение L-истинно, если и только если оно истинно в силу одних только семантических правил независимо от каких бы то ни было внеязыковых фактов. Пусть «A» будет сокращением для L-истинного предложения в S₂ (например, Hs\~Hs). Тогда «Н(A)» истинно, согласно 39-1. И, более того, оно L-истинно, поскольку его истиность устанавливается семантическими правилами, определяющими истиность и тем самым L-истинность «А», и семантическим правилом для «Н», скажем, 39-1. Таким образом, вообще если «Н(...)» истинно, то и «NN(...)» истинно; следовательно, любое предложение формы «Нp ≡ NNp» — истинно. Это и дает утвердительный ответ на упомянутый в начале спорный вопрос Аналогичным способом можно показать, что всякое предложение формы «~Нp ≡ Н~Нp» — истинно. Это разрешает и другой спорный вопрос ¹.

Этот анализ ведет к тому результату, что если «Н(...)» истинно, то оно и L-истинно; а если оно ложно, то оно и L-ложно; следовательно:

¹ Эти два вопроса и основания для наших утвердительных ответов более детально обсуждаются в [Modalities], § 1.

Следовательно, соглашение 39-1 может быть заменено следующим более специальным:

39-3. Для каждого предложения «...» в S_2 «N(...)» L-истинно, если «...» L-истинно; в противном случае «N(...)» L-ложно.

На основе понятия логической необходимости, как это хорошо известно, могут быть определены и другие логические модальности. Например, «р невозможно», значит, «не-р необходимо»; «р случайно» значит «р не необходимо и не невозможно»; «р возможно» значит «р не невозможно» (мы принимаем эту интерпретацию в согласии с большинством современных логиков, в отличие от других философов, которые употребляют «возможно» в смысле нашего термина «случайно»). Будем употреблять ромб «◇» как знак возможности; мы определяем его на основе «N»:

39-4. Сокращение. «◇(...)» сокращение для «~N~(...)».

Можно было бы рассматривать «◇» как исходный знак, как это делает Лъюис, и тогда определять «N(...)» посредством «~◇~(...)».

Шесть модальностей

<table>
<thead>
<tr>
<th>Модальное свойство суждения</th>
<th>c «N»</th>
<th>c «◇»</th>
<th>Семантическое свойство предложения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Необходимо</td>
<td>Np:</td>
<td>◇~p</td>
<td>L-истинно</td>
</tr>
<tr>
<td>Невозможно</td>
<td>N ~p</td>
<td>◇~p</td>
<td>L-ложно</td>
</tr>
<tr>
<td>Случайно</td>
<td>~Np ◇ ~N ~p</td>
<td>◇~p ◇~p</td>
<td>Фактично</td>
</tr>
<tr>
<td>Необходимо</td>
<td>~Np</td>
<td>◇~p</td>
<td>Нe-L-истинно</td>
</tr>
<tr>
<td>Возможно</td>
<td>~N ~p</td>
<td>◇~p</td>
<td>Нe-L-ложно</td>
</tr>
<tr>
<td>Неслучайно</td>
<td>Np ∨ N ~p</td>
<td>◇~p ∨ ◇~p</td>
<td>L-детерминировано</td>
</tr>
</tbody>
</table>

Имеется шесть модальностей, то есть чисто модальных свойств суждений (в отличие от смешанных модальных свойств, например, случайной истиности, см. 30-1). Приведенная таблица показывает, как их можно выразить в терминах «N» и в терминах «◇». Последний столбец дает соответствующие семантические понятия; суждение имеет одно из модальных свойств, если и только если любое предложение, выражающее это суждение, имеет соответствующее семантическое свойство.
Глава V. О логике модальностей

Каждое суждение над данной системой S^1 или необходимо, или невозможно, или случайно. Эта классификация, согласно нашей интерпретации модальностей, аналогична делению предложений системы S на три класса: L-истинные, L-ложные и фактические. Имеется, однако, одно существенное различие между этими двумя классификациями. Число L-истинных предложений может быть бесконечным, и оно, действительно, бесконечно для каждой из систем, описанных в этой книге. С другой стороны, имеется только одно необходимое суждение, поэтому что все L-истинные предложения являются L-эквивалентными друг другу и, следовательно, имеют один и тот же интенционал. (Это распространяется только на то употребление термина «суждение», которое основывается на L-эквивалентности как условии тождества. Можно, конечно, выбрать и более сильное требование для тождества, например, требование интенционального изоморфизма. В этом случае «суждениями» называются интенциональные структуры. И число их бесконечно.) Точно так же имеется только одно невозможное суждение, потому что все ложные предложения L-эквивалентны. Но число случайных суждений (в отношении системы с бесконечным числом индивидов) бесконечно, как и число фактических предложений.

Следует заметить, что два предложения «N(A)» и «предложение «A» L-истинно в S_2» соответствуют друг другу только в том смысле, что если одно из них истинно, то и другое также должно быть истинным; другими словами, они L-эквивалентны (при допущении, что L-термины определены подходящим образом, так что они также могут применяться и к метаязыку). Это соответствие не может использоваться как определение для «N», потому что второе предложение принадлежит не к языку-объекту S_2, как первое, а к метаязыку M. Второе предложение не является даже переводом первого в строгом смысле, требующем не только L-эквивалентности, но и интенционального изоморфизма (§ 14). Если M содержит модальный термин «необходимо», то «N(A)» может быть переведено на M пред-

1 Кардан употребляет выражение «with respect to», которое, однако, он определяет лишь ниже (см. стр. 267 перевода) и которое мы переводим термином «над»; существенно, что суждению над системой S может и не соответствовать никакое предложение в системе S. — Прим. ред.
§ 39. Логические модальности

ложением вида «необходимо, что...» (где «...» является переводом «А»). Если же М не содержит модальных терминов, тогда точного перевода для «N(A)» нет. Но установленное соответствие даёт возможность в любом случае дать интерпретацию для «N(A)» в М с помощью понятия L-истинности, например посредством формулирования правила истинности, 39-1.

На основе «N» мы вводим еще два модальных знака для модальных отношений между суждениями:
39-5. Сокращение. Пусть «...» и «— — —» — предложения в S₂. «...≡— — —» есть сокращение для «N(... ≡ — — —)».

Выше мы сформулировали два принципа взаимозаменяемости (12-1 и 12-2). Для первого принципа, помимо главной формулировки в семантических терминах (12-1a), мы дали альтернативные формулировки с помощью предложений языка-объекта, содержащих «≡» (12-1b и c). Теперь с помощью «≡» мы можем дать аналогичные формулировки для второго принципа. Нижеследующие теоремы 39-7b и c, которые могут быть добавлены к 12-2a, как 12-2b и c, вытекают из 12-2a, потому что \(\Xi_j \equiv \Xi_k \) L-эквивалентны, если и только если \(\Xi_j \equiv \Xi_k \) истинно.
Второй принцип взаимозаменимости (альтернативные формулировки):
39-7. При условиях 12-2 имеет силу следующее:

b. (12-2b). \((\mathcal{U}_i \equiv \mathcal{U}_k) \Rightarrow (\ldots \mathcal{U}_j \ldots \mathcal{U}_k \ldots)\) истинно (в \(S\)).

c. (12-2c). Допустим, что система \(S\) содержит переменные, скажем «\(u\)» и «\(v\)», вместо которых могут подставляться \(\mathcal{U}_j\) и \(\mathcal{U}_k\); тогда \((u)(v) [(u \equiv v) \Rightarrow (\ldots u \ldots \ldots v \ldots)]\) истинно (в \(S\)).

§ 40. МОДАЛЬНОСТИ И ПЕРЕМЕННЫЕ

Здесь, в порядке подготовки семантических правил, даваемых в следующем разделе, обсуждаются проблемы, касающиеся интерпретации переменных в модальных предложениях. Установливается, что квантор общности, предшествующий «\(N\)», должен интерпретироваться так, как если бы он следовал за «\(N\)». В общем виде показывается, что переменные в модальных предложениях должны пониматься как относящиеся скорее к интенционалам, чем к экстенционалам. Таким образом, индивидная переменная в \(S_2\) интерпретируется как относящаяся скорее к индивидным концептам, чем к индивидам. Мы решаем брать в качестве значений этих переменных не только те индивидные концепты, которые выразимы дескрипциями в \(S_2\), но и более широкий класс всех индивидных концептов над \(S_2\). Такого рода концепт представляется отнесением каждому описанию состояния в \(S_2\) в точности одной индивидной постоянной.

Пока мы дали интерпретацию для «\(N\)» только в том случае, когда аргументное выражение при «\(N\)» является предложением. Но в системе, которая содержит переменные, мы должны также решить проблему интерпретации тех случаев вхождения «\(N\)», где за «\(N\)» следует матрица со свободными переменными, например «\(N(P_x)\)». Исследуем эту проблему в общем виде для системы \(S\), содержащей переменную «\(u\)» любого типа. Как нужно интерпретировать предложение \((u) [N(\ldots u \ldots)]\), где «\(\ldots u \ldots\)» является матрицей, содержащей переменную «\(u\)» в качестве единственной свободной переменной? Рассмотрим сначала тот случай, в котором «\(u\)» имеет только конечное число значений, скажем \(n\), и все эти значения выразимы в \(S\), скажем, посредством десигнаторов «\(U_1\)», «\(U_2\)», «\(\ldots U_n\)». (Как мы увидим дальше, интерпретация переменной в модальном предложении должна даваться в терминах интенционалов значений, а не экстенционалов значений. Поэтому высказанное только что утверждение должно пониматься как говорящее, что для
«u» имеется n интенциональных значений и что они являются интенциональными десигнаторами «U₁», и т. д.) Теперь всякое общее предложение, будь то в экстенциональном или модальном языке, всегда означает, что все значения переменной обладают свойством, выраженным матрицей. Поэтому если число значений есть n, то общее предложение означает то же самое, что и конъюнкция n случаев подстановки в матрице. В нашем примере «(u)[N(…u…)]» значит то же самое, что и N(U₁…)N(U₂…)…N(Uₙ…).

Конъюнкция n компонент (n≥2) L-истинна, если и только если каждая из компонент L-истинна. Поэтому, в силу соответствия между необходимостью и L-истинностью (39-1), имеет место следующее:

40-1. Если A₁, ..., Aₙ — любые предложения, то N(A₁…A₂……Aₙ) L-эквивалентно выражению N(A₁)N(A₂)…N(Aₙ).

Если мы применим это к вышеприведенному результату, то найдем, что «(u)[N(…u…)]» значит то же самое, что и N(U₁…)N(U₂…)…N(Uₙ…) и, следовательно, то же, что и «N(u)(…u…)». Таким образом, в результате оказывается, что «(u)» и «N» могут меняться местами.

Теперь рассмотрим случай, в котором переменная «u» имеет бесконечное, но счетное число значений, которые все выразимы в S, скажем, десигнаторами «U₁», «U₂» и т. д. Здесь мы не можем образовать конъюнкцию всех случаев подстановки, но мы все же можем рассматривать их класс. Если мы в согласии с обычной процедурой будем интерпретировать класс предложений как соединенное утверждение предложений этого класса, то мы сможем применить к нему семантические понятия следующим образом: мы определяем область некоторого класса предложений как пересечение областей этих предложений. Это ведет к следующим двум результатам:

(I) Класс предложений является истинным, если и только если все его предложения истинны.

(II) Класс предложений является L-истинным, если и только если все его предложения L-истинны.

Таким образом, предложение «(u)[N(…u…)]» истинно, если и только если класс случаев «N(…Uₙ…)» для n=1, 2 и т. д. истинен; следовательно, согласно (I), если и только если каждое предложение формы «N(…Uₙ…)» истинно; следова-
тельно, согласно 39-1, если и только если каждое предложение формы «...U_n ...» L-истинно; следовательно, согласно (II), если и только если класс этих предложений L-истинен; следовательно, если и только если «(u)(...u...)» L-истинно; следовательно, согласно 39-1, если и только если «N[(u) (...u...)]» истинно. Таким образом, в результате получается, что и в случае бесконечного множества значений квантор «(u)» и модальный знак «N» в первоначальном предложении могут меняться местами.

Кажется естественным применить этот же результат к случаю, где не все значения «u» оказываются выражаемыми в S, то есть интерпретировать предложение формы «(u)[N(...u...)]» в любом случае, независимо от числа и выразимости значений «u», как означающее то же самое, что и «N[(u)(...u...)]». В частности, мы построим семантические правила системы S_2 таким образом, что любые два предложения только что установленной формы будут L-эквивалентными (§ 41). В S_2 «u» должно, конечно, быть индивидуальной переменной.

Поскольку модальная система содержит не только экстенсиональные, но также и интенциональные контексты, десигнатор может быть заменен другим, вообще говоря, только если они не просто эквивалентны, а L-эквивалентны. Таким образом, мы должны, вообще говоря, принимать во внимание не только экстенсионалы, но и интенционалы десигнаторов. Точно так же для данной переменной мы должны прежде всего рассматривать интенционалы ее значений. Если система содержит переменные типа предложений, скажем «p», «q» и т. д., то квантор с переменной этого рода, встречающийся в модальном предложении, должен интерпретироваться как относящийся к суждениям, а не к логическим валентностям. Например, предложение «(∃p) (~¬Np)» должно пониматься как говорящее, что существует ненеобходимое суждение. Вряд ли имело бы смысл интерпретировать его как утверждение, что имеется ненеобходимая логическая валентность, потому что имеются суждения с той же логической валентностью, такие, что одно из них удовлетворяет матрице «¬Np», тогда как другое не удовлетворяет. Эта интерпретация в терминах суждений, по-видимому, является общепринятой. К. И. Льюис, так же как и другие логики, которые разбирали его системы модаль-
нотой логики или строили новые, употребляли интерпретации в терминах суждений. Если в модальной системе встречаются переменные типа предикаторов степени 1, то ясно, что они должны интерпретироваться аналогичным образом — в терминах свойств, а не классов. С этим, я думаю, согласилось бы большинство логиков, однако модальные предложения с переменными этого рода обсуждались нечасто.

На мой взгляд, совершенно аналогично обстоит дело с индивидуальными переменными, хотя это обычно и не признается. Я думаю, что индивидуальные переменные в модальных предложениях, например в S_2, должны интерпретироваться как относящиеся не к индивидам, а к индивидуальным концептам. Затруднения, которые возникли бы в противном случае, будут разобраны ниже (§ 43). Таким образом, предложение формы $\langle x \rangle \langle \ldots x \ldots \rangle$ в S_2 должно интерпретироваться как относящееся ко всем индивидуальным концептам. Поэтому мы теперь должны исследовать вопрос о том, что должно рассматриваться как полная совокупность всех индивидуальных концептов, относящихся к S_2.

Для последующего рассмотрения мы примем, что индивидуальные константы в S_2 являются L-детерминированными (§ 19), то есть, что они интерпретируются по правилам обозначения, как относящиеся к положениям в упорядоченной области, и что любые две различные постоянные относятся к различным положениям. (Для этой цели было бы более естественно построить S_2 на базисе скорее S_3, § 18), чем S_1. Причиной выбора S_1 в качестве базиса является только возможность использования приведенных ранее примеров. Но тогда мы должны предположить, что, например, правило обозначения для $\langle s \rangle$ использует не сочетание слов «человек, который был известен под именем «Вальтер Скотт»), а скорее сочетание слов: «человек, который родился там-то и тогда-то»; и даже эта формулировка была бы не вполне адекватной.) Следовательно, мы рассматриваем любое предложение формы $\langle a \equiv b \rangle$ как L-ложное. Однако \equiv -предложения с одной или двумя дескрип-
циями (например, \(\langle x \rangle (Axw \equiv s)\)) все же являются, вообще говоря, фактическими.

Дескрипция \(\mathfrak{U}_i\) в \(S_2\), скажем, \(\langle x \rangle (...)\), характеризует одно из положений-индивидов с помощью свойства, выраженного матрицей «...x...». Если этим свойством обладает в точности одно положение, то это положение является дескриптом; в других случаях дескриптом является \(a^*\) (§ 8). Таким образом, для установления дескрипта, то есть экстенционала \(\mathfrak{U}_i\), требуется фактическое исследование (если только дескрипция не является \(L\)-дeterminированной). С другой стороны, интенциональ \(\mathfrak{U}_i\), то есть выраженный посредством \(\mathfrak{U}_i\) индивидный концепт, должен быть чем-то, что может быть установлено с помощью одного только логического анализа. Чтобы яснее понять, какого рода объектом является индивидный концепт, посмотрим, что мы можем узнать о дескрипции \(\mathfrak{U}_i\) с помощью одного только логического анализа. Предположим, что дано описание состояния \(\mathfrak{K}_n\) в \(S_2\) (являющееся бесконечным классом предложений в \(S_2\)). Тогда вопрос о том, существует ли в точности одно положение-индивид в \(\mathfrak{K}_n\), удовлетворяющее матрице «...x...» — другими словами, существует ли в точности один случай подстановки для матрицы с одной индивидной постоянной, выполняющийся в \(\mathfrak{K}_n\), — есть вопрос чисто логический. Если ответ утвержден, то дескрипт \(\mathfrak{U}_i\) относительно \(\mathfrak{K}_n\) представлен именно этой индивидной постоянной; в противном случае он представлен \(\langle a^* \rangle\). Таким образом, дескрипция \(\mathfrak{U}_i\) приводит в соответствие одно-значно описаниям состояния индивидные постоянные; одна и та же индивидная постоянная может быть приведена в соответствие нескольким описаниям состояния. Если \(\mathfrak{U}_i\) и \(\mathfrak{U}_j\) \(L\)-эквивалентны и, следовательно, выражают один и тот же индивидный концепт, то индивидные постоянные, приводимые ими в соответствие какому-либо описанию состояния, тождественны. Поэтому мы могли бы сказать, что индивидный концепт, относящийся к \(S_2\), есть однозначное соответствие между состояниями (то есть суждениями, выражаемыми описаниями состояния) и индивидами. Однако мы, на самом деле, возьмем не сами эти состояния, а описания состояний, и не индивиды, а индивидные постоянные. Последнее возможно, потому что мы допустили, что эти постоянные \(L\)-дeterminированы и что между ин-
дивидами и индивидными постоянными имеет место одно-
однозначное соответствие. Таким образом, мы будем рас-
сматривать любое однозначное соответствие описаний со-
стояния в \(S_2 \) индивидным постоянным (другими словами, любую [однозначную.— Ред.] функцию описания состоя-
ния, имеющую индивидные постоянные своими значениями), как представляющие индивидный концепт, относящийся к \(S_2 \). Только небольшая часть (счетный класс) индивидных концептов, представляемых однозначными соот-
ветствиями такого рода, выразима дескрипциями в \(S_2 \).
Теперь мы решаем рассматривать в качестве значений индивидных переменных в \(S_2 \) не только индивидные концепты, выразимые дескрипциями в \(S_2 \), но и все индивидные концепты, представляемые однозначными соответствиями описанного рода; мы называем их индивидными концептами над \(S_2 \). В следующем разделе мы сформулируем семантические правила для \(S_2 \) в согласии с этим решением. Кван-
tор общности будет интерпретироваться как относящийся ко всем индивидным концептам над \(S_2 \). Можно кстати сде-
лать несколько замечаний об интерпретации переменных других типов, отличных от индивидных. Пусть \(S — мо-
dальная система, содержащая переменные суждения «p» и т. д. и переменные «f» и т. д. для свойств уровня 1, то есть для свойств индивидов. В качестве значений переменных суждений мы взяли бы тогда не только суждения, выражаемые предложениями в \(S \), но и все суждения над \(S \). Они представляются областями в \(S \), то есть классами описаний состояния в \(S \). А в качестве значений для «f» и т. д. мы взяли бы не только свойства, выражаемые предикаторами (включая \(\lambda \)-выражения) в \(S \), но и все свойства над \(S \). Поскольку констатация принадлежности (attribution) свойства индивиду есть суждение, мы можем рассматривать свойство как однозначное соответствие между индивидами и суждениями. Поэтому мы можем представить свойства над \(S \) однозначными соответствиями между индивидными постоянными и областями (класами описаний состояния) в \(S \). Подобным же образом можно считать, что однозначные соответствия между упорядоченными па-

1 Однозначное в том смысле, что каждому индивиду приводится в соответствие в точности одно суждение.— Прим. ред.
рами индивидных постоянных в S и областями в S предствляют отношения над S, как значения переменных отношений в S. (По аналогии с правилами областей для матриц, содержащих индивидные переменные в S_2, которые будут даны в следующем разделе, правила для переменных других типов в S могли бы быть сформулированы следующим образом: (I) матрица $\langle p \rangle$ выполняется в описании состояния \mathcal{R}_n для определенной области в качестве значения, если и только если \mathcal{R}_n принадлежит к этой области. (II) Матрица $\langle f_a \rangle$ выполняется в \mathcal{R}_n для данного однозначного соответствия описанного рода в качестве значения $\langle f \rangle$, если и только если \mathcal{R}_n принадлежит к той области, которая приводится в соответствие $\langle a \rangle$).

§ 41. СЕМАНТИЧЕСКИЕ ПРАВИЛА ДЛЯ МОДАЛЬНОЙ СИСТЕМЫ S_2

На основе наших предыдущих решений об интерпретации «N» ($§ 39$) и индивидных переменных в S_2 ($§ 40$) мы формулируем семантические правила для S_2. Самыми важными правилами являются правила областей, которые здесь несколько сложнее, чем для S_1, потому что в качестве значений переменных здесь должны рассматриваться скорее индивидные концепты, чем индивиды. L-понятия для S_2 имеют те же определения, что и для S_1. Приводится несколько примеров L-истинных модальных предложений в S_2.

Знаки модальной системы S_2 включают знаки системы S_1 и, кроме того, модальный знак «N». В S_1 сложные десигнаторы и десигнаторные матрицы образуются из атомарных матриц с помощью следующих средств: обычных (то есть не модальных) коннекторов, кванторов, йота-оператора и ламбда-оператора. В S_2 добавляется правило образования для «N», которое говорит, что если «...» есть любая матрица, то «N (....)» есть матрица.

Теперь мы должны построить правила областей для S_2. Описания состояния в S_2 являются теми же, что и в S_1 ($§ 2$), потому что S_2 не содержит каких-либо новых дескриптивных постоянных. Если бы мы имели только предложения без переменных, мы могли бы просто взять правила областей для S_1 (см. примеры в § 2, опустив правило для предложения с квантором общности) и добавить следующее правило:
41-1. \(N(\mathcal{E}_i) \) выполняется в каждом описании состояния, если \(\mathcal{E}_i \) выполняется в каждом описании состояния; в противном случае \(N(\mathcal{E}_i) \) не выполняется ни в одном описании состояния.

Это правило, очевидно, согласуется с нашим соглашением 39-3 (см. 2-2 и 2-4). Однако для того, чтобы охватить предложения с переменными, мы должны вместо него воспользоваться более сложными правилами областей. Они должны применяться не только к предложениям, как правила областей для \(S_1 \) (§ 2), но и к матрицам, и должны говорить о значениях индивидуальных переменных, встречающихся в матрице. Согласно нашему анализу в предыдущем разделе, мы возьмем в качестве значений переменных все индивидуальные концепты над \(S_2 \); каждый из этих концептов представляет однозначным соответствием индивидуальных постоянных описаниям состояния. Допустим, что в качестве значения переменной «\(x \)», встречающейся в атомарной матрице «\(Px \)», мы выбрали одноначное соответствие этого рода и что индивидуальной постоянной, сопоставленной данному описанию состояния \(\mathfrak{m}_n \) является «\(b \)». Тогда вопрос о том, выполняется ли матрица «\(Px \)» в \(\mathfrak{m}_n \) для выбранного значения «\(x \)», есть просто вопрос, выполняется ли предложение «\(Pb \)» в \(\mathfrak{R}_n \), а это, конечно, так и есть, если «\(Pb \)» принадлежит к \(\mathfrak{R}_n \) (ср. пример (1) правил областей для \(S_1 \) в § 2). Этот анализ приводит к первому из нижеследующих правил областей (41-2а). Другие правила аналогичны правилам областей для \(S_1 \) (§ 2) вместе с правилом 41-1 для «\(N \)», за исключением того, что настоящие правила применяются к матрицам и, следовательно, должны относиться к однозначным соответствиям, как значениям свободных переменных. Заметим, что предложения являются матрицами.

1 Система MFL, описанная в [Modalities], § 9, похожа на нашу настоящую систему \(S_2 \), но несколько проще ее. Предложения формы «\(a=b \)» в MFL рассматриваются как L-ложные, так и соответствующие предложения формы «\(a\equiv b \)» в \(S_2 \); это показывает, что индивидуальные постоянные в MFL являются, говоря в терминах нашей настоящей теории, L-дeterminированными, как и индивидуальные постоянные в \(S_2 \). Описания состояния один и те же в обеих системах. Различие следующее: MFL не содержит лямбда-выражений и индивидных дескрипций; это различие не существенно, поскольку оба вида выражений в \(S_2 \) могут быть, как мы видели, разрешены и упразднены. Более существенным является различие в интерпретации индивидуальных переменных. Общее предложение («\(x \) (\ldots x\ldots)») в MFL...
Глава V. О логике модальностей

без свободных переменных (§ 1); следовательно, эти правила применяются также и к предложениям, причем ссылки на значения опускаются.

41-2. Правила областей для модальной системы S_2. Пусть \mathcal{U}_i — матрица, а \mathcal{R}_n — описание состояния в S_2. Под значением переменной мы понимаем любое однозначное соответствие вышеописанного рода.

a. Пусть \mathcal{U}_i атомарна. \mathcal{U}_i выполняется в \mathcal{R}_n для данных значений индивидуальных переменных, входящих в \mathcal{U}_i, если и только если \mathcal{R}_n содержит атомарное предложение, образованное из \mathcal{U}_i посредством подстановки вместо каждой свободной переменной постоянной, сопоставленной \mathcal{R}_n значением переменной.

b. Пусть $\mathcal{U}_i \equiv$ — матрица с индивидуальными знаками (постоянными или переменными). \mathcal{U}_i выполняется в \mathcal{R}_n для данных значений переменных, входящих в \mathcal{U}_i, если индивидуальная постоянная для левой части (то есть или индивидуальная постоянная, стоящая в левой части, или индивидуальная постоянная, сопоставленная \mathcal{R}_n значением переменной, стоящей в левой части) та же самая, что и индивидуальная постоянная для правой части.

c. Пусть \mathcal{U}_i есть $\sim \mathcal{U}_j$. \mathcal{U}_i выполняется в \mathcal{R}_n для данных значений переменных, свободно входящих в \mathcal{U}_i, если \mathcal{U}_j не выполняется в \mathcal{R}_n для этих значений.

d. Пусть \mathcal{U}_i есть $\mathcal{U}_j \lor \mathcal{U}_k$. \mathcal{U}_i выполняется в \mathcal{R}_n для данных значений свободных переменных, если или \mathcal{U}_j, или \mathcal{U}_k, или обе выполняются в \mathcal{R}_n для этих значений.

e. Пусть \mathcal{U}_i есть $\mathcal{U}_j \land \mathcal{U}_k$. \mathcal{U}_i выполняется в \mathcal{R}_n для данных значений свободных переменных, если и \mathcal{U}_j и \mathcal{U}_k выполняются в \mathcal{R}_n для этих значений.

f. Пусть \mathcal{U}_i состоит из квантора общности, за которым следует матрица \mathcal{U}_j как область его действия. \mathcal{U}_i вы-

рассматривается как L-эквивалентное классу случаев подстановки матрицы «...» со всеми индивидуальными постоянными; таким образом, в терминах нашей настоящей теории, квантор общности относится ко всем L-детерминированным индивидуальным концептам и ни к каким другим. Квантор общности в S_2, с другой стороны, относится ко всем индивидуальным концептам (над S_2). Эта более широкая область значений для индивидуальных переменных в S_2 является более адекватной; но она делает необходимой несколько более сложную форму правил областей, как дано в тексте, тогда как правила областей для MFL так же просто, как и правила для S_1 вместе с правилом 41-1 для «N».
полняется в \(\mathfrak{A}_n \) для данных значений переменных, свобо-
доно входящих в \(\mathfrak{A}_i \) (следовательно, не включаая перемен-
ную, стоящую в начальном кванторе), если \(\mathfrak{A}_i \) выпол-
няется в \(\mathfrak{A}_n \) для каждого значения переменной началь-
ного квантора и данных значений других свободных пере-
менных.

g. Пусть \(\mathfrak{A}_i \) есть \(N(\mathfrak{A}_i). \) \(\mathfrak{A}_i \) выполняется в \(\mathfrak{A}_n \) для дан-
ных значений свободных переменных, если \(\mathfrak{A}_i \) выпол-
няется в каждом описании состояния для этих значений.

Следующие две теоремы являются простыми следствия-
ми этих правил; они могут употребляться вместо правил
для установления области немодальной матрицы или пред-
ложения в \(S_2 \).

41-3. Пусть \(\mathfrak{A}_i \) — матрица любого вида в \(S_2 \) без \(\text{«N»}. \) \(\mathfrak{A}_i \)
выполняется в \(\mathfrak{A}_n \) для данных значений свободных пере-
менных, если и только если предложение, образованное
из \(\mathfrak{A}_i \) посредством подстановки вместо каждой свободной
переменной постоянной, сопоставленной \(\mathfrak{A}_n \) значением пе-
ременной, выполняется в \(\mathfrak{A}_n \).

41-4. Если предложение в \(S_2 \) не содержит \(\text{«N»}, \) то оно
выполняется в \(S_2 \) в тех же описаниях состояния, что и в \(S_1 \).

Для того чтобы избежать некоторых усложнений, ко-
торые здесь не могут быть изложены, по-видимому, целе-
сообразно допустить в \(S_2 \) лишь дескрипции, не содержащие
\(\text{«N»}. \) Но дескрипция может, конечно, встретиться в
области действия \(\text{«N»}. \) Минимальная матрица, в которую
входит дескрипция (записанная в исходных терминах),
всегда — немодальный контекст, потому что дескрипция
должна быть аргументным выражением либо при исход-
ной предикаторной постоянной, либо при \(\equiv \). Тогда эта
минимальная матрица рассматривается как контекст
\(\equiv (ix)(\ldots x\ldots) \equiv \equiv \), который может быть преобразован
в \(8-2. \) Таким способом может быть элиминирована каж-
дая дескрипция. Так как L-эквивалентные предложения,
согласно второму принципу взаимозаменяемости \((12-2), \)
являются взаимозаменяемыми также и в модальных кон-
текстах, результат этой элиминации L-эквивалентен ис-
ходному предложению; или, скорее, мы сформулируем пра-
вило о том, что любое предложение, содержащее дескрип-
цию, выполняется в тех же самых описаниях состояния,
что и предложение, получающееся в результате описан-
ной элиминации дескрипций, и, следовательно, эти два предложения становятся L-эквивалентными.

Стоит отметить и другой момент. Хотя мы интерпретируем индивидные переменные в S_2 как относящиеся к индивидуальным концептам, а не к индивидам, тем не менее дескрипция в S_2 характеризует не один индивидный концепт, а взаимно эквивалентные индивидуальные концепты — другими словами, один индивид. Это вытекает из только что упомянутого правила, которое допускает преобразование в 8-2. Первая часть 8-2 говорит словесно: «существует индивидуальный концепт y, такой, что для каждого индивидуального концепта x, x имеет указанное в дескрипции свойство, если и только если x эквивалентен (не «L-эквивалентен» или «тоожествен»!) y; другими словами, «все индивидные концепты, эквивалентные y, и только они, имеют это свойство», или «индивид y есть единственный индивид, который имеет это свойство». Так и должно быть, потому что целью дескрипции, даже в модальном языке, является ссылка на один индивид с помощью свойства, которым обладает только этот индивид. Тем не менее дескрипция имеет, конечно, единственный интенциональный, который является индивидуальным концептом. Этот индивидуальный концепт не является единственным из обладающих свойством, указанным в дескрипции, поскольку, как мы видели, все эквивалентные индивидуальные концепты точно так же обладают этим свойством; но он однозначно определяется этим свойством. Как говорит Фреге, он является не индивидом, а способом, каким дескрипция указывает на индивид.

На лямбда-выражения мы не накладываем ограничения, сформулированного для дескрипций; они могут содержать также и «N». Любой лямбда-оператор может быть элиминирован в S_2 посредством конверсии таким же образом, как и в S_1 (§ 1). Здесь остат-таки было бы сформулировано правило, говорящее, что предложение, содержащее лямбда-операторы, выполняется в тех же описаниях состояния, что и предложение, получающееся в результате их элиминации.

L-понятия определяются для S_2 тем же способом, что и для S_1 (§ 2). Следующие теоремы дают некоторые результаты, имеющие силу на основании сформулированных выше правил областей.
41-5. Любое предложение одного из следующих видов является L-истинным в \(S_2 \). (Переменные \(p, q, \ldots, f \) не входят в \(S_2 \), а употребляются здесь только для описания видов предложений в \(S_2 \). Говорят, что предложение в \(S_2 \) имеет один из описанных видов, если оно образовано посредством подстановки вместо \(p \) или \(q \) любого предложения в \(S_2 \), а вместо \(fx \) любой матрицы, содержащей \(x \) как единственную свободную переменную.)

a. \(\langle Np \equiv p \rangle \).
b. \(\langle p \equiv \Diamond p \rangle \).
c. \(\langle (p \equiv q) \equiv (Np \equiv Nq) \rangle \).
d. \(\langle N(p \circ q) \equiv Np \circ Nq \rangle \).
e. \(\langle \Diamond (p \setminus q) \equiv \Diamond p \setminus \Diamond q \rangle \).
f. \(\langle \langle NNp \equiv Np \rangle \).
g. \(\langle N \sim Np \equiv \sim Np \rangle \).
h. \(\langle \Diamond \Diamond p \equiv \Diamond p \rangle \).
i. \(\langle \Diamond Np \equiv Np \rangle \).
j. \(\langle N \Diamond p \equiv \Diamond p \rangle \).
k. \(\langle (x) N(fx) \equiv N(x)(fx) \rangle \).
l. \(\langle (\exists x) N(fx) \equiv N(\exists x)(fx) \rangle \).
m. \(\langle (\exists x) \Diamond (fx) \equiv \Diamond (\exists x)(fx) \rangle \).
n. \(\langle \Diamond (x)(fx) \equiv (x) \Diamond (fx) \rangle \).

 Из этих теорем мы видим, что \(N \) весьма сходна с квантором общности, а \(\langle \Diamond \rangle \) — с квантором существования. Это кажется понятным, поскольку \(N \Xi_i \) истинно, если \(\Xi_i \) выполняется в каждом описании состояния, а \(\Diamond \Xi_i \) истинно, если \(\Xi_i \) выполняется по крайней мере в одном описании состояния.

§ 42. МОДАЛЬНОСТИ В СЛОВЕСНОМ ЯЗЫКЕ

Обсуждается проблема перехода модальных предложений системы \(S_2 \) в м-языки \(M \) и \(M' \). Показано, что для переводов целесообразно употреблять либо термины интенсивалов и \(M \), либо нейтральные термины в \(M' \). Употребление терминов экстенсивалов в мо-
дальных предложениях в M само по себе не является неправильным, если только соблюдаются определенные ограничения, но сопряжено с опасностью получения ошибочных выводов при несоблюдении ограничений.

Здесь мы исследуем проблему формулирования модальных предложений в словесном языке и, в частности, проблему перевода модальных предложений в наши метаязыки M и M'. Эта проблема заслуживает исследования потому, что, как мне кажется, некоторые затруднения, которые иногда обнаруживались в связи с модальными предложениями, проистекают главным образом из их неадекватного и вводящего в заблуждение формулирования в словесном языке.

Поскольку модальные предложения, например в S₂, или в каком-либо более богатом языке с несколькими типами переменных, не являются семантическими, постольку их переводы точно так же не являются семантическими предложениями и, следовательно, относятся к несемантической части M и M' (эта часть M' была разобрана в § 34—36). В качестве перевода «N» мы берем фразу «необходимо, что»; следовательно, эта фраза является интенциональной.

Мы обсудим три примера — A, B и C. В A мы в качестве аргументных выражений для «≡» или «≡» имеем предикаторы; в B — предложения; в C — индивидуальные выражения. В остальном эти три примера вполне аналогичны. Поэтому мы расположим их в трех параллельных столбцах. Это облегчит сравнение соответствующих выражений в этих трех примерах и установление аналогии между ними.

Благодаря полной аналогии любого из этих трех примеров теоретически было бы достаточно. Однако по практическим соображениям полезно дать все три. Цель анализа этих примеров — показать, что полезно формулировать модальные предложения либо в терминах интенционалов, либо в нейтральных терминах, тогда как формулирование в терминах экстенционалов связано с некоторыми опасностями. Это легко видеть в случае предикаторов; вероятно, большинство читателей согласится с этим. Затем аналогия облегчит установление той же самой ситуации в случае предложений и, наконец, в случае индивидуальных выражений. В этом последнем случае препятствия к переводу в терминах интенционалов оказываются самыми
сильными, поскольку не принято говорить об индивидных концептах. Поэтому в этом случае помощь двух других примеров кажется необходимой по практическим, психологическим основаниям, хотя теоретически ситуация здесь так же ясна и проста, как и в первых двух случаях.

Пример A (контъюнкция 42-1A и 42-2aA) сходен с примером Чёрча\(^1\), наш пример «\(\sim N(\ldots)\)» соответствует его примеру «\(\circ \sim (\ldots)\)». В примере C мы употребляем «au» как сокращение для «\((ix)(Axw)\)». В переводе этой дескрипции в словесный язык мы опускаем, ради краткости, словосочетание «или a*»; если нет в точности одного такого индивида» (как мы делали это и раньше, § 9).

Следующие предложения в \(S_2\) истинны, но не L-истинны (см. 3-7 и 9-2):

42-1. \[\begin{array}{ccc}
A & B & C \\
& & \\
\langle F \circ B \equiv H \rangle; & \langle (F \circ B) s \equiv Hs \rangle; & \langle au \equiv s \rangle.
\end{array}\]

Следовательно, согласно 39-1, добавление спереди «N» дает ложные предложения; отсюда истинно следующее;

42-2a. \[\begin{array}{ccc}
A & B & C \\
& & \\
\langle \sim N (F \circ B \equiv H) \rangle; & \langle \sim N [(F \circ B) s \equiv Hs] \rangle; & \langle \sim N (au \equiv s) \rangle;
\end{array}\]

или, сокращая с помощью «\(\equiv\)» (39-6):

42-2b. \[\begin{array}{ccc}
A & B & C \\
& & \\
\langle \sim (F \circ B \equiv H) \rangle; & \langle \sim [(F \circ B) s \equiv Hs] \rangle; & \langle \sim (au \equiv s) \rangle.
\end{array}\]

Теперь исследуем вопрос о переводах этих предложений системы \(S_2\) в M. Первое предложение 42-1 (в каждом из этих трех примеров) является немодальным предложением. Оно может быть переведено двумя различными способами, либо в 42-3 в терминах интенсивов с несемантическим термином «эквивалентна» (см. 5-3 и 5-5), или в 42-4 в терминах экстенсивов со словосочетанием тождества «есть то же самое, что и» (см. 4-7 и 9-1):

\(^1\) [Review Q.], p. 46.
Глава V. О логике модальностей

42-3.

А «Свойство Беспере- «Суждение, что «Индивидный кон-
рое Двуногое эк- Скотт — бесперое цепт Автор Вевер-
вивалентно свой- двуначное, экви- рея эквиалентен
ству Человек». валентно сужде- индивидному кон-

Б нию, что Скотт— цепу Валтер
человек» Скотт»

В Скотт»

42-4.

А «Класс Бесперое «Логическая вал- «Индивид Автор
Двуногое есть то лентность того, Веверлея есть то
же самое, что и же самое, что и же самое, что и
класс Человек» Скотт — бесперое индивид Вальтер
бесперое двуногое, есть то же двуначное, есть то же Скотт»
самое, что и ло- самое, что и ло- самое, что и ло-
гическая валент- гическая валент- гическая валент-
ность того, что ность того, что ность того, что
Скотт—человек» Скотт» Скотт»

Однако с модальными предложениями 42-2 дело обстоит иначе. Во-первых, мы дадим перевод в М в терминах интенсоналов. Мы основываем перевод 42-5 на второй из двух записей, а и b, данных для 42-2, используя то обстоятельство, что «≡» является знаком для тождества интенсоналов (§ 39). (Для A см. 4—8; для В — 6—4; для С — § 9.)

42-5.

А «Свойство Беспере- «Суждение, что «Индивидный кон-
рое Двуногое не Скотт — бесперое цепт Автор Вевер-
является тем же двуначное, не явл- рея эквиалентен
самым, что свой- ется тем же самым, что индивидному кон-
ство Человек». суждение, что Скотт— цепу Валтер

Б «человек» Скотт»

В Валтер Скотт»

Этот перевод адекватен и не вызывает возражений. Не так, однако, обстоит дело со следующим переводом в терминах экстенсоналов; здесь мы основываем перевод на первой записи 42-2 и рассматриваем «≡» как знак для тождества экстенсоналов (см. замечания к 5-3).
42-6.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>«Не необходимо, что класс Бессерное двуногое есть то же самое, что и класс Человек»</td>
<td>«Не необходимо, что логическая валентность того, что Скотт — бес-</td>
<td>«Не необходимо, что индивид Автор</td>
</tr>
</tbody>
</table>

Может быть, формулировки этого рода можно было бы допустить как предложения в M; при этом они, по-видимому, рассматривались бы как истинные и как правильные переводы выражений 42-2а. Однако эти формулировки опасны; если мы применим к ним обычные способы рассуждения, то получим ложные результаты. В обычном словесном языке мы привыкли пользоваться принципом взаимозаменяемости (24-3б) как чем-то само собой разумеющимся. Если в любом из этих трех примеров мы применим этот принцип к 42-6 на основании истинного предложения тождества 42-4, то получим в результате 42-7. Однако этот результат, если вообще принять его как предложение, будет, конечно, рассматриваться как ложный.

42-7.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>«Не необходимо, что класс Человек есть то же самое, что и класс Человек»</td>
<td>«Не необходимо, что логическая валентность того, что Скотт человек, есть то же самое что и логическая валентность того, что Скотт человек»</td>
<td>«Не необходимо, что индивид Валтер Скотт есть то же самое, что и индивид Валтер Скотт»</td>
</tr>
</tbody>
</table>

Эти предложения являются примерами антипомнич отношения именования в его второй форме, сходными с нашим прежним примером (§ 31). Несмотря на этот результат, мы можем принять формулировки 42-6, если только
мы намерены запретить использование принципа взаимозаменимости в случаях неэкстенсиональных контекстов. Однако так как неограниченное употребление этого принципа является обычным и правдоподобным, всегда существовала бы опасность забвения запрета и употребления этого принципа по небрежности. Поэтому целесообразнее в модальных или других неэкстенсиональных контекстах избегать формулировок, подобных 42-6, в общем формулировок в терминах экстенционалов.

Теперь посмотрим, как эти символические предложения в S_2 должны переводиться в нейтральный метаязык M'. Как показано выше, в M' нет словосочетаний тождества; вместо них применяются термины «эквивалентно» и «L-эквивалентно» в их несемантическом употреблении (см. 34-8 и 34-9). Как «эквивалентно» есть прямой перевод символа «$_$», так и «L-эквивалентно» есть перевод символа «\equiv». (Это опять показывает, что несемантический термин «L-эквивалентно» интенционален; это распространяется на все несемантические (абсолютные) L-термины, см. [1], § 17.) Таким образом, перевод 42-1 в M' — следующий (см. 34-10 и 34-13):

<table>
<thead>
<tr>
<th>42-8. A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>«Бесперое Двуного эквивалентно Человек»</td>
<td>a. «То, что Скотт бесперое двуного, эквивалентно тому, что Скотт — человек»</td>
<td>«Автору Веверлея эквивалентен Вальтер Скотт»</td>
</tr>
<tr>
<td>b. «Скотт бесперое двуного, если и только если Скотт человек»</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

В В мы добавляем здесь альтернативную форму b, потому что она звучит более естественно (см. конец § 34).

Есть два способа перевода 42-2 в M'. Первый основывается на 42-2a и переводит «Н» словосочетание и «необходимо, что». (В В мы опять употребляем более естественное словосочетание «если и только если» вместо «эквивалентно»; относительно основания для данного порядка слов см. примечание в конце § 34.)
§ 43. МОДАЛЬНОСТИ И ПЕРЕМЕННЫЕ В СЛОВЕСНОМ ЯЗЫКЕ

42-9а. А В С

«Не необходимо, что Бесперое Двуногое экви-
валентно Человек»

«Не необходимо, что Автор Веверлея
не L-эквивалентно Человек»

Вторая альтернатива основывается на записи 42-2б и пере-
водит символ «□» термином «L-эквивалентно» (см. 34-11):

42-9б. А В С

«Бесперое Двуногое не L-эквивалентно Человек»

«То, что Скотт — Автор Веверлея
не L-эквивалентно Человек»

Этот перевод не связан с какими-либо трудностями, анало-
гичными тем, которые связаны с 42-6.

Таким образом, конечный результат таков: по-видимому,
целесообразно давать формулировки модальных и других
некстенциональных предложений в словесном языке не
в терминах экстенционалов, а или (I) в терминах интенсино
налов, или (II) в нейтральных терминах. Какую из двух
формулировок, (I) и (II), предпочесть, вопрос прак
тический (см. разбор в конце § 37). Формулировка в нейт
ральных терминах проще, но несемантическое употребление
терминов «эквивалентно» и «L-эквивалентно» необычно.
Формулировки в терминах интенционалов вроде 42-5, вооб
ще говоря, более обычны, кроме случаев, когда они ссы
лаются на индивидуальные концепты, как в случае С. Но
эта ссылка на индивидуальные концепты, вероятно, покажется
менее странный, если мы признаем существенную ана
логию в 42-5 между C, с одной стороны, и A и B—с другой.

§ 43. МОДАЛЬНОСТИ И ПЕРЕМЕННЫЕ
В СЛОВЕСНОМ ЯЗЫКЕ

Исследуются переводы символических модальных предложений с
переменными в М и М’. Результат аналогичен результату предшествую
щего раздела. Целесообразно избегать терминов экстенционалов и упот
реблять или термины интенционалов в М, или нейтральные термины в
М. Перевод в терминах суждений и свойств обычан, но перевод в терминах индивидных концептов вместо индивидов может сначала показаться странным.

Выше мы видели (§ 10), что как десигнатор имеет и экстенционал и интенционал, так и переменная имеет и экстенционалы значений, и интенционалы значений. Поэтому предложение с переменной может быть переведено в М либо в терминах ее экстенционалов значений, либо в терминах ее интенционалов значений. Кроме того, оно может быть переведено в M' в нейтральных терминах (§ 36). По аналогии с результатом предшествующего раздела мы найдем и здесь, что целесообразно избегать формулировок в терминах экстенционалов значений и употреблять или термины интенционалов значений, или нейтральные термины.

По той же причине, что и в предшествующем разделе, мы используем здесь три аналогичных примера A, B и C. Они являются экзистенциональными предложениями с переменными f, p и x в модальной системе S, содержащей переменные этих типов и модальный знак «N».

Нижеследующие предложения 43-1а и b отличаются друг от друга только своей записью. В каждом из этих трех примеров — A, B и C — 43-1a получается посредством экстенционального обобщения из конъюнкции предложений 42-1 и 42-2а; и точно так же 43-1b получается из 42-1 и 42-2b.

43-1a.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>«(∃f) ((f ≡ H))</td>
<td>«(∃p) ((p ≡ Hs))</td>
<td>«(∃x) ((x ≡ s))</td>
</tr>
<tr>
<td>$\Theta \sim N$ (f ≡ H)]].</td>
<td>$\Theta \sim N$ (p ≡ Hs)]].</td>
<td>$\Theta \sim N$ (x ≡ s)]].</td>
</tr>
</tbody>
</table>

43-1b.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>«(∃f) ((f ≡ H))</td>
<td>«(∃p) ((p ≡ Hs))</td>
<td>«(∃x) ((x ≡ s))</td>
</tr>
<tr>
<td>$\Theta \sim (f ≡ H)]].</td>
<td>$\Theta \sim (p ≡ Hs)]].</td>
<td>$\Theta \sim (x ≡ s)]].</td>
</tr>
</tbody>
</table>

Теперь мы исследуем возможность перевода этих предложений в M. Если бы речь шла об экстенциональном экзистенциональном предложении — например 43-1a с опущенным вторым членом конъюнкции,— тогда переводы в терминах интенционалов значений и экстенционалов значений были бы одинаково приемлемыми. Однако с этими модаль-
nymи предложениями дело обстоит не так. Сначала мы
dадим перевод в терминах интенсоналов значений по ана-
логии с 42-3 и 42-5, взяв запись 43-1б и переводя символ
\(\equiv\) как тождество интенсоналов:

\[
\begin{array}{ccc}
\text{43-2.} & \text{A} & \text{B} & \text{C} \\
\text{«Существует свой-} & \text{«Существует суж-} & \text{«Существует инди-} \\
\text{ство} f, \text{которое эк-} & \text{дение} p, \text{которое эк-} & \text{видный концепт} x, \\
\text{тивалентно, но не} & \text{тивалентно, но не} & \text{который эквива-} \\
\text{то тождественно} & \text{то тождественно суж-} & \text{лентен, но не тож-} \\
\text{свойству Человек} & \text{дение, что Скотт} & \text{до жестственно инди-} \\
\text{человек}} & \text{человек»} & \text{дивиду} \\
\text{Вальтер Скотт} & \text{концепту} \\
\end{array}
\]

В каждом из этих трех примеров предложение может
быть получено посредством экзистенциального обобщения
из конъюнкции 42-3 и 42-5.

Теперь мы переводем 43-1а в терминах экстенсоналов
значений по аналогии с 42-4 и 42-6, переводя символ \(\equiv\)
как тождество экстенсоналов:

\[
\begin{array}{ccc}
\text{43-3.} & \text{A} & \text{B} & \text{C} \\
\text{«Существует класс} & \text{«Существует ло-} & \text{«Существует инди-} \\
\text{f, который тож-} & \text{гическая валент-} & \text{вид} x, \text{который тож-} \\
\text{дествен, но не} & \text{ность} p, \text{которая тож-} & \text{дествен, но не не-} \\
\text{необходимо тож-} & \text{дественна, но не не-} & \text{обходимо тожде-} \\
\text{дествен классу} & \text{обходимо тождественна ло-} & \text{ствен индивиду} \\
\text{Человек»} & \text{гической валент-} & \text{Вальтер Скотт} \\
\text{ности того, что} & \text{ности того}} & \\
\text{Скотт человек»} & \text{человек»} & \\
\end{array}
\]

В каждом из этих трех примеров предложение может
быть получено посредством экзистенциального обобщения
из конъюнкции 42-4 и 42-6. В предыдущем разделе мы
видели, что формулировки модальных предложений в тер-
минах экстенсоналов вроде 42-6 опасны, потому что они
ведут, если не сделать специальных ограничений, к анти-
томии отношения именования, и что ввиду этого целесооб-
разно избегать этих формулировок. Это же распростра-
няется и на формулировки, подобные 43-3.
Перевод 43-1 в нейтральные формулировки в M' по аналогии с 42-8 и 42-9б является следующим:

43-4. A | B | C

«Существует f такое, что f эквиалентно, но не L-эквиалентно Человек»

«Существует p такое, что p эквиалентно, но не L-эквиалентно Ч.О. Скотт человек»

«Существует x такое, что x эквиалентно, но не L-эквиалентно Вальтер Скотт»

(Употребление «F-эквиалентно» в качестве несемантического термина дало бы более краткую формулировку.) В каждом из этих трех примеров это предложение может быть получено посредством экзистенциального обобщения из копьёнции 42-8 и 42-9б. Формулировки 43-4 свободны от опасностей, связанных с 43-3.

Теперь сравним три примера: A, B и C. Наше предложение не переводить переменные в модальных предложениях в терминах экстенсоналов кажется вполне естественным в случаях B и A. Как отмечалось выше (§ 40), все логики, по-видимому, интерпретируют модальные предложения в терминах скорее суждений, чем логических валентностей, и большинство логиков предпочитает выражаться скорее в терминах свойств, чем терминах классов. Только в случае C наша интерпретация действительно отклоняется от обычной. Ссылка на индивидный концепт может сначала показаться несколько странной; а в альтернативном переводе в нейтральных терминах (например, 43-4 C), избегающем ссылки на индивидные концепты, употребляются непривычные термины «эквиалентно» и «L-эквиалентно». Однако я думаю, что поскольку мы даем себе отчет в полной аналогии между этими тремя примерами, постольку мы признаем неадекватность формулировок в терминах индивидов; а впечатление страннысти, которое может сначала произвести формулировка в терминах индивидных концептов и, в меньшей степени, нейтральная формулировка, вероятно, исчезнет. Модальные предложения с переменными имеют совершенно особую логическую природу, и неудивительно, что адекватный и правильный перевод их в словесный язык не всегда возможен в совершенно обычных и естественных терминах.
§ 44. КУАЙН О МОДАЛЬНОСТЯХ

В статье Куайна (Quine, [Notes]) излагается его взгляд, что при обычных условиях модальности и квантификация не могут совмещаться. Здесь цитируется новое положение Куайна, в котором он говорит, что мой язык позволяет комбинировать модальности с квантификацией, но только ценой отказа от всех экстенсоналов, например от классов и индивидов. Я пытался показать, что мой модальный язык не исключает ничего из того, что допускается соответствующим экстенсональным языкам.

Куайн⁴ иллюстрирует затруднение, которое мы назвали антиномией отношения именования, следующим примером, в числе других (как упомянуто выше, § 31). Мы встречаем в качестве арифметической и, следовательно, логической истину:
(I) «9 необходимо больше, чем 7».

Следующее утверждение является истиной астрономии:
(II) «Число планет—9».

Если в (I) «9» заменить словами «число планет» в силу истинного предложения тождества (II), то мы получим ложное утверждение:
(III) «Число планет необходимо больше, чем 7».

Метод Куайна для решения этой антиномии был разобран выше (§ 32, метод II). Согласно нашему методу, следующее предложение заменяет (II) в M′:
(IV) «Число планет эквивалентно 9».

Предложения (I) и (III) также входят в M′. Но теперь уже нельзя ввести ложное предложение (III) из истинного предложения (I) вместе с (IV). Согласно первому принципу взаимозаменяемости (12-1), выражения «число планет» и «9» являются взаимозаменяемыми на основе (IV) только в экстенсиональных контекстах и, следовательно, не в (I). Таким образом затруднение исчезает, и десигнаторы, встречающиеся в неэкстенсональных контекстах, все же функционируют, согласно нашей концепции, как нормальные десигнаторы.

Возражение Куайна против модальных предложений с переменными ставит еще более серьезную проблему. Он разбирает следующее выражение:

⁴ Quine, [Notes], (18) p. 121, (17) p. 119, (23) p. 121.
(V) «Существует нечто, являющееся необходимо большим, чем 7».
Он говорит
1, что это выражение «не обладает значением». Ибо должно ли 9, то есть число планет, являться одним из чисел, необходимо больших, чем 7? Но такое утверждение сразу стало бы истинным, в форме... \(\{\text{нашего (I)}\} \) и ложным в форме... \(\{\text{нашего (III)}\} \). Куайн не считает (I) и (III) не обладающими значением. Как поясняется ниже (§ 32, метод II), он считает десигнаторы в неэкстенсиональных контекстах, например «9» в (I) и «число планет» в (III), «не только обозначающими»; другими словами, эти десигнаторы не функционируют в качестве имен, и, следовательно, принцип взаимозаменяемости к ним не применим. На этом основании, согласно взгляду Куайна, правило экстенциального обобщения не применимо к таким десигнаторам. Следовательно, не существует обоснованного вывода от (I) к (V) и, более того, (V) не обладает значением и, следовательно, не может быть признано предложением. Таким образом, Куайн приходит к следующим заключениям, которые формулируются в конце его статьи: «Имя существительное, или словосочетание, которое обозначает объект, может встречаться в некоторых контекстах только как обозначение, а в других контекстах не только как обозначение. Этот второй тип контекста, хотя и не менее «корректный», чем первый, не подчиняется ни закону подстановки тождественных, ни законам вывода единичного из общего и экстенциального обобщения. Более того, ни одно местоимение (или переменная квантификации) в контексте этого второго типа не может подразумевать обратной ссылки на антecedent (или квантор), предшествующий этому контексту. Это обстоятельство накладывает серьезные ограничения, обычно незамечаемые, на значимое употребление модальных операторов, а также подвергает сомнению ту философию математики, которая основывается на теории атрибутов (то есть свойств) в смысле, отличном от классов»
2.

К контекстам Куайна второго вида относятся все те контексты, которые мы называем неэкстенциональными.

1 Quine, [Notes], p. 121
2 Там же, стр. 127.
В частности, Куайн рассматривает контексты, заключенные в кавычки, и модальные контексты. В отношении контекстов в кавычках его заключения несомненно правильны. Я, однако, не могу согласиться с заключением Куайна относительно модальных контекстов. Мы комбинировали модальности с переменными как в символических языках-объектах (§ 40), так и в словесных формулировках в наших метаязыках (§ 43).

Чёрч тоже не признает заключений Куайна. В рецензии на статью Куайна он говорит, что он «сильно сомневается в заключении, которое делает автор, что ни одна переменная в интенциональном контексте... не может подразумевать обратной ссылки на квантор, предшествующий этому контексту... Скорее следует заключить, что для этого переменная должна иметь интенциональную область, например область, состоящую скорее из атрибутов (свойств), чем из классов»¹. До этого пункта я согласен с Чёрчем. Его решение состоит в следующем: он проводит, подобно системе РМ (см. § 27), различие между переменными для классов, например «z», и переменными для свойств, например «ϕ». В качестве примера он берет предложение, которое, по существу, является конъюнкцией 42-1А и 42-2aА. В отличие от Куайна он считает возможным выводить из этого предложения экзистенциональное обобщение экзистенциональное предложение; последнее, однако, должно иметь форму «(∃x)(. . .)», а скорее форму «(∃ϕ)(. . .)». Мне кажется, что эта процедура правильна и действительно полностью разрешает затруднение, на которое указывает Куайн. Я полагаю, однако, что для достижения этого существует более простой способ. Он похож на способ Чёрча, но избегает употребления двух видов переменных для одного и того же типа. Как разъясненно выше (§ 27), это удвоение не вызывает необходимостью. Достаточно употреблять переменные одного вида, которые являются нейтральными в том смысле, что они имеют классы в качестве экстенционалов значений и свойства в качестве интенционалов значений; это сделано в 43-1аА. Употребление разных переменных для экстенционалов и интенционалов во всех типах повело бы в случае

¹ |Review Q|, стр. 46
примера Куайна (V) к введению переменных для концептов чисел, отличных от переменных для самих чисел. Это, однако, было бы и не необходимо и необычно.

Вопрос о том, можно ли нельзя комбинировать модальности с переменными таким образом, чтобы обычные выводы логики квантификации — в частности, вывод единичного из общего и экзистенциального обобщение — оставались правильными, имеет, конечно, огромную важность. Любая система модальной логики без квантификации интересна только как основа для более широкой системы, включающей квантификацию. Если бы такая более широкая система оказалась невозможной, логики, вероятно, совсем перестали бы заниматься модальной логикой. Поэтому и важно выяснить ситуацию, созданную анализом Куайна и возражениями на него. По этой причине я спросил Куайна, который прочитал первоначальный вариант рукописи этой книги, о формулировке его теперешнего взгляда на упомянутую проблему и, в частности, о его отношении к моему методу комбинирования модальностей и переменных, разъясненному в предшествующем разделе. С его любезного позволения я цитирую здесь его формулировку полностью 1.

Каждая языковая система, по крайней мере постольку, поскольку она употребляет кванторы, предполагает ту или другую область объектов, о которой она говорит. Установление этой области не зависит от изменяющегося метаязыкового употребления термина «обозначение» или «означение», поскольку эти объекты являются просто значениями переменных квантификации. Это выясняет из значения самих кванторов

(\(\exists x\)), (\(\forall \)), (\(\exists !\)), (\(\forall !\)): «каждый» (или некоторый) объект \(x\), (или \(f\), или \(p\)) таких, что». Вопрос, что \(\text{у} \text{с} \text{т}\) в с точки зрения данного языка, вопрос онтологии этого языка, есть вопрос об области значений его переменных.

Обычно этот вопрос оказывается отчасти априорным вопросом относительно природы и имеющейся в виду интерпретации самого языка, а отчасти эмпирическим вопросом о мире Общий вопрос о том, допускаются ли, например, индивиды, или классы, или свойства и т. д. в число значений переменных данного языка, будет априорным вопросом о природе и имеющейся в виду интерпретации самого языка. С другой стороны, предполагаем, что мы приняли индивиды в число значений; тогда дальнейший вопрос о том, будут ли эти значения включать единоро-

1 Первые две трети цитируемой здесь формулировки Куайна датируются 23 октября 1945 года, остальные — 1 января 1946 года.
гов, будет эмпирическим. Меня здесь интересует первый тип исследования, то есть онтология скорее в философском, чем эмпирическом смысле. Обратим наше внимание на онтологию в этом смысле вашего языка-объекта.

Как это осложнение есть перед нами в так называемой двойственности M в связи с интенциональными и экстенциональными значениями переменных; если бы дело обстояло именно так, то мы должны были бы исследовать две альтернативные онтологии языка-объекта. Однако мне кажется, что это иллюзия; поскольку двойственность, о которой идет речь, является особенноностью только специальной метаязыковой идиомы, а не самого языка-объекта, постольку нет иначе, что могло бы помешать нам исследовать язык-объект со старой точки зрения и спросить, чем являются значения переменных в старом недвойственном смысле этого термина.

Теперь легко видеть, что этими значениями являются только интенциональные, а не экстенциональные или те и другие вместе. Ибо мы имеем

\[(x) (x \equiv x), \]

tо есть всякий объект L-эквивалентен сам себе. Это то же самое, что сказать, что те объекты, между которыми нет L-эквивалентности, являются разными объектами,— ясно указание на то, что значениями (в обычном недвойственном смысле этого термина) переменных являются скорее свойства, чем классы, скорее суждения, чем логические форманты, скорее индивидуальные концепты, чем индивиды. (Я опускаю дальнейшую возможность различения между самими L-эквивалентными объектами, которое заставило бы объекты быть в какой-то мере «ультраинтенциональными», так как очевидно, что у вас в настоящей связи нет причины заходить столь далеко.)

Я согласен с тем, что такая приверженность к интенциональной онтологии, сопровождаемая полным искажением экстенциональных объектов из сферы значений переменных, действительно является эффективным способом приведения квантификации и модальности. Случаи конфликта между квантификацией и модальностью связаны с экстенциональными как значениями переменных. В вашем языке-объекте мы без колебаний можем квантифицировать модальности, потому что экстенциональные были удалены из области значений переменных; даже индивиды конкретного мира исчезли, сказав после себя только свои концепты.

Я нахожу этот интенциональный язык интересным, так как он показывает, каким он должен был бы быть, чтобы дать модальностям полную свободу. Но этот отказ от конкретного и экстенционального является вообще более радикальным подходом, чем можно подумать, исходя из простого сравнения 43 3 с 43 2. Необычность интенционального языка становится более очевидной, когда мы попробуем переформулировать положения, такие, как:

1. Число планет есть некоторая степень трех.
2. Жены двух директоров глухи.

В обычной логике (1) и (2) анализировались бы следующим образом:

3. \((?n) (n \text{ натуральное число } \bullet \text{ число планет } = 3^n)\).
4. \((?x) (?y) (?z) (?w) (x \text{ директор } y \text{ директор } \bullet \sim (x = y) \bullet z \text{ жена } x \bullet w \text{ жена } y \bullet z \text{ глуха } w \text{ глуха})\).
Глава V. О логике модальностей

Но формулировка (3) зависит от существования чисел (экстенсионалов, предположительно классов классов) в качестве значений связанной переменной; а формулировка (4) зависит от существования лиц (экстенсионалов, индивидов в качестве значений четырех связанных переменных. Если бы этих значений не было, (3) и (4) должны были быть переформулированы в терминах концептов чисел и индивидных концептов. Логический предикат тождества, \equiv, и (3) и (4) должен был бы следствие этого уступить место логическому предикату экстенсиональной эквивалентности концептов. Логический предикат «быть натуральным числом» в (3) должен был бы уступить место логическому предикату, имеющему смысл «быть концептом натурального числа». Этические предикаты «директор», «жена» и «глухая» в (4) должны были бы уступить место каким-либо новым предикатам, смысл которых легко себе вообразить, чем выразить словами. Эти примеры не доказывают неадекватности вашей языковой структуры: они дают некоторое представление о том необычном характере, который приобрело бы развитие этой языковой структуры, адекватное ее общим целям.

Первым важным пунктом, который следует отметить в утверждении Куайна, является то, что он согласен, что разъясненная в настоящей главе форма модального языка «действительно является эффективным способом примирения квантификации и модальности». Некоторые читатели статьи Куайна думали, что она доказала невозможность логической системы, соединяющей модальности с переменными. Приведенный текст Куайна показывает теперь, что это не так.

Однако с этим все же связаны некоторые серьезные проблемы. Куайн, допуская возможность модальных систем с квантификацией, думает, что эти системы имеют некоторые особые черты, которые он считает недостатками. Рассмотрим эти проблемы.

Выше (в начале § 10) я разъяснил, что я согласен со взглядом Куайна, согласно которому автор, употребляющий какие-либо переменные, тем самым показывает, что он признает те объекты, которые являются значениями этих переменных. (Одновременно я выразил некоторые сомнения относительно целесообразности применения к этому признанию термина «онтология»; но для нашего настоящего обсуждения этот вопрос не имеет значения.) Для нашей проблемы важно положение, обратное этому тезису; оно говорит, что если кто-либо употребляет язык, не содержащий переменных с определенными объектами в качестве значений, то он тем самым указывает,
§ 44. Куайн о модальностях

что он не признает этих объектов или, по крайней мере, что он не намеревается говорить о них до тех пор, пока ограничивается употреблением этого языка. В некотором смысле я могу согласиться также и с этим тезисом. В качестве примера сравним два языка S_p и S'_p. Пусть S_p—обычный язык физики (§ 19). Он содержит переменные, имеющие в качестве значений действительные числа, как рациональные, так и иррациональные. Допустим, что кто-либо предлагает для физики другой язык S'_p, который содержит переменные для рациональных чисел, но не содержит переменных, к значениям которых принадлежат иррациональные числа. Здесь я, подобно Куайну, хотел бы сказать, что тот, кто употребляет этот язык S'_p, исключает или «изгоняет» иррациональные числа и что эти числа «исчезли» из рассматриваемого универсума. В то же время Куайн говорит, что переменные в модальном языке имеют в качестве значений только интенциональны, а не экстенционалы и что поэтому, поскольку дело касается этого языка, все экстенционалы, например классы и «индивиды конкретного мира», «исчезли». С этим я не могу согласиться. С первого взгляда ситуация здесь может показаться сходной с ситуацией в примере с иррациональными числами; но на самом деле они коренным образом различаются.

Для выяснения этой ситуации мы будем сравнивать в последующем обсуждении наши две языковые системы — экстенциональный язык S_1 и модальный язык S_2. Мы рассмотрим далее следующих двух расширенных языка. Язык S'_1 является экстенциональным, как S_1, но содержит добавочные переменные, скажем $\langle f \rangle$, $\langle g \rangle$ и т. д., вместо которых могут подставляться предикаторы уровня 1 (и степени 1), $\langle m \rangle$, $\langle n \rangle$ и т. д.— для предикаторов уровня 2 и $\langle p \rangle$, $\langle q \rangle$ и т. д.— для предложений. Язык S'_2 строится из S'_1 посредством добавления $\langle N \rangle$; следовательно, он является модальным языком, подобно S_2. Согласно взгляду Куайна, значениями $\langle f \rangle$ в S'_1 являются не классы, а свойства, потому что выполняется $\langle f \rangle(\langle f = \langle f \rangle \rangle)$. С другой стороны, в экстенциональной системе S'_1, мы имеем только $\langle f \rangle(\langle f = \langle f \rangle \rangle)$. Поэтому Куайн будет, вероятно, рассматривать в этой системе в качестве значений $\langle f \rangle$ классы, как он поступает в отношении переменных своей экстенциональной системы ML (см. выше, § 25). Подобным же образом Куайн говорит, что
значениями индивидных переменных (например, «x») в модальных системах вроде S_2 и S'_2 являются индивидные концепты; с другой стороны, значениями индивидных переменных в экстенсиональных системах вроде S_1 и S'_1 он, по-видимому, считает индивиды (конкретные вещи или положения). Таким образом, решающим пунктом является следующий: как было разъяснено выше (§ 35), нет возражений против того, чтобы рассматривать десигнараторы в модальном языке как имена интенсива и считать, что переменные в качестве значений имеют интенсивы, если только эта формулировка не приводит нас к ошибочной концепции, что экстенсивы исчезли из универсума, рассматриваемого в языке. Как разъяснено выше (§ 27), невозможно, чтобы в интерпретируемом языке предикатор обладал только экстенсивном и не обладал интенсивом или, в обычных терминах, чтобы предикатор относился к классу и не относился к свойству. Точно так же невозможно, чтобы переменная была только переменной для классов и не была в то же время переменной для свойств. С другой стороны, конечно, допустимо, чтобы переменная в качестве значений имела только свойства, но не отношения или только рациональные числа, но не иррациональные числа. Отсюда ясно различие между этими двумя случаями. Например, так называемые переменные для классов в системе PM' (например, «x») являются, как мы видели (§ 27), также и переменными для свойств, то есть в качестве интенсивов значений имеют свойства. Это же самое относится и к переменным, подобным «j» в S'_1. Языки куайновской формы ML' или расселовской формы PM' или нашей формы S'_1 также говорят о свойствах. Ограничение этих экстенсивных языков по сравнению с модальными языками вроде S'_2 состоит только в том, что все то, что говорится в любом из этих языков о свойстве, оказывается или истинным для всех эквивалентных свойств, или ложным для всех эквивалентных свойств; говоря специальными терминами, все свойства свойств, выражимые в этих языках (посредством матрицы со свободной переменной упомянутого вида), являются экстенсивными. Это делает возможной парафразировку всех предложений этих языков в терминах классов. Аналогичный результат имеет место и для индивидных переменных.
Эти переменные в экстенсональном языке, подобном S_1 и S'_1, относятся не только к индивидам, но также, и прежде всего, к индивидным концептам. Ограничение опять заключается только в следующем: все то, что в этих языках говорится об индивидных концептах, является или истинным для всех эквивалентных индивидных концептов, или ложным для них всех; говоря технически, оно является экстенсональным. Поэтому все то, что в этих языках говорится об индивидных концептах, может быть парафразировано в терминах индивидов.

Хотя предложения экстенсонального языка (S_1 или S'_1) могут таким образом интерпретироваться как говорящие об индивидах и классах, они могут переводиться в соответствующий модальный язык (S_2 или S'_2 соответственно). Этот перевод выполняет не только требование L-эквивалентности, но также и требование интенсивного изоморфизма — самое строгое требование, которое может выполнить какой-либо перевод (§ 14). Любое данное предложение в S'_1 переводится в S'_2, самим этим предложением, то есть этой же последовательностью знаков, рассматриваемых теперь как знаки в S'_2. Любые два соответствующие десигнаторы, то есть любой десигнатор в S'_1 и это же самое выражение в S'_2, являются L-эквивалентными друг другу. Это вытекает из следующих двух результатов:

(I) Правила обозначения для дескриптивных знаков являются одними и теми же в обеих системах S'_1 и S'_2 (например, правила 1-2 для исходных предикаторов).

(II) Любое предложение в S'_1 имеет одну и ту же область в обеих системах S'_1 и S'_2 (см. 41-4 относительно S_1 и S_2). Поскольку область одна и та же, постольку и условия истинности тоже один и те же; поэтому предложение в S'_2 означает совершенно то же, что и в S'_1.

Таким образом, решающее различие между ситуацией здесь и ситуацией в приведенном ранее примере относительно иррациональных чисел становится ясным. При переходе от S_p к S'_p иррациональные числа действительно исчезают, потому что предложение в S_p формы «имеется иррациональное число, такое, что...» не переводится в S'_p. С другой стороны, при переходе от экстенсонального к модальному языку индивиды и классы никоим образом не
исчезают. Предложение в \(S_1 \) (или \(S'_1 \)), которое говорит, что существует определенного рода индивид, переводимо в \(S_2 \) (или \(S'_2 \)); а предложение в \(S'_1 \), которое говорит, что существует определенного рода класс, переводимо в \(S'_2 \).

Для того чтобы иллюстрировать этот результат примером, возьмем предложение Куайна (2). Поскольку это предложение требует только индивидных переменных, оно может быть переведено в \(S_1 \). Допустим, что \(S_1 \) содержит следующие предикаторы либо как исходные знаки, либо как определяемые подходящим образом: «\(W \)» для отношения Жена, «\(D \)» для свойства Директор и «\(F \)» для свойства Глухой. Тогда (2) переводится в \(S_1 \), следующим предложением:

(5) \[(\exists x) (\exists y) (\exists z) (\exists w) [Dx \land Dy \land \lnot (x \equiv y) \land wzx \land Wwy \land Fz \land Fw]. \]

Однако это же предложение является также и переводом предложения (2) в \(S_2 \). Было бы ошибкой думать, что для перевода в \(S_2 \) было необходимо или употребить новые предикаторы, или приписать старым предикаторам новые значения, как если бы, например, «\(Dx \)» в \(S_1 \) говорило, что индивид \(x \) имеет свойство Директор, тогда как «\(Dx \)» в \(S_2 \) говорило, что индивидный концент \(x \) имеет странное новое свойство, до некоторой степени аналогичное, но не вполне то же самое, что свойство Директор. Матрица «\(Dx \)» выражает в обоих языках свойство Директор; она может быть определена в обоих языках совершенно одинаковым способом. Допустим, что некто \(X \), употребляя при разговоре язык \(S_1 \), а \(X_2 \) употребляя \(S_2 \). Тогда вопрос, является ли истинным данное предложение, скажем «\(Db \)», может быть решен обоими — \(X_1 \) и \(X_2 \) — одним и тем же способом. Оба подтверждают или опровергают это предложение на основании наблюдений над лицом \(b \), употребляя один и те же эмпирические критерии для свойства Директор. Ничто в семантическом анализе этого предложения, или в процедуре эмпирического подтверждения, или в ожидании возможного будущего опыта, подразумеваемого предложением, не должно быть различным для \(X_1 \) и \(X_2 \). Это же распространяется и на экзистенциальное предложение (5) и на всякое другое предложение, встречающееся в обоих языках. Поэтому я не могу согласиться со взглядом, что,
в то время как X_1 признавает индивиды конкретного мира, для X_2 они исчезли, оставив вместо себя только свои концепты.

Ситуация в отношении другого примера Куайна (1) аналогична, за тем лишь исключением, что здесь привлекаются количественные числа и, следовательно, употребляется переменная второго уровня, скажем «n». Выше мы видели (§ 27), что для введения конкретных количественных чисел и общего понятия количественного числа не необходимо употреблять выражения специальных классов и переменные для классов, как делали Фреге и Рассел; вместо этого мы можем рассматривать количественные числа как свойства второго уровня или, скорее, ввести выражения количественных чисел как предикаторы второго уровня, интенционалами которых являются свойства второго уровня и экстенционалами которых являются классы второго уровня. Равенство количественных чисел тогда выражается с помощью знака «=». Таким образом, мы переводили предложение

(6) «число планет—9»

в следующее предложение системы S'_1:

(7) «$Nc \circ P \equiv 9$».

Предложение Куайна (1) может быть точно так же переведено в S'_1 следующим образом, если мы предположим, что возведение в степень было определено посредством соответствующей процедуры (аналогичной процедуре Кантора или Рассела [Р.М.|, т. II, *116]):

(8) «(зn) [$NC(n) \circ Nc \circ P \equiv 3^n]$».

(Если мы хотим сказать, что n конечно, то мы должны употребить понятие индуктивного количественного числа с определением, аналогичным определению Рассела.) Здесь данное предложение (1) может опять-таки быть переведено в модальный язык S'_2 тем же самым предложением (8), следовательно, без употребления каких-либо незнакомых новых понятий. Перевод никоим образом не зависит от наличия переменных классов, отличных от переменных свойств. «$NC(n)$» в S'_2, так же как и в S'_1, значит, что n есть количественное число; таким образом, в S'_2, как и в S'_2, предложения вроде «$NC(2)$» и «$NC(Nc \circ P)$» являются L-ис-
тинными. То, что предложение (8) имеет в S_2' то же самое фактическое содержание, как и в S_1', видно из соображений, подобных соображениям, касающимся вышеуказанного примера (5). Одни и те же астрономические наблюдения подтверждают предложение как в одном, так и в другом языке; это порождает одни и те же ожидания будущих наблюдений в обоих языках. Таким образом, здесь не может быть какой-либо разницы в значении.

Приведенное обсуждение показывает, что модальный язык не является неадекватным по сравнению с соответствующим экстенсиональным языком, то есть что мы можем выразить в первом все, что выразим во втором. (Это, по-видимому, признает и Куайн.) Более того, мы видели, что выражения, употребляемые в модальном языке для переводов с экстенсионального языка, не являются необычными как по форме, так и по значению. Каждый денситатор и каждое предложение в экстенсиональном языке имеют совершенно то же значение и в модальном языке — говоря точнее, они имеют и тот же интенционал и тот же экстенционал. Мир конкретных вещей и концептуальный мир чисел трактуются в модальном языке совершенно так же, как и в экстенциональном. Для того чтобы правильно видеть функции этих языков и вообще любых языков, важно отбросить старый предрассудок, что предикатор может выражать или класс или свойство, но не может выражать и то и другое и что индивидуальное выражение может выражать или индивид, или индивидуальный концепт, но не может выражать и то и другое. Для того чтобы понять, как работает язык, мы должны понять, что каждый денситатор имеет как интенционал, так и экстенционал.

§ 45. ЗАКЛЮЧЕНИЯ

Кратко суммируются основные выводы приведенных в этой книге обсуждений. Различие между двумя процессами — пониманием значения данного выражения и исследованием, выполняется ли оно — и как — в действительном состоянии мира — приводит к различию между двумя семантическими факторами, которые наш метод пытается эксплицировать через понятия интенционала и экстенционала выражения.

Главной целью этой книги является развитие метода анализа значения в языке, следовательно, семантического метода. Мы можем различать два процесса в отношении
данного языкового выражения, в частности (декларативного) предложения и его частей. Первым процессом является анализ выражения с целью понять его, уловить его значение. Этот процесс является логическим или семантическим; в своей технической форме он основывается на семантических правилах, касающихся данного выражения. Другой процесс состоит в исследованиях фактической ситуации, к которой относится данное выражение. Его целью является установление фактической истинности. Этот процесс имеет не чисто логическую, а эмпирическую природу. Мы можем различить в данном выражении две стороны или два фактора в отношении этих двух процессов. Первым фактором является та сторона выражения, которую мы можем установить с помощью одного только первого процесса, то есть с помощью понимания без использования фактического знания. Это то, что обычно называется значением выражения. В нашем методе оно эксплицируется посредством специального понятия интенционала. Второй фактор устанавливается совместно обоими процессами. Зная значение, мы с помощью исследования фактов открываем, где выражение выполняется, если вообще оно где-либо выполняется, в действительном состоянии мира. Этот фактор в нашем методе эксплицируется с помощью специального понятия экстенционала. Таким образом, для каждого выражения, которое мы в состоянии понять, встает вопрос о его значении и вопрос о его действительном выполнении; поэтому выражение имеет, прежде всего, интенционал и, кроме того, экстенционал.

Метод интенционала и экстенционала противоположен обычному методу отношения именования. Основным недостатком последнего является его неспособность осуществить основное различие между значением и выполнением. Это ведет к концепции, что выражение должно быть именем только одного из входящих в него двух семантических факторов. Например, свойства и классы рассматриваются как равноправные объекты; это ведет к взгляду, что язык должен содержать и имена свойств и имена классов. Эта концепция является первоисточником различных трудностей, которые, как мы выяснили, связаны с методом отношения именования. Они группируются вокруг хорошо
известной трудности, которую мы назвали антиномией отношения именования. Мы видели, как различные методы сохранения отношения именования, избегающие антиномии, ведут к большим усложнениям в языковой структуре, или к серьезным ограничениям в употреблении языка, или в применении семантического метода.

Формулировки в терминах «экстенсionaleль» и «интенсionaleль», «класс» и «свойство» и т. д. как будто относятся к объектам двух видов в каждом типе. Мы видели, однако, что на самом деле наш метод не предполагает никакого такого удвоения объектов и что эти формулировки предполагают только удобное удвоение способов выражения. Как ненужным оказалось употребление в символическом языке-объекте разных выражений для классов и свойств, так же ненужным оказалось и употребление этих пар терминов в словесном языке, как метаязыке. Был сконструирован новый метаязык, в котором вместо пары «класс Человек» и «свойство Человек» употребляется только один нейтральный термин «Человек». Было показано, что обычные формулировки могут переводиться в этот нейтральный метаязык и что этот последний сохраняет все прежние различия, хотя и в других формулировках.

Наш семантический метод помогает также и в выяснении проблем модальностей. Он предлагает определенную интерпретацию логических модальностей, дающую удобный базис для системы модальной логики. В частности, различение между интенсоналами и экстенсоналами позволяет нам преодолеть трудности, связанные с комбинированием модальностей с квантифицированными переменными.

Различные концепции других авторов, обсуждавшиеся в этой книге, например концепции Фреге, Рассела, Чёрча и Куайна, касающиеся семантических проблем, то есть проблем значения, объема, именования, обозначения и т. п., иногда рассматривались как различные теории, так, как будто самое большее одна из них истинна, тогда как все остальные должны быть ложными. Я же рассматриваю и эти концепции и мою собственную скорее как разные методы, методы семантического анализа, характеризуемые главным образом употребляемыми понятиями. Конечно, раз метод выбран, то вопрос о правиль-
nosti определенных результатов, полученных на его основе, является вопросом теоретическим. Но вряд ли есть какой-либо вопрос этого рода, в котором я не соглашался бы с кем-нибудь из упомянутых авторов. Наши расхождения являются главным образом практическими, касающимися выбора метода для семантического анализа. Методы в противоположность логическим положениям никогда не бывают окончательными. Для любого метода семантического анализа, предлагаемого кем-либо, кто-нибудь другой найдет усовершенствования, то есть изменения, которые покажутся ему и многим другим более предпочтительными. Это, конечно, распространяется и на метод, который я предложил здесь, не в меньшей степени, чем на другие методы. Я закончу наши обсуждения словами, которыми Рассел заканчивает свою статью\(^1\). Мне кажется, что его замечания, хотя они написаны более чем сорок лет назад, все же применимы и к настоящей ситуации (может быть, за тем исключением, что вместо "истинной теории" я предполагал бы сказать "наилучший метод"):

«О многих других следствиях того взгляда, который я защищал, я не скажу ничего. Я только прошу читателя не настраиваться против этого взгляда — к чему его легко может побудить кажущаяся чрезмерная сложность этого взгляда,— пока он не попытается построить свою собственную теорию обозначения. Эта попытка, я думаю, убедит его в том, что, какова бы ни была истинная теория, она не может быть такой простой, как ему могло казаться до того».

\(^1\) [Denoting], p. 493.
ПРИЛОЖЕНИЕ

Это приложение состоит из пяти ранее опубликованных статей. Об их отношении к основному составу книги сказано в моем предисловии ко второму изданию. Первоначальные места их публикации см. в отмеченных звездочкой названиях в библиографии.

А. ЭМПИРИЗМ, СЕМАНТИКА И ОНТОЛОГИЯ

1. Проблема абстрактных объектов

Эмпиристы вообще довольно подозрительно относятся ко всякого рода абстрактным объектам, вроде свойств, классов, отношений, чисел, суждений и т. д. Они обычно чувствуют гораздо больше симпатии к номиналистам, чем к реалистам (в средневековом смысле). Несколько возможно, они стараются избегать всяких ссылок на абстрактные объекты и стараются ограничиться тем, что иногда называется номиналистическим языком, то есть языком, не содержащим таких ссылок. Однако в некоторых научных контекстах, по-видимому, едва ли можно их избежать. В отношении математики часть эмпиристов пытается найти выход, трактуя всю математику в целом просто как некое исчисление, как формальную систему, для которой не дается или не может быть дано никакой интерпретации. В соответствии с этим они считают, что математик говорит не о числах, функциях и бесконечных классах, а только

1 Я сделал здесь некоторые незначительные изменения в формулировках так, чтобы термин «каркас» (framework) употреблялся теперь только в отношении системы языковых выражений, а не в отношении системы объектов, о которых идет речь.
о лишенных смысла символах и формулах, которыми манипулируют согласно определенным формальным правилам. В физике труднее избежать подозреваемых объектов, потому что язык физики служит для передачи сообщений и предсказаний и, следовательно, не может рассматриваться как простое исчисление. Физик, подозрительно настроенный по отношению к абстрактным объектам, может, вероятно, попытаться объявить некоторую часть языка физики неинтерпретированной и неинтерпретируемой, именно ту часть, которая относится к действительным числам как пространственно-временным координатам или как значениями физических величин, к функциям, пределам и т. д. Более вероятно, что он будет говорить о всех этих вещах так, как и всякий другой, но с неспокойной совестью, как человек, который в своей повседневной жизни делает с угрозами совести многое такое, что не согласуется с высокими моральными принципами, которые он исповедует по воскресеньям. Истинно проблема абстрактных объектов снова встала в связи с семантиккой, теорией значения и истины. Некоторые семантики говорят, что определенные выражения обозначают определенные объекты; число этих обозначаемых объектов они включают не только конкретные материальные вещи, но также и абстрактные объекты, например свойства, обозначаемые предикатами, и суждения, обозначаемые предложениями. Другие резко возражают против этой процедуры как нарушающей основные принципы эмпиризма и ведущей назад к метафизической онтологии платоновского типа.

Целью этой статьи является выяснение этого спорного вопроса. Природа и следствия принятия языка, ссылающегося на абстрактные объекты, будет сначала обсуждаться в общем виде; будет показано, что употребление такого языка не означает признания платоновской онтологии и вполне совместимо с эмпиризмом и строго научным мышлением. Затем будет обсужден специальный вопрос о роли абстрактных объектов в семантике. Можно надеяться, что выяснение этого вопроса будет полезно для тех, кто хотел бы принять абстрактные объекты в своей работе в области

1 Термины «предложение» и «утверждение» употребляются здесь синонимично для декларативных (изъявительных, пропозициональных) предложений.
математики, физики, семантики или в какой-либо другой области; это может помочь им преодолеть номиналистические сомнения.

2. Языковые каркасы

Существуют ли свойства, классы, числа, суждения? Для того чтобы яснее понять природу этих и близких к ним проблем, прежде всего необходимо признать фундаментальное различие между двумя видами вопросов, казающихся существования или реальности объектов. Если кто-либо хочет говорить на своем языке о новом виде объектов, он должен ввести систему новых способов речи, подчиненную новым правилам; мы назовем эту процедуру построением языкового каркаса для рассматриваемых новых объектов. А теперь мы должны различить два вида вопросов о существовании: первый — вопросы о существовании определенных объектов нового вида в данном каркасе; мы называем их внутренними вопросами; и второй — вопросы, касающиеся существования или реальности системы объектов в целом, называемые внешними вопросами. Внутренние вопросы и возможные ответы на них формулируются с помощью новых форм выражений.

Ответы могут быть найдены или чисто логическими методами, или эмпирическими методами в зависимости от того, является ли каркас логическим или фактическим. Внешний вопрос имеет проблематический характер, нуждающийся в тщательном исследовании.

Мир вещей. Рассмотрим в качестве примера простейший вид объектов, с которыми мы имеем дело в повседневном языке: пространственно-временно упорядоченную систему наблюдаемых вещей и событий. Раз мы приняли вещный язык с его каркасом для вещей, мы можем ставить внутренние вопросы и отвечать на них, например: «Есть ли на моем столе кляпок белой бумаги?», «Действительно ли жил король Артур?», «Являются ли единороги и кентавры реальными или только воображаемыми существами?» и т. д. На эти вопросы нужно отвечать эмпирическими исследованиями. Результаты наблюдений оце-

1 То есть с помощью выражений в данном каркасе. — Прим. ред.
2 То есть язык, в котором формулируются предложения о вещах. — Прим. ред.
нвываются по определенным правилам как свидетельства, подтверждающие или не подтверждающие основания возможных ответов. (Эта оценка обычно производится, конечно, скорее по привычке, чем как обдуманная рациональная процедура. Но можно рационально реконструировать и сформулировать явные правила оценки. Это одна из главных задач чистой (в отличие от психологической) эпистемологии.

Понятие реальности, встречающееся в этих внутренних вопросах, является эмпирическим, научным, неметафизическим понятием. Признать что-либо реальной вещью или событием — значит суметь включить эту вещь в систему вещей в определенном пространственно-временном положении среди других вещей, признанных реальными, в соответствии с правилами каркаса.

От этих вопросов мы должны отличать внешний вопрос о реальности самого мира вещей. В противоположность вопросам первого рода этот вопрос поднимается не рядом человеком и не учеными, а только философами. Реалисты дают на него утвердительный ответ, субъективные идеалисты — отрицательный, и спор этот безрезультатно идет уже века. Этот вопрос и нельзя разрешить, потому что он поставлен неправильно. Быть реальным в научном смысле значит быть элементом системы; следовательно, это понятие не может осмысленно применяться к самой системе. Те, кто поднимает вопрос о реальности самого мира вещей, может быть, имеют в виду вопрос не теоретический, как это кажется благодаря их формулировке, а скорее практический — вопрос практического решения относительно структуры нашего языка. Мы должны сделать выбор — принять или не принять, употреблять или не употреблять эти формы выражения в рассматриваемом каркасе.

В случае данного конкретного примера обычно не делается обдуманного выбора, потому что все мы приняли вещный язык еще в детском возрасте как нечто само собой разумеющееся. Тем не менее мы можем считать это вопросом выбора в следующем смысле: мы свободны выбирать, продолжать ли нам пользоваться вещным языком или нет; в последнем случае мы могли бы ограничиться языком

1 В английско-американской философской литературе термин «эпистемология» (epistemology) употребляется в смысле гносеологии.— Прим. перев.
чувственных данных и других «феноменальных» объектов, или построить иной язык, отличный от обычного вещного языка, с иной структурой, или, наконец, могли бы воздержаться от выказываний. Если кто-либо решает принять вещный язык, то нечего возразить против утверждения, что он принял мир вещей. Но это не должно интерпретироваться в том смысле, что он поверил в реальность мира вещей; здесь нет такой веры, или утверждения, или допущения, потому что это не теоретический вопрос. Принятие мир вещей значит лишь принять определенную форму языка, другими словами, принять правила образования предложений и проверки, принятия или отвержения их. Принятие вещного языка ведет, на основе произведенных наблюдений, также к принятию и утверждению определенных предложений и к вере в них. Но тезиса о реальности мира вещей не может быть среди этих предложений, потому что он не может быть сформулирован на вещном языке и, по-видимому, ни на каком другом теоретическом языке.

Решение о принятии вещного языка, не будучи само по своей природе познавательным, тем не менее обычно доступно влиянию теоретического знания, точно так же как и любое другое обдуманное решение о принятии лингвистических или каких-либо других правил. Цель, для которой язык предназначается, например цель сообщения фактического знания, определяет, какие факторы могут влиять на это решение. К решающим факторам могут относиться эффективность, плодотворность и простота потребления языка вещей. И вопросы, касающиеся этих качеств, имеют действительно теоретическую природу. Но эти вопросы нельзя отождествлять с вопросом о реализме. Они являются не вопросами типа «да — нет», а вопросами о степени. Язык вещей в обычной форме в самом деле работает весьма эффективно для большинства целей повседневной жизни. Это — фактическое положение, основанное на содержании нашего опыта. Однако неверно было бы опи- сывать эту ситуацию следующим образом: «Факт эффективности языка вещей есть свидетельство, подтверждающее реальность мира вещей». Вместо этого мы скорее сказали бы: «Этот факт делает целесообразным принятие языка вещей».
Система чисел. В качестве примера системы, имеющей скорее логическую, чем фактическую природу, возьмем систему натуральных чисел. Каркас этой системы строится посредством введения в язык новых выражений с соответствующими правилами: (1) выражений чисел, подобных «пять», и форм предложений, подобных «на столе находится пять книг»; (2) общего термина «число» для новых объектов и форм предложений, подобных «пять есть число»; (3) выражений для свойств чисел (например, «нечетное», «простое»), отношений (например, «больше чем»), функций (например, «плюс») и форм предложений, подобных «два плюс три есть пять»; (4) числовых переменных («м», «п» и т. д.) и кванторов для общих предложений («для каждого п, ...») и экзистенциальных предложений («существует п такое, что...») с обычными правилами дедукции.

Здесь опять встают внутренние вопросы, например: «Существует ли простое число больше ста?» Здесь, однако, ответы находятся не посредством эмпирического исследования, основанного на наблюдении, а посредством логического анализа, основанного на правилах для новых выражений. Поэтому ответы здесь оказываются аналитическими, то есть логически истинными.

Какова же природа философского вопроса о существовании или реальности чисел? Начнем с внутреннего вопроса, который, вместе с утвердительным ответом, может быть сформулирован в новых терминах, скажем, как «существуют числа» или, более явно, «существует п такое, что п есть число». Это утверждение вытекает из аналитического утверждения «пять есть число» и поэтому само является аналитическим. Более того, оно является довольно-таки тривиальным (в противоположность утверждению, вроде «существует простое число, большее миллиона», которое точно так же является аналитическим, но далеко не тривиально), потому что оно говорит лишь о том, что новая система не является пустой; но это непосредственно видно из правила, которое устанавливает, что такие слова, как «пять», могут подставляться вместо новых переменных. Поэтому никто из тех, кто понимает вопрос: «Существуют ли числа?» во внутреннем смысле, не стал бы утверждать или даже серьезно рассматривать отрицательный ответ. Это делает правдоподобным допущение, что
те философы, которые трактуют вопрос о существовании чисел как серьезную философскую проблему и выдвигают пространственные аргументы за и против, имеют в виду внутренний вопрос. И в самом деле, если бы мы спросили их: «Не имеете ли вы в виду вопрос о том, пустым или не пустым оказался бы каркас чисел, если бы мы его приняли?» — они, вероятно, ответили бы: «Совсем нет; мы имеем в виду вопрос, предшествующий принятию нового каркаса». Они могли бы попытаться пояснить, что они имеют в виду, сказав, что это — вопрос об онтологическом статусе чисел; вопрос о том, имеют ли числа определенную метафизическую характеристику, называемую реальностью (но идеальной реальностью, отличающейся от материальной реальности мира вещей), или существованием, или статусом «независимых объектов». К сожалению, эти философы пока не дали формулировки их вопроса в терминах обыкновенного научного языка. Поэтому мы должны сказать, что они не сумели вложить во внешний вопрос и в возможные ответы на него какое-либо познавательное содержание. Если они не добавят ясной познавательной интерпретации и пока они этого не сделают, мы вправе подозревать, что их вопрос является псевдопросом, то есть вопросом, переодетым в форму теоретического вопроса, тогда как на самом деле он теоретическим не является; в данном случае это практический вопрос о том, включать или не включать в язык новые языковые формы, образующие каркас чисел.

Система суждений. Новые переменные «\(p\)», «\(q\)» и т. д. вводятся правилом, разрешающим вместо переменной этого рода подставлять любое (декларативное) предложение; в добавление к предложениям первоначального вещного языка это включает также и все общие предложения с переменными любого вида, которые только могут быть введены в этот язык. Далее, вводится общий термин «суждение». Выражение «\(p\) есть суждение» может быть определено посредством «\(p\) или не-\(p\)» (или любой другой сентенциальной 1 формой, дающей только аналитические предложения). Поэтому каждое предложение формы «... есть суждение» (где вместо точек может стоять любое предложение) является

1 Кардан термином «sentence» обозначает предложение. — Прим. ред.
аналитическим. Это распространяется, например, на предложение:

(a) «Чикаго большой город есть суждение».

(Мы не обращаем здесь внимания на то, что правила английской грамматики требуют не самостоятельного предложения, а придаточного предложения в качестве подлежащего другого предложения; соответственно вместо (a) мы должны были бы сказать: «Что Чикаго большой город, есть суждение».) Могут допускаться предикаты, аргументные выражения которых являются предложениями; эти предикаты могут быть или экстенсиональными (например, обычные валентно-функциональные коннекторы), или нежестягционными (например, модальные предикаты вроде «возможный», «необходимый» и т. д.). С помощью новых переменных могут образовываться общие предложения, например:

(b) «Для каждого p, или p, или не-p».

(c) «Существует p такое, что p не необходимо и не-p не необходимо».

(d) «Существует p такое, что p есть суждение».

(c) и (d) суть внутренние утверждения существования. Предложение «существуют суждения» может мыслиться в смысле (d); в этом случае оно является аналитическим (по скольку оно вытекает из (a)) и даже тривиальным. Если же это предложение мыслится во внешнем смысле, то оно оказывается не познавательным.

Важно отметить, что система правил для языковых выражений каркаса суждений (из которой были вкратце указаны только несколько правил) является достаточной для введения этого каркаса. Всякие дальнейшие объяснения, касающиеся природы суждений (то есть элементов указанной системы, значений переменных «p» и «q» и т. д.), являются теоретически не необходимыми, потому что если они правильны, то они вытекают из правил. Например, являются ли суждения психическими событиями (как в теории Рассела)? Правила показывают нам, что они таковыми не являются, потому что иначе экстенсиональные утверждения имели бы форму: «Если психологическое состояние лица, о котором идет речь, удовлетворяет таким-то условиям, то существует p такое, что...» Тот факт, что в экстенсиональных утверждениях (вроде (c), (d) и т. д.) не встречается никаких ссылок на психологические условия, показывает, что суждения
не являются психическими объектами. Далее, утверждение существования языковых объектов (например, выражений, классов выражений и т. д.) должно содержать ссылку на язык. Тот факт, что в экзистенциальных предложениях здесь не встречается такой ссылки, показывает, что суждения не являются языковыми объектами. Тот факт, что в этих предложениях не встречается ссылки на субъект (на наблюдателя или познавающего) (ничего похожего на "имеется р, которое необходимо для г-на Х"), показывает, что суждения (и их свойства, подобные необходиност и т. д.) не являются субъективными. Хотя эти и им подобные характеристики, строго говоря, и не необходимы, они тем не менее могут быть практически полезными. Если они даются, то должны пониматься не как составные части системы, а просто как заметки на полях с целью дать читателю полезное указание или удобные образные ассоциации, которые сделают для него изучение употребления этих выражений более легким, чем сделала бы это голая система правил. Такая характеристика аналогична внесистемному объяснению, которое физик иногда дает новичку. Он может, например, посоветовать ему представить себе атомы газа в виде маленьких шариков, снующих туда и сюда с большой скоростью, или представить себе электромагнитное поле и его осцилляцию как квазипуругие напряжения и колебания в эфире. В действительности же все то, что можно с точностью сказать об атомах или о поле, в неявном виде содержится в физических законах соответствующих теорий.

1 В моей книге «Meaning and Necessity» (I изд., Chicago, 1947) я разработал семантический метод, который рассматривает суждения как объекты, обозначаемые предложениями (см. также, как интенсиональные предложения). Для того чтобы облегчить понимание систематического изложения, я добавил некоторые неформальные, внесистемные пояснения, касающиеся природы суждений. Я сказал, что термин «суждение» обозначает не языковое выражение и не субъективное, психическое событие, а скорее нечто объективное, что может быть, а может и не быть экземплифцировано в природе. «Мы применяем термин «суждение» к любым объектам определенного логического типа, именно к тем, которые могут быть выражены (декларативными) предложениями в какой-нибудь языке (стр. 63). После более подробного рассмотрения отношений между суждениями и фактами, а также природы ложных суждений я добавил: «Цель предшествующих замечаний—облегчить понима-

Система целых и рациональных чисел. В язык, содержащий каркас для натуральных чисел, мы можем ввести сначала (положительные и отрицательные) целые числа, как отношения между натуральными числами, а затем рациональные числа, как отношения между целями числами. Это предполагает введение новых типов переменных, выражений, подставляемых вместо них, и общих терминов «целое число» и «рациональное число».

Система действительных чисел. На основе рациональных чисел могут быть введены действительные числа, как особого рода классы (сечения) рациональных чисел (согласно методу, разработанному Дедекинду и Фреге). Здесь опять вводятся новый тип переменных, подставляемые вместо нашей концепции суждений. Если, однако, читатель найдет, что эти разъяснения скорее затеняют дело, чем разъясняют его, или если он найдет их даже неприемлемыми, то он может просто не обращать на них внимания (стр. 69) (то есть не обращать внимания на эти внесистемные пояснения, а не на всю теорию суждений как интенсоналов предложений, как писал автор одной из рецензий). Несмотря на это предупреждение, некоторые читатели, которые были озабочены пояснениями, кажется, не оставили их без внимания, но решили, что, выставив против них возражения, они могут опровергнуть теорию. Это аналогично тому, как некоторые неспециалисты, раскритиковав (правильно) зрительный образ эфира или другие наглядные образы физических теорий, решили, что они опровергли эти теории. Может быть, обсуждения, приводимые в настоящей статье, помогут, с одной стороны, выяснить роль системы языковых правил для введения языкового каркаса для объектов и, с другой стороны, роль внесистемных объяснений, касающихся природы этих объектов.
них выражения (например, $\sqrt{2}$) и общий термин «действительное число».

Система пространственно-временных координат для физики. Новыми объектами являются точки пространства-времени. Каждая из них есть упорядоченная четверка действительных чисел, называемых ее координатами, состоящая из трех пространственных и одной временной координат. Физическое состояние пространственно-временной точки или области описывается с помощью качественных предикатов (например, «горячий») или путем приписывания чисел в качестве значений физической величины (например, массы, температуры и т. п.). Переход от системы вещей (которая не содержит пространственно-временных точек, а содержит только протяженные объекты с пространственными и временными отношениями между ними) к физической системе координат есть опять-таки дело выбора. Наш выбор определенных признаков, не являясь сам по себе теоретическим, подсказывает теоретическим знаниям, логическим или фактическим. Например, выбор действительных, а не рациональных или целых чисел в качестве координат не столько определяется фактами опыта, сколько обусловливается главным образом соображениями математической простоты. Ограничение рациональными координатами не придет в конфликт ни с каким имеющимся у нас экспериментальным знанием, потому что результат всякого измерения является рациональным числом. Однако это помешало бы использованию обычной геометрии (которая говорит, например, что отношение диагонали квадрата к его стороне имеет иррациональное значение $\sqrt{2}$) и таким образом привело бы к большим усложнениям. С другой стороны, решение употреблять три, а не две или четыре пространственных координаты настойчиво внушается, хотя все же и не принудительно диктуется нам, результатами обычных наблюдений. Если бы некоторые явления, якобы наблюдаемые во время спиритических сеансов, — например, шарик, появляющийся из запечатанной коробки, — подтверждались так, что не оставалось бы какого-разумного сомнения в их действительности, то могло бы оказаться полезным употреблять четыре пространственные координаты. Внутренние вопросы являются здесь в общем эмпирическими
вопросами, на которые следует отвечать эмпирическими исследованиями. С другой стороны, внешние вопросы о реальности физического пространства и физического времени являются псевдовопросами. Вопрос, подобный «Существуют ли (реально) пространственно-временные точки?» — является двусмысленным. Он может мыслиться как внутренний вопрос; тогда утвердительный ответ является, конечно, аналитическим и тривиальным. Или он может мыслиться во внешнем смысле: «Будем ли мы вводить такие-то формы в наш язык?»; в этом случае он является не теоретическим, а практическим вопросом, скорее вопросом выбора, чем утверждения, и, следовательно, предложенная формулировка была бы дезориентирующей. Или, наконец, он может мыслиться в следующем смысле: «Является ли наш опыт таким, что употребление рассматриваемых языковых форм будет целесообразным и плодотворным?» Это — теоретический вопрос фактической, эмпирической природы. Но он касается вопроса о степени; поэтому формулировка в виде «реально или нет» была бы неадекватной.

3. Что значит принятие какого-либо рода объектов?

Попытаемся теперь суммировать существенные черты ситуаций, включающих введение нового рода объектов, черты, общие для различных вышеописанных примеров.

Принятие новых объектов выражается в языке введением языкового каркаса — новых форм выражений, которые должны употребляться в соответствии с новой группой правил. Здесь могут быть новые имена для конкретных объектов соответствующего рода; но некоторые такие имена могут уже встречаться в языке до введения нового каркаса (так, например, вещный язык содержит слова типа «синий» и «дом», конечно, до введения каркаса для свойств; и он может содержать слова, подобные «десять» в предложениях вида «у меня десять пальцев», до введения каркаса для чисел). Последний факт показывает, что наличие постоянных соответствующего типа — рассматриваемых как имена объектов нового рода после того, как введен новый каркас, — не является достаточно надежным признаком принятия нового рода объектов. Поэтому введение таких постоянных не должно рассматриваться как
существенный шаг при введении каркаса. Двумя существенными шагами являются скорее следующие. Во-первых, введение общего термина, предиката более высокого уровня для нового рода объектов, позволяющего нам сказать о каждом частном объекте, что он принадлежит к этому роду (например, «Красное есть свойство», «Пять есть число»). Во-вторых, введение переменных нового типа. Новые объекты являются значениями этих переменных; постоянные (и замкнутые сложные выражения, если таковые имеются) подставляются вместо этих переменных. С помощью этих переменных могут быть сформулированы общие предложения о новых объектах.

После того как в язык введены новые формы, можно с их помощью формулировать внутренние вопросы и возможные ответы на них. Вопрос такого рода может быть или эмпирическим, или логическим; соответственно и правильный ответ на него будет или фактически истинным, или аналитическим.

От внутренних вопросов мы должны ясно отличать внешние вопросы, то есть философские вопросы, касающиеся существования или реальности всей системы новых объектов в целом. Многие философы рассматривают вопрос такого рода как онтологический вопрос, который должен быть поставлен, и ответ, на который должен быть получен до введения новых языковых форм. Это введение, как они считают, будет законным только в том случае, если оно будет оправдано онтологической интуицией, дающей утвердительный ответ на вопрос о реальности. В противоположность этому взгляду мы полагаем, что введение новых способов речи не нуждается в каком-либо теоретическом оправдании, потому что оно не предполагает какого-либо утверждения реальности. Мы можем все же говорить (как мы и делали) о «принятии новых объектов», поскольку эта форма речи является обычной, но при этом следует иметь в виду, что эта фраза не значит для нас ничего больше, кроме принятия нового языкового

1 Куайн был первым, кто признал важность введения переменных, как указания на принятие объектов. «Онтология, к которой обязывает человека употребляемый язык, охватывает именно те объекты, которые он рассматривает как входящие... в область значений его переменных» [Notes, p. 118; ср. также его [Designation] и [Universalis]].
каркаса, то есть новых языковых форм. Прежде всего она не должна интерпретироваться как относящаяся к допущению, вере или утверждению «реальности объектов». Ничего этого здесь нет. Предложение, претендующее на утверждение реальности системы объектов, является псевдотверждением, лишенным познавательного содержания. Конечно, здесь перед нами стоит важный вопрос; но это практический, а не теоретический вопрос; это вопрос о том, принять или не принять новые языковые формы. Это принятие не может оцениваться как истинное или ложное, потому что оно не является утверждением. Оно может расцениваться только как более или менее целесообразное, плодотворное, ведущее к той цели, которой служит язык. Оценки этого рода дают мотивировку решения, принять или отвергнуть те или иные объекты. Таким образом, ясно, что принятие какого-либо языкового каркаса не должно рассматриваться как подразумевающее какую-то метафизическую доктрину, касающуюся реальности рассматриваемых объектов. Мне кажется, что именно из-за пренебрежения этим важным различием некоторые современные номиналисты называют допущение переменных абстрактных типов «платонизмом». Это, по

1 Очень близкую точку зрения по этим вопросам в подробном изложении см.: Herbert Feigl, Existential Hypothesis, «Philosophy of Science», 17 (1950), 35—62.
меньшей мере, совершенно неправильная терминология. Она имела бы абсурдное следствие, что позиция каждого, кто принимает язык физики с ее переменными для действительных чисел (как язык сообщения, а не просто как исчисление), называлась бы платонизмом, даже если бы он был строгим эмпиристом, отвергающим платоновскую метафизику.

Здесь можно добавить краткую историческую справку. Непознавательный характер вопросов, которые мы здесь назвали внешними вопросами, был признан и подчеркнут уже Венским кружком под руководством Морица Шлика — группой, с которой началось движение логического эмпиризма. Под влиянием идей Людвига Витгенштейна кружок отверг и тезис о реальности внешнего мира, и тезис о его нереальности, как псевдоутверждения, то же самое было с тезисом о реальности универсалий (абстрактных объектов в нашей настоящей терминологии) и с номиналистическим тезисом о том, что они не реальны и что присвоенные им имена не являются на самом деле именами чего-либо, а представляют собой просто flatus vocis. (Очевидно, что явное отрицание псевдоутверждения также должно быть псевдоутверждением.) Поэтому неправильно называть членов Венского кружка номиналистами, как это иногда делают. Однако если мы учтем основную антиметафизическую и пронабренную позицию большинства номиналистов (и то же самое относится ко многим материалистам и реалистам в современном смысле), не обращая внимания на их случайные псевдотеоретические формулировки, то окажется, конечно, верным, что Венский кружок был гораздо ближе к этим философам, чем к их противникам.

4. Абстрактные объекты в семантике

Проблема правомерности и статуса абстрактных объектов недавно снова привела к дискуссиям в связи с семантикой. В семантическом анализе значения о некоторых

1 См. С аргар, Scheinprobleme in der Philosophie; das Fremdpsychische und der Realismusstreit, Berlin, 1928; Moritz Schlick, Positivismus und Realismus, перепечатано в «Gesammelte Aufsätze», Wien, 1938.
выражениях в языке часто говорят, что они обозначают (или именуют, или означают, или значат, или указывают на) некоторые внеязыковые объекты. Пока в качестве десигнатов (обозначаемых объектов) берутся физические вещи или события (например, Чикаго или смерть Цезаря), серьезных сомнений не возникает. Но серьезные возражения были выставлены, особенно некоторыми эмпиристами, против абстрактных объектов как десигнатов, например против семантических утверждений следующего рода:

1. «Слово “красный” обозначает свойство вещей»;
2. «Слово “цвет” обозначает свойство свойств вещей»;
3. «Слово “пять” обозначает число»;
4. «Слово “четыре” обозначает свойство чисел»;
5. «Предложение “Чикаго — большой город” обозначает некоторое суждение».

Те, кто критикует эти утверждения, не отвергают, конечно, употребления выражений вроде «красный» или «пять»; не стали бы они отрицать и того, что эти выражения имеют значение. Но иметь значение, сказали бы они, не то же самое, что иметь значение в смысле некоторого обозначаемого объекта. Они отвергают веру (которая, как они считают, ясно предполагается такими семантическими утверждениями) в то, что для каждого выражения рассматриваемого типа (прилагательных вроде «красный», числительных вроде «пять» и т. д.) имеется особый реальный объект, к которому это выражение стоит в отношении обозначения. Эта вера отвергается как несовместимая с основными принципами эмпиризма или научного мышления. Ей присваиваются дискриминационные ярлыки такие, как «платоновский реализм», «гипостазирование» или «Фидо принцип». Последнее название дано Гильбертом Райлом (G i l b e r t R y l e, [Meaning]) критируемой вере, которая, с его точки зрения, возникает вследствие наив-

1 См. [1]; «Meaning and Necessity» (Chicago, 1947). Различие, которое я провел в последней книге между методом отношения именования и методом интенционала и экстенционала, не существенно для настоящего нашего обсуждения. Термин «обозначение» в этой статье употребляется нейтрально; он может быть понят как относящийся к отношению именования, или к отношению выражения к интенционалу, или к отношению выражения к экстенционалу, или к любому подобному отношению, употребляемому в других семантических методах.
ного вывода по аналогии: как существует хорошо известный мне объект — моя собака Фи́до, — которая обозначается именем «Фи́до», так и для каждого осмысленного выражения должен существовать объект, к которому это выражение стоит в отношении обозначения или именования, то есть в отношении, иллюстрируемом выражением «Фи́до» — Фи́до. Критикуемая вера является, таким образом, случаем гипостазирования, то есть трактовки в качестве имени таких выражений, которые именами не являются. Считают, что в то время, как «Фи́до» есть имя, выражения, такие, как «красный», «пять» и т. д., именами не являются и ничего не обозначают.

Проведенное выше рассмотрение вопроса о принятии языковых каркасов позволяет нам теперь прояснить ситуацию в отношении абстрактных объектов как десигна-тов. В качестве примера возьмем утверждение:

(a) «Пять» обозначает некоторое число».

Формулировка этого утверждения предполагает, что наш язык L содержит формы выражений, которые мы назвали каркасом для чисел, в частности числовые переменные и общий термин «число». Если L содержит эти формы, то следующее является аналитическим утверждением в L:

(b) «Пять есть некоторое число».

Далее, чтобы сделать возможным утверждение (a), L должен содержать выражение, подобное «обозначает» или «есть имя», для семантического отношения обозначения. Если установлены соответствующие правила для этого термина, то следующее предложение точно так же является аналитическим:

(c) «Пять» обозначает пять».

(Вообще говоря, всякое выражение формы «...» обозна-чает ...» есть аналитическое предложение, если только термин «...» — постоянная в некоторой принятом каркасе. Если последнее условие не выполняется, то выражение не является предложением.) Поскольку (a) следует из (c) и (b), поскольку (a) является точно так же аналитическим.

Таким образом, ясно, что если кто-либо принимает каркас чисел, то он должен знать (c) и (b), а следова-тельно, и (a) истинными предложениями. Вообще говоря, если кто-либо принимает каркас для определенного рода
объектов, то он обязан допустить и эти объекты в качестве возможных десигнаторов. Таким образом, вопрос о допустимости объектов определенного типа или абстрактных объектов вообще как десигнаторов сводится к вопросу о приемлемости языкового каркаса для этих объектов. Как номиналистические критики, отвергающие статус десигнаторов или имен у выражений вроде «красный», «пять» и т. д. вследствие отрицания существования абстрактных объектов, так и скептики, выражающие сомнение в существовании последних и требующие доказательства в его пользу, трактуют вопрос о существовании как теоретический вопрос. Они, конечно, имеют в виду не внутренний вопрос; утвердительный ответ на этот (то есть внутренний) вопрос является, как мы видели, аналитическим, тривиальным и слишком ясным, чтобы можно было сомневаться в нем или отрицать его. Их сомнения относятся скорее к системе самих объектов; следовательно, они имеют в виду внешний вопрос. Они полагают, что только после удостоверения в реальном существовании системы объектов рассматриваемого рода мы вправе принимать данный каркас посредством включения соответствующих лингвистических форм в наш язык. Однако мы видели, что внешний вопрос является не теоретическим, а скорее практическим, вопросом о том, принимать или не принимать эти лингвистические формы. Это принятие не нуждается в теоретическом оправдании (кроме как в отношении его целесообразности и плодотворности), потому что оно не предполагает веру или утверждение. Райл говорит, что принцип «Фибо»-Фида является «гротескной теорией». Гротескный он или нет, но Райл ошибается, называя его теорией. Это скорее практическое решение принять определенные каркасы. Может быть, Райл исторически и прав в отношении тех, кого он упоминает как прежних представителей этого принципа, именно Джона Сюарта Милля, Фреге и Рассела. Если эти философы рассматривали принятие системы объектов как теорию, как утверждение, то они были жертвами той же самой старой метафизической путаницы. Но, конечно, неверно рассматривать мой семантический метод как нечто, связанное с верой в реальность абстрактных объектов, поскольку я отвергаю тезис этого рода, как метафизическое позднепсевдопредложение.
Критики употребления абстрактных объектов в семантике не замечает фундаментальной разницы между принятием системы объектов и внутренним утверждением, например утверждением, что существуют слоны, или электроны, или простые числа больше миллиона. Тот, кто делает внутреннее утверждение, безусловно, обязан подтвердить его свидетельством — эмпирическим свидетельством в случае электронов и логическим доказательством в случае простых чисел. Требование теоретического оправдания, правильное в случае внутренних утверждений, иногда ошибочно применяется к признанию системы объектов. Так, например, Эрнст Хагель в [Review C.] требует «доказательства, дающего основание утверждать, что существуют такие объекты, как бесконечно малые величины или суждения». Он характеризует требуемое в этих случаях доказательство — в отличие от эмпирического доказательства в случае электронов — как «в широком смысле логическое и диалектическое». Кроме этого, не дается никакого намека относительно того, что может рассматриваться как соответствующее доказательство. Некоторые номиналисты рассматривают принятие абстрактных объектов как своего рода суеверие или миф, населяющий мир фиктивными или по крайней мере сомнительными объектами, миф, аналогичный вере в кентавров или демонов. Это опять обнаруживает упомянутую путаницу, потому что суеверие или миф есть ложное (или сомнительное) внутреннее утверждение.

В качестве примера возьмем натуральные числа как количественные числа, то есть в контекстах, подобных «Здесь есть три книги». Языковые формы каркаса чисел, включающие переменные и общий термин «число», широко употребляются в нашем обычном языке сообщений; и для их употребления легко формулировать явные правила. Таким образом, логические характеристики этого каркаса достаточно ясны (тогда как многие внутренние вопросы, то есть арифметические вопросы, являются, конечно, все еще открытыми). Несмотря на это, спор, касающийся внешнего вопроса об онтологической реальности системы чисел, продолжается. Допустим, что какой-либо философ говорит: «Я считаю, что существуют числа как реальные объекты. Это дает мне право употреблять языковые формы
числового каркаса и делать семантические утверждения о числах как десигнатах числительных». Его оппонент-номиналист отвечает: «Вы ошибаетесь; никаких чисел не существует. Числительные все же могут употребляться как осмысленные выражения. Но они не имена, так как не существует обозначаемых ими объектов. Поэтому слово «число» и числовые переменные не должны употребляться (если не будет найден способ введения их в качестве сокращений, способ перевода их в номиналистический вещный язык). Я не могу представить себе никакого возможного доказательства, которое оба философа признали бы пригодным и которое, следовательно, если бы оно действительно было найдено, разрешило бы этот спор или хотя бы сделали бы один из противоположных тезисов более вероятным, чем другой. (Конструирование чисел как классов или свойств второго уровня, согласно методу Фреге — Рассела, конечно, не разрешает спора, потому что первый философ стал бы утверждать, а второй — отрицать существование системы классов или свойств второго уровня.) Поэтому я вынужден рассматривать внешний вопрос как псевдопроис, пока обе спорящие стороны не предложат какой-либо общей интерпретации этого вопроса, как вопроса познавательного; это включало бы указание на возможное доказательство, пригодное с точки зрения обеих сторон.

Существует особый вид неправильной интерпретации принятия абстрактных объектов в различных областях науки и в семантике, который требует выяснения. Некоторые из ранних английских эмпиристов (например, Беркли и Юм) отрицали существование абстрактных объектов на том основании, что в непосредственном опыте нам дано только индивидуальное, а не универсалии, например это красное пятно, но не Красота или Цвет Вообще; этот неравносторонний треугольник, а не Неравносторонняя Треугольность или Треугольность Вообще. Только объекты, принадлежащие к типу, экземпляры которого обнаруживаются в непосредственном опыте, могут быть признаны как последние составные части реальности. Таким образом, согласно этому взгляду, существование абстрактных объектов могло бы утверждаться только в том случае, если бы кто-либо мог доказать или то, что некоторые
абстрактные объекты попадают в область данного в опыте, или что абстрактные объекты могут определяться в терминах тех типов объектов, которые даны в опыте. Поскольку эти эмпиристы не могли найти никаких абстрактных объектов в области чувственных данных, постольку они или отрицали их существование, или же предпринимали тщетные попытки определять универсалии в терминах индивидуального. Некоторые современные философы, особенно английские философы — последователи Бертрана Рассела, мыслят по существу в подобных же терминах. Они подчеркивают различие между данными (тем, что непосредственно дано в сознании, например чувственными данными, непосредственно прошедшим опытом и т. д.) и конструктами, основанными на этих данных. Существование и реальность приписываются только данным; конструкты же не являются реальными объектами; соответствующие языковые выражения являются только способами речи, ничего в действительности не обозначающими (репрессиция номиналистского flatus vocis). Мы не будем здесь критиковать эту общую концепцию. (В той мере, в какой она является принципом принятия некоторых объектов и непринятия других, оставляя в стороне все понятия онтологические, феноменалистические и номиналистические псевдоутверждения, постольку против нее не может быть выставлено какого-либо теоретического возражения.) Но если эта концепция ведет к тому взгляду, что другие философы или ученые, принимающие абстрактные объекты, утверждают или предполагают тем самым наличие их как непосредственно данных, то такой взгляд должен быть отвергнут, как неправильная интерпретация. Ссылки на пространственно-временные точки, электромагнитное поле, или электроны в физике, на действительные или комплексные числа и функции от них в математике, на потенциал возбуждения или бессознательные комплексы в психологии, на инфляционную тенденцию в экономике и т. п. не предполагают утверждения, что объекты этого рода встречаются как непосредственные данные. То же самое можно сказать и о ссылках на абстрактные объекты как десигнанты в семантике. Некоторые критические выступления английских философов против таких ссылок производят впечатление, что — вероятно, благодаря только что упо-
мынотой ложной интерпретации — они обвиняют семантиков не столько в плохой метафизике (как это сделали бы некоторые номиналисты), сколько в плохой психологии. Тот факт, что они рассматривают семантический метод, связанный с абстрактными объектами, не просто как сомнительный и, возможно, ложный, но как явно абсурдный, нелепый и громеский, и высказывают по отношению к нему глубокий ужас и негодование, следует, может быть, объяснить вышеописанной ошибочной интерпретацией. На самом же деле, конечно, семантик ни в кой мере не утверждает и не предполагает, что абстрактные объекты, на которые он ссылается, могут испытываться в опыте как непосредственно данные посредством ощущения или какой-либо интеллектуальной интуиции. Утверждение такого рода действительно было бы очень сомнительной психологией. Психологический вопрос о том, какие объекты встречаются, а какие не встречаются как непосредственные данные, не имеет к семантике никакого отношения, совершенно так же, как и в физике, математике, экономике и т. д. в отношении приведенных выше примеров.

5. Заключение

Для тех, кто хочет развивать или употреблять семантические методы, решающим вопросом является не мнение онтологический вопрос о существовании абстрактных объектов, а скорее вопрос о том, является ли употребление абстрактных языковых форм, или, говоря специальными терминами, употребление других переменных, кроме переменных для вещей (или феноменологических данных), плодотворным и подходящим для целей, которым служат семантические анализы, а именно анализ, интерпретация, уяснение или построение языков для сообщения, в особенности языков науки. Этот вопрос здесь не решается и даже не обсуждается. Это не вопрос просто о «да или

1 Уилфрид Селларс (Wilfrid Sellars, Acquaintance and Description Again, «Journal of Philosophy», 46 (1949), p. 496 — 514; см. п. 502 и далее) ясно анализирует корни ошибки «рассмотрения отношения обозначения семантической теории как реконструкции присутствия в опыте».
нет», а вопрос о степени. Среди философов, проводивших семантические анализы и думавших о подходящих ин- струментах для этой работы, начиная с Платона и Ари- стотеля, и — с большей техникой на основе современной логики — с Пирса и Фреге, огромное большинство при- нимало абстрактные объекты. Это, конечно, еще ничего не доказывает. В конце концов семантика в техничес- ком смысле находится еще в начальной фазе своего раз- вития, и мы должны быть готовы к возможным фунда- ментальным изменениям в методах. Допустим поэтому, что номиналистическая критика может быть и права. Но если так, то номиналистам придется выдвинуть лучшие аргу- менты, чем они выдвигали до сих пор. Апелляция к он- тологической интуиции не будет иметь большого веса. Критики должны будут показать, что можно построить семантический метод, который избежит ссылок на абстракт- ные объекты и достигнет более простыми средствами по существу тех же результатов, что и другие методы.

Принятие или отказ от абстрактных языковых форм, точно так же, как и принятие или отказ от любых других языковых форм в любой отрасли знания, будет в конце концов решаться эффективностью их как инстру- ментов, отношением достигнутых результатов к количе- ству и сложности требуемых усилий. Декретировать догма- тические запрещения определенных языковых форм вместо проверки их успехом или неудачей в практическом употреблении более чем напрасно — это положительно вредно, ибо это может препятствовать научному прогрессу. История науки дает примеры таких запрещений — основанных на предубеждениях, вытекающих из религиозных, мифо- логических, метафизических или каких-либо других ирра- циональных источников,— которые замедляли ее разви- тие на более или менее долгие периоды времени. Поучимся же на уроках истории. Дадим тем, кто работает в любой специальной области исследования, свободу употреблять любую форму выражения, которая покажется им полезной; работа в этой области рано или поздно приведет к устра- нению тех форм, которые не имеют никакой полезной функции. Будем осторожны в утверждениях и критичны в их исследованиях, но будем терпимы в допущении язы- ковых форм.
Б. ПОСТУЛАТЫ ЗНАЧЕНИЙ

1. Проблема истинности, основанной на значении

Философы часто различали два вида истинности: истинность некоторых предложений является логической, необходимой, основанной на значении, тогда как истинность других предложений является эмпирической, случайной, зависящей от фактов вселенной. Следующие два предложения относятся к первому виду:

(1) «Фидо черен или Фидо не черен»;
(2) «Если Джек холостяк, то он не женат».

В каждом из этих случаев достаточно понять предложение, чтобы установить его истинность; знания (внеязыковых) фактов здесь не предполагаются. Однако тут есть и разница. Чтобы удостоверить истинность (1), требуется только значения логических частиц («есть», «или», «не»); значения дескриптивных (то есть нелогических) слов («Фидо», «черен») не имеют отношения к делу (кроме того, что они должны принадлежать к соответствующим типам). С другой стороны, для (2) нужны значения некоторых дескриптивных слов, именно слов «холостяк» и «женат».

Куайн⁴ недавно подчеркнул это различие; он употребляет термин «аналитический» для более широкого рода предложений, к которому принадлежат, оба примера, и «логически истинный» для более узкого рода, к которому принадлежит (1), но не (2). Я тоже буду употреблять эти два термина для экспликационов. Но я не разделяю скептицизма Куайна; он сомневается, возможна ли экспликация аналитичности, особенно в семантике, и даже имеется ли достаточно ясный экспликацион, особенно в отношении естественных языков.

Целью этой статьи является описание способа экспликации, понятия аналитичности (то есть истинности, основанной на значении) в рамках семантической системы, посредством использования того, что мы будем называть постулатами значения. Этот простой способ не связан ни с какими новыми идеями; он подсказывает скорее обычным здравым рассуждением. В этой статье будет

¹ W. V. Quine, [Dogenas], особенно р. 23.
показано, как определения некоторых основных для дедуктивной и индуктивной логики понятий могут быть переформулированы в терминах постулатов.

Как было сказано выше, наша экспликация будет относиться к семантической языковой системе, а не к естественным языкам. Она разделяет эту черту с большинством экспликаций философски важных понятий, даваемых в современной логике, например с экспликацией истинности у Тарского. Мне кажется, что проблемы экспликации понятий этого рода для естественных языков имеют совершенно другую природу.

2. Постулаты значений

Наше рассмотрение относится к семантической языковой системе \(\mathcal{L} \) следующего рода. \(\mathcal{L} \) содержит обычные конъюнкторы, индивидуальные переменные с кванторами и, в качестве дескриптивных знаков, индивидуальные постоянные («a», «b» и т. д.) и исходные дескриптивные предикаты (в том числе «B», «M», «R» и «B») для свойств Холостяк, Женатый, Цвета Воронов Крыла и Черный соответственно). Следующие предложения в \(\mathcal{L} \) соответствуют двум приведенным выше примерам:

\[
\begin{align*}
(3) & \quad \text{«} B \ a \lor \sim B a \text{»}. \\
(4) & \quad \text{«} B \ b \supset \sim M b \text{»}.
\end{align*}
\]

Допустим, что для \(\mathcal{L} \) сформулированы обычные таблицы логических валентностей для конъюнкторов (в форме правил истинности или удовлетворяемости), но не дано никаких правил обозначения для дескриптивных постоянных.

1 Эта статья предполагает экспликацию логической истинности, которая будет указана в § 2, и экспликацию различия между логическими и дескриптивными постоянными (ср. [1], § 13). Теперь наша задача заключается только в разрешении добавочной проблемы, связанной с экспликацией апеллятивности.

2 Большие трудности и сложности, связанные с любой попыткой эксплицировать логические понятия для естественных языков, были отчетливо разъяснены Бенсоном Мейтисом в [Analytic] и Ричардом Мартином в [Analytic]. В обоих статьях приводятся сильные аргументы против взглядов Куйина [Dogma] и Мортона Г. Уайта [Analytic], что не существует ясного различия между аналитическим и синтетическим.
(следовательно, значения вышеупомянутых четырех предикатов не включены в систему). Прежде чем мы установим постулаты значения, посмотрим, что можно сделать без них, на основе обычных семантических правил. Сначала определим L-истинность предложения \varnothing_i языка \mathcal{L} как экспликаят для логической истинности (в узком смысле). Мы можем употребить в качестве определяющего выражения любую из следующих четырех формулировок (5a) — (5d); они эквивалентны друг другу (если только они применимы к \mathcal{L}). Вставки в квадратных скобках относятся к примеру (3).

(5a) Открытая логическая формула, соответствующая \mathcal{E}_i [например, $\langle x \sqrt{\sim f} x \rangle$, общезначима (то есть удовлетворяется всеми значениями свободных переменных). (Здесь предполагается, что \mathcal{L} содержит соответствующие переменные для всех дескриптивных постоянных.)

(5b) Общее логическое предложение, соответствующее \mathcal{E}_i (например, $\langle (i)(x)(x \sqrt{\sim f} x) \rangle$) истинно. (Здесь предполагается, что \mathcal{L} имеет переменные с кванторами, соответствующие всем дескриптивным постоянным.)

(5c) \mathcal{E}_i удовлетворяется для всех значений встречающихся дескриптивных постоянных. [Области значений для B_i и a здесь те же, что и для f и x, соответственно, в (5a).]

(5d) \mathcal{E}_i выполняется во всех описаниях состояния. (Описание состояния является конъюнкцией, которая содержит для каждого атомарного предложения или его, или его отрицание, но не то и другое вместе, и не содержит никаких других предложений. Здесь предполагается, что \mathcal{L} содержит постоянные для всех значений своих переменных и, в частности, индивидуальные постоянные для всех индивидов предметной области.)

Каждая из этих формулировок предполагает, конечно, что даны правила для системы \mathcal{L}, определяющие включенные в нее понятия — например правила образования (определяющие виды открытых формул и предложений, то есть замкнутых формул), правила для области значений всех переменных, а для (5c) также аналогичные правила для областей значений всех дескриптивных постоянных.
для (5d) правила установления тех описаний состояния, в которых выполняется любое данное предложение. Форма (5c) вполне удобна, если только не имеет требуемую форму. Форма (5c) налагает на не наименьшие ограничения.

Другие понятия легко могут быть определены на основе L-истинности. Так, L-ложность, L-импликация и L-эквивалентность могут быть определены при помощи L-истинности выражений \(\neg E_i, E_i \supset E_j \) и \(E_i \equiv E_j \), соответственно.

Определение L-истинности в \(\mathcal{L} \), в любой из четырех альтернативных форм, охватывает пример (3), но, очевидно, не охватывает (4). Чтобы получить определение, охватывающее (4), мы сформулируем следующий постулат значений:

\[
(P_1) \, \langle x \rangle (Bx) \supset \neg Mx,
\]

Даже теперь мы не даем правил обозначения для «B» и «M». Они необходимы не для экспликации аналитичности, а только для экспликации фактической (синтетической) истинности. Но постулат \(P_1 \) утверждает о значениях «B» и «M» как раз то, что существенно для аналитичности, а именно несовместимость двух этих свойств. Если логические отношения (например, логическая импликация или несовместимость) имеют место между под азумваеьым значениями исходных предикатов системы, то экспликация аналитичности требует, чтобы были сформулированы постулаты для всех таких отношений. Термин «постулат» кажется подходящим для этой цели; иногда он и употреблялся в подобном смысле. (Это употребление не совпадает с более частым употреблением, согласно которому «постулат» является синонимом «аксиомы».)

Допустим, что автор системы хочет, чтобы предикаты «B» и «M» обозначали свойства Холостяк и Женатый соответственно. Откуда он знает, что эти свойства несовместимы и что поэтому он должен сформулировать постулат \(P_1 \). Это вопрос не знания, а решения. Его знание или мнение, что слова обычного языка «холостяк» и «женатый» всегда или обычно понимаются таким образом, что они оказывается несовместимыми, может повлиять на его ре-

щением, если он имеет намерение отразить в своей системе некоторые отношения значений слов английского языка. В данном случае это влияние относительно ясно, но в других случаях оно бывает гораздо менее ясным.

Допустим, что автор системы хочет, чтобы предикаты «Bl» и «R» соответствовали словам «черный» и «цвета воронова крыла». В то время как значение слова «черный» совершенно ясно, значение «цвета воронова крыла» в повседневном языке довольно неопределенно. Автору системы не нужно проводить детальных исследований, основанных или на самонаблюдении, или на статистическом исследовании обычного словоупотребления, чтобы узнать, верно ли, что «цвета воронова крыла» всегда или почти всегда подразумевает «черный». Скорее его задачей будет решить, хочет ли он, чтобы предикаты «R» и «Bl» его системы употреблялись таким образом, чтобы из первого логически следовал второй. Если да, то он должен добавить к системе постулат

\[(P_2) \; \forall(x) \; (R x \Rightarrow Bl x),\]

если нет, то не должен.

Допустим, что значение «Bl», то есть Черный, для него ясно. Тогда две процедуры, между которыми он должен выбирать, могут быть сформулированы следующим образом: (1) он хочет придать «R» столь сильное значение, чтобы оно не могло быть предикатом ни одной черной вещи; (2) он придает «R» некоторое (более слабое) значение; хотя он и может верить, что все вещи, для которых удовлетворяется «R», являются черными, так что он был бы чрезвычайно удивлен, если бы хотя одна из них оказалась черной, приданное «R» значение само по себе не исключает такой возможности. Таким образом, мы видим, что логик не может предписыва́ть тем, кто строит системы, какие постулаты они должны брать. Они свободны в выборе своих постулатов и должны руководствоваться не свои и мнениями относительно фактов окружающего мира, а своими намерениями относительно значений, то есть способов употребления дескриптивных постоянных.

Допустим, что для системы \(\Psi \) приняты некоторые постулаты значений. Пусть \(\Psi \) будет их конъюнкцией. Тогда понятие аналитичности, применяемое к обоим примерам
(3) и (4), может быть эксплицировано. Для экспликации мы будем употреблять термин «L-истинный относительно \(\Phi \)» и определим его следующим образом:

(6) Предложение \(\mathcal{S}_i \) в \(\mathcal{L} \) является L-истинным относительно \(\mathcal{L} = \Gamma_i \mathcal{L} \), L-имплицирует \(\mathcal{S}_i \) (в \(\mathcal{L} \))

Можно было бы, конечно, сформулировать определяющее выражение «\(\mathcal{L} \models \mathcal{S}_i \) L-истинно (в \(\mathcal{L} \))», или «\(\mathcal{S}_i \) выполняется во всех описаниях состояния, в которых выполняется \(\mathcal{L} \)» (последнее предполагает, что L-истинность в \(\mathcal{L} \) определяется посредством (5d)).

Определения других L-понятий относительно \(\mathcal{F} \) в терминах L-истинности относительно \(\mathcal{F} \) аналогичны предшествующим определениям, и поэтому нет надобности здесь их формулировать. Можно видеть, что следующая теорема является непосредственным результатом:

(7) Каждое из следующих условий (a) — (d) является необходимым и достаточным условием для того, чтобы \(\mathcal{S}_i \) L-имплицировало \(\mathcal{S}_j \) относительно \(\Phi \):
 a) \(\Phi \) L-имплицирует \(\mathcal{S}_i \models \mathcal{S}_j \);
 b) \(\Phi \models (\mathcal{S}_i \models \mathcal{S}_j) \) L-истинно;
 c) \(\Phi \circ \mathcal{S}_i \models \mathcal{S}_j \) L-истинно;
 d) \(\Phi \land \mathcal{S}_i \) L-имплицирует \(\mathcal{S}_j \).

Альтернативным способом, отличающимся только по форме систематизации, но ведущим к тем же самым результатам, было бы следующее. Пусть \(\mathcal{L} \) — первоначальная система без постулатов значений. Система \(\mathcal{L}' \) строится из \(\mathcal{L} \) посредством добавления постулатов значений \(\Phi \). Тогда мы определяем:

(8) \(\mathcal{S}_i \) L-истинно в \(\mathcal{L}' = \mathcal{L}' \mathcal{S}_i \) L-имплицируется \(\Phi \) в \(\mathcal{L} \). L-истинность в \(\mathcal{L}' \) является тогда экспликатом для аналитичности.

Если L-истинность в \(\mathcal{L} \) определяется посредством (5d), то следующие определения могли бы быть выбраны вместо (8):

(9) Описания состояния в \(\mathcal{L}' = \mathcal{L}' \mathcal{S}_i \) описания состояния в \(\mathcal{L} \), в которых выполняется \(\Phi \).

(10) \(\mathcal{S}_i \) L-истинно в \(\mathcal{L}' = \mathcal{L}' \mathcal{S}_i \) выполняется в каждом описании состояния в \(\mathcal{L}' \).

1 Термин «L-истинный относительно \(\Phi \)» является просто особым случаем относительных L-терминов, которые я употреблял в другом месте; см. [Probability], D 20-2.
Другие L-понятия системы L' определяются затем в терминах L-истинности в L' так же, как и выше. Если, например, Ψ содержит упомянутые ранее постулаты P_1 и P_2, то следующие результаты будут иметь место в L':
«$Bb \Rightarrow \sim Mb$» и «$Ra \Rightarrow Bla$» L-истинны; «$Bb \bullet Mb$» и «$Ra \bullet \sim Bla$» L-ложны; «Bb» L-имплицирует «$\sim Mb$», а «Ra» L-имплицирует «Bla»; «$Ra \bullet Bla$» L-эквивалентно «Ra».

3. Постулаты значений для отношений

Допустим, что среди неопределенных предикатов имеются предикаты с двумя или более аргументами, обозначающими двух- или более местные отношения, и что один из этих предикатов обладает некоторыми структурными свойствами в силу своего значения. Например, пусть «W» — неопределенный предикат, обозначающий отношение Теплее. Тогда «W» является транзитивным, иррефлексивным и, следовательно, асимметричным в силу своего значения. Поэтому предложения «$Wab \bullet Wbc \bullet \sim Wac$», «$Wab \bullet Wba$» и «$Waa$» ложны в силу их значений. Это же относится и к тем описаниям состояния, которые содержат какое-нибудь из этих предложений как член конъюнкции; следовательно, они не представляют возможных случаев. Эта трудность была обнаружена Джоном Кемени¹ и Йегошуа Бар-Хиллелом² независимо друг от друга. Она серьезнее, чем трудность, возникающая благодаря логическим зависимостям между двумя или более одноместными предикатами, так как ее нельзя избежать простой заменой зависимых предикатов независимыми предикатами с такой же выразительностью.

Имеются два способа преодоления этой трудности. Первый, содержащий требование логической независимости всех атомарных предложений, состоит в полном устранении исходных отношений или, по крайней мере, отношений обычных видов³.

³ Некоторые возможности осуществления этого описаны в моей статье, упомянутой в предшествующем подстрочном примечании.
Второй способ связан с отказом от требования независимости. Он допускает зависимые исходные, включая исходные отношения, но с помощью постулатов значений или других эквивалентных правил ограничивает описания состояния теми, которые представляют возможные случаи. Этот способ был впервые предложен Кемени¹.

По сравнению с первым способом второй имеет тот недостаток, что он нуждается в новом семантическом понятии (либо «непосредственно L-истинно», то есть «постулат значений», либо «непосредственно L-ложно» в альтернативной процедуре), определяемом через перечисление в каждой семантической системе или рассматриваемом как исходное в общей семантике. Другим недостатком является более сложная форма теорем и вычислений значений степени подтверждения в индуктивной логике. Поэтому Бар-Хиллел и я раньше не разрабатывали второго способа². С другой стороны, он имеет то преимущество, что дает большую свободу в выборе исходных.

В вышеуказанном примере предиката \(W \) мы могли сформулировать следующие постулаты (а) для транзитности и (b) для иррефлексивности; тогда утверждение (c) об асимметричности L-истинно относительно этих двух постулатов:

\[
\begin{align*}
(11) \ (a) & \quad (x) \ (y) \ (z) \ (W \ xy \bullet \ W \ yz \ \supset \ W \ xz). \\
(b) & \quad (x) \sim W \ xx \\
(c) & \quad (x) \ (y) \ (W \ xy \ \supset \ \sim W \ yx).
\end{align*}
\]

Если мы примем тот тип семантических правил, которые мы назвали постулатами значений, то обнаружим, что другие обычные виды правил могут быть сконструированы как особые виды постулатов значений. Это относится, например, к явным определениям (если они записаны как предложения со знаком «≡» или «⇒» в языке-объекте) и для контекстуальных определений. Точно так же две (или больше) формулы так называемого рекурсивного определения арифметического функциона могут рассматриваться...
ваться как постулаты значений. В этом случае название «постулат», возможно, подходит даже более, чем обычное «определение». Эти формулы служат не только для сокращенной записи, поскольку новый функтор не является устраняемым во всех контекстах. Далее, редукционные предложения, которые я ранее предложил для введения диспозиционных предикатов\(^1\), могут быть построены как постулаты значений.

(Двустороннее редукционное предложение \(\langle x \rangle [Q \equiv (Q_3 x \equiv Q_2 x)]\) для \(Q_3\) можно рассматривать просто как постулат, поскольку оно не имеет синтетических следствий в терминах первоначальных предикатов \(Q\) и \(Q_2\). Однако это, вообще говоря, невозможно для формул редукционной пары, например \(\langle x \rangle [Q_1 x \equiv (Q_2 x \equiv Q_3 x)](\Xi_1)\) и \(\langle x \rangle [Q_1 x = (Q_2 x \equiv Q_3 x)](\Xi_2)\), поскольку они вместе имплицируют синтетическое предложение \(\langle x \rangle \sim (Q_1 x \bullet Q_2 x \bullet Q_4 x \bullet Q_5 x)](\Xi_3)\). Здесь мы должны взять в качестве постулаты более слабое утверждение \(\Xi_3 \supseteq \Xi_1 \bullet \Xi_2\), не имеющее синтетических следствий.)

4. Постулаты значений в индуктивной логике\(^*\)

Здесь можно сделать несколько кратких замечаний о том, какие следствия будет иметь употребление постулатов значений для индуктивной логики. Пусть \(m\) — любая регулярная \(m\)-функция для системы \(\mathcal{S}\), а \(c\) — функция подтверждения, основанная на \(m\) (то есть \((h, e) = u.(e \circ h) m(e))\). Пусть \(m'\) — функция от описания состояния в \(\mathcal{S}\), удовлетворяющая следующим трем условиям:

(12) (a) Для любого описания состояния \(k\) в \(\mathcal{S}\), в котором \(\Psi\) не выполняется, \(m'(k) = 0\).

(b) Для любого описания состояния \(k\) в \(\mathcal{S}\), в котором \(\Psi\) выполняется, \(m'(k)\) пропорционально \(m(k)\); скажем,
\[m'(k) = K m(k). \]

(c) Сумма значений \(m'\) для всех описаний состояния в \(\mathcal{S}\) есть 1.

Легко видеть, что для всякой регулярной функции \(m\) имеется только одна и одна функция \(m'\) этого рода. Из

\(^1\) «Testability and Meaning», «Philosophy of Science», Vols. 3, 4 (1936, 1937); см. также изд. New Haven, Connecticut, 1950; см. § 8—10.\n
\(^*\) См. комментарий.
(b) и (c) мы находим, что K должно быть $1/m(\mathcal{P})$. Поскольку для описаний состояния в \mathcal{L}' m' имеет положительные значения (согласно (9) и (12)(b)), сумма которых равна 1, m' может рассматриваться как регулярная функция для \mathcal{L}', соответствующая m для \mathcal{L}.

Пусть m' применяется обычным способом к другим предложениям и пусть функция c' для \mathcal{L}' основана на m' (то есть $c'(h,e)=m'(e\circ h)/m'(e)$). Тогда можно рассматривать c' как регулярную функцию подтверждения для \mathcal{L}', соответствующую c для \mathcal{L}. Легко получить следующие результаты:

(13) Для всякого описания состояния k в \mathcal{L}' (которое является описанием состояния в \mathcal{L}, в котором выполняется \mathcal{P}),

$$m'(k)=m(k)/m(\mathcal{P}).$$

(14) Для любого предложения j,

$$m'(j)=m(\mathcal{P} \circ j)/m(\mathcal{P})=c(j, \mathcal{P}).$$

(15) Для любых предложений h и e, где e не является L-ложным в \mathcal{L}' (и, следовательно, $\mathcal{P} \circ e$ не является L-ложным в \mathcal{L}),

$$c'(h, e)=m'(e \circ h)/m'(e)=m(\mathcal{P} \circ e \circ h)/m(\mathcal{P} \circ e)=c(h, \mathcal{P} \circ e).$$

Мы видим, что степень подтверждения в системе с постулата \mathcal{P} имеет в каждом случае то же самое значение, которое получается в первоначальной системе посредством добавления \mathcal{P} к данным наблюдениям (evidence). Это аналогично прежнему результату, согласно которому $\mathcal{S}_i L$-имплицирует \mathcal{S}_j в \mathcal{L}', если и только если $\mathcal{S}_i \mathcal{P} L$-имплицирует \mathcal{S}_j в \mathcal{L} (ср. (7) (d)). С помощью (15) легко можно получить общие теоремы о регулярных функциях подтверждения для систем с постулатами значений из известных теорем для систем без постулатов. Однако если встречаются исходные отношения и для структурных свойств этих отношений формулируются постулаты, то вычисление значений конкретной функции, например c^*, во многих случаях станет даже еще более сложным, чем в системе с теми же самыми исходными отношениями, но без постулатов.
С. О ПРЕДЛОЖЕНИЯХ МНЕНИЯ

ОТВЕТ АЛОНЗО ЧЁРЧУ

Статья Чёрча [Belief] выдвигает возражения против той экспликации предложений мнения, которую я предложил в моей книге «Значение и необходимость». Первая часть статьи Чёрча не относится к моему анализу, потому что последний касается не исторически данных языков, а скорее семантических систем, определяемых своими правилами. Таким образом, ко мне относится только возражение, сформулированное Чёрчем в последнем параграфе. Это возражение правильно, но на него можно ответить изменением в моей экспликации предложений мнения, предложенным Патненом (Putnam) [Synonymity]. Я не буду здесь обсуждать этот вопрос, потому что в настоящее время я склонен, по общим основаниям, произвести более радикальное изменение в этой экспликации.

По-видимому, лучше всего перестроить язык науки таким образом, чтобы термыны, вроде «температура» в физике, или «гнев» или «мнение» (belief) в психологии, вводились как теоретические конструкты, а не как случайно вторгшиеся переменные из языка наблюдения. Это значит, что предложение, содержащее подобный термин, не может быть ни переведено в предложение языка наблюдаемых, ни дедуктивно выведено из таких предложений, а в лучшем случае может быть выведено с большой вероятностью. Я думаю, что этот взгляд в настоящее время разделяется большинством логических эмпиристов; он был очень ясно и убедительно разъяснен Фейглом (Feigl) и Гемпелем (Hempel).

В применении к предложениям мнения это значит, что предложение вроде

(1) Джон считает, что земля круглая

должно интерпретироваться таким образом, чтобы оно могло

быть выведено из соответствующего предложения, описывающего поведение Джона, в лучшем случае с некоторой вероятностью, но не с достоверностью, например из (II) Джон дает утвердительный ответ на «земля круглая», как на предложение английского языка.

Когда я писал свою книгу, я уже разработал упомянутый выше общий взгляд, касающийся природы предложений физики и психологии. Однако тогда я ошибочно полагал, что для имевшегося в виду семантического анализа упрощение, связанное с рассмотрением ответа как решающего свидетельства о некотором мнении, не изменит проблемы существенным образом. Кажется, Бенсон Мейтс был первым, кто заметил скрытую здесь трудность, хотя и не разрешил ее. Он указал (I Synonymity, p. 215), что любые два различных предложения — независимо от степени их сходства — могут возбудить различные психологические реакции. Он аргументировал, что в силу этого всякая другая экспликация синонимичности ведет к затруднениям, например в случае следующих двух предложений:

(III) Всякий, кто считает, что D, считает, что D,

(IV) Всякий, кто считает, что D, считает, что D,

где D и D' являются сокращениями для двух разных, но синонимичных предложений. Тогда (III) и (IV) сами будут синонимичными. Однако в то время как (III) вне всякого сомнения истинно, (IV) может быть ложным или, по крайней мере, допускающим сомнения. Это действительно серьезное затруднение, но только в том случае, если мы рассматриваем утвердительный ответ на D как решающее свидетельство наличия мнения, что D.

Чёрч указал мне, что парадоксальный результат Мейтса относительно (III) и (IV) исчезает, если мы откажемся от этого взгляда. Мы можем тогда считать (IV) логически истинным, как и (III). Если кто-либо утвержденно отвечает на Γ, но отрицательно на D', то мы просто заключим, что один из его ответов не является показательным, возможно, из-за временного замешательства.

В то время как я соглашался с Чёрчем в этом пункте, между нами все же остается расхождение во взглядах на вопрос о наилучшей форме для предложений мнения в формализованном языке науки. Одна форма использует кос-
венную речь по аналогии с формой (I) обычного языка. Другая форма избегает косвенной речи; здесь предложение
мнения не содержит, подобно (I), подчиненного предло
жения, выражающего содержание мнения, а вместо этого
содержит имя этого предложения, например:

(V) Джон имеет отношение B к «земля круглая» как
предложению английского языка.

Следует заметить, что, согласно изложенной выше
новой интерпретации, (V) не выводится из (II), а просто
до некоторой степени подтверждается им. «B» есть тео
ретический конструкт, не определимый в терминах явного
поведения, будь оно лингвистическим или нелингвисти
ческим. Правила для «B» будут таковы, что (V) не пред
полагает, что Джон знает английский, или какой-либо
другой язык. С другой стороны, ссылка на предложение
английского языка в (V) может быть заменена ссылкой
на любое другое синонимичное предложение в любом языке;
например, (V) рассматривается как L-эквивалентное п ед
ложению:

(VI) Джон имеет отношение B к «die Erde ist rund» как
предложению немецкого языка.

В качестве экспликации синонимичности мы можем
использовать здесь отношение интенционального изо
морфизма, предложенное в моей книге; оно имеет место, если
два выражения построены одинаковым образом из знаков
с одними и теми же интенционалами; в качестве альтернативы
может быть использовано предложенное Патнемом не
сколько более сильное отношение, которое требует, чтобы
два выражения имели, кроме того, одну и ту же синтак
сическую структуру.

Чёрч придерживается взгляда, что мнение должно
строиться как отношение между человеком и суждением,
а не предложением, и что поэтому адекватна только первая
форма, подобная (I), а не вторая, подсказывается (V). Я не отвер
гаю первую форму, но рассматриваю обе формы как возмож
ные. Не думаю, что предложенные до сего времени Ч.рчем
аргументы доказывают невозможность второй формы. Обе
формы должны подвергнуться дальнейшему исследованию,
прежде чем мы сможем решить, какая из них предпочтитель
нее. Следует признать, что вторая форма имеет некото
рые недостатки; она не пользуется обычным и удобным
D. Значение и синонимия в естественных языках

1. Анализ значения в прагматике и семантике

Анализ значений выражений встречается в двух фундаментально различных формах. Первая принадлежит к прагматике, то есть к эмпирическому исследованию исторически данных естественных языков. Этот вид анализа долгое время проводился лингвистами и философами, особенно философами-аналитиками. Вторая форма была разработана только недавно в области символической логики; эта форма относится к семантике (понимаемой здесь в смысле чистой семантики, тогда как описательная семантика может рассматриваться как часть прагматики), то есть к изучению языковых систем, задаваемых с помощью их правил.

1 См. § 30 в начале и далее. — Прим. ред.
Теория отношений между языком — будь то естественный язык или языковая система — и тем, о чем этот язык говорит, может быть разделена на две части, которые я соответственно называю теорией экстенсонала и теорией интенсонала. Первая имеет дело с такими понятиями, как обозначение, именование, экстенсонал, истина, и другими, связанными с ними. (Например, слово «blau» в немецком языке, как и предикат «E» в символической языковой системе, если правило приписывает ему то же самое значение, обозначает всякий синий объект; его экстенсоналом является класс всех синих объектов; «der Mond» есть имя луны; предложение «der Mond ist blau» истинно, если и только если луна является синей.) Теория интенсонала имеет дело с такими понятиями, как интенсонал, синонимия, аналитичность, и со связанными с ними понятиями; для нашего настоящего обсуждения будем называть их «интенсональными понятиями». (Я употребляю «интенсонал» как технический термин для значения выражения, или, более точно, для обозначающей компоненты его значения; см. ниже. Например, интенсоналом слова «blau» в немецком языке является свойство быть синим; два предиката являются синонимами, если и только если они имеют один и тот же интенсонал; предложение является аналитическим, если оно истинно в силу интенсоналов входящих в него выражений.)

С систематической точки зрения описание языка вполне можно начать с теории интенсонала, а затем построить на ее основе теорию экстенсонала. Изучая теорию интенсонала некоторого языка, скажем немецкого, мы изучаем интенсоналы слов, сочетаний слов и, наконец, предложений. Таким образом, теория интенсонала данного языка L позволяет нам понимать предложения в L. С другой стороны, мы можем применить понятия теории

1 Это различение тесно связано с различением между основными (radical) понятиями и L-понятиями, которое я провел в [1]. Различие между экстенсоналом и интенсоналом является основой семантического метода, который я разработал в книге «Значение и необходимость». Крайин называет обе теории соответственно «теорией референции» и «теорией значения». [«Основными» Карнап называет понятия, определяемые на основе понятия «истинности» (в отличие, например, от «L-истинности» и «I-истинности»). См. Сагнер, [1], § 9. - Ред.]
экстенсионала языка L, только если мы, в добавление к зна-
нию теории интенсонала языка L, имеем также достаточ-
ное эмпирическое знание относящихся к делу фактов. Например, для того чтобы установить, что такое-то не-
мечкое слово обозначает данный объект, нужно сначала понять это слово, то есть знать, каков его интенсонал,
другими словами, знать общее условие, которому объект
должен удовлетворять для того, чтобы он обозначался этим словом; и, во-вторых, необходимо исследовать соответ-
ствующий объект для того, чтобы увидеть, удовлетворяет он этому условию или нет. С другой стороны, если линг-
вист проводит эмпирическое исследование языка, который
до этого не был описан, то он сначала обнаруживает, что
некоторые объекты обозначаются данным словом, а потом
определяет интенсонал этого слова.

Никто не сомневается, что прагматическое исследова-
ние естественных языков имеет огромное значение для
понимания как поведения индивидов, так и характера
и развития целых культур. С другой стороны, я, вместе
с большинством современных логиков, полагаю, что для
специальной цели развития логики построение и семан-
тическое исследование языковых систем имеет большее
значение. Но и для логика изучение прагматики может
быть полезно. Если он хочет найти эффективную форму
для языковой системы, которую предстоит использовать,
например, в какой-либо отрасли эмпирической науки, то
изучение естественного развития языка ученых и даже
повседневного языка может навести его на плодотворные
мысли. Многие понятия, употребляемые теперь в чистой
семантике, действительно были подсказаны соответствую-
щими прагматическими понятиями, которые употребля-
лись философами и лингвистами для естественных языков,
хотя обычно и без точных определений. Эти семантические
понятия, в некотором смысле, предназначались для того,
чтобы служить экспликтатами для соответствующих праг-
матических понятий.

В случае семантических интенсональных понятий имеют-
ся добавочные мотивы для изучения соответствующих праг-
матических понятий. Дело в том, что некоторые из воз-
ражений, выдвинутых против этих семантических понятий,
касаются не столько какой-либо отдельной предложенной
экспликации, сколько вопроса о самом существовании предполагаемых экспликаций. В особенности критика Куайна касается не формальной правильности определений в чистой семантике; скорее он сомневается, существуют ли какие-либо ясные и плодотворные соответствующие прагматические понятия, которые могли бы служить в качестве экспликаций. Именно поэтому он требует, чтобы была до­казана научная правомерность этих прагматических понятий путем установления для них эмпирических, бихевио­ристских критериев. Если я правильно его понимаю, он полагает, что без этой прагматической основы семантические интенциональные понятия, даже если они фор­маильно правильны, являются произвольными и бесцель­ными. Я не думаю, что для того, чтобы быть плодотвор­ным, семантическое понятие необходимо должно иметь предшествующий прагматический коррелат. Теоретически можно доказать его плодотворность посредством его при­менения в дальнейшем развитии языковых систем. Но это медленный процесс. Если для данного семантического понятия уже имеется знакомое, хотя и несколько неопреде­ленное, соответствующее прагматическое понятие, и если мы в состоянии сделать последнее более ясным, описав процедуру оперирования с ним при его употреблении, тогда это действительно может быть более простым способом опровергнуть возражения и получить практическое оправ­дание сразу для обоих понятий.

Цель этой статьи — выяснить природу прагматического понятия интенционала в естественных языках и дать очерк бихевиористской процедуры оперирования с ним. Это даст практическое оправдание семантических интенциональных понятий; способы определения их, особенно понятия ана­литичности, я показал в более ранней статье [Postulates]. В качестве введения я сначала вкратце разберу (в § 2) праг­матические понятия обозначения и экстенционала; по­ви­димому, все согласны, что они являются научно право­мерными.

2. Установление экстенционалов

В качестве примера мы возьмем немецкий язык. Пред­ставим себе, что лингвист, ничего не знающий об этом языке, принимается за изучение его путем наблюдения за языковым
поведением говорящих по-немецки людей. Говоря конкретней, он изучает немецкий язык, как последний употребляется данным лицом, Карлом, в данное время. Для простоты мы ограничим обсуждение в этой статье главным образом предикатами, применимыми к наблюдаемым предметам, подобными «blau» [синий] и «Hund» [собака]. Все согласны, что на основе произвольных или обусловленных высказываний человека лингвист может установить, согласен ли этот человек применять данный предикат к данной вещи, другими словами, обозначает ли этот предикат данную вещь для этого человека. Собрав результаты такого рода, лингвист может установить, во-первых, экстенсional предиката «Hund» для Карла в пределах данной области, то есть класс вещей, к которым Карл намерен применять этот предикат, во-вторых, экстенсионал противоречащего предиката, то есть класс тех вещей, для которых Карл отрицает применимость «Hund», и, в-третьих, промежуточный класс тех вещей, о которых Карл не желает ни утверждать, ни отрицать этот предикат. Объем третьего класса указывает на степень неопределенности предиката «Hund», если мы для простоты не будем принимать во внимание влияние неосведомленности Карла об относящихся к делу фактах. Для некоторых предикатов, например «Mensch» [человек], этот третий класс сравнительно очень мал; степень их экстенсиональной неопределенности низка. На основе установления трех указанных классов для предиката «Hund» в пределах исследованной области лингвист может построить гипотезу относительно реакций Карла на вещи, находящиеся вне этой области, и, может быть, даже гипотезу относительно всего экстенсионала этого предиката во вселенной. Последнюю гипотезу нельзя, конечно, проверить полностью, но каждый отдельный ее случай в принципе может быть проверен. С другой стороны, все также согласны в том, что это установление экстенсионала включает недостоверность и возможность ошибки. Так как, однако, это распространяется на все понятия эмпирической науки, никто не рассматривает этот факт как достаточное основание для того, чтобы отвергнуть понятия теории экстенсионала. Источники недостоверности главным образом следующие: во-первых, признание лингвистом результата, что данная вещь обозначается Карлом
3. Установление интенсоналов

Цель этой статьи — защита тезиса, что анализ интенсонала для естественного языка является научной процедурой, методологически столь же здравой, как и анализ экстенсонала. Многим лингвистам и философам этот тезис покажется трюизмом. Однако некоторые современные философы, особенно Куайн и Уайт (White) [Analytic], считают, что прагматические интенсональные понятия туманны, таинственные, в действительности непонятны и пока что не получили никакой экспликации. Они полагают, далее, что если и будет найдена экспликация для какого-либо из этих понятий, то она в лучшем случае будет приближенным понятием. Они признают хороший научный уровень прагматических понятий теории экстенсонала. Они подчеркивают, что их возражения против интенсональных понятий основываются на принципиальных соображениях, а не на общепризнанных фактах технической трудности лингвистических исследований, индуктивной недостоверности и неопределенности слов обычного языка. В моем разборе я поэтому оставлю в стороне эти трудности, особенно две упомянутые в конце предыдущего раздела. Таким образом, вопрос сводится к следующему: если дано, что лингвист может установить экстенсонал данного предиката, то как он может пойти далее этого и установить также и его интенсонал?

Технический термин «интенсонал», который я употребляю здесь вместо неоднозначного слова «значение», мыслится в применении только к познавательной или обозначающей компоненте значения. Я не буду пытаться определить эту компоненту. Выше было упомянуто, что установление истинности предполагает знание значения (в добавление к знанию фактов); теперь познавательное

P. W. V. Q u i n e, [Logical]; его критику интенсональных понятий см. особенно в Essays II [Dogmas], III, VII.
значение может быть грубо охарактеризовано как такая компонента значения, которая имеет отношение к установлению истинности. Непознавательные компоненты значения, хотя и не имеют отношения к вопросам истинности и логики, могут все же быть очень важными для психологического воздействия предложения на слушателя, например вследствие акцентировки, эмоциональных ассоциаций, мотивационного воздействия.

Следует, конечно, признать, что прагматическое установление интенсионалов включает новый шаг и, следовательно, новую методологическую проблему. Предположим, что два лингвиста, исследующие язык Карла, достигли полного согласия в определении экстенсонала данного предиката в данной области. Это значит, что они согласны в отношении каждой вещи в этой области по вопросу о том, приложим ли с точки зрения Карла данный предикат к данной вещи или нет. Пока даны только эти результаты, причем безразлично, сколь обширна эта область — вы можете, если угодно, рассматривать ее в воображении, как весь мир,— лингвисты все еще могут приписывать этому предикату разные интенсионалы. Ибо существует больше одного и, возможно, бесконечно много свойств, экстенсонал которых в пределах данной области в точности является экстенсоналом, определенным для этого предиката.

Здесь мы подходим к существу спора. Оно касается характера отнесения лингвистом одного из этих свойств к предикату в качестве его интенсонала. Это отнесение может быть сделано явным с помощью текста в немецко-английском словаре, связывающего немецкий предикат с английским словом или сочетанием слов. Лингвист объявляет при этом немецкий предикат синонимом соответствующего сочетания английских слов. Интенсионалистский тезис в прагматике, который я защищаю, говорит, что это отнесение интенсонала является эмпирической гипотезой, которая, как и всякая другая гипотеза в лингвистике, может быть проверена наблюдением языкового поведения. С другой стороны, экстенсионалистский тезис утверждает, что отнесение интенсонала на основе ранее установленного экстенсонала является вопросом не факта, а просто выбора. Этот тезис утверждает, что
лингвист свободен выбирать любое из свойств, соответствующих данному экстенсионалу; в своем выборе он может руководствоваться соображением простоты, но здесь нет вопроса о правильности или ошибочности выбора. Куайн, по-видимому, поддерживает этот тезис; он говорит: «Законченный словарь, очевидно, представляет собой случай *ex pede Herculem*¹. Но есть и разница. Восстанавливая Геркулеса по ноге, мы рискуем ошибиться, но можем утверждать тем, что существует то, относительно чего можно ошибаться. В случае же словаря, пока нет определения синонимии, у нас нет формулировки проблемы; лексикографу не в чем быть правым или неправым» ([*Logi-cal*], p. 63).

Теперь я выступлю в защиту интенсоналистского тезиса. Допустим, например, что один лингвист после исследования речевого поведения Карла запишет в своем словаре следующее:

1. *Pferd* — лошадь²,

тогда как другой лингвист запишет:

Поскольку единорог не существует, два интенсонала, приписанные слову «*Pferd*» этими двумя лингвистами, хотя и разные, имеют один и тот же экстенсонал. Если бы экстенсоналистский тезис был правилен, то не было бы никакого способа эмпирического выбора между (1) и (2). Поскольку экстенсонал один и тот же, никакая реакция Карла — утверждительная или отрицательная — на любую действительную вещь не может различить (1) и (2). Но что еще остается исследовать лингвисту, кроме реакций Карла относительно применения предиката во всех случаях, которые могут быть обнаружены? Ответ заключается в том, что он должен принять во внимание не только действительные, но также и возможные случаи³. Для лингвиста проще

¹ (*Лат.* «по ноге узнавать Геркулеса», то есть по части судить о целом. — Прим. перев.
² Карнар дает здесь, естественно, английские эквиваленты немецких слов, которые мы переводим на русский. — Прим. перев.
³ Некоторые философы в самом деле определяли интенсонал предиката (или понятия, тесно связанное с ним) как класс возможных объектов, подходящих под него. Например, Льюис определяет: «Понимание термина есть сою окучность всех непротиворечиво мыслимых вещей, к которым этот термин мог бы быть применен правильно». Я предпочи-
всего было бы сделать это, употребляя в немецких вопросах к Карлу модальные выражения, соответствующие «возможному случаю» и т. п. Конечно, эти выражения обычно довольно неопределены; но эту трудность можно преодолеть, давая соответствующие разъяснения и примеры. Я не думаю, что есть какое-либо принципиальное возражение против употребления модальных терминов. С другой стороны, я думаю, что употреблять их нет необходимости. Лингвист мог бы просто описать Карлу случаи, о которых он знает как о возможных, и оставить открытым вопрос о том, существует ли что-либо, удовлетворяющее этим описаниям. Он может, например, описать единорога (по-немецки) выражениями, соответствующими, например, такой формулировке (на английском языке): «вещь, похожая на лошадь, но имеющая один рог посреди лба». Или, наоборот, он мог бы просто показать картинку с изображением единорога. Затем он мог бы спросить Карла, согласен ли он применить слово «Pferd» к изображенной вещи. Утвердительный или отрицательный ответ образует подтверждающий пример для (2) или (1) соответственно. Это доказывает, что (1) и (2) являются различными эмпирическими гипотезами.

При установлении интенционалов во внимание принимаются все логически возможные случаи. Это включает также и случаи каузально невозможные, то есть такие, которые исключаются законами природы, действующими в нашем мире, и, конечно, случаи, исключаемые законами, которые Карл считает действующими. Таким образом, если Карл верит, что все P суть Q согласно закону природы, то лингвист будет все же побуждать его рассмотреть вещи, которые суть P, но не суть Q, и спросит его, будет ли он применять к ним исследуемый предикат (например, «Pferd»).

Неадекватность экстенционалистского тезиса доказывается также следующим примером. С одной стороны, рассмотрим следующие обычные тексты в немецко-английском словаре:

тако применять модальности, такие, как возможность, не к объектам, а только к интенционалам, особенно к суждениям или свойствам (родам). (Ср. «Значение и необходимость», стр. 116.) Говорить о возможном случае – значит говорить о некотором роде объектов, который, возможно, не пуст.
3. Установление интенсионалов

(3) Enihorn — единорог; Kobold — домовой,
и, с другой стороны, следующие необычные тексты:
(4) Einhorn — домоой; Kobold — единорог.
Два приводимых немецких слова (и точно так же два соответствующих английских слова) имеют один и тот же экстенсионалист, а именно пустой класс. Поэтому если бы экстенсоналистский тезис был правилен, то не было бы существенной, эмпирически удостоверяемой разницы между (3) и (4). Экстенсионалист вынужден сказать, что тот факт, что (3) оказывается общепринятым, а (4) всеми отвергается, объясняется традицией, созданной составителями словарей, и что не существует фактов языкового поведения (на немецком языке), которые могли бы рассматриваться как свидетельство в пользу (3) и против (4). Хотел бы я знать, согласится ли какой-либо лингвист признать (4). Или, чтобы избежать способного вводить в заблуждение влияния лексикографической традиции, поставил вопрос следующим образом: признав ли бы рядовой человек, изучивший оба языка практически, без уроков и словарей, правильным перевод, сделанный согласно (4)?

В общих терминах установление интенсонала предиката может начаться с некоторых примеров, в которых удовлетворяется этот предикат. Существо задачи будет далее состоять в том, чтобы выяснить, какие вариации данного экземпляра в различных отношениях (например, по величине, форме, цвету) допускаются в область, в которой удовлетворяется предикат. Интенсонал предиката может быть определен как его область, охватывающая те возможные виды объектов, для которых удовлетворяется предикат. В этом исследовании интенсонала лингвист находит новую неопределенность, которая может быть названа интенсональной неопределенностью. Как указывалось выше, экстенсональная неопределенность слова «Mensch» очень мала, по крайней мере в доступной для нас области обучения. Во-первых, промежуточная зона среди живущих сейчас на земле животных является практически пустой. Во-вторых, если принимать в расчет предков человека, то, вероятно, Карлу нелегко будет провести границу; таким образом, промежуточная зона существует, но она сравнительно мала. Но когда лингвист пересходит к определению интенсонала слова «Mensch», ситуация резко
меняется. Он должен проверить реакции Карла на описания небывалых животных, скажем промежуточных между человеком и собакой, человеком и львом, человеком и ястребом и т. д. Лингвист и Карл знают, возможно, что такие животные никогда не жили на земле; они не знают, будут ли когда-либо эти виды животных существовать на земле или на какой-либо другой планете в какой-либо галактике. Во всяком случае, это знание или незнание несущественно для установления интенционала. Но незнание Карла дает тот психологический результат, что он редко, если вообще когда-либо, думал об этих видах (если только он не изучает мифологию или не увлекается научно-фантастическими произведениями) и поэтому никогда не испытывал потребности решить вопрос, к каким из них применять предикат «Mensch». В результате лингвист находит в реакциях Карла широкую промежуточную зону для этого предиката, или, другими словами, высокую степень интенциональной неопределенности. Тот факт, что Карл не принял этих решений, означает, что интенционал слова «Mensch» не совсем ясен даже ему самому, что он не полностью понимает свое собственное слово. Этот недостаток ясности не очень сильно беспокоит Карла, так как он сказывает только в отношении таких аспектов, которые имеют для Карла лишь очень небольшое практическое значение.

Экстенционалист, возможно, отвергнет описанную процедуру установления интенционалов, как практически неприменимую, потому что — может он сказать — не пожелает рядовой человек ничего говорить о несуществующих объектах. Если Карл окажется в этом отношении чересчур реалистичным, лингвист мог бы все же найти убежище во лжи, сославшись, скажем, на мнение наблюдения единорогов. Но это совсем не необходимо. Испытания, касающиеся интенционалов, не зависят от вопроса о существовании. Рядовой человек вполне способен понимать и отвечать на вопросы о предполагаемых ситуациях, где остается открытым вопрос о действительном существовании чего-либо в описанных родах, и даже о несуществующих ситуациях. Это проявляется в обычных разговорах об альтернативных планах действия, об истинности сообщений, о споведаниях, легендах и волшебных сказках.
Хотя я здесь лишь грубо очертил эмпирическую процедуру установления интенционалов, я полагаю, что уже отсиюда становится ясно, что можно, развивая этот набросок, написать руководство для установления интенционалов, или, точнее, для проверки гипотез об интенционалах. Правила такого руководства не очень сильно отличались бы от обычных правил процедур в психологии, лингвистике и антропологии. Следовательно, эти правила могли бы пониматься и выполняться любым ученным (если только он не заражен философскими предубеждениями).

4. Интенционалы в языке науки

В этой статье обсуждается, вообще говоря, простой, донаучный язык, а рассматриваемые предикаты обозначают наблюдаемые свойства материальных тел. Теперь взглянем вкратце на язык науки. В настоящее время он все еще в основном является естественным языком (кроме его математической части), лишь с небольшим числом явно выраженных соглашений о некоторых специальных словах или символах. Он является вариантом донаучного языка, вызванным специальными профессиональными потребностями. Степень точности в нем в общем значительно выше (то есть степень

1 После написания этой статьи я познакомился с очень интересной новой книгой Арне Несса (Arne Naess) [Interpretation]. Эта книга детально описывает различные, основанные на использовании анкет, процедуры проверки гипотез, касающихся синонимичности выражений, и дает примеры статистических результатов, полученных с помощью этих анкет. Тщательно исследуются практические трудности и источники возможных ошибок. Процедуры касаются реакций испытуемых лиц не на наблюдаемые объекты, как в настоящей статье, а на пары предложений в специальных контекстах. Поэтому вопросы формулируются в метаязыке, например: «Выражают ли для вас два данных предложения в данном контексте одно и то же утверждение?» Хотя относительно некоторых черт различных процедур и возможны различные мнения, мне все же кажется, что эта книга знаменует значительный прогресс в методологии эмпирического анализа значений для естественных языков. Некоторые из вопросов относятся также к возможным случаям, например: «Можете ли вы вообразить обстоятельства (условия, ситуации), при которых вы признали бы одно предложение и отвергли другое, или наоборот?» (стр. 368). Эта книга, как и ее методологических разделах, так и в отчетах об опытах с анкетами, дает, как мне кажется, обильные свидетельства в пользу интенционалистского тезиса (в смысле, разъясненном выше, в § 3).
неопределенности ниже), чем в повседневном языке, и эта степень непрерывно возрастает. Важно отметить, что это возрастание имеет место не только для экстенсиональной, но также и для интенсимальной точности; это значит, что сокращаются не только экстенсиональные промежуточные зоны (то есть промежуточные зоны действительных событий), но также и промежуточные интенсимальные зоны (то есть промежуточные зоны возможных событий). Вследствие этого интенсимальные понятия также становятся применимыми с возрастющей ясностью. В старых книгах по химии, например, было большое количество утверждений, описывающих свойства данного вещества, скажем воды или серной кислоты, включая их реакции с другими веществами. Не было ясных указаний относительно того, какие из этих многочисленных свойств должны рассматриваться как существенные и определяющие для данного вещества. Поэтому, по крайней мере на основе самой книги, мы не можем определить, какие из утверждений, сделанных в этой книге, были для ее автора аналитическими, а какие — синтетическими. Аналогичным было положение с книгами по зоологии даже в более позднее время; мы находим в них множество утверждений, например о льве, без ясного выделения определяющих свойств. Но в химии рано начался переход от описанного состояния к состоянию все более и более интенсимальной точности. На основе теории химических элементов медленно и все более явным образом некоторые свойства были выделены как существенные. Для сложных веществ в качестве определяющей рассматривалась молекулярная формула (например, «Н₂О»), а позднее — структурная формула молекулы. Для элементов в качестве определяющих сначала все более и более отчетливо выделялись определенные экспериментально устанавливаемые свойства, например атомный вес, а позднее — положение в системе Менделеева. Еще позднее, с разделением различных изотопов, в качестве определяющего рассматривался состав ядра, характеризуемый, скажем, числом протонов (атомный номер) и числом нейтронов.

В настоящее время мы можем видеть преимущества, уже полученные благодаря явным соглашениям, принятым, хотя и в очень ограниченной мере, в языке эмпирической
науки, а также очень большие преимущества, достигнутые с помощью умеренной формализации в языке математики. Допустим (так я и действительно думаю, но это находится за пределами теперешнего нашего рассмотрения), что это развитие в направлении явно выраженных правил будет продолжаться. Тогда встает практический вопрос, достаточно ли одних правил экстенсонала и не будет ли целесообразным сформулировать также и правила интенсонала. На мой взгляд, из проведенного обсуждения вытекает, что правила интенсонала нужны, потому что иначе интенсональная неопределенность останется, а это может мешать ясному взаимопониманию и эффективному сообщению.

5. Общее понятие интенсонала предиката

Мы видели, что существует эмпирическая процедура проверки, посредством наблюдения языкового поведения, гипотезы об интенсонале предиката, скажем «Pferd», в отношении говорящего, скажем Карла. Поскольку такого рода процедура применяется к любой гипотезе об интенсонале, постольку общее понятие интенсонала любого предиката в любом языке, для любого человека, в любом время имеет ясный, доступный эмпирической проверки смысл. Это общее понятие интенсонала можно приблизительно, оставляя в стороне тонкости, охарактеризовать следующим образом: интенсонал предиката «Q» для говорящего X есть общее условие, которому объект y должен удовлетворять для того, чтобы X мог при желании приписать предикат «Q» объекту y. (Для простоты мы опускаем ссылку на время t.) Попробуем сделать эту общую характеристику более ясной. То, что X в состоянии пользоваться языком L, значит, что X имеет определенную систему взаимосвязанных предрасположений (dispositions) к определенным лингвистическим реакциям. То, что предикат «Q» в языке L имеет свойство F в качестве своего интенсонала для X, значит, что среди предрасположений X, составляющих язык L, имеется предрасположение приписать предикат «Q» любому объекту y, если и только если y имеет свойство F. (Здесь все время предполагается, что F есть наблюдаемое свойство, то есть или непосредственно наблю-
даемое, или явно определяемое в терминах непосредственно наблюдаемых свойств. Данная формулировка чересчур упрощена, так как не учитывает неопределенность. Для того чтобы учитывать неопределенность, следует задать пару интенсионалов F_1, F_2: X имеет предрасположение утверждать принадлежность предиката «Q» объекту y, если и только если y имеет F_1, и предрасположение отрицать «Q» для y, если и только если y имеет F_2. Таким образом, если y не имеет ни F_1, ни F_2, то X не даст ни положительной, ни отрицательной реакции; свойство не иметь ни F_1, ни F_2 образует зону неопределенности, которая может быть и пустой.)

Понятие интенсионала было охарактеризовано здесь только для предикатов вещей. Характеристика выражений других типов, включая предложения, может быть дана аналогичным образом. Другие понятия теории интенсионала могут тогда определяться обычным образом; мы установим только понятия «синонимичный» и «аналитический» в простой форме, без претензии на точность.

Два выражения синонимичны в языке L для X во время t, если они имеют один и тот же интенсионал в L для X в t.

Предложение является аналитическим в L для X в t, если его интенсионал (или область, или условие истинности) в L для X в t охватывает все возможные случаи.

Язык L был выше охарактеризован как система определенных предрасположений к употреблению выражений. Я теперь сделаю несколько замечаний по поводу методологии диспозиционных понятий. Это будет способствовать более ясному пониманию природы лингвистических понятий вообще и понятия интенсионала в частности. Пусть D — предрасположение X реагировать на условие C характерной реакцией R. В принципе, хотя и не всегда на практике, существуют два способа установить, имеет ли данная вещь или лицо X предрасположение D (в данное время t). Первый метод можно назвать бихевиористским (в очень широком смысле); он заключается в создании условия C и затем в определении, имеет ли место реакция R. Второй метод может быть назван методом структурного анализа. Он состоит в достаточно детальном исследовании состояния X (в t) так, чтобы было можно из полученного
описания состояния с помощью соответствующих общих законов (скажем, физики, физиологии и т. д.) вывести реакции \(X \) на любые определенные обстоятельства среды. Тогда можно будет предсказать, в частности, будет ли \(X \) при условии \(C \) давать реакцию \(R \) или не будет; если будет, то \(X \) имеет предрасположение \(D \), в противном случае — не имеет. Например, пусть \(X \) — автомобиль, а \(D \) — способность к определенному ускорению на горизонтальной дороге при скорости в 10 миль в час. Гипотеза, что автомобиль имеет эту способность \(D \), может быть проверена каждой из следующих двух процедур. Бихевиористский метод состоит в ведении автомобиля и наблюдении за его поведением при данных условиях. Второй метод состоит в изучении внутренней структуры автомобиля, особенно мотора, и в вычислении, с помощью физических законов, ускорения, которое получится при данных условиях. В отношении психологического предрасположения, и в частности лингвистического предрасположения человека \(X \), существует, во-первых, известный уже бихевиористский метод, и, во-вторых, по крайней мере теоретически, метод микро-физиологического исследования организма \(X \), особенно центральной нервной системы. При настоящем состоянии физиологических знаний о человеческом организме, и особенно о центральной нервной системе, второй метод является, конечно, практически неосуществимым.

6. Понятие интенционала для робота

Для того чтобы сделать метод структурного анализа применимым, рассмотрим теперь прагматическое исследование языка не человека, а робота. В этом случае мы можем допустить, что мы обладаем гораздо более детальным знанием внутренней структуры. Логическая природа прагматических понятий остается той же самой. Допустим, что мы имеем достаточно детально разработанную схему, согласно которой был построен робот \(X \), и что \(X \) способен к наблюдению и употреблению языка. Допустим, что \(X \) имеет три входных органа \(A \), \(B \), \(C \) и один выходной орган. \(A \) и \(B \) употребляются альтернативно, одновременно же никогда. \(A \) есть орган визуального наблюдения предложенных объектов. \(B \) может получать общее описание
какого-либо объекта (предикатное выражение) на языке \(X'\) \(L\), который может состоять из написанных знаков или дырок, пробитых на перфокарте. \(C\) получает некоторый предикат. Эти входы составляют вопрос: обозначается ли объект, предложенный органу \(A\), или любой объект, удовлетворяющий описанию, предложенному органу \(B\), в языке \(L\) для \(X'\) посредством предиката, предложенного органу \(C\). Выходной орган может тогда давать одну из трех реакций \(X\): для утверждения, для отрицания и для воздержания от ответа; последняя реакция дается, например, если наблюдение объекта в \(A\) или описание в \(B\) оказывается недостаточным для определенного ответа. Точно так же, как исследователь неизвестного \(X'\) \(L\) начинает с указания объектов, а потом, определив интерпретацию некоторых слов, задает вопросы, сформулированные с помощью этих слов, исследователь языка \(L\) для \(X'\) начинает с того, что предлагает объекты органу \(A\), а потом, на основе пробных результатов, касающихся интенсивных знаков языка \(L\), переходит к предложению органу \(B\) предикатных выражений, в которых применяются только эти интерпретированные знаки, но не предикат, предложенный органу \(C\).

Вместо бихевиористского метода исследователь может здесь воспользоваться методом структурного анализа. На основе схемы \(X'\) \(L\) он может вычислить реакции, которые \(X\) может дать на различные возможные входные импульсы. В частности, он может из схемы с помощью закона физики, определяющих функционирование органов \(X'\), вывести следующий результат в отношении данного предиката «\(Q\)» языка \(L\) \(X'\) и определяющих свойств \(F_1\) и \(F_2\) (наблюдаемых для \(X\)): если предикат «\(Q\)» предлагаются органу \(C\), тогда \(X\) дает утвердительную реакцию, если и только если объект, имеющий свойство \(F_1\), предложен органу \(A\), и отрицательную реакцию, если и только если объект с \(F_2\) предложен органу \(A\). Этот результат позволяет, что граница интенсивала «\(Q\)» находится где-то между границей \(F_1\) и границей \(F_2\). Для некоторых предикатов зона неопределенности, заключенная между \(F_1\) и \(F_2\), может быть очень мала и, следовательно, это предварительное определение интенсивала может быть очень точным. Это может иметь место, например, для цветовых предика-
тов, если исследователь имеет достаточное количество цветных образчиков.

После этого предварительного установления интенционалов некоторых предикатов, составляющих ограниченный словарь V, посредством вычислений, касающихся входа A, исследователь перейдет к вычислениям, касающимся содержащихся предикаты словаря V описаний, которые должны быть предложены на входе B. Из схемы он может вывести следующий результат: если предикат «P» предложен на входе C и любое описание D в терминах словаря V предложено на входе B, то X даёт утвердительную реакцию, если и только если D (интерпретированное с помощью предварительных результатов) логически имплицирует G₁, и отрицательную реакцию, если и только если D логически имплицирует G₂. Этот результат показывает, что граница интенционала «P» находится между границей G₁ и границей G₂. Таким способом могут быть получены более точные определения для большей части L и, наконец, для всего L. (Здесь опять мы предлагаем, что предикаты L обозначают наблюдаемые свойства вещей.)

Ясно, что метод структурного анализа, если он применим, является более мощным, чем бихевиористский метод, потому что он может дать общий ответ и, при благоприятных условиях, даже полный ответ на вопрос об интенционале данного предиката.

Отметим, что процедура, описанная для входа A, может включать пустые виды объектов, а процедура для входа B — даже каузально невозможные виды. Таким образом, например, хотя мы и не можем предложить входу A единорога, мы тем не менее можем вычислить, какую реакцию X дал бы, если бы единорог был предложен входу A. На это вычисление, очевидно, не влияет никакой зоологический факт, касающийся существования или несуществования единорогов. Другая ситуация создается для объектов, исключаемых каким-либо законом физики, особенно законом, необходимым в вычислениях работы робота. Возьмем закон l₁: «Всякое железное тело при 60° F является твердым». Исследователю нужен этот закон в его вычислении функционирования Xₐ для того, чтобы удостовериться, что некоторые железные зубчатые колеса не расплавляются. Если же он должен взять в качестве посылки для своего
вывода предложение: «Входу A предложено жидкое железное тело, имеющее температуру 60° F», — то, поскольку закон l также входит в его посылки, он получил бы противоречие; следовательно, можно было бы ввести любое предложение, касающееся реакции X'а, и, таким образом, метод оказался бы непригодным. Но даже и в этом случае метод все еще работает в отношении входа B. В качестве посылки исследователь может избрать: «Описание «жидкое железное тело с температурой 60° F» (то есть перевод этого на язык L) предложено входу B». Тогда не возникает никакого противоречия ни в выводе, сделанном исследователем, ни в выводе, сделанном X-ом. Вывод, сделанный исследователем, содержит только что упомянутую посылку, которая относится не к железному телу, а к описанию, сказки к карточке, пробитой определенным образом; таким образом, здесь нет противоречия, хотя закон l_1 фигурирует также в качестве посылки. С другой стороны, в выводе, сделанном роботом X, карточка, предложенная входу B, доставляет как бы посылку формы «y есть жидкое железное тело с температурой 60° F»; но здесь закон l_1 не фигурирует в качестве посылки и, таким образом, никакого противоречия не возникает. X делает просто логические выводы из единственной сформулированной посылки и, если предикат «R» предложен входу C, пытается прийти либо к заключению «y есть R», либо к «y не есть R». Допустим, что вычисление исследователя приходит к результату, что X получит заключение «y есть R» и, следовательно, что X реагирует утвердительно. Этот результат показал бы, что (каузально невозможный) род жидкого железного тела с температурой 60° F включается в область интенционала предиката «R» для X'а.

Я пытался показать в этой статье, что в прагматическом исследовании естественного языка имеется не только эмпирический метод для удостоверения того, какие объекты обозначаются данным предикатом и, таким образом, для установления экстенционала предиката, что признается всеми, но также и метод для проверки гипотез относительно его интенционала (обозначающего значения)¹. Интенсио-

¹ И. Бар-Хиллел в недавней статье [Syntax] защищает понятия значения против тех современных лингвистов, которые хотят изгнать его из лингвистики. Он объясняет эту тенденцию тем, что в первой четверти
нал предиката для некоторого говорящего \(X' \)а является, говоря приближенно, общим условием, которому объект должен удовлетворять для того, чтобы \(X \) мог применить к нему этот предикат. Для установления интенционала должны быть приняты во внимание не только фактически данные случаи, но также и возможные случаи, то есть те виды объектов, которые могут быть описаны без внутреннего противоречия, независимо от того, существуют ли какие-либо объекты описанных видов. Интенционал предиката может быть определен для робота так же, как и для человека, и даже более полно, если внутренняя структура робота известна в достаточной степени, чтобы предсказать, как он будет функционировать при различных условиях. На основе понятия интенционала могут быть определены другие прагматические понятия для естественных языков, например синонимия, аналитичность и т. п. Существование научно здоровых прагматических понятий этого рода дает в отношении языковых систем практическую мотивировку и оправдание введения соответствующих понятий в чистую семантику.

Е. О НЕКОТОРЫХ ПОНЯТИЯХ ПРАГМАТИКИ

В одной из предшествующих статей [Synopmy] я разобрал прагматическое понятие интенционала, для того чтобы защитить его научную правомерность. Я дал лишь ненарушенный анализ, а не точную экстраполяцию. Чиэм (Chisholm) [Note], конечно, прав, говоря, что моя трактовка была чрезмерным упрощением. Но это было намеренным упрощением; в частности, я сознательно опустил не только возможные следствия неопределенности, но также...
же и следствия фактических ошибок Карла при выполнении лингвистического эксперимента (см. мои ссылки на эти ошибки, как могущие искать результаты лингвиста, в конце § 2). Я согласился бы с Чиземом в предпочтении третьего из трех способов уточнения анализа,— способа, использующего понятие мнения.

По-видимому, более тщательный анализ интенционала, мнения и связанных с ними понятий потребовал бы концептуального каркаса теоретической прагматики. Я упомяну здесь несколько понятий, которые можно было бы принять во внимание как базис для такого каркаса. Я устанавливаю только общую форму и приблизительно укажу на значение этих понятий без попытки какого-либо анализа.

В настоящее время я думаю, что основные понятия прагматики лучше всего рассматривать не как бихевиористские определенные диспозициональные понятия в языке наблюдения, а как теоретические конструкты в теоретическом языке, введенные на основе постулатов и связанные с языком наблюдения правилами соответствия. Понятие мнения иногда конструируется, например Чёрчем, как отношение между человеком и суждением. Я ранее сделал попытку эксплицировать его как отношение между человеком и предложением. Возможно, оба эти понятия полезны; первое не является прагматическим; оно характеризует состояние субъекта, не включая с необходимостью язык. Второе понятие является прагматическим. Напишем «\(B\)» вместо первого и «\(T\)» вместо второго. Пусть предложение формы

\[(1) \ B (X, t, p)\]

gоворит, что \(X\) во время \(t\) считает, что \(p\). Это понимается в слабом смысле, как не подразумевающее ни того, что \(X\) сознает это мнение, ни того, что он способен выразить его в словах. Пусть предложение формы

\[(2) \ T (X, t, S, L)\]

gоворит, что \(X\) во время \(t\) рассматривает предложение \(S\) языка \(L\) как истинное (сознательно или несознательно). Для простоты я беру здесь и \(B\) и \(T\) как простые отношения. С точки зрения более адекватной систематизации оба отношения рассматривались бы как приближенные понятия. Теперь прагматическое понятие интенционала слу-
жит связующим звеном между B и T. Пусть предложение формы

(3) $\text{Int}(p, S, L, X, t)$

говорит, что суждение p является интенционалом предложения S в языке L для X в t. (Для другой альтернативы вместо «интенционал» было бы выбрано «смысл», как его употребляет Чёрч. И в том и в другом случае предложения (1) и (3) являются неэкстенциональными. Я не думаю, что имеется какое-либо решающее основание для того, чтобы избегать употребления интенционального языка для науки, потому что такой язык может быть полностью переведен в экстенциональный, как я покажу в другом месте.) Если для этих трех понятий сформулированы соответствующие постулаты и правила, то (2), по-видимому, может быть выведено из (1) и (3) (либо дедуктивно, либо индуктивно), а (1) из (2) и (3).

Поскольку T относится только к предложениям, постольку прагматика нуждается в понятии интенционала прежде всего для предложений. Но понятие интенционала для других типов десигнаторов тоже существенно. Во всяком языке интенционал сложного предложения является функцией интенционалов его частей. Только благодаря этому человек, употребляющий язык, способен понять неограниченное число предложений на основе понимания ограниченного числа слов и фраз.

Прагматика нуждается в добавлении одного или двух понятий произнесения (utterance). Пусть

(4) $\text{A}(X, t, S, L)$

значит, что X в t сознательно хочет произнести знак S как предложение языка L в смысле некоторого утверждения. Поскольку понятие A предполагает цель или намерение, ясно, что это теоретический конструкт. С другой стороны, следующее понятие принадлежит к языку наблюдения. Пусть

(5) $\text{U}(X, t, R)$

значит, что X в t производит своими органами речи ряд слышимых звуков R. Предположим, что R есть знак S:

(6) $\text{U}(X, t, S)$.
Это предложение не содержит ссылки на L. Тот факт, что звуки S мыслятся X-ом как предложение языка L, прямо не наблюдается, но в лучшем случае может быть выведено индуктивно. Правила соответствия могут обеспечить связь между A и U. Допустим, что (6) установлено в результате наблюдения. Тогда можно вывести индуктивно, с помощью соответствующих вспомогательных посылок, касающихся "нормальности" ситуации и ранее подтвержденных фактов о X [включая (3)], сначала (4), затем (2) и наконец (1).

Настоятельная потребность в создании системы теоретической прагматики имеется не только для психологии и лингвистики, но также и для аналитической философии. Поскольку чистая семантика разработана достаточно, наверно время для попыток конструирования пробных очерков прагматических систем. Такой очерк может сначала ограничиться небольшой группой понятий (например, понятиями мнения, утверждения и произнесения); затем он может быть развит так, чтобы включить все понятия, необходимые для обсуждения вопросов теории познания и методологии науки.
БИБЛИОГРАФИЯ

Bergmann Gustav, Two cornerstones of empiricism, «Synthese», 8, 1953, 435—452.

Сарнар Рудольф, [Inductive], On inductive logic, «Phil. Science», 12, 1945, 72—97.
Сарнар Рудольф, [Remarks], Remarks on induction and truth, «Phil. and Phenom. Res.», 6, 1946, 560—602 (§ 3 этой статьи перепечатан в [Truth]).
Сарнар Рудольф, [Truth], Truth and confirmation. См. в кн.: Feigl and Sellars, [Readings].
Сарнар Рудольф, [Probability], Logical foundations of probability, Chicago, 1950 (§ 2—6 об экспликации, § 17—20— об истинности и L-понятиях).
* Сарнар Рудольф, [Postulates], Meaning postulates, «Phil. studies», 3, 1952, 65—73.
* Сарнар Рудольф, On belief sentences. Reply to Alonzo Church, См. в: MacDonald, [Philosophy], p. 128—131.
* Сарнар Рудольф, [Synonymy], Meaning and synonymy in natural languages, «Phil. Studies», 7, 1955, 33—47.
* Сарнар Рудольф, On some concepts of pragmatics, «Phil. studies», 6, 1955, 89—91.

1 Указанные в квадратных скобках сокращенные названия работ используются в тексте книги и списках при цитировании или упоминании этих работ и означают ссылки на настоящую библиографию. Знаком* отмечены статьи автора, помещенные в приложении к данной книге. — Прим. ред.
Church Alonzo, [Review C.], Carnap's introduction to semantics (обзор работы: Carnap [1]), «Phil. Review», 52, 1943, 298–304.

Church Alonzo, [Review Q.], обзор работы: Quine, [Notes], «J. Symb. Logic», 8, 1943, 45–47.

Church Alonzo, [Belief], On Carnap's analysis of statements of assertion and belief, «Analysis», 10, 1950, 97—99; переиздано в кн.: Macdonald, [Philosophy].

Church Alonzo, The need for abstract entities in semantic analysis, «Proc. Amer. Acad. of Arts and Sciences», 80, 1951, 100—112.

Feigl Herbert and Sellars Wilfrid, [Readings], Readings in philosophical analysis, New York, 1949.

Frege Gottlob, [Sinn], Über Sinn und Bedeutung, «Zeitschr. für Philos. und philos. Kritik», 100 (new ser., 1892), 25–50; английский перевод см. в: Feigl and Sellars, [Readings], а также в [Translations].

Frege Gottlob, [Translations], Translations from the philosophical writings, переводы P. Geach and M. Black, Oxford, 1952.

Lewis C. I., A survey of symbolic logic, Berkeley, 1918.

Lewis C. I., [Meaning], The modes of meaning, «Phil. and Phenom. Res.», 4, 1943—1944, 236—250; переиздано в кн.: Linsky, [Semantics].

1 Часть II этой статьи, см. в дополнительной библиографии.— Прим. ред.

Mates Benson, [Synonymity], Synonymity, см. в кн.: «Meaning and interpretation», Univ. of Cal. Publication in Philos., 25, 1950, 201—226; перепечатано в кн.: Linsky, [Semantics].

Morris Charles W., [Signs], Signs, language and behavior, New York, 1946.

Nagel Ernest, Logic without ontology; см. в кн.: Krikorian (ed.), Naturalism and the human spirit, New York, 1944. Перепечатано в кн.: Feigl and Sellars, [Readings].

Quine W. V., [Designation], Designation and existence, «J. Phil.», 36, 1939, 702—709.

Quine W. V., [M. L.], Mathematical logic, New York, 1940.

Quine W. V., [Notes], Notes on existence and necessity, «J. Phil.», 40, 1943, 113—127. Перепечатано в кн.: Linsky, [Semantics].

Quine W. V., [What], On what there is, «Review of metaphysics», 2, 1948, 21—38. Перепечатано в кн.: [Logical], а также в кн.: Linsky, [Meaning].

Quine W. V., [Semantics], Semantics and abstract objects, «Proc. Amer. Acad. of Arts and Sciences», 80, 1951, 90—96. Частично перепечатано в кн.: [Logical].

Quine W. V., [Dogmas], Two dogmas of empiricism, «Phil. Review», 60, 1951, 20—43. Перепечатано в кн.: [Logical].

Quine W. V., [Logical], From a logical point of view: Nine logico-philosophical essays, Cambridge, Mass., 1953.

Russell Bertrand, [Denoting], On denoting, «Mind», 14, 1905, 479—493. Перепечатано в кн.: Feigl and Sellars, [Readings].

Russell Bertrand, [Inquiry], An inquiry into meaning and truth, New York, 1940.

Scheffler Israel, On synonymy and indirect discourse, «Phil. science» 22, 1955, 39—44.

Sellars Wilfrid, Putnam on synonymy and belief, «Analysis», 15, 1955, 117—120.
ДОПОЛНИТЕЛЬНАЯ БИБЛИОГРАФИЯ 1

Carnap R., The problem of relations in inductive logic, «Phil. studies», 2, № 6, 1951, 75—80.

Корнфорт М., Наука против идеализма. В защиту философии против позитивизма и прагматизма, Издательство иностранной литературы, М., 1957.

Myhill J., Problems arising in the formalization of intensional logic, «Logique et analyses», 1, № 2, 1958, 74—83.

Reichenbach H., Elements of symbolic logic, New York, 1948.

Reichenbach H., Nomological statements and admissible operations, Amsterdam, 1956.

«Семантика в логике», БСЭ, изд. 2, т. 51.

Segermuller W., Das Wahrheitsproblem und die Idee der Semantik, Wien, 1957.

1 Составлена редакторами настоящего издания.
[К стр. 27]

* Предикатор степени n есть знак предиката от n переменных соответствующих типов.

** Здесь и в ряде мест далее Карнап, с одной стороны, предлагает уточнение, а с другой — расширительно толкует термины «extension» («объем») и «intension» («содержание»). В переводе сохранены термины «объем» и «содержание» там, где автор применяет термины «extension» и «intension» в каком-либо смысле, встречавшемся ранее в логической литературе, и введены новые термины «экстенциональ» и «интенциональ» там, где у автора имеется место расширенное и уточенное употребление терминов «extension» и «intension». Из возможных вариантов с различными окончаниями для пары новых терминов избраны термины «экстенциональ» и «интенциональ», так как подобный способ словообразования имеет прецеденты в некоторых областях математики.

[K § 2, стр. 36—44]

Утверждение Карнапа, что определение 2-2 в точности соответствует соглашению 2-1, вызывает ряд замечаний. Прежде всего, как указали Куайн ([Logical, статья [Dogmas]) и Бар-Хиллел ([A note on state-description]) (см. список дополнительной литературы, приложенный к Библиографии), использование описаний состояния существенно дополняет независимость предикатов рассматриваемой семантической системы. В самом деле, из способа построения описаний состояния (стр. 38) видно, что для любых двух предикатов P_1 и P_2 рассматриваемой системы найдется такое описание состояния, в которое войдут атомарные предложения P_1a и P_2a, а также такое описание состояния, в которое войдут атомарные предложения $\neg P_1a$ и P_2a (где a — некоторый индивид системы). Но это и означает, что P_1 и P_2 логически независимы, ибо из этого, что выполняется P_1, логически не следует, что выполняется P_2, и наоборот.

Это требование независимости предикатов является, конечно, весьма сильным. Легко видеть, что оно не выполняется для семантической системы S_1, специально построенной Карнапом для иллюстрации своих положений. В самом деле, S_1 содержит синонимичные предикаты H и RA, которые, как указано в правилах обозначения для S_1 (стр. 31), означают в точности одно и то же. Если мы будем строить описания состояния для S_1, то в их число войдет описание состояния, включающее $Hs^\circ RA$, и описание состояния, включающее $\neg Hs\circ RA$. В этом случае предложение (x) $[Hx=RA]$, если исходить из определения 2 2, очевидно, не будет L-истинным, что противоречит 3-9. Сле-

1 В составлении комментариев участвовали Д. М. Бочвар, Д. Г. Лахути, В. К. Финн. Текст сформулирован на основе совместного обсуждения. — Прим. ред.
дователно, H и RA не будут синонимами (учитывая, что по Карнапу L-эквивалентность является необходимым условием синонимичности, ср. § 15—16), что противоречит упомянутому правилу обозначения для S_1. Отсюда, по-видимому, следует, что H и RA не могут оба быть исходными предикатами S_1; один из них должен определяться через другой. Говоря общее, из каждой пары синонимичных (и вообще логически взаимных) предикатов входить в описание состояния системы может только один, а другой должен определяться через него. Это означает, что аппарат описаний состояния приложим только к сложным выражениям, построенным из независимых исходных предикатов и индивидуальных постоянных; но в этом случае он оказывается не более эффективным, чем обычные таблицы логических валентностей классической двузначной логики. Синонимичность же предикатов (а следовательно, и выражений, содержащих предикаты, см. § 15) не может определяться и проверяться с помощью описаний состояния, лежащих в основе семантики Карнапа, а должна вводиться и проверяться каким-то другим способом, на основе других соображений.

Один из таких возможных способов Карнап предлагает в статье «Постулаты значений», приложенной к настоящей книге (стр. 321). По существу это есть способ построения конкретных аксиоматических систем, значения терминов в которых задаются соответствующими постулатами (аксиомами). По-видимому, именно такой путь — путь формализации значений для отдельных участков языка (прежде всего языка различных разделов науки) и последующего объединения и расширения таких формализаций является наиболее плодотворным для построения формализованной семантики.

Как мы видели, утверждение Карнапа, что определение 2-2 в точности соответствует соглашению 2-1, не может считаться обоснованным (фактически 2-1 приводит 3-9, тогда как определение 2-2 — к отрицанию 3-9). Сам Карнап указывает, что в тексте книги он исходит не из формального определения 2-2, а из неформального соглашения 2-1. А это не может не повлиять существенным образом на строгость его дальнейших рассуждений, ибо один из основных вопросов семантики Карнапа — может ли соглашение 2-1 получить точное логическое выражение — остается, собственно говоря, открытым. Ответ на него связан с ответом на вопрос о том, возможно ли строгое различение аналитических и синтетических предложений (причем не применимо к какому-то конкретному языку, а применимо к логике или к человеческому языку вообще). Ряд логиков, в том числе Куайн в упомянутой статье, отвечает на этот вопрос отрицательно, считая, что различение аналитических и синтетических предложений не абсолютно, а лишь относительно. По-видимому, действительно, определение аналитичности и синтетичности может иметь смысл только относительно данного, строго определенного формального языка.

[К стр. 55]

Английский термин «concept» обычно переводится словом «понятие». Однако в тех случаях, когда термин «concept» относится к значению какого-либо важного в данной книге специального термина в метаязыке, говорящем о семантической системе, при переводе, чтобы подчеркнуть это обстоятельство, мы прибегали к термину «концепт» (например, «индивидуальный концепт» и т. д.).
[К стр. 62]

* Различение между «sentence (предложение)» и «proposition (суждение)» неоднократно проводилось в истории логики (стоики, схоласты, Кант, Больцано, Фрере).

Боец (Boethius) употреблял термин «proposition» в смысле повествовательного предложения, взятого вместе с его значением. Традиционная формальная логика термин «proposition» определяла аналогично, как суждение (judgment), выраженное в словах.

Однако в настоящее время термин «proposition» употребляется в двух смыслах: I — в традиционном смысле «суждения, выраженного в словах»; II — более современном смысле «инварианта значения, содержащегося в различных переводах одного и того же предложения».

Как справедливо замечает А. Чёрч в статье «Propositions and sentences» (см. дополнительный список литературы, прилагаемый к Библиографии), даже те, кто употребляют «proposition» в I смысле, употребляют его некоторым абстрактным образом, то есть уже во II смысле, ибо допускают, например, некоторые вариации словесного выражения среднего термина силюзизма (например: «Все люди смертны, Сократ — человек»), считая при этом, что «proposition», выражаемое в выводе, не зависит от этих вариаций.

Чёрч отмечает, что Кант для понятия «proposition» в I смысле употребляет термин «Satz», а во II смысле — термин «Urtheil», который он понимает не в психологическом смысле, так же как и Карнап в данной книге (см. § 6).

Явное различение между I и II смыслом провел Больцано (1837), который соответственно употреблял термины «Satz» и «Satz in sich». Независимо от Больцано Г. Фрере для «proposition» во II смысле ввел термин «Gedanke». «Gedanke», по Фрере, есть не повествовательное предложение, а значение, которое обще предложению и его переводам в другие языки. Таким образом, «Gedanke» есть смысл, выраженный предложением (см. § 28 данной книги).

Б. Рассела в «Principles of Mathematics» (1903) употреблял «proposition» именно во II смысле, близком тому, который ввел Фрере (однако в ряде последующих работ и, в частности, в его [Inquiry], см. Библиографию, он употребляет «proposition» и в I смысле с психологическим оттенком). Предложения (sentences) «Брута убил Цезаря» и «Цезарь убит Брутом», по Расселу, различны, но выражают одно и то же «proposition».

Он определяет «proposition» как «класс всех тех предложений, которые имеют то же самое значение, что и данное предложение» (см. [Inquiry], стр. 208—209).

Однако, несмотря на то, что в истории логики в семантических контекстах термин «proposition» употреблялся в двух смыслах — I и II, — Л. Витгенштейн не проводил различения между «proposition» во II смысле и «sentence» в смысле повествовательного предложения, выражающего «proposition», что отчасти связано с его онтологической теорией просяк (см. Л. Витгенштейн, Логико-философский трактат, Издательство иностранной литературы, М., 1958).

«Proposition», по Витгенштейну, выражает «state of affairs»; Карнап же, заимствовавший у Витгенштейна идею «описания состояния», принял
также и близкую Витгенштейну трактовку «proposition», отличив его от «sentence», которого не было у Витгенштейна.

При переводе данной книги выбрано употребление термина «предложение» для «sentence», как это принято и в лингвистике, и термина «суждение» для «proposition», так как у Карнапа «proposition» употребляется во II смысле, для которого наиболее адекватным является русский термин «суждение».

Фактически в работах по математической логике, в несемантических контекстах, термин «proposition» переводился то как «предложение», то как «высказывание».

[К стр. 63]

* Употребляемый Карнапом в ряде мест термин «exemplification» и производные от него выражения, например «is exemplified» и т. д., им точно не определяются. Эти выражения применяются автором к предикаторам, свойствам, суждениям в той части текста книги, которая играет лишь вспомогательную, поясняющую роль. В применении к предикаторам и свойствам смысл этих выражений, по-видимому, достаточно точно передается в русском языке и с помощью таких выражений, как «существуют объекты, для которых данный предикатор удовлетворяется», «существуют объекты, обладающие данным свойством», и т. д. Таким образом, применение выражений «exemplification», «is exemplified» к предикаторам и их интенционалам не вызывает необходимости в особом термине при переводе на русский язык.

Однако дело обстоит не так просто, когда Карнап применяет эти выражения к интенционалам предложений — суждениям (propositions). Нам представляется, что смысл выражения «is exemplifie.» в применении к суждению сводится к тому, что данное суждение имплицирует «истинным описанием состояния» (см. стр. 40 настоящего издания). При этом для суждений, выражаемых L-истинными предложениями, «exemplification» выполняется тривиальным образом. Из сказанного видно, что применение этих выражений к суждениям делает целесообразным введение в русском переводе удобного краткого термина, и поэтому мы употребляем выражения «экземплификация» для «exemplification» и «имеет экземплификацию» для «is exemplified».

[К § 6, стр. 61—70]

Если принять метод экстенционала и интенционала, допустив, что существует язык, к которому этот метод применим, то окажется, что этот метод (в той мере, в какой он развит в данной книге) в некоторых случаях не различает интенционалов предложений, которые по содержательным соображениям должны быть различены.

Проиллюстрируем этот факт на примерах, подобных примерам Карнапа из системы S, (см. § 1 данной книги).

Пусть к S, добавлен предикат «Tx» — быть не способным к умозаключениям. Построим теперь предложения (1) и (2):

(1) \(\neg (x)[I x \equiv R A x] \supset (I x)[I x \circ T x] \),
(2) \(\neg (x)[I x \equiv R A x] \supset \neg (I' \circ B) s \).
Очевидно, что между антecedентом импликации (1) и ее консеквентом имеется «связь по смыслу», тогда как между антecedентом импликации (2) и ее консеквентом такой связи нет. Однако, так как антecedенты (1) и (2), по Карнапу, суть отрицания L-истинного предложения (x) [Hx = RAx], то они L-ложны, а следовательно, (1) и (2) и в целом L-истинны, как импликации с L-ложными антecedентами, а потому (1) L-эквивалентно (2). Но так как L-эквивалентные предложения выражают одно и то же суждение или, что то же самое, имеют один и тот же интенциональ, то и (1) и (2) имеют, по Карнапу, один и тот же интенциональ. Но поскольку интенциональ предложения — экспликация мысли предложения, то оказывается, что два предложения (1) и (2), первое из которых имеет связь по смыслу между антecedентом и консеквентом, а второе — нет, тождественны по смыслу, что вряд ли правдоподобно.

Вообще говоря, представляет интерес построение классификации интенционалов высказываний в рамках различных формальных языков, однако вопрос о такого рода классификации внутри Карнаповского метода экстенционала и интенционала требует особого рассмотрения.

Анализом «разумных (reasonable) импликаций», то есть импликаций, имеющих связь по смыслу между антecedентом и консеквентом, занимались Г. Рейхенбах в «Elements of Symbolic Logic» и в «Nomological statements and admissible operations» (см. дополнительный список литературы, прилагаемый к Библиографии), Н. Гудмэн, а также ряд других логиков. Рейхенбах и Гудмэн исследовали, в частности, и «разумные импликации» со всегда ложным антecedентом (контрапаксионные импликации). В указанных книгах Г. Рейхенбах строит экспликацию для «разумной импликации» — «номологическую импликацию» в рамках исчисления предикатов. Он считает «номологическую импликацию» обобщением «логической импликации» (L-импликации) и «естественно-научных импликаций» (F-импликаций).

Последние импликации в особенности трудно анализировать в терминах описаний состояния Карнапа, ибо до сих пор наука не дает примеры атомарных фактов в смысле Витгенштейна (см. также комментарий к § 2).

[К стр. 181]

* В литературе по математической логике для расчленения формулы (и, тем самым, для указания закона построения последних) часто, вместо правил скобок, применяются различные варианты так называемого правила точек; считается, что меньшее число точек связывает сильнее, чем большее. При этом авторы обычно вводят различные дополнительные правила, позволяющие несколько уменьшить наибольшее необходимое для заданной формулы число точек. Так, например, в [Р. М.] принято, что наиболее сильно связывает знак конъюнкция (обозначаемый в [Р. М.] также соответствующим числом точек), затем кванторы и оператор (x) и, в конце, знаки \(\vee \), \(\supset \), \(\equiv \), \(\equiv \).

Формула, приведенная на стр. 181, должна быть бы по правилам точек символки [Р. М.] (но при сохранении прочих символов автора) иметь вид:

\[
(\exists x) (\forall y) \colon x = y : (z) : z \in a \Rightarrow z = x \lor z = y.
\]
Карнап иногда комбинирует правила точек и правила скобок, как, например, в формуле на стр. 181. Если эту формулу записать, совсем не применяя правил точек (сохраняя лишь жирную точку, как знак конъюнкций), то она примет вид:

$$(\exists x)(\exists y) \{ x = y \otimes (z \in a \iff (z = x \lor z = y))\}.$$

Одна пара круглых скобок могла бы быть избита, если бы мы устроили, что знак \lor связывает сильнее, чем \iff.

[К стр. 329]

Для читателя, незнакомого с работами Р. Карнапа по индуктивной логике, текст пункта 4 статьи «Meaning Postulates» требует пояснений.

Индуктивная логика, согласно Карнапу, может быть построена, как теория степени подтверждения, причем между дедуктивной логикой и индуктивной имеется известная аналогия: L-импликация дедуктивной логики в индуктивной логике соответствует степень подтверждения, в некотором смысле «частичная L-импликация».

В основу определения степени подтверждения Карнапом положено понятие регулярной m-функции («regular m-function», «regular measure-function») $m(f)$, где f — предложение в \mathcal{L}_N (\mathcal{L}_N — конечный язык, то есть язык, относящийся к конечному универсуму индивидов).

Регулярная m-функция определяется Карнапом так, чтобы она могла рассматриваться, как определяющая (вероятностную) меру (в смысле теории меры) области предложения («область предложения» см. § 2 настоящей книги). Далее определяется регулярная \mathcal{L}-функция (иногда, регулярная функция подтверждения), основанная на m-функции; для любой пары предложений e, h в \mathcal{L}_N, по определению, $(h, e) = m(e \otimes h)/m(e)$.

Так как область конъюнкций $e \otimes h$ есть пересечение (общая часть) областей предложений e и h, то (h, e) определяет величину части области e, включенной в область h. Так, например, равенство $(h, e) = 3/4$ выражало бы, что область e на 3/4 содержится в области h.

Определение понятия регулярной \mathcal{L}-функции, Карнап переходит к следующему шагу — определению понятия симметричной \mathcal{L}-функции.

1 Основные понятия теории меры в связи с основными теории вероятностей см: А. Н. Колмогоров, Основные понятия теории вероятностей. ОНТИ, 1926; П. Хаимович, Теория меры, ИЛ, М., 1953; Г. Кармель, Математические методы статистики, ИЛ, М., 1948; Д ж. Л. Дуб, Вероятностные процессы (Дополнение), ИЛ, М., 1956.

2 В частности, h может интерпретироваться как некоторая гипотеза, а e — как данные наблюдения.
Предварительно даются следующие определения: два описания состояния в языке \mathcal{L}_N называются изоморфными, если и только если одно из них преобразуется в другое с помощью одно-однозначного отображения класса всех индивидуальных постоянных на самого себя; регулярная m-функция называется симметричной, если и только если она имеет одн и то же значение для изоморфных описаний состояния. Теперь симметричная c-функция определяется как регулярная c-функция, основанная на симметричной m-функции.

Для определения понятия степени подтверждения вводится еще определение понятия описания структуры в \mathcal{L}_N. Именно, описанием структуры в \mathcal{L}_N называется дизъюнкция всех описаний состояния, изоморфных данному описанию состояния. Наконец, степень подтверждения c^* определяется теперь как симметричная c-функция, основанная на симметричной m-функции, m^*, имеющей одно и то же значение для каждого описания структуры в \mathcal{L}_N.

Определения соответствующих понятий для языка \mathcal{L}, относящегося к бесконечному универсуму индивидов, основываются на предельном переходе. Так, регулярная m-функция и регулярная c-функция для \mathcal{L} могут быть определены, соответственно, как пределы $m(f)$ и $c(h, e)$ в \mathcal{L}_N при $N \to \infty$ (при этом, конечно, существование пределов предполагается).

[К стр. 354]

* В своей книге «Meaning and Necessity» и в ряде тематически связанных с ней статей, включенных в настоящий издаваемый на русском языке том, Р. Карнарф неоднократно возвращается к вопросу о возможности элиминации из языка науки всех неэкстенсиональных выражений. В статье «On some Concepts of Pragmatics» он говорит, что имеет в виду показать возможность такого рода элиминации с помощью соответствующих правил перевода на язык, полностью экстенсиональный.

Проблема полной элиминируемости неэкстенсиональных выражений из языка науки — и даже только из языка логики — является сложной и не решена. Было бы поэтому преждевременно высказывать по поводу нее какие-либо суждения, претендующие на значение окончательных.

Однако сомнение в достаточной полноте обсуждений, связанных с так называемым «тезисом экстенсиональности», вполне законно, и оно относится не только к полноте рассмотрения деталей, но, прежде всего, к полноте, с которой в обсуждении представлены существенные для решения проблемы направления исследования.

В самом деле, языки, рассматривавшиеся в связи с обсуждением «тезиса экстенсиональности», строились, ввиду хорошо известных трудностей, связанных с антиномиями, в предположении ограничений, в той или иной мере родственных теории типов Рассела (сюда же по существу следует причислить и систему [M. L.] Куайна; см. Библиографию) и позволяющих избежать противоречий типа антиномии Рассела и других известных антиномий.

Несомненно, однако, что достаточно широко формулированный и достаточно богатый средствами выражения язык науки и, прежде всего, достаточно широкий язык логики не может просто исключать выражения и понятия, с которыми связаны антиномии, но должен в определенном
смысле включать и их с помощью соответствующих правил формулирования так называемых «аксиом свертывания».

Одной из проблем, связанных с упомянутой возможностью расширения языка логики, является как раз вопрос о границах, в которых могут непротиворечиво применяться аксиомы типа «аксиомы объемности» (иначе, «аксиомы экстенсивности»), утверждающей, что два класса (или множества) тождественны, если и только если каждый элемент одного из них тождествен некоторому элементу другого и, наоборот, каждый элемент второго тождествен некоторому элементу первого.

Другим, не менее важным направлением исследования в связи с «теоремой экстенсивности» является исследование различных, так называемых эпсилон-отношений и возможности сведения, например, различия между классом и свойством к различию в эпсилон-отношениях, связывающих предикаты с объектами. В связи с этим см. Д. А. Бочаров, Математический сборник, 42, 1957, 3.

1 Аксиомы свертывания имеют, вообще говоря, следующую форму: Пусть \(\forall u_1, \ldots, u_n \) — формула (матрица предложений), содержащая в точности \(n \) свободных переменных \(u_1, \ldots, u_n \). Тогда

\[
(\exists P) (u_1) \ldots (u_n) (P u_1 \ldots u_n \Rightarrow \forall u_1 \ldots u_n),
\]

где \(P \) обозначает переменный предикат степени \(n \). Предполагается, что система аксиом содержит определенные правила подстановок для всех видов переменных.
АЛФАВИТНЫЙ УКАЗАТЕЛЬ

«Абсолютное» употребление терминов — 59 (чн.); см. также Несемантическое употребление.
Абстрактные объекты — 298.
Автонимное употребление — 32.
Адекватность: для F-понятий — 43; a. для L-истинности — 40 и далее; a. для L-понятий — 41 и далее.
Аксиома бесконечности — 144 (чн.)
Анализ парадокса — 111.
Аналитические предложения — 38, 321 и далее, 348; см. также L-истинность.
Антиномия, природа a.— 208.
Антиномия отношения именования — 205 и далее, 207: решение ее — 08—2.9 и далее.
Арифметические понятия — 141 и далее, 149, 182 и далее.
Атомарное предложение — 33.
Бар-Хиллел И. — 327 и далее, 352 (чн.).
Бейлис Ч. А. — 55 (чн.), 64, 114 (чн.).
Бенетт А. А. — 55 (чн.), 64.
Беркли Дж. — 317.
Бернсидент Л. — 72, 78, 311 (чн.).
Бесконечность — 144 (чн.).
Блэк M. — 112.

Вероятность — 38 (чн.).
Взаимозаменяемость — 93; принципы в.— 95 и далее.
Витгенштейн Л. — 38 и далее, 312.
Внешний вопрос — 300.
Возможность — 259.
Возможные и невозможные вещи — 115.
Вполне определенные суждения — 64.
Вудхран Дж. Г. — 76 (чн.).
Выполнение — 39, 252.
Выражение тождества, предложение тождества, знак тождества— 261.

1 Наиболее важные термины, имена и ссылки выделены жирным шрифтом. [Термины, включающие латинские буквы, см. в конце указателя.— Ред.]

24 Закл. № 383
Выражения абстракции — 31.
Выражения для действительных чисел — 134 и далее.
Вычислимые числа — 134 (сн.).

Гемпел К. Г.— 331.
Гёдель К.— 75, 134 (сн.).
Гильберт Д.— 72, 73, 78.
Гипостазирование — 56, 86.
Гудмем H.— 76 (сн.).

Два — 182.
Двутороннее материальное следование — 30.
Действительные и недействительные вещи — 115.
«Десигнат» — 247 (сн.).
Десигнаторы — 34 и далее.
Дескрип — 71.
Дескриптивные выражения — 31, 144.
Дескрипция: (1) индивидуальная — 31, 70 и далее; д. в S_2 — 270; (2) — дескрипция других видов — 76 и далее.
Дизъюнкция — 30.
Джакс К. Л.: Д. о фактах — 64; познавательные установки у Д.— 111; статьи Д.— 114 (сн.).

Естественные языки — 334 и далее.
Заглавная буква: способ з. б.— 49 (сн.); форма с з. б.— 231.
Задание экстенсонала — 123.
Замкнутые предложения — 31.
Значение — 34 и далее, 40, 78, 112, 113, 185—186 (сн.), 294 и далее; 334.
Значение переменных — 84.

Имена выражений — 32.
Имена классов — 172, 176 и далее.
Именной язык — 128.
Импликация, логическая — см. Л-импликация.
Импликация, математическая — см. Материальное следование.
Имя — 158 и далее, 197.
Имя свойства — 174.
Индивидная дескрипция — см. Дескрипция (1).
Индивидные выражения — 73.
Индивидные концепты — 82, 265 и далее.
Индивидные переменные — 31, 70.
Индивидные постоянные — 31, 70.
Индивиды — 73; и. как положения — 128; и. как числа — 144.
Индуктивная логика — 38 (сн.), 329 и далее.
Интенсонал: и. десигнаторов — 57; и. индивидных выражений — 82;
и. как первичное — 179, 236, 295; и. предикаторов — 51 и далее,
339 и далее; и. предложений — 63.
Интенсонал значения — 87.
Интенсоналистский тезис — 340 и далее.
Интенциональная неопределенность — 343.
Интенциональная структура — 102.
Интенциональные выражения — 92.
Интенциональные понятия — 335.
Интенциональный изоморфизм — 102, 106.
Интерпретация — 33, 40.
Истинность: (1) семантическая и. предложений — 33 и далее, 153;
(2) несемантическая и. суждений — 155, 204.
Итон Р. М. — 196 (сн.).
Йота-оператор — 31, 39, 70—71.

Кавычки — 32, 49 (сн.), 251.
Кант И. — 38, 42.
Кантор Г. — 293.
Кванторы — 31.
Кеменс Д. Г. — 328 и далее.
Класс предложений — 263 и далее.
Классы — 48 и далее; к. как интенционалы — 152; к. как экстенционалы — 48 и далее; контекстуальное определение к.— 180—181, 222, 223, 239; расселовское определение к.— 172.
Класс эквивалентности — 48; класс L-эквивалентности (десигнато-ров) — 48, 230.
Клины С. К. — 134.
Количественное число — 182, 293; см. также Число.
Конверсия — 31.
 Коннекторы — 30.
 Концепт — 55.
 Конъюнкция — 30.
 Координатные языки — 128, 133.
Косвенный контекст — 191, 203.

Куайн Б. В.: метод отношения именования у К.— 210, 218, «не только обозначающее» у К.— 210, 284; К. об аналитичности — 321; К. об антономии отношения именования — 216, 210, 283; К. о выражениях абстракции — 166; К. о «десигнате» — 247, (сн.); К. о дескрипциях — 75, 78; К. о значениях — 162, 230, 335 (сн.) и далее, 339 и далее; К. о значениях переменных — 36, 84, 286, 310 (сн.); К. об избежании антономий — 322 (сн.); К. об «изгнании» экстенционалов и индивидов — 287 и далее; К. об индивидах — 166; К. об индивидных концептах — 288; К. об индивидных постоянных — 127; К. о классах — 167, 203 (сн.); К. о модальностях — 283 и далее; К. о нейтральности — 236; К. о не-экстенциональных контекстах — 210; К. о номинализме — 85; К. об «обозначениях» — 210; К. об онтоологии — 84 и далее, 221 (сн.), 286 и далее; К. о подставимости — 162, 169; К. о свойствах — 229; К. о синонимичности — 107, 230; К. о системе ML — 166, 215; К. о тождестве — 168 и далее; К. о числе — 287; правило контекста у К.— 222, 227; формулировка [точки зрения] К.— 286 и далее; экспликации у К.— 197.
Кули Д. — 324 (сн.).
Лямбда-оператор — 31, 39, 80 (сн.).
Лейбниц Г. В. — 38, 39, 41.
Ленсфорд Г. К. — 76 (сн.).
Лингвистика — 344 и далее.
Логика Пор-Роял — 196.
Логическая истина — см. Л-истина.
Логические валентности: а. в. как внеязыковые объекты — 153 и далее; а. в. как суждения — 154 и далее; а. в. как экстенсимальы [предложения] — 61.
Логические выражения — 144.
Ложность — 34.
Льюис К. И.: Л. о модальной логике — 257; Л. о недействительных вещах — 115 и далее; Л. об означении истиных суждений — 155 (сн.); Л. о понимании, созначении, означении — 114 и далее; 342 (сн.); Л. о синонимичности — 108 и далее; Л. о строгой импликации — 90 (сн.), 261; Л. о строгой эквивалентности — 261; Л. о суждениях — 246; Л. об эквивалентности в аналитическом значении — 108 и далее, 111; определение необходимости у Л. — 259.
Лэнгфورد К. Г. — 37 (сн.); Л. об анализе — 112 и далее.

Маркин. Р. М. — 76 (сн.), 322 (сн.).
Математические понятия — см. Арифметические понятия.
Материальная импликация — см. Материальное следование.
Материальное следование — 30.
Матрица — 32.
Мейнинг А. о невозможных вещах — 115.
Мейнтс Б. — 322 (сн.), 332 и далее.
Метаметафизик — 124, 231.
Метафизика — 32, 85.
Метафизика — 32, 86.
Методы: м. отношения именования — 169, 219, 295; сравнение м. экстенционала и интенционала с методом отношения именования — 172 и далее, 175 и далее, 184, 202, 217; м. экстенционала и интенционала — 29, 57, 171, 217 и далее, 248, 295 и далее.
Мильль Д. С. — 196, 315.
Множественность объектов: м. о. в нашем методе — 50, 220 и далее, 248 и далее; м. о. у Фреге и у Чёрча — 200 и далее, 211.
Модальности: аналогия с кванторами — 273; интенциональные м. — 94; интерпретация м. — 261, 262; Куайн о м. — 283 и далее; логика м. — 257, 273; Льюис о м. — 257; м. в словесном языке — 273 и далее; м. и переменные — 262 и далее, 283 и далее; м. и переменные в словесном языке — 283 и далее; определения м. — 259; перевод м. — 215, 260, 275; соответствие м. Л-понятиям — 257—258 и далее; итерация м. — 202, 216, 255.
Моррис Ч. В. — 35 (сн.).
Мур Дж. Э. об анализе — 111.

Невозможность — 259.
Невозможные вещи — 115.
Нагель Э. — 316.
Алфавитный указатель

Нейтральные выражения — 231, 234.
Нейтральные переменные — 240.
Нейтральный метаязык — 231.
Немецкие готические буквы — 32, 124.
Необходимая импликация — 261.
Необходимая эквивалентность — 261.
Необходимость — 93, 257.
Неоднозначность отношения именования — 163 и далее.
Несемантическое (абсолютное) употребление семантических терминов — 59 (см.), 116; см. также Истинность (2); L-детерминированность (2), L-эквивалентность (2); эквивалентность (2).
Несс А. — 345.
Некстенциональные выражения — 92.
Номинализм — 85, 311, 315.
Номинат — 159.

Область действия йота-оператора — 70—71.
Область — 39.
Обозначение — 159, 162, 243 и далее, 253.
Общие слои — 86.
Объекты — 52, 57, 84 и далее, 150, 221, 248 и далее, 286; см. также Множественность объектов.
Однозначность — 160.
Означение — 196.
Онтология — 56, 84, 286 и далее, 288.
Операнд — см. Область действия йота-оператора.
Операторы — 31; см. также Кванторы.
Описания состояния — 38, 268.
Описание экстенсионала — 123.
Отказ: о. от индивидов — 287 и далее; о. от иррациональных чисел — 289 и далее; о. от экстенционалов — 287 и далее,
Отношения именования — 158.
Отношение части к целому — 76.
Отношения — 55, 268, 327 и далее.
Отрицания — 30.

Парадокс анализа — 111.
Парадоксы — см. Антиномии.
Платон Г. — 331 и далее.
Перевод — 107; п. из М в М’ — 237.
Переменные — 31, 84 и далее; п. и модальности — 262 и далее; 279 и далее, 283 и далее.
Переменные для классов — 179, 240, 293.
Перечисление — 139, 177.
Платонизм — 311.
Платоновские идеи — 56.
Подставимость — см. Взаимозаменяемость.
Позиционные свойства и отношения — 128, 136, 141, 151, 177.
Познавательное значение — 35.
Положение — 128.
Понимание — 53, 187, 295 и далее.
Постулаты значений — 321 и далее.
Правила; семантические — 33, 251; п. истинности — 33, 252; п. контекста — 222 и далее, 225, 227; п. областей — 39, 268 и далее; п. обозначения — 31, 33, 251; п. образования — 33, 251 и далее.
Прагматика — 334 и далее, 353 и далее.
Практические вопросы — 72, 84, 198, 208, 249, 279, 297.
Предикаторы — 35.
Предикаты — 31.
Предложения вида «...», «...» (где ... сокращение для предложения) — 235.
Предложения — 32.
Предложения о мнениях — 97—98 и далее, 110 и далее, 192 и далее, 216, 331 и далее.
Предрасположение — 348.
Признание объектов — 57, 84 и далее, 286 и далее.
Принципы: п. взаимозаменяемости — 95 и далее, 262 (см. также Фреге, Күйли, Рассел); п. однозначности — 160; п. отношения именования — 163; п. предметности — 160.
Прогрессия — 128.
Произнесение — 355.
Псевдопредложения — 56, 85.
Психические объекты — 53.
Психологические предложения — 111.
Пустая вещь — 76.
Пустой класс — 140, 152.
Пустые места — 32.
Пустые предикаторы — 55.

Равенство чисел — 184.
Равночисловые свойства — 184.
Ройл Г. — 313 и далее.
Рассел Б.: антиномия Р. — 208; определение класса у Р. — 172, 223; отрицание [самостоятельного] значения у индивидных выражений и выражений классов у Р. — 214, 218; правило контекста у Р. — 227, 255; принцип взаимозаменяемости у Р. — 206; семантический метод Р. — 212 и далее, 296; Р. об абстрактных объектах — 315 и далее; Р. об антиномии отношения именования — 216, 212 и далее; Р. о дескрипции — 37, 73 и далее, 78, 212; Р. об индивидных постоянных — 127; Р. о невозможных объектах — 115; Р. о неполных символах — 213, 226; Р. об означении — 159 (сн.); Р. об отношении именования — 212 и далее; Р. о переменных для классов — 179, 293; Р. о пропозициональных установках — 111; Р. о суждениях — 66, 230; Р. о тождестве — 45; Р. об удвоении имен — 172 и далее; Р. о Фреге — 186, 214; Р. о функциях истинности — 93; Р. о числе — 37, 181 и далее, 293; Р. об экстенсимальности — 215—216 (сн.).

Реальность — 301, 310.
Редукционное предложение — 329.
Решение — 315.
Решения антиномии отношения именования — 208 и далее.
Робот — 249 и далее.

Сведения: с. объектов — 250; с. классов к свойствам — 222 и далее; с. экстенсionaleк к интенсionale — 150, 228.

Свойства — 48 и далее, 199 и далее; с. как нечто физическое — 53; Селлерс У. — 319 (сн.).

Семантика: с. в нейтральном языке — 251 и далее; с. в экстенсionaleном языке — 241 и далее.

Семантические правила — см. Правила семантические.

Семантические системы — 31, 251; см. также S1 и т. д.

Семантический метод — см. Методы.

Синонимичность — 103, 17, 205, 348.

Синтетические суждения — 42.

Синкатегорематические выражения — 36.

Случайная истиность — 43, 244.

Случайность суждения — 259.

Смешанные модальности — 259.

Собственное имя — 126 и далее.

Соозначение — 114, 186 (сн.), 196.

Состояние — 38.

Стандартные формы: с. ф. для выражений действительных чисел — 134 и далее; с. ф. для индивидуальных выражений — 128, 133.

Степень — 32.

Строгая импликация — см. Льюис.

Суждения — 62 и далее, 304; с. как интентионалы — 63; с. как нечто непсихическое — 63; с. как области — 267; ложные с. — 65.

Существование — 85.

Существование, внешний и внутренний вопросы — 282.

Тарский А.: Т. об истиности — 34 (сн.), 322; Т. о метаязыкке — 87; Т. о семантике — 114 (сн.).

Терминология — 35 (сн.), 53 и далее.

Тождество — 45.

-тор — 35 (сн.).

Ткрянг А. М. — 134 (сн.).

Уайт М. — 112, 322 (сн.).

Уайтхед А. Н.: У. об именах для классов — 172; У. о незентенсionaleном тождестве — 174; У. об определении классов — 223; У. о системе РМ — 172.

Удвоение: у. имён — 171 и далее; у. на более высоких уровнях — 180 и далее; у. переменных — 180 и далее; у. переменных — 180.

Универсальность, проблема у. — 56.

Универсальный класс — 140.

Условие единственности — 71.

Условие истиности — 33.

Условия тождества: у. м. для интентионалов — 57; у. м. для классов — 50; у. м. для свойств — 5; у. м. для суждений — 62, 193; у. м. для экстенсionaleв — 57—58.

Утверждение — 355.
Факт — 43, 64.
Фактические предложения — 43.
Фейел Г.— 311 (сн.). 331.
«Фило», «Фило» принцип — 395 и далее.
Физическая величина — 142.
Фреге Г.: бесконечность имен и объектов у Ф.— 230 и далее; недостатки метода Ф.— 199 и далее, 209, 218; оценка результатов, полученных Ф.— 198; принципы взаимозаменяемости Ф.— 169, 189 и далее, 217; семантический метод Ф.— 187, 296; терминология Ф.— 185—186; (сн.); Ф. об абстрактных объектах — 315; Ф. об антиномии отношения именования — 205, 2 9; Ф. о двойном номинате — 205; Ф. о дескрипциях — 37, 73, 74 и далее, 78, 213; Ф. о косвенном контексте — 191; Ф. о номинате — 187 и далее, 195; Ф. относительно предложений о мнениях — 192 и далее, 203; Ф. о смысле — 187, 176; Ф. о «суждении» — 186 (сн.), 193; Ф. о числе — 37, 183 и далее, 293; экспликанды у Ф.— 196 и далее.
Функции — 35.
Функции истиности — 93.
Функция предложения или матрица предложений — см. Матрица.
Чёрч А.: библиография Ч.— 257 (сн.); «дескрипция» у Ч.— 195 (сн.); оценка результатов, полученных Ч.— 198; публикации Ч.— 30; экспликанды у Ч.— 197; Ч. о бесконечности имен — 2 2 и далее, 211; Ч. о двух видах операторов для ёбстрации класса — 176; Ч. о двух видах переменных — 285; Ч. о десигнате — 94 (сн.), 247 (сн.); Ч. о Куайне — 162, 210, 285; Ч. о лямбда-операторе — 80 (сн.); Ч. о лямбда-определении — 134 (сн.); Ч. о методе отношения именования — 210 и далее, 218, 296; Ч. о модальном предложении — 275; Ч. об оценках — 159 (сн.); Ч. относительно предложений о мнениях — 331 и далее, 334 и далее Ч. о Расселле — 214; Ч. о синонимичности — 161; Ч. о Фреге — 187, 195, 196, 203, 210 и далее; Ч. об экстенсональности — 90 (сн.), 94 (сн.).
Чисел Р.— 353.
Число — 85 и далее, 130, 182, 293, 300, 303, 307.
Числовой интенциональ, числовой концепт, числовой экстенциональ — 185.
Чистые модальности — 259.
Шлек М.— 312 (сн.).
Эквивалентность: (1) семантическая э., выражений: э. десигнаторов— 46; э. индивидных выражений — 47; э. предикаторов — 46 и далее; э. предложений — 34; (2) несемантическая э. объектов: э. интенциональ — 58; э. нейтральных объектов — 233; э. свойств — 58; э. суждений — 59; э. экстенциональ — 58.
Эквивалентность логическая — см. L-эквивалентность.
Экземплификация — 54.
Экспликант, экспликат, экспликация — 37.
Экстенциональ: э. десигнаторов — 58; э. значения — 87; э. индивидных
выражений — 80; э. предикаторов — 51 и далее, 253; э. предложений — 61; применение э.— 175, 296.
Экстенсионалистский тезис — 340 и далее.
Экстенсиональность, тезис э. — 215.
Экстенсиональные выражения — 91 и далее.
Экстенсиональный метаязык — 250, 251.
Экстенсиональный язык: для семантики — 250 и далее; определение э. я.— 91; э. я. как относящийся к свойствам — 293; э. я. как устраняющий антиномию — 215 и далее.
Эрбран Ж.— 134 (сн.).
Юм. Д.— 317.
Язык-объект — 30 и далее.
Языковый каркас — 330 и далее.
Язык физики — 134.

A, a, А — 31—32.
a₀ — 76.
a* — 77.
a — 275.

B — 31.

CT — 204.
F — 31.
/ — 79, 87 и далее.
F-импликация — 43.
F-истинность — 43.
F-ложность — 43.
F-понятия — 43.
F-эквивалентность: F-э. десигнаторов — 46; F-э. индивидных выражений — 80; F-э. предикаторов — 47; F-э. предложений — 43.

G — 164.

H — 31.

K — 178.
L-взаимозаменяемость — 89.
L-детерминированность: (1) семантическая L-д.: десигнаторов — 121, 125, 145; индивидных выражений — 132, 133; предикаторов — 140; предложений — 42; (2) несемантическая L-д.: интенционалов — 146.
L-импликация — 41.
L-истинность — 38, 41.
L-ложность — 41, 65.
L-предетерминированность: L-н. десигнаторов — 125; L-н. предложений — 43.
Л-область — см. Область.
Л-обозначение — 243.
Л-понятия — 36 и далее.
Л-пустые предикаторы — 55, 140.
Л-состояние — см. Состояние.
Л-универсальность — 86, 140.

L-эквивалентность: (1) семантическая L-φ, выражений: L-φ в двух системах — 104; L-φ десигнаторов — 46; L-φ индивидуальных выражений — 81; L-φ матрицы — 105; L-φ предикаторов — 47; L-φ предложений — 42; (2) несемантическая L-φ, объектов: L-φ интенсивных объектов — 58 и далее; L-φ нейтральных объектов — 233; L-φ свойств — 60; L-φ суждений — 59; L-φ экстенсивных объектов — 60.

M — 32, 220 и далее.
M' — 226, 248.
Mₚ — 251.
MFL — 269 (сн.).
ML — 165.
ML' — 165, 290.
M — 231.

N — 93, 256.
NC, Nₑ — 183–184.
p — 88.
pₜ — 65, 155.
PM — 172, 179, 181 и далее, 224 и далее.
PM' — 172, 179, 224 и далее, 290.
PM'' — 237.

RA — 31.

S₁ — 30 и далее.
S₂ — 93, 238, 273
Sₚ — 128.
Sₚ — 134.
s — 31.
Σ — 32.
w — 31.
x — 31.

СИМВОЛЫ

Λ, ∨ — 140.
α — 179.
ι — 31, 70.
— 30, 33, 45 и далее.

λ — 31.

φ — 179.

— 259.

о', о'', о''' — 128.

— 261 и далее.

{...} — 139.

— 261.
СОДЕРЖАНИЕ

Предисловие ...
Предисловие автора .. 2
Предисловие автора ко второму изданию 2

Глава I

Метод экстенсонала и интенсонала 2
1. Предварительные разъяснения 2
2. L-понятия ... 3
3. Эквивалентность и L-эквивалентность 4
4. Классы и свойства .. 4
5. Экстенсоналы и интенсоналы 5
6. Экстенсоналы и интенсоналы предложений 6
7. Индивидные дескрипции .. 7
8. Метод Фреге для дескрипций 7
9. Экстенсоналы и интенсоналы индивидных выражений 8
10. Переменные .. 8
11. Экстенсональные и интенсональные контексты 8
12. Принципы взаимозаменности 9
13. Предложения о мнениях ... 9
14. Интенсональная структура .. 10
15. Применения понятия интенсональной структуры 10
16. Метод анализа значений по Льюису 11

Глава II

L-детерминированность

§ 17. L-детерминированные десигнаторы 12
§ 18. Проблема L-детерминированности индивидных выражений 12
§ 19. Определение L-детерминированности индивидных выражений 13
§ 20. L-детерминированность предикаторов 13
§ 21. Логические и дескриптивные знаки 14
§ 22. L-детерминированные интенсоналы 14
§ 23. Свидетельство экстенсоналов к интенсоналам 14
Глava III
Метод отношения именования 157
§ 24. Отношение именования 158
§ 25. Неоднозначность в методе отношения именования 163
§ 26. Ненужное удвоение имен 171
§ 27. Имена классов .. 176
§ 28. Различение номината и смысла у Фрейе 185
§ 29. Номинат и смысл: экстенсиональ и интенциональ 194
§ 30. Недостатки метода Фрейе 199
§ 31. Антиномия отношения именования 205
§ 32. Решения антиномии ... 208

Глava IV
О метаязыках для семантики 220
§ 33. Проблема сведения объектов 220
§ 34. Нейтральный метаязык M' 230
§ 35. M' не беднее, чем M 236
§ 36. Нейтральные переменные в M' 240
§ 37. О формулировке семантики в нейтральном метаязыке M' 241
§ 38. О возможности экстенсионального метаязыка для семантики 250

Глava V
О логике модальностей .. 256
§ 39. Логические модальности 256
§ 40. Модальности и переменные 262
§ 41. Семантические правила для модальной системы S_2 268
§ 42. Модальности в словесном языке 273
§ 43. Модальности и переменные в словесном языке 279
§ 44. Куйян о модальностях 283
§ 45. Заключения .. 294

Приложении
A. Эмпиризм, семантика и онтология 298
1. Проблема абстрактных объектов 298
2. Языковые каркасы ... 300
3. Что значит принятие какого-либо рода объектов? 309
4. Абстрактные объекты в семантике 312
5. Заключение .. 319

B. Постулаты значений ... 321
1. Проблема истинности, основанной на значении 321
2. Постулаты значений .. 322
3. Постулаты значений для отношений 327
4. Постулаты значений в индуктивной логике 329
Содержание

C. О предложениях мнения. Ответ Алонзо Чёрчу 331

D. Значение и синонимия в естественных языках 334
1. Анализ значения в прагматике и семантике 334
2. Установление экстенсионалов 337
3. Установление интенционалов 339
4. Интенционалы в языке науки 345
5. Общее понятие интенционала предиката 347
6. Понятие интенционала для робота 349

E. О некоторых понятиях прагматики 353
Библиография .. 357
Комментарии .. 361
Алфавитный указатель .. 369
Р. Карнап

ЗНАЧЕНИЕ И НЕОБХОДИМОСТЬ

Редакторы Д. Г. Лахути и В. К. Финн
Художник Э. А. Гутнов
Художественный редактор Б. И. Астахов
Технический редактор В. А. Горячка
Корректоры М. М. Косенко
и В. С. Назарова

Сдано в производство 2/IX 1958 г.
Подписано к печати 24 III 1959 г.
Бумага 84х108 6,0 бум. л.
19,7 печ. л., Уч.-изд. л. 20,5.
Изд. №: /, 34 Цена 14 р. 30 к. Экз. № 2262

ИЗДАТЕЛЬСТВО
ИНОСТРАННОЙ ЛИТЕРАТУРЫ
Москва, НовояРоссийская, 52.

Отпечатано с набора Публичной типографии имени А. А. Жданова
Московского городского совнархоза
в 20-й типографии Московского городского совнархоза
Москва, Ново-Алексеевская, 52.
Зак. 353.
ИЗДАТЕЛЬСТВО
ИНОСТРАННОЙ ЛИТЕРАТУРЫ

КНИГИ ПО ФИЛОСОФИИ, ВЫПУСКАЕМЫЕ В 1959 ГОДУ

1. Р. Гропп, Диалектический материализм (переработанное и дополненное автором издание), перевод с немецкого, 5 а. л.
2. Р. Гароди, Марксистский гуманизм, перевод с французского, 18 а. л.
4. Го Мо-жо, Бронзовый век, перевод с китайского, 27 а. л.
5. Сборник «Проблемы философии», перевод с румынского, 16 а. л.
6. Г. Зедер, Очерк правосоциалистической идеологии, перевод с немецкого, 10 а. л.
7. Б. Фогараши, Логика, перевод с венгерского, 30 а. л.
8. Г. Селзам, Революция в философии, перевод с английского, 10 а. л.
9. И. Риггер, Введение в космологию, перевод с чешского, 6,5 а. л.
10. Эль Гортари, Введение в диалектическую логику, перевод с испанского, 16 а. л.
11. Д. Бом, Причинность и случайность в современной физике, перевод с английского, 11 а. л.
12. Д. Коммервил, Философия мира, перевод с английского, 20 а. л.
13. Г. Френкель, Заключения идей, перевод с английского, 4 а. л.
14. Д. Томсон, Первые философы, перевод с английского, 22 а. л.
15. М. Аббате, Философия Б. Кроche и кризис итальянского общества, перевод с итальянского, 15 а. л.
16. Г. Уэллс, Павлов и Фрейд, перевод с английского, 35 а. л.
17. Б. Рассел, История западной философии, перевод с английского, 56 а. л. (для научн. библиотек).
18. Р. Карнап, Значение и необходимость, перевод с английского, 19 а. л.
19. Д. Датта, Философия Ганди, перевод с английского, 8 а. л. (для научн. библиотек).
20. Д. Бернал, Мир без войны, перевод с английского, 15 а. л.
21. Я. Лукасевич, Сильлогистика Аристотеля с точки зрения современной формальной логики, перевод с английского, 8 а. л.