Стволовые клетки и кардиомиогенез в норме и патологии
СТВОЛОВЫЕ КЛЕТКИ И КАРДИОМИОГЕНЕЗ В НОРМЕ И ПАТОЛОГИИ
Russian Academy of Medical Sciences, Siberian Branch
Tomsk Scientific Center
State Organization "Scientific Research Institute of Cardiology"

V.P. Shakhov
C.V. Popov

STEM CELLS AND
CARDIOMYOPLASTY IN
NORM AND PATHOLOGY

ГУ Научно-исследовательский институт кардиологии
Томского научного центра Сибирского отделения
Российской академии медицинских наук

В.П. Шахов
С.В. Попов

СТВОЛОВЫЕ КЛЕТКИ
И КАРДИОМИОГЕНЕЗ
В НОРМЕ И ПАТОЛОГИИ

ГБОУ ВПО СибГМУ
Минздравсоцразвития России
Научно-медицинская
библиотека

Tomsk 2004
Russian Academy of Medical Sciences, Siberian Branch
Tomsk Scientific Center
State Organization "Scientific Research Institute of Cardiology"

V.P. Shakhov
C.V. Popov

STEM CELLS AND
CARDIOMYOPLASTY IN
NORM AND PATHOLOGY

STOMOLOGY
AND
CARDIOMYOPLASTY
IN
NORM AND PATHOLOGY

V.П. Шахов
C.В. Попов

СТВОЛОВЫЕ КЛЕТКИ
И КАРДИОМИОГЕНЕЗ
В НОРМЕ И ПАТОЛОГИИ

Scientific & Technical Translation
Tomsk 2004
ISBN 5-93629-171-5

В монографии обобщаются современные данные о морфофункциональных свойствах стволовых клеток, способных дифференцироваться в кардиомиоциты и клетки эндоцелия, принимающих участие в развитии сердца и его репарации при повреждении. На основании многочисленных исследований и данных мировой литературы рассматриваются основные механизмы коммиттирования эмбриональных и мезенхимальных стволовых клеток и вопросы, связанные с их ролью в репарации сердечно-сосудистой системы. Выявленные закономерности позволяют определить главные критерии развития эффективной клеточной терапии с помощью инфаркта миокарда, установлены основные положения, позволяющие осложненную и противопоказания для его проведения.

Для кардиологов, кардиохирургов, интенсивных терапевтов, студентов и аспирантов, а также специалистов, работающих в области клеточных и критических технологий, в регенераторной медицине.

УДК 612.12-008.318:612.018:615.22:615.212.7:616.45-001.1/3:616.12-005.4-092:613.863

Рецензент — член-корреспондент РАН Л.И. Корочин.

ISBN 5-93629-171-5 © Шахов В.П., Попов С.В., 2004
© СТТ, 2004

ПРЕДИСЛОВИЕ

В последнее время внимание биологов и медиков привлекает вопрос о возможности использования стволовых клеток в терапии различных заболеваний. Стволовые клетки — это клетки, которые могут дифференцироваться в различные типы, в результате чего возникает возможность их использования в медицине.

Разработаны новейшие технологии, позволяющие управлять дифференциацией стволовых клеток, а также создать условия для их интеграции в клетки организма. Это открывает перспективу использования стволовых клеток в регенеративной медицине.

В монографии обобщаются современные данные о морфофункциональных свойствах стволовых клеток, способных дифференцироваться в кардиомиоциты и клетки эндоцелия, принимающие участие в развитии сердца и его репарации при повреждении. На основании многочисленных исследований и данных мировой литературы рассматриваются основные механизмы коммиттирования эмбриональных и мезенхимальных стволовых клеток и вопросы, связанные с их ролью в репарации сердечно-сосудистой системы. Выявленные закономерности позволяют определить главные критерии развития эффективной клеточной терапии с помощью инфаркта миокарда, установлены основные положения, позволяющие осложненную и противопоказания для его проведения.

Для кардиологов, кардиохирургов, интенсивных терапевтов, студентов и аспирантов, а также специалистов, работающих в области клеточных и критических технологий, в регенераторной медицине.

УДК 612.12-008.318:612.018:615.22:615.212.7:616.45-001.1/3:616.12-005.4-092:613.863

Рецензент — член-корреспондент РАН Л.И. Корочин.

ISBN 5-93629-171-5 © Шахов В.П., Попов С.В., 2004
© СТТ, 2004
Шахов В.П., Попов С.В. Стволовые клетки и кар-
ISBN 5-93629-171-5

В монографии обобщаются современные данные о морфофункцио-
нальных свойствах стволовых клеток, способных дифференцироваться в
кардиомиоциты и клетки эндотелия, принимающих участие в развитии
сердца и его репарации при повреждениях. На основе многолетних
исследований в данном направлении в мировой литературе представляются фун-
даментальные механизмы коммитирования эмбриональных и мезенхи-
мальных стволовых клеток и вопросов, связанных с их ролью в репарации
средственной ткани. Выявлены закономерности обеспечения опреде-
ленных критериев для успешной стимуляции клеточной терапии се-
трального и периферического миокарда, установлены основные показания, возможные
осложнения и противопоказания для ее проведения.

Для кардиологов, генетиков, хирургов, биокинезиологов, биотехноло-
гов, студентов и аспирантов, а также специалистов, работающих в
области клеточных и критических технологий, в генеторегуляторной медицине.

УДК 612.12-008:318.612.018;615.22:615.212.7:616.45-001.1/3:616.12-005.4-092:613.863

Рецензент — член-корреспондент РАН
L.I. Корочкин.

ISBN 5-93629-171-5 © Шахов В.П., Попов С.В., 2004
© СТТм, 2004

ПРЕДИСЛОВИЕ

В последнее время внимание биологов и медиков привлекает
к проблеме стволовых клеток. Стволовые клетки — это клет-
ки, сохраняющие потенциал к развитию в разных направлениях.
Из стволовых клеток может возникнуть и кожная, и нервая, и
кровяная клетка. Понятие о стволовых клетках зародилось в
России благодаря трудам выдающихся гистологов — Александра
Александровича Максимова, одного из основоположников современной
gистологии, и Александра Яковлевича Фриндештейна.

Различают два вида стволовых клеток: эмбриональные
стволовые клетки (ЭСК) и региональные стволовые клетки
(СК). Первыми присутствуют в самых ранних эмбрионах, когда
еще не начался процесс органообразования. Вторые обнару-
живаются позже, когда формируются органы и ткани. Раньше
считали, что взрослый организм содержит СК. Однако, благодаря работам Л.Я. Фриндештейна, удалось показать, что они присутству-
ют и в взрослом организме, хотя в очень малом количестве
(доля процента).

СК выявляют практически во всех органах, включая центральную
нervную систему. Их наличие повышает восстановительные
способности организма, и в том числе нервной системы.

Региональные нервные стволовые клетки локализуются главным
образом в отделе мозга, именуемом гиппокампом, и в субвентрикулярной области, где расположены клетки, выстилаю-
щие стенку желудочков мозга. Их можно выделить и высевать в культуру тканей, растущую в специальной среде.

Наряду с региональными стволовыми клетками, которые при
повреждении ткани соответствующего органа мигрируют в зону
повреждения, делятся и дифференцируются, образуя в этом месте
новую "ткань", существует "центральный склад запасов" —
стромальные клетки костного мозга. Эти клетки универсальные, они поступают с кровотоком в поврежденный орган или

© Шахов В.П., Попов С.В., 2004
© СТТм, 2004
ткань и на месте под влиянием различных сигнальных веществ превращаются в нежные специализированные клетки, которые замещают погибающие. В частности, установлена, что введение стромальных клеток костного мозга в зону повреждения сердечной мышцы (зону инфаркта) практически полностью устраняет явления постинфарктной сердечной недостаточности у экспериментальных животных. Так, стромальные клетки, введенные сви-нными с экспериментальным инфарктом, уже через восемь недель полностью перерождаются в клетки сердечной мышцы, восстанавливая ее функциональные свойства.

Результаты такого лечения инфаркта впечатляющие. По дан-ным Американского кардиологического общества за 2000 год, у крыс с искусственно вызванным инфарктом 90% стромальных клеток костного мозга, введенных в область сердца, трансформируются в клетки сердечной мышцы.

Японские биологи получили из стромальных клеток костно- го мозга мышей клетки сердечной мышцы. В лабораторных ус-ловиях в культуре стромальных клеток добавляли 5-азоотидин, и они начинали дифференцироваться в клетки сердечной мышцы. Такая клеточная терапия весьма перспективна для восста-новления сердечной мышцы после инфаркта, поскольку для нее используются собственные стволовые стромальные клетки. Они не отторгаются, кроме того, при введении взрослых ство-ловых клеток исключена вероятность их злокачественного перерождения.

Широко используется терапия стромальными клетками в ор-топедии. Это связано с существованием особой биологии, которая индуцирует дифференцировку стромальных клеток в клетки костной ткани — остеобласты. Клинические испытания в этом на-правлении дали многообещающие результаты. Например, в США 91-летней пациентке с незаживающим в течение 13 лет перелом кости поясничного позвонка, с нанесенными на нее БМР. Поступающее в зону перелома стромальные клетки индуцировались к пластинике под влиянием БМР и в результате формирование костной ткани. Через 6 месяцев после установки такой пластиники заживление кости наблюдалось. Начиная в США проходят испытания и скоро начнут широко применяться в клинике специальные пористые губки, наполненные одновременно и стромальными клетками, и нужными индуцирующими веществами, направляющими развитие клеток по требуемому пути.

Большое значение придают стволовым клеткам (и, в частно-сти, стромальным) при лечении различных нейродегенеративных и неврологических заболеваний — паркинсонизма, болезни Альцгеймера (старческое слабоумие), хореи Гентингтона, мозжечко- вых атакий, рассеянного склероза и др.

Не случайно именно на стромальные стволовые клетки воз-лагаются большие надежды в связи с клеточной терапией. Между тем остро ощущается дефицит обзорной литературы, посвященной именно этим клеткам. Существенный вклад в дело восполнения данного пробела вносит книга В.П. Шахова и С.В. Попова "Стволовые клетки и кардиомиопатия в норме и патологии". Сразу же хочется отметить, что содержание этого фундаментального труда значительно шире его названия. Авторам удалось изложить современные данные, касающиеся природы и поведения стволовых клеток вообще, и осветить перспективу их использования в клеточной терапии. Следует при этом отметить достаточную бо-лееи стволовый опыт авторов в работе со стволовыми клетка-ми, что обеспечивает квалифицированное и местами увлека-тельное изложение научного материала. Значительное место в книге занимают как раз стромальные стволовые клетки, биоло-гия которых в разных аспектах подробно анализируется."Авторы." Книга написана богатым фактическим материа-лом, в том числе полученными авторами. Положительным фак-том является то, что подробное место уделино отечественным авторам, внесшим достойный вклад в исследование проблемы стволовых клеток.

Не сомневаюсь, что предлагаемая книга будет крайне по- лезной для всех самых широкого круга читателей — как для медиков, так и для биологов.

Член-корреспондент Российской Академии Наук
Л.И. Корочкин
Преписание

Больное значение придают стволовым клеткам (и, в частности, стромальным) при лечении различных нейрогенетических и неврологических заболеваний - паркинсонизма, болезни Альцгеймера (старческие слабуемы), хореи Гентингтона, мозжечковых атаксий, рассеянного склероза и др.

Не случайно именно на стромальные стволовые клетки возлагают большие надежды в связи с клеточной терапией. Между тем остро ощущается дефицит обзорной литературы, посвященной этим клеткам. Существенный вклад в дело восполнения данного пробела вносит книга В.П. Шихова и С.В. Попова "Стволовые клетки и кардиомиобласты". Сразу же хочется отметить, что содержание этого фундаментального труда значительно шире его названия. Авторам удалось изложить современные данные, касающиеся природы и поведения стволовых клеток вообще, и осветить перспективы их использования в клинической терапии. Следует при этом отметить достаточно богатый собственный опыт авторов в работе со стволовыми клетками, что обеспечивает квалифицированное и местами увлекательное изложение научного материала. Значительное место в книге занимают материалы по изучению стволовых клеток, биологии, которая в самых различных аспектах подробно анализируется авторами. Книга насыщена богатым фактическим материалом, в том числе полученными авторами. Положительным фактом является то, что подобное место уделио отечественным авторам, внедрившим клинический вклад в исследование проблемы стволовых клеток.

Не сомневаюсь, что предлагаемая книга будет крайне полезной для саморазбирающихся читателей - как для медиков, так и для биологов.

Член-корреспондент
Российской Академии Наук
Л.И. Корочкин
ВВЕДЕНИЕ

Растущие показатели сердечно-сосудистой заболеваемости на фоне беспрецедентно низкой для мирного времени средней продолжительности жизни российских граждан, особенно мужчин, определяют социально-экономическую значимость решения этой проблемы. Хирургия сердца и сосудов занимает важное место в системе оказания медицинской помощи этому самому большому контингенту больных. Мировая практика показывает: вложения дополнительных средств в здравоохранение, государство через несколько лет получает ощутимый экономический эффект от снижения заболеваемости и смертности населения. Тем не менее, в 2001 г. сердечно-сосудистые заболевания (ССЗ), включая ишемическую болезнь сердца, по-прежнему были причиной более 50% всех случаев смерти как в России (табл. 1–3, Бокерия, Гудкова, 2002), так и за рубежом, и остаются ведущей причиной развития застойной сердечной недостаточности (Ozbaran et al., 2004).

В США ежегодно регистрируется более 1,1 млн инфарктов миокарда (ИМ) и 400 тыс. случаев развития сердечной недостаточности (СН). Около 20% пациентов с диагнозом СН умирают в течение года (American Heart Association, 2001).

По данным МЗ РФ, в 2001 г. имело место дальнейшее увеличение пациентов с впервые установленным диагнозом ССЗ (табл. 2).

Из приведенных данных видно, что при некотором уменьшении абсолютного числа детей с болезнями сердца и сосудов уровни распространенности последних в этой возрастной группе за прошедший год практически не изменились. Общее число больных ССЗ, зарегистрированных в лечебно-профилактических учреждениях России (так называемая накопленная заболеваемость) за последние два года, представлено в таблице 3 (Бокерия, Гудкова, 2002).

Основное место среди заболеваний сердечно-сосудистой системы у взрослых занимает ишемическая болезнь сердца (ИБС) – 46,9% случаев в 2001 г., среди которых около 3% приходится на острый инфаркт миокарда (ОИМ) (табл. 4). Количество ОИМ на 100 тыс. населения в 2001 г. составило 143,2 человека (Бокерия, Гудкова, 2002).

Следует отметить, что частота повторных ОИМ в 2001 г. выросла по сравнению с 2000 г. почти на 2% (соответственно 20,5 и 20,9 на 100 тыс. взрослого населения страны).

Как правило, результатом ИБС и ОИМ является развитие сердечной недостаточности (Бокерия, Гудкова, 2002). Сердечные заболевания...
ВВЕДЕНИЕ
Растущие показатели сердечно-сосудистой заболеваемости на фоне беспрецедентно низкой для мирного времени средней продолжительности жизни российских граждан, особенно мужчин, определяют социально-экономическую значимость решения этой проблемы. Хирургия сердца и сосудов занимает важное место в системе оказания медицинской помощи этому большому контингенту больных. Мировая практика показывает: вложения дополнительных средств в здравоохранение, государство через несколько лет получает ощутимый экономический эффект от снижения заболеваемости и смертности населения. Тем не менее, в 2001 г. сердечно-сосудистые заболевания (ССЗ), включая ишемическую болезнь сердца, по-прежнему были причиной более 50% всех случаев смерти как в России (табл. 1–3, Бокерия, Гудкова, 2002), так и за рубежом, и остаются ведущей причиной развития застойной сердечной недостаточности (Ozbaran et al., 2004).

В США ежегодно регистрируется более 1,1 млн инфарктов миокарда (ИМ) и 400 тыс. случаев развития сердечной недостаточности (СН). Около 20% пациентов с диагнозом СН умирают в течение года (American Heart Association, 2001).

По данным МЗ РФ, в 2001 г. имело место дальнейшее увеличение пациентов с впервые установленным диагнозом ССЗ (табл. 2).

Из приведенных данных видно, что при некотором уменьшении абсолютного числа детей с болезнями сердца и сосудов уровень распространенности последних в этой возрастной группе за прошедший год практически не изменился. Общее число больных ССЗ, зарегистрированных в лечебно-профилактических учреждениях России (так называемая накопленная заболеваемость) за последние два года, представлено в таблице 3 (Бокерия, Гудкова, 2002).

Основное место среди заболеваний сердечно-сосудистой системы у взрослых занимает ишемическая болезнь сердца (ИБС) - 46,9% случаев в 2001 г., среди которых около 3% приходится на острый инфаркт миокарда (ОИМ) (табл. 4). Количество ОИМ на 100 тыс. населения в 2001 г. составило 143,2 человека (Бокерия, Гудкова, 2002).

Следует отметить, что частота повторных ОИМ в 2001 г. выросла по сравнению с 2000 г. почти на 2% (соответственно 20,5 и 20,9 на 100 тыс. взрослого населения страны).

Как правило, результатом ИБС и ОИМ является развитие сердечной недостаточности (Бокерия, Гудкова, 2002). Сердеч-
Таблица 3
Распространенность сердечно-сосудистых заболеваний в РФ

<table>
<thead>
<tr>
<th>Федеральный округ</th>
<th>2000 г.</th>
<th>2001 г.</th>
<th>Динамика показателей, в %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Аб. кол-во</td>
<td>На 100 тыс. чел.</td>
<td>Аб. кол-во</td>
</tr>
<tr>
<td>Центральный</td>
<td>6193712</td>
<td>15811,2</td>
<td>6421777</td>
</tr>
<tr>
<td>Северо-Западный</td>
<td>2345427</td>
<td>5527,8</td>
<td>2317838</td>
</tr>
<tr>
<td>Южный</td>
<td>2550016</td>
<td>10093,7</td>
<td>2441370</td>
</tr>
<tr>
<td>Приволжский</td>
<td>4468531</td>
<td>14001,7</td>
<td>4765269</td>
</tr>
<tr>
<td>Уральский</td>
<td>1211052</td>
<td>9702,6</td>
<td>1170204</td>
</tr>
<tr>
<td>Сибирский</td>
<td>2771256</td>
<td>13309,1</td>
<td>2678534</td>
</tr>
<tr>
<td>Дальневосточный</td>
<td>700634</td>
<td>9616,1</td>
<td>754632</td>
</tr>
<tr>
<td>Всего</td>
<td>15990062</td>
<td>13902,2</td>
<td>21022621</td>
</tr>
</tbody>
</table>

Таблица 4
Заболеваемость ИБС и ОИМ в России (на 100 тыс. взрослого населения)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Центральный</td>
<td>6423,5</td>
<td>421,5</td>
<td>6487,0</td>
<td>418,1</td>
<td>155,5</td>
<td>155,7</td>
</tr>
<tr>
<td>Северо-Западный</td>
<td>5113,6</td>
<td>386,7</td>
<td>6052,5</td>
<td>359,3</td>
<td>152,4</td>
<td>148,7</td>
</tr>
<tr>
<td>Южный</td>
<td>4192,7</td>
<td>427,0</td>
<td>4227,3</td>
<td>446,2</td>
<td>120,6</td>
<td>115,2</td>
</tr>
<tr>
<td>Приволжский</td>
<td>4085,3</td>
<td>425,3</td>
<td>4365,6</td>
<td>454,4</td>
<td>151,1</td>
<td>153,2</td>
</tr>
<tr>
<td>Уральский</td>
<td>3336,0</td>
<td>401,1</td>
<td>3289,4</td>
<td>424,0</td>
<td>154,1</td>
<td>152,4</td>
</tr>
<tr>
<td>Сибирский</td>
<td>4324,8</td>
<td>468,1</td>
<td>4642,4</td>
<td>503,7</td>
<td>130,6</td>
<td>131,2</td>
</tr>
<tr>
<td>Дальневосточный</td>
<td>3285,5</td>
<td>362,4</td>
<td>3406,6</td>
<td>376,7</td>
<td>114,2</td>
<td>112,6</td>
</tr>
<tr>
<td>Средняя по РФ</td>
<td>4888,6</td>
<td>422,7</td>
<td>4672,9</td>
<td>438,4</td>
<td>144,0</td>
<td>143,2</td>
</tr>
</tbody>
</table>

Трансплантация сердца, ультрафильтрация и др. Между тем, частота развития СН и распространенность его в человеческой популяции нарастают, именно поэтому существует необходимость в разработке принципиально новых, доступных и эффективных методов коррекции СН (Беленков и др., 1997).
Одним из таких направлений является так называемая регенерация медиа, использующая стволовые клетки. С помощью ее клеточных технологий впервые стало возможным восстанавливать поврежденные и деформированные структуры сердечной ткани. Следует отметить, что термин "стволовые клетки" был предложен нашим соотечественником, ставшим в последствии основоположником американской школы общей патологии, А. Максимовым в 1907 г. Считается, что теоретической основой данного направления является открытие Д. Толпсон с сотрудниками (1998) пул эмбриональных стволовых клеток человека. Эти клетки были найдены у животных еще в 1811 г., а основные методы, позволяющие выявлять мультиполярные стволовые (стромальные) клетки взрослого организма, были разработаны еще в начале 70-х гг. прошлого столетия Л. Фриденштейном. Однако, несмотря на приоритеты для нашей страны и мира, мы не смогли своевременно воспользоваться этими достижениями.
Однако в силу того, что в данный период развития биомедицины не было достоверных маркеров, в частности, генетических и иммунологических, с помощью которых нельзя было идентифицировать ту или иную популяцию стволовых клеток, все разговоры пошли противоположный характер. Только в конце XX века удалось доказать, что в взрослом организме существует пул мультиполярных стволовых клеток (МПСК), способных восстанавливать практически все известные линии мезенхимальных, нейральных, эндодермальных и других клеток, включая кардиомиопиты.
Тем не менее, используя разные источники МПСК (костный мозг, кожа, жировая ткань и т.п.), а также технологии по выделению, сепарации, культуриванию и перепрограммированию данных категорий регенераторных клеток, в различных лабо-
Введение

Таблица 3
Распространенность сердечно-сосудистых заболеваний в РФ

<table>
<thead>
<tr>
<th>Федеральный округ</th>
<th>2000 г.</th>
<th>2001 г.</th>
<th>Динамика показателей, в %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Аб. кол-во</td>
<td>На 100 тыс. чел.</td>
<td>Аб. кол-во</td>
</tr>
<tr>
<td>Центральный</td>
<td>6193712</td>
<td>16310,2</td>
<td>6427777</td>
</tr>
<tr>
<td>Северо-Западный</td>
<td>2345421</td>
<td>15276,8</td>
<td>2378236</td>
</tr>
<tr>
<td>Южный</td>
<td>2210616</td>
<td>10947,6</td>
<td>2443170</td>
</tr>
<tr>
<td>Приволжский</td>
<td>4465531</td>
<td>14001,7</td>
<td>4365260</td>
</tr>
<tr>
<td>Уральский</td>
<td>1221652</td>
<td>9703,6</td>
<td>1270204</td>
</tr>
<tr>
<td>Сибирский</td>
<td>2771296</td>
<td>13369,1</td>
<td>2578536</td>
</tr>
<tr>
<td>Дальневосточный</td>
<td>700534</td>
<td>9616,1</td>
<td>764622</td>
</tr>
<tr>
<td>Всего</td>
<td>15990062</td>
<td>13902,2</td>
<td>1632261</td>
</tr>
</tbody>
</table>

Таблица 4
Заболеваемости ИБС и ИМ в России (на 100 тыс. взрослого населения)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Более</td>
<td>менее</td>
<td>Всего</td>
<td>Более</td>
</tr>
<tr>
<td>Центральный</td>
<td>6426,3</td>
<td>421,5</td>
<td>6847,8</td>
<td>418,1</td>
</tr>
<tr>
<td>Северо-Западный</td>
<td>5113,6</td>
<td>386,7</td>
<td>5500,3</td>
<td>359,3</td>
</tr>
<tr>
<td>Южный</td>
<td>4198,7</td>
<td>427,9</td>
<td>4626,6</td>
<td>446,2</td>
</tr>
<tr>
<td>Приволжский</td>
<td>4085,3</td>
<td>426,3</td>
<td>4511,6</td>
<td>454,4</td>
</tr>
<tr>
<td>Уральский</td>
<td>3336,0</td>
<td>401,1</td>
<td>3737,1</td>
<td>424,0</td>
</tr>
<tr>
<td>Сибирский</td>
<td>4324,8</td>
<td>486,1</td>
<td>4810,9</td>
<td>456,2</td>
</tr>
<tr>
<td>Дальневосточный</td>
<td>3285,5</td>
<td>362,4</td>
<td>3648,0</td>
<td>376,7</td>
</tr>
<tr>
<td>Средняя по РФ</td>
<td>4838,6</td>
<td>422,7</td>
<td>5261,3</td>
<td>457,2</td>
</tr>
</tbody>
</table>

на недостаточность является одной из главных проблем здравоохранения всех экономически развитых стран (Бола и др., 1995; Cleland, McGowan, 1999). Для лечения СН в настоящее время используют широкий спектр лекарственных препаратов, стентирования, кардиоиомозаики, искусственное сердце, трансплантацию сердца, ультрафильтрацию и др. Между тем, частота развития СН и распространенность её в человеческой популяции растет, именно поэтому существует необходимость в разработке принципиально новых, доступных и эффективных методов коррекции СН (Беленков и др., 1997).

Одним из таких направлений является так называемая регенеративная медицина, использующая стволовые клетки. С помощью её структурных технологий впервые стало возможным восстанавливать поврежденные и деформированные структуры сердечной ткани. Следует отметить, что термин "стволовая клетка" был предложен нами соотечественником, ставшим в последствии основоположником американской школы по патологии Л. Максимовым в 1907 г. Считается, что теоретической основой данного направления является открытие D. Tomlinson с сотрудниками (1998) пулла эмбриональных стволовых клеток человека. Эти клетки были найдены у животных еще в 1981 г., а только затем, позволяющие вызывать мультипotentные стволовые (стромальные) клетки взрослого организма, были разработаны еще в начале 70-х гг. прошлого столетия A.Y. Фриденьштейном. Однако, несмотря на приоритеты для нашей страны идеи, мы не смогли своевременно воспользоваться этими достижениями.

Однако в силу того что в данный период развития биомедицины не было достоверных маркеров, в частности, генетических и иммунологических, с помощью которых можно было идентифицировать ту или иную популяцию стволовых клеток, все разговоры пошли поверхностный характер. Только в конце XX века удалось доказать, что во взрослом организме существует пул мультипotentных стволовых клеток (МПК), способных восстанавливать практически все известные линии мезенхимальных, нервных, эндодермальных и других клеток, включая кардиомиоциты.

Тем не менее, используя разные источники МПК (костный мозг, кожа, жировая ткань и т.п.), а также технологии по выделению, сепарации, культивированию и перепрограммированию данных категорий регенераторных клеток, в различных лабо-
ратериях были получены противоречивые и часто взаимоисключающие результаты. Остаётся непонятным судьба трансплантированных МПСК, то, как происходит их рассеивание, установление в поврежденную ткань и взаимодействие с окружающими клетками на разных стадиях развития того или иного патологического процесса. Более того, такие на вид простые вещи, как способ и сроки введения МПСК больным с острым инфарктом миокарда, также оставались практически не изученными.

В данной работе мы пытались понять, насколько возможно с помощью аутологичных МПСК костного мозга улучшить функцию сердечной ткани при моделировании острового инфаркта миокарда. На наш взгляд, наиболее патогенетической моделью является классическая коронарэкклоза, которая и легла в основу главной экспериментальной модели поражения сердца в данной монографии. Среди пуль МПСК мы выбрали мезенхимальные стволовые клетки (МСК), которые обладают более высоким потенциалом по отношению к образованию мышечных, в том числе кардиомиогенных, ангиогенных элементов. Кроме того, их свойства наиболее изучены, а технология получения отработана и хорошо воспроизводится во многих лабораториях мира. В качестве контрольной группы клеток были выбраны мононуклеары костного мозга, которые содержат сложный костный миоцитов, лимфоцитов, миелоцитов, гемопоэтических предшественников и других клеток, которые потенциально могут оказывать позитивное, либо негативное влияние на функцию поврежденного миокарда.

В первую очередь необходимо было определить алгоритм технологии выделения аутологичных стволовых клеток. Оценить потенциал мезенхимальных стволовых клеток, способных трансформироваться в кардиомиоциты и эндотелиоидные элементы. Определить наиболее эффективные способы перепрограммирования СК в миокардиальные структуры, а также их число и срок оптимальной трансплантации.

Эта работа была бы невозможна без патронажа академика РАМН Р. С. Карпова, а также Медицинской промышленной компании "Электролюкс" (генеральный директор А. А. Кострикин), сотрудников НИИ кардиологии ТНЦ СО РАМН — д.м.н. А. С. Афанасьева, к.м.н. А. В. Крылатова, к.м.н. Н. В. Соленкова, сотрудников кафедры технологии биолитов Томского политехнического университета — проф. В. И. Верцахин, В. П. Игнатова, а также к.т.н. В. И. Итина, проф. Г. К. Полова, к.т.н. В. И. Карпикова, академика РАМН Ю. М. Захарова, В. И. Пономарева, проф.
раториях были получены противоречивые и часто взаимоисключающие результаты. Остаются непонятными судьба трансплантированных МПСК, то, как происходит их распределение, установление в поврежденную ткань и взаимодействие с окружающими клетками на разных стадиях развития того или иного патологического процесса. Более того, такие на вид простые вещи, как способ и сроки введения МПСК больным с острым инфарктом миокарда, также остались практически не изученными.

В данной работе мы попытались понять, насколько возможно с помощью аутоаллологических МПСК костного мозга улучшить функцию сердечной ткани при моделировании остrego инфаркта миокарда. На наш взгляд, наиболее патогенетической моделью является классическая кардиомиопатия, которая и легла в основу главной экспериментальной модели поражения сердца в данной монографии. Среди пуль МПСК мы выбрали мезенхимальные стволовые клетки (МСК), которые обладают более высоким потенциалом по отношению к образованию мышечных, в том числе кардиомиогенных, элементов. Кроме того, их свойства наиболее изучены, а технология получения стопривельна и хорошо воспроизводится во многих лабораториях мира. В качестве контрольной группы клеток были выбраны мононуклеары костного мозга, которые содержат сложный костный матрикс, различные структуры и соединительную ткань, которые потенциально могут оказать позитивное, либо негативное влияние на функцию поврежденного миокарда.

В первую очередь необходимо было определить алгоритм технологии выделения аутоаллологических стволовых клеток. Оценить потенциал мезенхимальных стволовых клеток, способных трансформироваться в кардиомиоциты и эндотелийные элементы. Определить наиболее эффективные способы перепрограммирования СК в миокардиальные структуры, а также их число и сроки оптимальной трансплантации.

Эта работа была бы невозможна без патронажа академика РАМН Р. С. Карпова, а также Медицинской промышленной компании "Электролюкс" (генеральный директор А. А. Кострикин), сотрудников НИИ кардиологии ТНЦ СО РАМН — д.м.н. А. С. Афanasьева, к.м.н. А. В. Крылатова, к.м.н. Н. В. Солнечной, сотрудников кафедры технологии силикатов Томского политехнического университета — проф. В. И. Верещагина, В. П. Игнатова, а также к.т.н. В. И. Игитина, проф. Г. К. Полова, к.т.н. В. И. Карпищева, академика РАМН Ю. М. Захарова, В. И. Пономарева, проф.
ГЛАВА 1

РАЗВИТИЕ СЕРДЦА. РОЛЬ ЭМБРИОНАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК В КАРДИОМИОГЕНЕЗЕ

1.1. РАЗВИТИЕ СЕРДЦА

Известно, что кардиомиоциты, миобласти и мезотелии эндокарда развиваются из висцерального листка спланхнической мезодермы, окружающей эндокардиальную трубку. Напротив, эндокард, а также соединительная ткань миокарда и эпикарда формируются из мезенхимы (Bykov, 1997).

Линейная схема развития сердца у человека представлена на рис. 1.1, а схематическая картина формирования сердечной ткани — на примере куриного эмбриона (рис. 1.2).

Эмбриональная мезенхима — это клеточная сеть рыхлой соединительной ткани, выполняющая множественные метаболические, сигнальные, механические (опорные) и морфогенетические функции. Конденсация мезенхимы за счет клоногенеза роста стволовых клеток запускает синтез первичных морфогенетических сигналов, ведущих к закладке органов. Параллельно мезенхима обеспечивает опережающее развитие коммуникаций (кровеносные и лимфатические сосуды), а также формирует клеточный каркас (строму) органов. Интерполяция мезенхимальных клеток в организме необходима для "разметки" зрелой "карты" будущих органов и роста стволовых клеток. Конденсатором мезенхимы являются генетически определенные генетические системы, в которых мезенхимальные стволовые клетки, макрофаги, эндотелии, лимфоциты, гладкомышечные волокна и фибробласты (Ренни, 2000; Карлов, Шахов, 2001; Gilbert, 1994).

Независимое происхождение и множественные функции мезенхимы во внутреннем развитии подчеркивают множественность функций этой гетерогенной клеточной сети. Сердце, печень, почки, легкие и другие органы собраны из развивающихся "функциональных единиц" специализированных клеток (пациенци) среди "прослойки" мезенхимы, формирующей каркас органов, кровеносных и лимфатических сосудов. Изучение стволовых клеток мезенхимы кроветворной, иммунной и нервной
Глава 1

Развитие сердца. Роль эмбриональных стволовых клеток в кардиомиогенезе

1.1. Развитие сердца

Известно, что кардиомиоциты, миобласты и мезотелип эпикарда развиваются из висцерального листка спланхнической мезодермы, окружающей эндокардиальную трубку. Напротив, эндокард, а также соединительная ткань миокарда и эпикарда формируются из мезенхимы (Выксун, 1997).

Линейная схема развития сердца у человека представлена на рис. 1.1, а схематическая картина формирования сердечной ткани — на примере куриного эмбриона (рис. 1.2).

Эмбриональная мезенхима — это клеточная сеть рыхлой соединительной ткани, выполняющая множественные метаболические, сигнальные, механические (опорные) и морфогенетические функции. Конденсация мезенхимы за счет клеточного роста стволовых клеток запускает синтез первичных морфогенетических сигналов, ведущих к закладке органов. Параллельно мезенхима обеспечивает опережающее развитие коммуникаций (кровеносных и лимфатических сосудов), а также формирует клеточный каркас (структу) органов. Интерпенетрация мезенхимальных клеток во время органогенеза необходима для "разметки" трехмерной "карты" будущих органов и реакции действия гомеоцирных генов, определяющих будущие размеры и границы органов. Согласно концепции о позиционной информации, в организме существует морфогенетическое поле. Оно контролируется с помощью экспрессии гомеоцирных генов типа HOX1, HOX2, HOX3, HOX4, HOX7, заставляя клетки помнить не только место

Рис. 1.1. Линейная схема кардиомиогенеза (Yarison V., 1998, с дополнениями)

то своей локализации в соответствии с координационными осями, но и выполнять миссию, которую они должны осуществить в процессе своей жизни, например восстановление мышечных и сосудистых тканей при их повреждении. Считается, что в сохранении позиционной информации большую роль играют мезенхимные элементы, в частности мезенхимальные стволовые клетки, макрофаги, эндотелий, лимфоциты, гладкомышечные волокна и фибробLASTы (Репин, 2000; Карлов, Шахов, 2001; Gilbert, 1994).

Независимо происхождения и множественные функции мезенхимы во внутреннем развитии подчеркивают множественность функции этой гетерогенной клеточной сети. Сердце, печень, почки, легкие и другие органы собраны из повторяющихся "функциональных единиц" специализированных клеток (параксины) среди "прослой" мезенхимы, формирующей каркас органа, кровеносных и лимфатических сосудов. Изучение стволовых клеток переносится кроветворной, иммунной и нервной
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиогенезе

Рис. 1.2. Ранние этапы развития сердца у зародыша: a) 25 ч; b) 26 ч; в) 28 ч; г) 29 ч. 1 — эндомиокард, 2 — перикард, 3 — эмбриональные клетки.

Согласно вышеперечисленной схеме, гистогенез сердечной мышечной ткани происходит из эмбриональной мезодермы. На существенность этого процесса такова. Первоначально из мезенхимальных стволовых клеток образуются фетальные кардиомиобласты. Затем они трансформируются в кардиомиоциты, способные...
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиогенезе

Рис. 1.2. Ранние этапы развития сердца куриного эмбриона: а) 25 ч; б) 26 ч; в) 28 ч; г) 29 ч. 1 — закладка эпикарда; 2 — закладка эндокарда; 3 — закладка миокарда (по В.Л. Быкову, 1998)

Согласно вышеуказанной схеме, гистогенез сердечной мышечной ткани происходит из прекардиальной мезодермы. На правленность этого процесса такова. Первоначально из мезодермальных стволовых клеток образуются фетальные кардиомиобласти. Затем они трансформируются в кардиомиоциты, способные транспортировать из стволовых клеток мезенхимы тех же органов (Регин, 2000).

Закладка сердца у человека происходит на 3-й неделе внутриматочного развития, когда в шейном отделе над желчным мешком возникают из мезенхимы сначала два эндохардиальные трубки, выстиланные эндотелием. Они представляют собой закладки эндохарда. Трубки растут и окружаются висцеральным листком спланхнотома. Спланхнотом утолщается и формирует миозэккардиальные пластиники, которые окружают эндохардиальные трубки. По мере смыкания кишечной трубки обе закладки сердца сближаются, срастаются, а их внутренние стенки исчезают. При этом сердечная трубка имеет двухслойную структуру (внекамерное сердце), которая соединяется с развивающимися кровеносными сосудами (Гансбургский, Павлов, 1999).
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиомиогенезе

ные к делению. Этот процесс сопровождается появлением микрофибрил и постепенным возрастанием их количества (Румянцев, 1982).

Одновременно эволюционируют структуры вставочных дисков, лад, триад, трофиотического аппарата и формируются дефектные КМЦ. Процессы репродукции и микрофибрилlogenеза в этих клетках не происходит, а происходит кариорекция с формированием одно-, двуядерных КМЦ.

Кардиомиоциты и эндотелиальные клетки представляют собой первые два слоя в первичной сердечной трубе. Трансформационные факторы Nkx2.5 и GATA-4 являются одними из наиболее ранних маркеров для кардиальных клеток, которые возникают из латеральной пластинки нервной системы. До момента образования сердечной трубки кардиальны клетки уже экспрессируют некоторые специфические кардиальные гены, включая и те, которые кодируют сохраняющиеся гены и предсердный натрийуретический фактор. Следовательно, дифференцировка кардиомиоцитов предшествует последующему морфогенетическому развитию, ведущему к формированию сердца. На линии клеток P19 было продемонстрировано, что GATA-4 способен только понять инициировать кардиальную дифференцировку. Экспрессия гена, Nkx2.5, GATA-4, GATA-5 и GATA-6, у эмбрионов Хоррис недостаточна для индукции кардиомиогенеза. Требуется их координационное действие с другими факторами, присутствующими в кардиальных клетках. Установлено, что GATA-4 и Nkx2.5 могут взаимодействовать посредством C-терминальных "цинской пальчиков" и соседней ядерной области GATA-4 и C-терминально расположенного гомеодомена Nkx2.5. Обнаружено, что GATA-4 и Nkx2.5 способны синергично активировать проводник натрийуретического гормона. Кроме того, их кооперация необходима для связывания с ДНК. Два домена активации в C- и N-терминальных областях GATA-4, а также репрессорный домен в C-терминальной области Nkx2.5 участвуют в этом процессе. Предполагается, что GATA-4 посредством взаимодействия с Nkx2.5 дезактивирует C-терминальный ауторепрессорный домен Nkx2.5. Помимо взаимодействия с проводником натрийуретического гормона, выявлено взаимодействие GATA-4/Nkx2.5 с другими кардиальными промоторами и кардиальным α-актином. Оказалось, что избыточная экспрессия GATA-4 и Nkx2.5 в линии клеток P19CL6 достаточна для индукции кардиальной программы дифференцировки. Кроме того, взаимодействие GATA-4/Nkx2.5 управляется с помощью морфогенетического белка кости (МБК) с сигнального пути через митоген активирующее протеинкиназу (МАПК). Одной из особенностей взаимоотношений GATA-4/Nkx2.5 является их высокая специфичность. Nkx2.5 взаимодействует с GATA-4 и GATA-5, но не с GATA-6. Установлено, что GATA и Nkx белки могут взаимодействовать на нескольких уровнях. При этом оказалось, что GATA-4 и GATA-6 являются конфакторами. Взаимодействие GATA и MEF2 факторов показало, что их продукт является экспрессирующим фактором, обладающим гистондеметилтрансферазной активностью (Wobus, Gun, 1998; Farrell, Kirby, 2001; Boehler et al., 2002).

На 4-5-й месяц развития плода начинает формироваться проводящая система сердца. Следует отметить, что с этого времени картина ЭКГ во многом аналогочная сердцу взрослого человека. Еще одной особенностью образования проводящей системы у плода является то, что скорость дифференцировки кардиомиоцитов проводящей системы выше, чем у рабочих кардиомиоцитов.

В качестве индуктора кардиомиогенеза в системе in vitro последнее время наиболее часто используют вещество 5-азатиозин, которое, как предполагается, может блокировать остаточную и жировую дифференцировку МСК (Doetschman et al., 1985; Grounds et al., 2002).

Кардиомиоцитоподобные клетки экспрессируют специфические гены: BNP, GATA4 и Nkx2.5/Csx. По своему строению (структура миофibrил, наличие гранул) и способности к экспрессии гена ANP эти клетки приближаются к фетальным желудочковым кардиомиоцитам, которые определяются в сердце новорожденных красных (Venancce, Pang, 1989; Makino et al., 1999).

Установлено, что колониообразующие эмбриональные стволовые клетки (ОГК) могут дифференцироваться в кардиомиоциты in vitro с эффективностью около 50% (Doetschman et al., 1985; Wobus et al., 1991; Rehwiedel et al., 1996). Эти клетки развивали из тотипотентной эмбриональной бластоцисты и ранней мезодермы, эндодермы и эктодермы. Для МСК эта величина составляет около 30% (Makino et al., 1999). Эти данные косвенно подтверждают принципиальную возможность участия МСК в кардиогенезе.

Тем не менее, вопрос, как и на какой стадии развития эмбри-
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиомиогенезе

ные к делению. Этот процесс сопровождается появлением миофибрил и постепенным возрастания их количества (Румянцев, 1982).

Одновременно эволюционируют структуры вставочных дисков, пучков, тредов, трансплантационного аппарата и формируются дифференцированы КМЦ. Процессы репродукции и миофибриллогенеза в этих клетках не состоят в стадии конкурентных отношений, как в скелетной мускулатуре. Следует отметить, что данные КМЦ сохраняют способность к митозам. Однако митоз часто не идет до конца, а происходит амиорексисс с формированием одно-двухядерных КМЦ.

Кардиомиоциты и эндотелиальные клетки представляют собой первые два типа в первичной сердечной ткани. Транскрипционные факторы Nkx2.5 и GATA-4 являются одними из наиболее ранних маркеров для кардиомиоцитов, которые возникают из латеральной пластинки мезодермы. Адаптация сердечной ткани кардиомиоциты уже экспрессируют некоторые специфические кардиальные гены, включая те, которые кодируют сократительные белки и предсердный натрийуретический фактор. Следовательно, дифференцировка кардиомиоцитов предшествует последующим морфогенетическим событиям, ведущим к формированию сердца. На линии клеток P19 было продемонстрировано, что GATA-4 способен только потенцировать, но не инициировать кардиальную дифференцировку. Экспрессия гена Nkx2.5 и GATA-4, GATA-6 и Hoxb11 достаточна для индукции кардиомиоцитов. Требуется их координация дейстующих с другими факторами, присутствующими в прекардиальных клетках. Установлено, что GATA-4 и Nkx2.5 могут взаимодействовать посредством GATA-4 и GATA-6, у эмбрионов Хептрина недостаточно для индукции кардиомиоцитов. Результаты экспериментов подтверждают, что GATA-4 и GATA-6 способны синергично активировать промотор натрийуретического гормона. Кроме того, их кооперация необходима для взаимодействия с ДНК. Два домена активации в C- и N-терминальных областях GATA-4, а также репрессорный домен в бета-терминальной области Nkx2.5 участвуют в этом процессе. Предполагается, что GATA-4 посредством взаимодействия с Nkx2.5 демаскирует C-терминальный аутопрессорный домен Nkx2.5. Кроме того, взаимодействие с промотором натрийуретического гормона, выявлено взаимодействие GATA-4/Nkx2.5 и с другими кардиальными промоторами и кардиальным α-актином. Оказались, что избыточная экспрессия GATA-4 и Nkx2.5 в линии клеток P19CL6 достаточна для индукции кардиальной программы дифференцировки. Кроме того, взаимодействие GATA-4/Nkx2.5 управляется с помощью морфогенетического бикарноза (МБК) сигнального пути через митоген активирующую протеинкиназу (МАТК). Одной из особенностей взаимодействий GATA-4/Nkx2.5 является их высока специфичность Nkx2.5 взаимодействует с GATA-4 и GATA-5, но не с GATA-6. Установлено, что GATA и Nkx белки могут взаимодействовать на нескольких уровнях. При этом оказалось, что GATA-4 и GATA-5 являются кофакторами. Взаимодействие GATA и ME2 факторов показало, что их продукт является экспрессирующим кофактором, обладающим гистоциклической активностью (Wobus, Guan, 1998; Farrell, Kirby, 2001; Boheler et al., 2002).

На 4-5-й месяц развития плода начинает формироваться проводящая система сердца. Следует отметить, что с этого времени картина ЭКГ во многом аналогична сердцу взрослого человека. Еще одной особенностью образования проводящей системы у плода является то, что скорость дифференцировки кардиомиоцитов проводящей системы выше, чем у рабочих кардиомиоцитов.

В качестве индуктора кардиомиогенеза в системе in vitro последнее время наиболее частым используют вещества 5-азацитидиная и тетрагидрофолат-дексановую и щелечную дифференцировку МСК (Doetschman et al., 1985; Grounds et al., 2002).

Кардиомиоцитобластные клетки экспрессируют специфические гены: BNP, GATA4 и Nkx2.5/Csx. По своему строению (структура миофибрил, наличие гранул) и способности к экспрессии гена ANP эти клетки приближаются к фетальным желудочковым кардиомиоцитам, которые определяются в сердечные кровеносные каналы (Venancio, Pang, 1989; Makino et al., 1999).

Установлено, что полипотентные эмбриональные стволовые клетки (ОКЛ) могут дифференцироваться в кардиомиоциты in vitro с эффективностью около 50% (Doetschman et al., 1985; Wobus et al., 1991; Rehwinkel et al., 1996). Эти клетки развивались из толстоплазматичекой эмбриональной бластостемы и передней мезодермы, эндодермы и эктодермы. Для МСК эта величина составляет около 30% (Makino et al., 1999). Эти данные косвенно подтверждают принципиальную возможность участия МСК в кардиомиогенезе.

Тем не менее, вопрос, как на какой стадии развития эмбри-
она и раннего постнатального периода МСК включаются в процесс кардиомиогенеза, оставаясь нежными.

1.2. СЕРДЕЧНАЯ ТКАНЬ ВЗРОСЛОГО ЧЕЛОВЕКА

Существуют пять специфических типов клеток сердечной ткани: рабочие, нейропластические, переходные, проводящие и секреторные кардиомиоциты. Кардиомиоциты составляют около 30% общего числа клеток миокарда. Однако их объем равен более 75% объема сердечной мышцы. Их масса варьирует в пределах 50% массы всего миокарда.

1.2.1. РАБОЧИЕ (СОКРАТИТЕЛЬНЫЕ) КАРДИОМИОЦИТЫ

Рабочие (сократительные) кардиомиоциты сердца представляют собой морфофункциональные единицы сердечной мышечной ткани, расположенные между элементами рыхлой волокнистой соединительной ткани, содержащей многочисленные капилляры и терминальные ветви двигательных аксонов клеток вегетативной нервной системы. Они имеют удлиненную (100–150 мкм) цилиндрическую форму с одним, реже двумя и более, овальными, расположенными ближе к центру ядра (рис. 1.4). Их концы соединяются друг с другом, образуя цепочки клеток, формирующие функциональные волокна толщиной до 20 мкм, способные передавать управляющие сигналы друг другу через систему вставочных дисков. Клетки покрыты сарколеммой, состоящей из влажной и базальной мембраны, интегрированные с тонкими коллагеновыми и эластическими волокнами. На концах контактирующих КМЦ имеются пальцеобразные выпячивания и углубления, получившие название вставочных дисков. Вырост одной клетки достаточно плотно входит в углубление другой, образуя вставочный диск. На конце такого выступа можно выделить поперечный участок сконцентрированных контактов двух типов — десосом (препятствующих расхождению кардиомиоцитов за счет механического склеивания) и промежуточных, где происходит прикрепление тонких актиновых нитей ближайшего сарколеммы к сарколемме КМЦ. На боковой поверхности выступа, формирующего его продольную часть, образуются многочисленные нексусы — целевые контакты. Через эти концевые каналы происходит распространение возбуждения от одного рабочего КМЦ к другому. Рабочие КМЦ с помощью вставочных

![Рис. 1.4](image1.png)

Рис. 1.4. Изменения ультраструктуры и формирования контактов кардиомиоцитов эмбриона (a), плацентарного (b) и взрослого (c) человека (по О.В. Волковой, М.И. Лекареву, 1978)

![Рис. 1.5](image2.png)

Рис. 1.5. Электронная микроскопия рабочего кардиомиоцита крысы. Хорошо видны: волосяные нити, многочисленные митохондрии, поперечная исчерченность. Ув. 5500х
она и раннего постнатального периода МСК включаются в процесс кардиомиогенеза, оставаясь нежным.

1.2. СЕРДЕЧНАЯ ТКАНЬ ВЗРОСЛОГО ЧЕЛОВЕКА

Существуют пять специфических типов клеток сердечной ткани: рабочие, пейсмекерные, переходные, проводящие и секреторные кардиомиоциты. Кардиомиоциты составляют около 30% общего числа клеток миокарда. Однако их объем равен более 75% объема сердечной мышцы. Их масса варьирует в пределах 50% массы всего миокарда.

1.2.1. РАБОЧИЕ (СОКРАТИТЕЛЬНЫЕ) КАРДИОМИОЦИТЫ

Рабочие (сократительные) кардиомиоциты сердца представляют собой морфофункциональные единицы сердечной мышечной ткани, расположенные между элементами рыхлой волокнистой соединительной ткани, содержащей многочисленные капилляры и терминальные ветви двигательных аксонов клеток вегетативной нервной системы. Они имеют удлиненную (100–150 мкм) цилиндрическую форму с одним, реже двумя и более, овальными, расположенными ближе к центру ядрами (рис. 1.4). Их концы соединяются друг с другом, образуя цепочки клеток, формирующие функциональные волокна толщиной до 20 мкм, способные передавать управляющие сигналы друг другу через систему вставочных дисков. Клетки покрыты кардиолеммой, состоящей из вязкозеломмы и базальной мембраны, интегрированные с тонкими коллагеновыми и эластическими волокнами. На концах контактирующих КМЦ имеются пальцевобразные выступы и углубления, позволяющие вставочных дисков. Вырост одной клетки достаточно плотно входит в углубление другой, образуя вставочный диск. На конце такого выступа можно выделить поперечный участок сконцентрированных контактов двух типов — десмосом (препятствующих расхождению кардиомиоцитов за счет механического сцепления) и промежуточных, где происходят прикрепление тонких активных нитей ближайшего сарколеммы и ворсинок сарколеммы КМЦ. На боковой поверхности выступа, формирующего его продольную часть, образуются многочисленные нексусы — целевые контакты. Через эти небольшие каналы происходит распространение возбуждения от одного рабочего КМЦ к другому. Рабочие КМЦ с помощью вставоч-

Рис. 1.4. Изменения ультраструктуры и формирования контактов кардиомиоцитов эмбриона (а), плода (б), новорожденного (в) и взрослого (г) человека (по О.В. Волковой, М.И. Пекарскому, 1978)
ных дисков объединены в так называемые сердечные мышечные волокна — функциональный синцитий.

Организация миофиламина в КМЦ, входящих в их сократительный аппарат, во многом повторяет таковую для скелетной мышцы. Поперечная исчерченность КМЦ определяется чередованием в миофиламинах различно проникающих поляризованных свет участков (дискообразных). Одни из них относятся к светлым изотропным (I), другие — к темным анизотропным (А) дискам (рис. 1.5, 1.6). Это определяется тем, что светлые диски не содержат, а темные содержат толстые миозиновые нити. Тонкие миозиновые нити состоят из актина, тропомиозина и тропонина, а толстые — из С-белка и миозина.

Актина — ключевой протеин, входящий в состав так называемого актиномиозинового гемомеханического преобразователя. Согласно модели скользящих нитей, сокращение клеток и волокон мышечных клеток осуществляется в результате взаимодействия актина и миозина. Присутствует в гладкомышечной (С-а) и фибробластной (F-а) формах. Изоформы α-актина кардиомиозитов, входящих в состав Z-линий, являются гомодимерами, состояниями из двух полипептидов с м.м. 97 кДа, отличается от молекулы α-актина скелетной мускулатуры, что является специфическим маркером данных клеток. Эти формы актина служат посредником между актином микрофиламентов и винкулинном и талином — протеинами, связанными с мембранами интегринами. Винкулин является представителем белков, формирующих цитоскелет, а талин — сложный протеин с м.м. 270 кДа — связывает, в свою очередь, винкулин с интегринами. Интегрины образуют систему траксемерных гликопротеинов, участвующих в качестве рецепторов в реакциях адгезии "клетка с клеткой" и "клетка с белками внеклеточного матрикса" (коллаген, эластин, фибробласты, вирусные клетки и т.д.). Это гетеродимеры, состоящие из различных α- и β-субъединиц, формирующих внутриклеточные и внеклеточные домены. Они участвуют в передаче сигналов, регулирующих экспрессию генов и продукции клеток. Актиновые нити образуют полиперечные связи с α-актином, который, в свою очередь, может взаимодействовать с цитоплазматической частью β-субъединицы интегринов как непосредственно, так и через систему "винкулин — талин".

Тропомиозин входит в состав тонких нитей и состоит из двух полипептидных цепей, образующих двойную спираль. Полярные молекулы тропомиозина укладываются конец в конец в волокне между двумя спиральными цепочками F-актина. Кроме того, связаны с TnT участком тропонина с интервалом около 40 нм.

Тропонин — сложный протеиновый комплекс, состоящий из трех гладкомышечных субъединиц: TnT, TnC и TnI. TnC является связывающим белком, участвует в регуляции обмена кальция, а TnI — антагониторный компонент, препятствует взаимодействию актина с миозином. Тропонин T связывает тропониновый комплекс с тропомиозином. Ген сердечного тропонина TNNT2, C-положен в 1q34 локусе 1-й хромосомы человека, а тропонин I — в 19p13.2-q13.2 локусе TNM5, TNN гена, определяющего 19 хромосому. С-белок стабилизирует структуру миозиновых нитей, контролируя агрегацию миозина, обеспечивает одинаковый диаметр и стандартную длину толстых нитей. Его MYBPC1 ген расположенный в Xp.12 локусе 12-й хромосомы человека рядом с генами миозиновых факторов 5 и 6.
ныних дисков объединены в так называемые сердечные мышечные волокна — функциональный синцитий.

Организация миофиламентов в КМЦ, входящих в их сконцентрированный аппарат, во многом повторяет таковую для скелетной мышцы. Поперечная исчерченность КМЦ определяется чередованием в миофиламентах различно преляющимся поляризованным свет участков (дисков). Одни из них относятся к светлым изотропным (I), другие — к темным анизотропным (A) дискам (рис. 1.5, 1.6). Это определяется тем, что светлые диски не содержат, а темные содержат толстые миозиновые нити. Тонкие миозиновые нити состоят из актина, тропомиозина и тропонина, а толстые — из С-белка и миозина.

Актин — ключевой протеин, входящий в состав так называемого актинномиозинового хроматохроматического преобразователя. Согласно моделям скользящих нитей, сокращение клеток и волокон мышечных клеток осуществляется в результате взаимодействия актина и миозина. Присутствует в гладких в гладулярной (G-а) и фиброзной (F-а) формах. Изоформы α-актина кардиомиоцитов, входящих в состав Z-линии, является гомодимером, состоящим из двух полипептидов с м.м. 97 кДа, отличается от молекулы α-актина скелетной мускулатуры, что является специфическим маркером данных клеток. Эти формы актина служат посредником между актином микропилиметрами и винклуном в атлонин и талином — белками, связанными с мембранными интегринами. Винклун является представителем белков, формирующих цитосkeletal, а талин — сложный протеин с м.м. 270 кДа — связывает, в свою очередь, винклун с интегринами. Интегрины образуют межклеточное взаимодействие черепных гликопротеинов, участвующих в качестве рецепторов в реакциях адгезии "клетка с клеткой" и "клетка с белками внеклеточного матрикса" (коллаген, эластин, фибронектин, атонеконк и т.п.). Это гетеродимеры, состоящие из различных α- и β-субединиц, формирующих внутриклеточные и внеклеточные домены. Они участвуют в передаче сигналов, регулирующих экспрессию геном и продукцию клеток. Активные нити образуют поперечные связи с α-актином, который, в свою очередь, может взаимодействовать с цитоплазматической частью β-субединиц интегринов как непосредственно, так и через систему "винклун — талин".

Тропомиозин входит в состав тонких нитей и состоит из двух полипептидных цепей, образующих двойную спираль. Примерные молекулы тропомиозина укладываются в конец в общем между двумя спиральными нитями F-актина. Кроме того, связываются с TNF участком тропонина с интервалом около 40 нм.

Тропонин — сложный протеиновый комплекс, состоящий из трех гладулярных субединиц: TNF, TNc и TNc. TNc является связывающим белком, участвует в регуляции обмена кальция, TNf — ингибиторный компонент, препятствует взаимодействию актина с миозином. Тропонин F связывает тропониновый комплекс с тропомиозином. Ген сердечного тропонина TNNt2, TNN расположен в 1p33 локусе 1-й хромосомы человека, а тропонин F — в 19p13.2-13.2 локусе TNN5, TNN гена, определяющего в 19-й хромосоме.

С-белок стабилизирует структуру миозиновых нитей, контролируя агрегацию миозина, обеспечивает одинаковый диаметр и стандартную длину толстых нитей. Его МУВСС1 ген расположена в Хр. 12 локусе 12-й хромосомы человека рядом с генами миозиновых факторов 5 и 6.
Миозин представляет собой гексамерный белок, содержащий две тяжелые и четыре легкие цепи. Легкие ветви сердечного миозина кодируются геном MYL2, расположенными в 12q23-24.3 локусах 12-й хромосомы, а тяжелые α-формы — MYH6, β-формы — MYH7, SMN1 — генами, локализованными в 14q12 локусе 14-й хромосомы человека. Тяжелые цепи имеют форму двух спирально закрученных полицептидных нитей, имеющих на своих концах широко-образные (глобулярные) головки. В области глобулярных головок тяжелые цепи связаны с легкими. В мышечных волокнах миозин выполняет роль АТФазы (West, 1990).

Каждый светлый диск пересекает Z-линию, которая соединяет ее с толстой миозиновой нитью с помощью белка титина. Титин — гигантский полипептид с м.м 3000 кД, выполняющий роль своеобразной пружинки.

Участок миозирина между соседними Z-линиями определяет как саркомер, являющийся его структурной единицей.

Т-трубочки в КМЦ проходят на уровне Z-линий. В связи с этим в большинстве случаев T-трубочка контактирует только с одной терминальной цистерной, образуя вблизи скелетных мышц, дыры, а не троны. Через них происходит передача возбуждения в виде возникновения потенциала действия Ca++ каналы.

Главным источником энергии в КМЦ являются жировые кислоты, а не углеводы. При этом необходимая энергия формируется за счет взаимодействия АДФ с креатинфосфатом, в результате чего образуется АТФ и креатин.

В отличие от рабочих желудочковых КМЦ, миозиты предсердий имеют ряд отличий, связанных с первым оксидом, в результате, что они выполняют меньшую сократительную функцию и играют большую роль в проведении возбуждения, секреции биоактивных веществ. В связи с этим их размеры несколько меньше, часть из них приобретает отросшую форму с увеличением количества миотондрий, миозирина, T-систем. При этом развивается саркоплазматический ретикулум у них ниже, с относительно повышенной гранулярностью.

В составе сократительного аппарата КМЦ предсердий и желудочков входят разные изоформы миозина, актина и других контактных белков. Так, ген предсердного миозина (легкая цепь) имеет структуру, характерную для эмбриональных клеток, и кодируется MYL4 геном, расположенным в Хр. 17 локусе 17-й хромосомы, тогда как в рабочих КМЦ этот белок локализуется в 12-й хромосоме человека. В предсердных КМЦ более выражен аппарат Гольджи и щелевидные контакты в вставочных дисках. Част из них, особенно расположенных в области правого предсердия и ушек сердца, имеют еще более развитый аппарат Гольджи, гранулярный эндоплазматический ретикулум, содержащий в своем составе секреторные гранулы, аккумулирующие, в частности, такие пептиды, как натрийуретический фактор С, атриоген и т.п. Это позволяет отнести их к группе секреторных клеток. Они реагируют на механическое растяжение, секрецию в кровь гормонообразные вещества, которые через конъюгомурованный аппарат початки регулируют объем циркулирующей крови и артериальное давление.

Следует отметить, что предсердные КМЦ отличаются от желудочковых еще и тем, что в них более выражено участие гликогена в метаболизме клетки, за счет увеличения активности таких ферментов, как гликогенсинтетазы и фосфорилазы на фоне снижения уровня сукинидангиогеназы.

1.2.2. Пейсмекерные (синусные, клетки водители ритма, клетки проводящей системы первого типа, P-клетки) кардиомиоциты

Эти клетки обладают способностью автоматически в определенном ритме сменять состояние покоя на расслабление. По сравнению с рабочими кардиомиоцитами они имеют меньше размеры с диаметром около 8–10 мкм, с небольшим количеством ряда упакованных миофилаентов. А- и I-диски различаются нечетко. Кроме того, в них образование энергии происходит преимущественно в пластине анаэробного гликолиза. Между этими клетками встречаются единичные межклеточные контакты в виде десмосом (адгезионные контакты) и некусов (щелевые контакты). Через щелевые контакты происходит ионное и метаболическое сочтение клеток через трансмембранные протеины — конъюгены, которые образуют каналы, регулирующие уровень внутриклеточного кальция.

Способность к генерации импульсов обусловлена высоким содержанием в цитоплазме свободного кальция при относитель-
Миозин представляет собой гексамерный белок, содержащий две тяжелые и четыре легкие цепи. Легкие цепи сердечного миозина кодируются геном MYL2, расположенным в 12q23-24.3 локусах 12-й хромосомы, а тяжелые α-форма — MYH6, β-форма — MYH7, CMH1 — генами, локализованными в 14q13 локусе 14-й хромосомы человека. Тяжелые цепи имеют форму двух спиралей закрученных полиэпиптидных нитей, имеющих на своих концах шарообразные (глобулярные) головки. В области глобулярных головок тяжелые цепи связываются с легкими. В мышечных волокнах миозин выполняет роль АТФазы (West, 1990).

Каждый светлый диск пересекает Z-линию, которая соединяет ее с толстой миозиновой нитью с помощью белка титина. Титин — гигантский полиэпиптид с м.м 3000 кД, выполняющий роль своеобразной пружины.

Участок миофиламентов между соседними Z-линиями определяют как саркомер, являющийся его структурной единицей.

Т-трубочки в КМЦ проходят на уровне Z-линий. В связи с этим в большинстве случаев T-трубочка контактирует только с одной терминальной цистерной, образуя в отличие от скелетных мышц, диады, а не гриды. Через них происходит передача возбуждения в виде возникновения потенциала действия через Ca²⁺ каналь.

Главным источником энергии в КМЦ являются жировые кислоты, а не углеводы. При этом необходимая энергия формируется за счет взаимодействия АТФ с креатинфосфатом, в результате чего образуются АТФ и креатин.

В отличие от рабочих желудочковых КМЦ, миоциты предсердий имеют ряд отличий, связанных с развитием иннервации. Они выполняют меньшую сократительную функцию и играют большую роль в проведении возбуждения, секреции биоактивных веществ. В связи с этим их размеры несколько меньше, часть их пронизывает отросточную форму с увеличением количества митохондрий, миофиламентов, T-систем. При этом развитие саркомипластического ретикулума у них ниже, с относительно повышенной гранулярностью.

В состав сократительного аппарата КМЦ предсердий и желудочков входят разные изоформы миозина, актина и других контрактивных белков. Так, ген предсердного миозина (легкая цепь) имеет структуру, характерную для эмбриональных клеток, и кодируется MYL4 геном, расположенным в 1h17 локусе 17-й хромосомы, тогда как в рабочих КМЦ этот белок локализуется в 12-й хромосоме человека. В предсердных КМЦ более выражен аппарат Гольджи и щелевидные контакты во вставочных дисках. Часть из них, особенно расположенных в области правого предсердия и ушек сердца, имеют еще более развитый аппарат Гольджи, гранулярный эндолепластический ретикулум, содержащий в своем составе секреторные гранулы, аккумулирующие, в частности, такие пептиды, как натрийуретический фактор С, атрио- гептит и т.п. Это позволяет отнести их к группе секреторных клеток. Они реагируют на механическое растяжение, секрецируя в кровь гормонов, подобные вещества, которые через констамлекулярный аппарат почек регулируют объем циркулирующей крови и артериальное давление.

Следует отметить, что предсердные КМЦ отличаются от желудочковых еще и тем, что в них более выражено участие гликогена в метаболизме клетки, за счет увеличения активности таких ферментов, как гликогенсинтетаз и фосфорилазы на фоне снижения уровня сукцинатдегидрогеназы.

1.2. Пейсмекерные (синусные, клетки водителя ритма, клетки проводящей системы первого типа, Р-клетки) кардиомиоциты

Эти клетки обладают способностью автоматически в определенном ритме смещать состояние сокращения на расслабление, воспринимая управляющие сигналы от нервных волокон. Пейсмекерные КМЦ формируют необходимый ритм сокращения сердца, создавая волну возбуждения через переходные и проводящие кардиомиоциты (рис. 1.7, а).

В центральной части синусового узла происходит формирование импульса Р-клетками с частотой 60—90 импульсов в минуту. По сравнению с рабочими кардиомиоцитами они имеют меньшие размеры с диаметром около 8-10 мкм, с небольшим количеством рыхлого упакованного миофибрилл. А- и I-диски различаются нечетко. Кроме того, в них образование энергии происходит преимущественно за счет анаэробного гликозоля. Между этими клетками встречаются единичные межклеточные контакты в виде десмосом (адгезионные контакты) и нуклеос (щелевые контакты). Через щелевые контакты происходит ионное и метаболическое соединение клеток через трансмембранные белки — коннексины, которые образуют каналы, регулирующие уровень внутритканевого кальция.

Способность к генерации импульсов обусловлена высоким содержанием в цитоплазме свободного кальция при относительн...
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиогенезе

1.3. Дифференцировка плюрипотентных эмбриональных стволовых клеток

его ножек к рабочим кардиомиоцитам. Они способны к спонтанной генерации возбуждений с частотой 30—40 импульсов в минуту.

1.2.4. Клетки пучка Гиса и его ножек (волокна Пуркинье) (клетки проводящей системы третьего типа)

Клетки пучка Гиса больше клеток проводящей системы второго типа. Имеют экскентречно расположенное ядро, тонкие относительно длинные миофибриллы, которые располагаются небольшими спиралевидными пучками по периферии клетки, мелкие митохондрии и небольшое количество гликогена. В них практически отсутствуют T-трубочки. Они проводят импульс возбуждения от водителей ритма к волокнам Пуркинье (рис. 1.7, б).

Клетки волокон Пуркинье являются самыми большими клетками в сердечной ткани. Между собой они связаны большим количеством десмосом и щелевидных контактов, что обеспечивает высокую скорость проведения импульса. В них много гликогена, редкая сеть хаотично расположенных миофибрил у и отсутствуют T-трубочки и вставочные диски.

1.3. Дифференцировка плюрипотентных эмбриональных стволовых клеток

Исследование биологических свойств плюрипотентных стволовых клеток начало относительно недавно. Тотипотентные свойства сохраняются у эмбриональных клеток (ЭК) от стадии 2 до 8-го клеточного деления. Стволовые клетки, выделенные из эмбриона, в частности из внутренней массы клеток (эмбриобласты), бластоцисты, эмбриональной эктодермы и клеток полового гребня, имеют уже плюрипотентные свойства (Bradley et al., 1984; Deutschman et al., 1985; Wobus, 2001; Blau et al., 2001).

Прогениторные клетки и стволовые клетки эмбриона способны к формированию мультипотентных типов стволовых клеток, но, как показывают, имеют более ограниченный потенциал, чем ЭСК. К настоящему времени выделено не менее трех типов плюрипотентных ЭК, соответствующих зародышевым листкам от эмбрионов млекопитающих на стадии эпибласты и из эмбрионального ряда. Более поздние ЭК такими свойствами не обладают. Интересно, что если ЭК перенести в бластомер или включить в бластоцисту, то они вновь приобретают низкодиф-
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиогенезе

![Diagram of cardiac tissues](image)

Рис. 1.7. Активные КМЦ (a) и КМЦ проводящей системы (b) (H. Hooe, F. Simonov, 1992)

но слабо развитой саркоплазматической сети. Система T-трубочек практически отсутствует. В цитоплазме выявляется большое количество пиноцитозных пузырьков и кавеол.

Ткани синусового и атриовентрикулярного узлов имеют более высокое содержание соединительных волокон, кровеносных сосудов и нервных элементов (нейроны и двигательные нервные окончания), примерно в 1,5-5 раз превышающее таковое в рабочем миокарде. Однако следует отметить, что типичных нервно-мышечных синусов в них нет.

1.2.3. Переходные кардиомиоциты
(клетки проводящей системы второго типа)

По периферии синусового узла, а также большей части атриовентрикулярного доминируют переходные клетки. Они больше Р-клеток, имеют вытянутую форму, могут содержать небольшое количество коротких T-трубочек и миофибрилл.

Наряду с десмосомами и интексами межклеточные контакты могут осуществляться за счет вставочных дисков. Основная функция этих клеток заключается в том, что они передают импульсы от пейсмекерных КМЦ к клеткам пучка проводящей системы и

его ножек к рабочим кардиомиоцитам. Они способны к спонтанной генерации возбуждения с частотой 30-40 импульсов в минуту.

1.2.4. Клетки пучка Гиса и его ножек (волокна Пуркинье)
(клетки проводящей системы третьего типа)

Клетки пучка Гиса большие клетки проводящей системы второго типа. Имеют экскентрально расположенные ядро, тонкие относительно длинные миофибриллы, которые располагаются небольшими спиралевидными пучками по периферии клетки, мелкие миофибриллы и небольшое количество гликогена. В них практически отсутствуют T-трубочки. Они проводят импульс возбуждение от водительных ритм к волокнам Пуркинье (рис. 1.7, 6).

Клетки волокон Пуркинье являются самыми большими клетками в сердечной ткани. Между собой они связаны большим количеством десмосом и щелевидных контактов, что обеспечивает высокую скорость проведения импульса. В них много гликогена, редкая сетка хаотично расположенных миофибрилл и отсутствуют T-трубочки и вставочные диски.

1.3. Дифференцировка плкритоптентных эмбриональных стволовых клеток в кардиомиоциты

Исследование биологических свойств плкритоптентных стволовых клеток начало относительно недавно. Тотипотентные свойства сохраняются у эмбриональных клеток (ЭК) от стадии 2 до 8-го клеточного бластомера. Стволовые клетки, выделенные из эмбриона, в частности из внутренней массы клеток (эмбриобласты), бластоцисты, эмбриональной эктодермы и клеток полового гребня, имеют уже плкритоптентные свойства (Brady et al., 1986; Deutschmann et al., 1986; Wobus, 2001; Blau et al., 2001).

Проинтегрированные клетки и стволовые клетки варисогого организма способны к формированию мультиплкритоптентных типов стволовых клеток, но, как показывают, имеют более ограниченный потенциал, чем ЭСК. К настоящему времени выделено не менее трех типов плкритоптентных СК, соответствующих зародышевым листкам от эмбрионов млекопитающих на стадии эмбриобласты и из эмбрионального рака. Более поздние ЭК такими свойствами не обладают. Интересно, что если ЭК перенести в бластомер или включить в бластоцисту, то они вновь приобреют низкодиф-
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиомиогенезе

Дифференцированные свойства и могут давать начало практически любым тканям организма, включая образования химер. В культуре ткани эмбриональные ЭСК, удаленные из ЭСК и клеток из химеры, дают стволовые клетки, которые способны вырасти в любой ткани организма (Michiels et al., 1999). В этих условиях ЭСК развивается относительно нормально, с сохранением здорового и устойчивого кардиотипа, и имеют практически неограниченную способность к самоподдержанию (рис. 1.8) (Evans, Kaufman, 1981; Thomson et al., 1998).

Внесение этих клеток в организмы может быть использовано в терапевтических целях (Thomson et al., 1998; Shamboll et al., 1998). Так, в эксперименте из ряда ЭСК миши на человека была изучена принципиальная возможность их трансформации в КМЦ в системе in vitro (Dedtschman et al., 1985; Skenjani, 1999).

Наиболее широким объектом для изучения кардиомиогенеза являются культуры ЭК миши. Использование генетических, структурных и функциональных свойств таких клеток в какой-то мере привело к пониманию программы развития кардиомио-

Рис. 1.8. Факторы, влияющие на дифференцировку ЭСК в направлении кардиомиогенеза: ЛИФ — лейкомиоагрегирующий фактор, MBK — моргагоагрегирующие белки костя; STAT3, GSK-3, Stat3, Iб, 1β-catenin — цитоплазматические, трансмембранные протеины; Oct-4, Nanog — ключевые миогенераторы (K. Moisen, 1999)

Рис. 1.9. Схема изучения ЭСК из кардиомиоцитов, миоцитов и полового бугорка фетуса (W. Wobus, 2002)

1.3. Дифференцировка плеро́негентных эмбриональных стволовых клеток
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиомиогенезе

Дифференцированные свойства и могут давать начало практически любым тканям организма, включая образования химер. В культуре тканей эмбриональных ЭСК требуется присутствие фибробластов, например, состоящего из эмбриональных фибробластов или STO клеток и лейкомиогенерирующего фактора (ЛИФ) (Burdon et al., 1999). В этих условиях ЭСК развиваются относительно нормально, с сохранением здравого и устойчивого кариотипа, и имеют практически неограниченную способность к самоподдержанию (рис. 1.8) (Evans, Kaufman, 1981; Thomson et al., 1998).

Все это позволяет предположить, что данные клетки и полученные из них линии могут быть использованы в терапевтических целях (Thomson et al., 1998; Shambrot et al., 1998). Так, в эксперименте из ряда ЭСК мыши и человека была изучена принципиальная возможность их трансформации в КМИ в системе in vitro (Doetschman et al., 1985; Skerjanc, 1999).

Наиболее частым объектом для изучения кардиомиогенеза являются культуры ЭК мыши. Использование генетических, структурных и функциональных свойств таких клеток в какой-то мере привело к пониманию программы развития кардиомио-

![Рис. 1.8. Факторы, влияющие на дифференцировку ЭСК в направлении кардиомиогенеза: LIF — лейкомиогенерирующий фактор, MBK — морфогенетические белки костей; STAT3, GSK-3, Smad, Id, 1-catenin — цитохроматические, трансмембранные протеины; Oct-4, Nanog — ядерные мишенники (K. Mousa, 1999)](image)

1.3. Дифференцировка плодопотенционных эмбриональных стволовых клеток

щитов из ЭСК (Wobus et al., 1991; Rohwedel et al., 1996). Позднее аналогичные работы по развитию сердца из ЭСК были проведены и у человека (рис. 1.9) (Schulkin et al., 2000; Keat et al., 2001).

Процесс дифференцировки ЭСК в культуре ткани типа висячей капли in vitro в течение 2–3 суток начинается с образования клеточных агрегатов. При последующем переносе их на фибробластов эмбриональных клеток они на 3–7-е сутки формируют три типа зародышевых листков — эктодерму, эндодерму и нервную. К 7-м суткам в культуре появляются кардиомиоциты для которых было характерно наличие β-тубулина, тяжелой цепи α-миозина, легкой цепи 2v-миозина, тропонина T и прояв-

![Рис. 1.9. Схема получения ЭСК из кардиомиоцитов, бластоцисты и полового бугорка фетуса (I. Wobus, 2002)](image)
ление специфических для сердечной ткани электрофизиологических свойств (Wobus et al., 2002). На процессе дифференцировки ЭСК в сторону кардиомиогенеза влияют многочисленные факторы и параметры культивирования, начиная от старого числа клеток, размеров формируемых из них эмбриональных тел (ЭТ), ростовых факторов и добавок, выхода культуры на "плато" (Wobus et al., 2002). В ЭТ, кардиомиоциты расположены между эпителиальным слоем и базальным слоем мезенхимальных клеток (Hesceler et al., 1997).

КМЦ в эмбрионных телях после достижения ими плато своего развития, обычно на 4-5-е сутки, начинают спонтанно формировать между собой контакты и зоны - водители ритма. Межклеточной контакты, физиологические связи, характеризующиеся в эмбрионной мышечной белок развитии в развитии в культуре в vitro J. Hesceler et al. (1997) выде- ляют три стадии дифференцировки, включая: а) клеточный; б) образование КМЦ; в) разделяемые КМЦ. Как правило, это свойство КМЦ сохраняет- ся от нескольких дней до 1 месяца. Полностью дифференциро- ванные кардиомиоциты часто утрачивают способность к сокращению. В культуре ткани in vitro J. Hesceler et al. (1997) выде- ляют три стадии дифференцировки, включая: а) клеточный; б) образование КМЦ; в) разделяемые КМЦ. Как правило, это свойство КМЦ сохраняет- ся от нескольких дней до 1 месяца. Полностью дифференциро- ванные кардиомиоциты часто утрачивают способность к сокращению. В культуре ткани in vitro J. Hesceler et al. (1997) выде- ляют три стадии дифференцировки, включая: а) клеточный; б) образование КМЦ; в) разделяемые КМЦ. Как правило, это свойство КМЦ сохраняет- ся от нескольких дней до 1 месяца. Полностью дифференциро- ванные кардиомиоциты часто утрачивают способность к сокращению. В культуре ткани in vitro J. Hesceler et al. (1997) выде- ляют три стадии дифференцировки, включая: а) клеточный; б) образование КМЦ; в) разделяемые КМЦ. Как правило, это свойство КМЦ сохраняет- ся от нескольких дней до 1 месяца. Полностью дифференциро- ванные кардиомиоциты часто утрачивают способность к сокращению. В культуре ткани in vitro J. Hesceler et al. (1997) выде- ляют три стадии дифференцировки, включая: а) клеточный; б) образование КМЦ; в) разделяемые КМЦ. Как правило, это свойство КМЦ сохраняет- ся от нескольких дней до 1 месяца. Полностью дифференциро- ванные кардиомиоциты часто утрачивают способность к сокращению.

В третьих стадиях дифференцировки, кардиомиоци- ты в пределах ЭТ представлены небольшими округлыми клетками. Как правило, обнаруживаются в них миофibrиллы скелетной и периартериальной, часто бывают неполными. Так, не менее, другие КМЦ содержат параллельные связи миофibrиллы (Westfalle et al., 1997). Сердечные кардиомиоциты часто показывают различную степень организации миофibrиллы и саркомеры. Бьющиеся клетки формируют межклеточные контакты, во многом повторяющие структуру, наблюдаемую у развивающегося сердца (Westfalle et al., 1997). При терминальной стадии дифференцировки и КМЦ миофibrиллы, как правило, плотно упакованы, хорошо организованы и связаны между собой с четким проявлением саркомеров, 1-полос и Z-дисков (Fassl et al., 1996; Westfalle et al., 1997). При этом обнару- живаются характерные для сердечной ткани вставочные диски, фасция артериальной, десяксоны и другие межклеточные контакты (Doetschman et al., 1985; Robbins et al., 1990; Klug et al., 1996; Oyamada et al., 1996). В целом анализ данных различных авторов позволяет говорить о том, что обозначенные в ЭСК кардиомиоциты in vitro по своей ультраструктуре, длине, диаметру, архитектонике и составу миофibrилле в многом соответствуют таковым, наблюдаемым у новорожденной мlekопитающих. В них большая часть кардиомиоцитов, в частности они положительно реагиру- ют на мРНК для GATA-4 и Nkx2.5 факторов транскрипции Кро- ме того, эти клетки продуцируют предсердный натрий-урический нивит, в них выявляются: легкая цепь миозина (ЛЦМ)-1, тяже- лая цепь α-миозина (α-ТЦМ) и β-миозина (β-ТЦМ), щелочные ко- лебания уровня Na+, Ca2+ ионов, и фосфаты. Белки саркомеров в кардиомиоцитах, включенных из ЭСК, содержат: титин (Z-диск), М-полосу), α-актин, миозин, ЛЦМ, кардиальный тропомиозин и Т и й (Beheler, Wobus, 2002). Фетальные КМЦ содержат небольшое ко- личество T-тропомиозина, характерного для скелетных мышц, и доста- точно высокую долю β-ТЦМ против α-ТЦМ и одновременно карди- альный α-тропомиозин (Westfalle et al., 1997). Все это может сви- детельствовать о том, что ассоциированные с кардиомиогенезом гены продуцируются и функционируют в ЭСК в разное время и во многих, соответственно нормальному миокардиальному развитию (Kenne- net et al., 2002; Bhattacharya et al., 2004).

Спонтанно и ритмично сокращающиеся КМЦ наблюдаются в культуре ткани достаточно рано, кардиомиоциты имеют электро- физиологические характеристики, во многом соответствующие перикардиальному миокарду грудной клетки. При дальнейшей дифференцировке вновь образованные КМЦ из ЭСК приобретают черты миокарда новорожденных организмов (Hesceler et al., 1997; Metzger et al., 1997). В них определяются рабочие кардиомиоциты, клетки Пуркинье, пейсмекеры, которые со своим морфофункциональным характером, в частности чувствительности к кальцияю и меж- клеточным контактам, во многом соответствовали функцией и нео- какального КМЦ. Однако в некоторых клетках слабо были выражены T-канальцы (Metzger et al., 1997; Hescher et al., 1999). В терминальной стадии развития ЭСК, в отличие от ранней КМЦ, становятся более чувствительны с β-адренергическому возбуждению (Maltsev et al., 1999).

Индукцию кардиомиогенеза из ЭСК можно вызвать разнообразными факторами. Так, у мышей ЭК линии P19 под действием диме- тилсульфоксида формируются эмбриональные тело с высоким со-держанием КМЦ (Skerianc, 1999). Эти КМЦ способны к спонтан- ному сокращению и имеют параметры, характерные для ранних и терминально дифференцированных кардиомиоцитов (Wobus et al., 1994). Аналогичные данные были получены и для других линий,
ление специфических для сердечной ткани электрофизиологических свойств (Wobus et al., 2002).

На процессе дифференцировки ЭСК в сторону кардиомиоцита влияют многочисленные факторы и параметры культивирования, начиная от стартового числа клеток, размеров формируемых из них эмбриональных тел (ЭТ), родственных факторов и добавок, выхода культуры на "плато" (Wobus et al., 2002). В ЭТ, кардиомиоциты расположены между эпителиальным слоем и базальным слоем мезенхимальных клеток (Hescherker et al., 1997).

КМЦ в эмбриональных телях после достижения ими плато своего развития, обычно на 3-5-е сутки, начинают спонтанно формировать между собой контакты и зоны — водители ритма. Между каждой бьющейся областью быстро устанавливаются связи, заключенные по мере дифференцировки и созревания КМЦ. Как правило, это свойство КМЦ сохраняется на протяжении нескольких дней до 1 месяца. Полностью дифференцированные кардиомиоциты быстро утрачивают способность к сокращению. В культуре ткани in vitro J. Hescherker et al. (1997) выделяют три стадии дифференцировки эмбриональных клеток: раннюю (пейсмекерподобные или первичные миокардиальнаядные клетки), промежуточную и терминальную (атриовентрикулярные, центральные и периферические клетки).

В течение ранних стадий дифференцирования кардиомиоциты в пределах ЭТ представлены небольшими округлыми клетками. Как правило, обнаруживающиеся в них миофибрильы редки и плохо организованы, и часто бывают неполными. Тем не менее, другие КМЦ содержат параллельные связи миофибрил (Westfall et al., 1997). Смежные кардиомиоциты часто показывают различную степень организации миофибрил. По мере созревания клетки унаследуют, в них достаточно хорошо выражены миофибрилы и саркомеры. Бьющиеся клетки формируют межклеточные контакты, во многом повторяя структуру, наблюдаемую у развивающегося сердца (Westfall et al., 1997). При терминальной стадии дифференцирования в КМЦ, миофибрилы, как правило, плотно упакованы, хорошо организованы и связаны между собой. При развитии процесса дифференцировки, I-полоса и Z-дисков (Fassler et al., 1996; Westfall et al., 1997). При этом обнаруживаются характерные для сердечной ткани вставочные диски, фасция адгезионная, десмосомы и другие межклеточные контакты (Doetschman et al., 1985; Robbins et al., 1990; Klug et al., 1996; Oyamada et al., 1996). В целом анализ данных различных авторов позволяет говорить о том, что образующиеся из ЭСК кардиомиоциты в vitro по своей ультраструктуре, длине, диаметру, архитектуре и составу миофибрил в многом соответствуют таковым, наблюдаемым у новорожденных млекопитающих. В них равно, на стадии образования эмбриональных тел, происходит экскреция кардиальных генов, в частности они положительно реагируют на мРНК для GATA-4 и Nkx2.5 факторов транскрипции. Кроме того, эти клетки продуцируют предсердий-предсердийный пептид, в них выявляются: лейкотриен миозина (ЛЛМ)-2v, тяжелая цепь α-миозина (α-ТЦМ) и β-миозина (β-ТЦМ), искривленные колебания уровня Na⁺, Ca²⁺ ионов, и фосфаты. Белки саркомеров в кардиомиоцитах, полученных из ЭСК, содержат: титин (Z-диск), M-полосы, α-актин, миозин, ЛЛМ, кардиальный тропонин (I и M (BehlCel, Wobus, 2002). Фетальные КМЦ содержат небольшое количество I-тропокинина, характерного для скелетных мышц, и достаточное количество β-ТЦМ против α-ТЦМ и одновременно кардиального тропонина (Westfall et al., 1997). Все это может свидетельствовать о том, что ассоциированные с кардиомиоцитами гены продуцируются и функционируют в ЭСК в разное время и в многом соответствуют нормальному миокардиальному развитию (Kennet al., 2002; Bhatthacharya et al., 2004).

Спонтанно и ритмично сокращающиеся КМЦ наблюдаются в культуре ткани достаточно рано, кардиомиоциты имеют электрофизиологические характеристики, в многом соответствующие перинатальному миокардиальному развитию. При дальнейшей дифференцировке вновь образованные КМЦ из ЭСК они приобретают черты более миокардиальных новорожденных организмов (Hescherker et al., 1997; Metzger et al., 1997). В них определяются рабочие кардиомиоциты, клетки Пуркине, пейсмекеры, которые по своим морфофункциональным характеристикам, в частности чувствительности к кальцию и межклеточным контактам, во многом соответствовали фетальным и новорожденным КМЦ. Однако в некоторых клетках слабо были выражены Г-канальцы (Metzger et al., 1997; Heschler et al., 1999). В терминальной стадии развития ЭСК, в отличие от ранних КМЦ, становятся более чувствительными к β-адренергическому воздействию (Maltsev et al., 1999).

Индукцию кардиомиогенеза из ЭСК можно вызвать разнообразными факторами. Так, у мышей ЭК линии R19 под действием гормона мелитосульфондиоксид формируются эмбриональные телы с высоким содержанием КМЦ (Skerjanc, 1999). Эти КМЦ способны к спонтанному сокращению и имеют параметры, характерные для ранних и терминально дифференцированных кардиомиоцитов (Wobus et al., 1994). Аналогичные данные были получены и для других линий,
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиомиогенезе

например EG-1 (Rohwedel et al., 1996). Все эти клетки экспрессируют гены, ответственные за формирование специфических кардиомиогенных миофиламентов, принимающих участие в мышечном соотечении.

1.3.1. Манипуляция над ЭСК, приводящая к их кардиомиогенезу

Известно, что GATA-4 ген включает программу кардиогенного развития и эндокардиальных клеток в процессе эмбрионального развития. При введении ЭСК, клетки линии P19 GATA-4 гена, регулирующие кардиальные факторы транскрипции, приводят к снижению специфических эмбриональных маркеров типа Oct-4, SSEA-1 с повышением уровня мРНК для Nkx 2.5, MLP, Mhox, сократительных белков (кардиальных тропонин C, тяжелой цепи β-миозина), натрийуретического пептида (Wobus, Guan, 1998; Boheler et al., 2002).

Сверхэкспрессии специфического гена можно вызвать путем инъекции в ядро соответствующего генетического материала. Такая технология часто используется для получения трансгенных мышей. Такую технику применили Greisp и соавторами (2000) путем введения GATA-4 гена в линию P19 ЭСК. Оказалось, что при отсутствии клеточной агрегации сверхэкспрессии GATA-4 гена в P19 клетках приводит к увеличению мРНК для факторов транскрипции типа Nkx2.5, MLP, Mhox, сократительных белок (кардиальных тропонин C и β-ТЦМ), пептидных натрийуретических гормонов и ускорению терминальной дифференцировки (см. рис. 1.8). Таким образом, GATA-4 вносит вклад в дифференцировку кардиомиоцитов, активирует кардиогенную генетическую программу и является ядерной мишенью для индукции сигналов в определяющих комбинированных клетках-предшественниках для КМЦ.

У эмбрионов позвоночных в качестве сигнальной молекулы, рекрутирующей мезодермальные клетки, является морфогенетические белки кости 2 4-го типов (MBK-2, -4). Изучая роль MBK в дифференцировке КМЦ из клеточной линии P19CL6, K. Monzen (1999) с соавторами показали, что сверхэкспрессия одного гена является в то время антагонистом noggin гена. С другой стороны, сверхэкспрессия noggin гена блокирует активацию генов, ответственных за выработку кардиальных факторов транскрипции, сократительных белков, предотвращая тем самым дифференцировку СК в способные к оскреплению КМЦ. Процесс дифференцирования СК в кардиомиоциты можно индуцировать: 1) путем суперэкспрессии MBK-2, 2) добавлением данного фактора в культуру клеток или 3) активацией TAC-1 гена, относящегося к клеткам суперкомплекса миоген-активированной белка-3-киназы, которая преобразует передачу сигналов от MBK. Данная группа исследователей также продемонстрировала, что одновременная сверхэкспрессия Nkx-2.5 и GATA-4, но не Nkx-2.5 или GATA-4 по отдельности, может вызывать кардиогенную дифференцировку P19CL6 noggin клеток. Эти данные, полученные в системе in vitro, позволяют уточнить роль MBK в дифференцировке СК в кардиомиоциты. Однако механизмы этого явления остаются во многом еще малоизученными.

Следует отметить, что процент спонтанной дифференцировки ЭСК в кардиомиоциты в обычных условиях крайне мал и не превышает 3-5%, что делает их малоэффективными для проведения клеточной терапии. В связи с этим целью многочисленных исследований является разработка методов, повышающих этот параметр (Klug et al., 1996), например, с помощью трансдукции в СК разнообразных промоторов генов, ответственных за кардиогенную дифференцировку, в частности за продукцию белка (ТЗМ-2) и тяжелых цепей миозина (β-ТЦМ), а также α-активы. Часто эти гены были связаны с геном, ответственным за продукцию эндогенного натрийуретического фактора, что облегчает идентификацию образующихся кардиомиоцитов в системах in vitro и in vivo. Оказалось, что процент клеток, имеющих кардиальные маркеры, увеличивался до 99.6% (Wobus et al., 1991; Klug et al., 1996; Meyer et al., 2000; Muller et al., 2000). Тем не менее, несмотря на столь обнадеживающие результаты, следует подчеркнуть, что ген-модифицированные клетки в настоящее время заменены ВОЗ к применению в клинической практике, т.к. негативные последствия данных манипуляций практически остаются малоизученными и требуют более углубленного изучения.

Кроме MBK, другие факторы, в частности лейкемии-ингибирующий фактор (LIF), интерлейкин-6, обладают проартериальным действием, в которое вовлечена не только мезомерма, но и нейрогендерма, геномоз, процессы костеобразования и осторожное вмешательство (Taufin Д. et al., 1996).

LIF важен для имплантации бластоцисты, самоподдержки СК и регулирует функцию эмбриональных и несенальных КМЦ. Действие LIF на кардиогенную дифференцировку ЭСК
например EG-1 (Rohwedel et al., 1996). Все эти клетки экспрессируют гены, ответственные за формирование специфических кардиомиогенных миофибрилл, принимающих участие в мышечном сокращении.

1.3.1. Манипуляция над ЭСК, приводящая к их кардиогенной дифференцировке

Известно, что GATA-4 ген включает программу кардиогенного развития кардиомиогенных клеток в процессе эмбрионального развития. При введении в ЭСК клетки линии P19 GATA-4 гена, регулирующие кардиальные факторы транскрипции, приводят к снижению специфических кардиомиогенных маркеров типа Oct-4, SSEA-1 с понижением уровня мРНК для Nkx 2.5, MLP, Mhx, сократительных белков (кардиального тромпина C, тяжелой цепи β-миозина), натрийуретического пептида (Wobus, Guan, 1998; Boheler et al., 2002).

Сверхэкспрессию специфического гена можно вызвать путем инъекции в ядро соответствующего генетического материала. Такая технология часто используется для получения трансплантированных мышей. Такую технику применили Greif и соавторы (2000) путем введения GATA-4 гена в линию P19 ЭСК. Оказалось, что при отсутствии клеточного агрегата сверхэкспрессия GATA 4 гена в P19 клетках приводит к увеличению мРНК для факторов транскрипции Nkh 2.5, MLP, и Mhx, сократительных белков (кардиального тромпина С и β-ТЦМ), пептидов натрийуретических гормонов и ускорению терминальной дифференцировки (см. рис. 1.8). Таким образом, GATA-4 вносит вклад в дифференцировку кардиомиогенных клеток, активирует кардиальную генетическую программу и является ядерной мишенью для индукции сигналов в определяющих процессе клеток-предшественниках клеток КМИ.

У ЭСК позвоночных в качестве сигнальной молекулы, рекрутирующей мезодермальные клетки в кардиомиоциты, служат морфо-генетические белки кости 2 и 4-го типов (МБК-2, -4). Изучая роль МБК в дифференцировке КМИ из клональной линии P19C6L, К. Monzen (1999) с соавторами показали, что сверхэкспрессия данного белка является в то время антагонистом noggin гена. С другой стороны, сверхэкспрессия noggin гена блокирует активацию генов, ответственных за выработку кардиальных факторов транскрипции, сократительных белков, предотвращая тем самым дифференцировку СК в способые к

оскращению КМИ. Процесс дифференцирования СК в кардиомиоциты можно инициировать: 1) путем суперэкспрессии МБК-2, 2) добавлением данного фактора в культуру клеток или 3) активацией TAK-1 гена, относящегося к семейству митоген-активированных протеин-киназ, которая преобразовывает передачу сигналов от МБК. Данная группа исследователей также продемонстрировала, что одновременная сверхэкспрессия Nkh-2.5 и GATA-4, но не Nkh-2.5 или GATA-4 по отдельности, может вызывать кардиогенную дифференцировку P19C6L noggin клеток. Эти данные, полученные в системе in vitro, позволяют уточнить роль МБК в дифференцировке СК в кардиомиоциты. Однако механизм этого явления остается во многом еще малоизученным.

Следует отметить, что процент спонтанной дифференцировки ЭСК в кардиомиоциты в обычных условиях чрезвычайно мал и чаще не превышает 3–5 %, что делает их малоопроблемным для проведения клеточной терапии. В связи с этим целью многочисленных исследований является разработка технологий, повышающих этот параметр (Klug et al., 1996), например, с помощью трансфекций в СК разнообразных промоторных генов, ответственных за кардиогенную дифференцировку, в частности за продукцию лекарей (ТЦМ-2) и тяжелых цепей миозина (β-ТЦМ), а также α-антител. Часто эти гены были связаны с геном, ответственным за продукцию эндоаппаратного фиброгенерирующего протеина, что облегчает идентификацию образующихся кардиомиоцитов в системах in vitro и in vivo. Оказалось, что процент клеток, имеющих кардиальные маркеры, увеличивался до 99,6 % (Wobus et al., 1991; Klug et al., 1996; Meyer et al., 2000; Muller et al., 2000). Тем не менее, несмотря на столь обнадеживающие результаты, следует подчеркнуть, что ген-модифицированные клетки в настоящее время запрещены ВОЗ к применению в клинической практике, т.к. негативные последствия данных дифференцировок практически остаются малоизученными и требуют более углубленного исследования.

Кроме МБК, другие факторы, в частности лейкемии-ингибиторный фактор (ЛИФ), интерлейкин-6, обладают плеотропным действием, в которое вовлечена не только мезодерма, но и нейроректодерма, гемопоз, процессы kostobrachiation и островое воспламенение (Taupin et al., 1996). ЛИФ важен для имплантации стволовых, самоподдерживающихся клеток и регулирует функцию эмбриональных и неонатальных КМИ. Действие ЛИФ на кардиогенную дифференцировку ЭСК
достаточно сложно. Так, присутствие растворимой формы данного фактора в культуре ткани эмбрионных телек на 0–4-е сутки, с одной стороны, ингибирует образование мезодермы, а с другой – стимулирует кардиомиогенез (Bader et al., 2000).

Дефицит продукции ЛИФ или числа рецепторов для него на клетках, полученных методом "клоакула" – выключения того или иного гена, приводит к нарушению процессов коммитирования и дифференцировки ЭСК в кардиомиоциты. Интересно, что низкие концентрации ЛИФ действуют на "клоакулу" клетки со сниженным числом рецепторов для данного фактора, стимулируя кардиомиогенез, тогда как высокие, напротив, замедляют этот процесс (Bader et al., 2001).

Использование ЛИФ-дефицитных клеток позволило выявить ряд новых факторов, принимающих участие в развитии сердца. Так, было показано, что ген Cripto-1, экспрессирующий эндодermalно-побочный фактор роста, хорошо выражен в тробластите, внутренней массе бластости и впоследствии вызывает рестирикованный рост кардиомиоцидards (Ciccocioppo et al., 1989). Эмбрионы мышей, дефицитных по Cripto-1 (tdg), обычно погибают до рождения. Тем не менее, в системе in vitro его инактивация приводит к предотвращению экспрессии кардиальных транскриптов для α-, β-TLM, Л17-2α и 2β, а также антителитического фактора, и приводит к формированию дефектной кардиальной мезодермы. Снижение функции Cripto-1 в ЭСК мало влияет на процесс дифференцировки мезодермальных, эндодермальных и эктодермальных элементов, но приводит к инактивации генов, ответственных за экспрессию ТЦМ, Л17-2α и 2β. Следует отметить, что функция ряда факторов кардиальной транскрипции (Nkx2.5, GATA-4, и MEF2C) сохраняется в данной системе. Возможно, Cripto-1 выполняет роль мастера-регулятора, регулирующего процесс мезодермы к формированию функционально полноценного кардиомиоцидards (Xu et al., 1999).

GATA-4, вместе с GATA-5 и GATA-6 транскриптами, присутствует в кардиальной мезодерме впоследствии сокращается в эндокардиальный и миокардиальный слой сердечной трубы и развивающегося сердца (Wobus, Guan, 1998; Farrel, Kirby, 2001; Boehler et al., 2002). При недостатке GATA-4 процесс формирования плода у мышей останавливается еще в матке из-за возникновения кардиальных дефектов (Kuo et al., 1997; Molkentin et al., 1997). С другой стороны, супрессия данного транскрипта в системе in vitro приводит к относительно слабому ингибированию процесса кардиогенной дифференцировки ЭСК (Grepin et al., 1997). В образующихся КМЦ сохраняются скопления кардиомиобластов и агрегаты тромболизированные комплексы. По-видимому, роль GATA-4 в кардиомиогенезе не является определяющей, так как из ЭСК с дефицитом данного транскрипта сохраняется способность к формированию всех трех зародышевых листков с выраженными миокардиальными маркеры. Можно предполагать, что другие гены данного семейства, типа GATA-5-6, восполняют дефицит функции GATA-4 (Nariya et al., 1997).

Другие гены, в частности основного семейства HAND1 (Helix-loop-helix), принимающие участие в ранних стадиях кардиомиогенеза ЭСК, не вызывают для их кардиальной дифференцировки в системе in vitro. Возможно, их функцию компенсируют другие гены, в частности Nkx2.5 и ответственные за продукцию α-актин, Л17-2α и Л17-2β (Firulli et al., 1998; Riley et al., 2000).

1.3. Дифференцировка пикритогенных эмбриональных стволовых клеток

(1.3.2. Роль цитоскелета и экстраклеточного матрикса в трансформации ЭСК в кардиомиоциты)

Соответствующее развитие сердца в эмбриогенезе во многом зависит от структурной интеграции элементов, формирующих сердечную трубку, в частности протеин экстраклеточного матрикса (ЭПМ) и сократительных белков. Досточно убедительны факты, что глобулярные ЭПМ принимают участие в процессах пролиферации и дифференцировки ЭСК в кардиомиоциты через механические и биохимические пути, использующие поверхностные рецепторы и белки цитоскелета, в частности коллаген, десмин и интегрин-1 (Schoenwaelder, Burridge et al., 1999). Однако они не всегда нужны для нормального развития КМЦ. Тем не менее, у животных с мутацией образования десмина частично супрессируется образование кардиомиоцидards (Weit- ter et al., 1995). С другой стороны, "клоакула" в мышцах со снижением образования коллагена-1-го типа может привести к разрыву соединений на 13-е сутки развития эмбриона (Schrêfe et al., 1983).

На ранних стадиях развития плода или эмбрионов телек в vitro наблюдается некоторое снижение образования десмина, что может привести к контролю в различных условиях. При этом образования мРНК для α-, β-TLM, ТЛМ-2α, антидиуретического пептида практически не изменялось (Chipman et al., 1993; Ding, 1999).

Дефицит продукции интегрена-1 в ЭСК приводит к задержке их кардиального развития и активации генов, ответственных за
достаточно сложно. Так, присутствие растворимой формы данного фактора в культуре тканей эмбриональных телек на 0-4-е сутки, с одной стороны, ингибитор образование мезодермы, а с другой — стимулирует кардиомиогенез (Bader et al., 2000).

Дефицит продукции ЛИФ или числа рецепторов для него на клетках, полученных методом "кокуята" — выключения того или иного гена, приводит к нарушению процессов коммитирования и дифференцировки ЭСК в кардиомиоциты. Интересно, что низкие концентрации ЛИФ действуют на "кокуята" клетки со сниженным числом рецепторов для данного фактора, стимулируя кардиомиогенез, тогда как высокие, напротив, замедляют этот процесс (Bader et al., 2001).

Использование ЛИФ-дефицитных клеток позволило выявить ряд новых факторов, принимающих участие в развитии сердца. Так, было показано, что ген Crip1, экспрессирующий эпидермальный-подобный фактор роста, хорошо выражен в трофобласте, внутренней массе бластоцисты и вскоре после вызывает рост ряда жировых миокарда (Ciccodicola et al., 1989). Эмбрионы, обладающие дефицитом по Crip1 (tdg1), обычно погибают до рождения. Тем не менее, в системе in vivo его инактивация приводит к предотвращению экспрессии кардиальных транскриптов для α-β-ТЦМ, ЛИМ-2α и 2β, а также ангиогеикического фактора, и приводит к формированию дефектной кардиальной мезодермы. Снижение функции Crip1 в ЭСК мало влияет на процессы дифференцировки мезодermalных, эпидермальных и эпителиальных элементов, но приводит к инактивации генов, ответственных за экспрессию ТЦМ, ЛИМ-2α и 2β. Следует отметить, что функция ряда факторов мезодермы (Nkx2.5, GATA-4, и MEF2C) сохраняется в данной системе. Возможно, Crip1 выполняет роль мастера-ген, регулирующего процесс мезодермы к формированию функционально полноценного миокарда (Xu et al., 1999).

GATA-4, вместе с GATA-5 и GATA-6 транскриптами, присутствует в прекардиальной мезодерме и впоследствии севертируется в эндокардиальный и миокардальный слой сердечной трубы и развивающегося сердца (Wobus, Guan, 1998; Farrell, Kirby, 2001; Boehler et al., 2002). При недостатке GATA-4 процесс формирования плода у мышей останавливается еще в матке из-за возникновения кардиальных дефектов (Kuo et al., 1997; Molkentin et al., 1997). С другой стороны, супрессия данного транскрипта в системе in vitro приводит к относительно слабому ингибированию процесса кардиогенной дифференцировки ЭСК (Grepin et al., 1997). В образующихся КМЦ сохраняются саркомеры и атривентрикулярные комплексы. По-видимому, роль GATA-4 в кардиогенезе не является детерминирующей, так как при их выключении не возникают кардиальные миокардиальные маркеры. Можно полагать, что другие гены данного семейства, типа GATA-5, -6, восполняют дефицит функции GATA-4 (Narita et al., 1997).

Другие гены, в частности основного семействаHAND1 (Helix-loop-helix), принимающие участие в ранних стадиях кардиогенеза ЭСК, не вызывают их кардиальной дифференцировки в системе in vitro. Возможно, их функцию компенсируют другие гены, в частности Nkx2.5 и ответственные за продукцию α-актин, ЛИМ-2α и ЛИМ-2в (Firulli et al., 1998; Riley et al., 2000).

1.3. Дифференцировка пикритогенных эмбриональных стволовых клеток

в кардиомиоциты

Соответствующее развитие сердца в эмбриогенезе во многом зависит от структурной интеграции элементов, формирующих сердечную трубку, в частности протеина эктракардиального матрикса (ЭПМ) и сократительных белков. Достаточно убедительно продемонстрировано, что протеины ЭПМ принимают участие в процессах репликации и дифференцировки ЭСК в кардиомиоциты через механические и биохимические пути, используя поверхностные рецепторы и белки цитоскелета, в частности коллаген, десмина и интегрина-1 (Schoenwaelder, Burtidge et al., 1999). Однако они не всегда нужны для нормального развития КМЦ. Тем не менее, у животных с мутацией образования десмина частично супрессируется образование миокарда (Wein et al., 1995). С другой стороны, "кокуята" у мышей с дефицитом образования коллагена 1-го типа может привести к разрыву сосудов на 13-е сутки развития эмбриона (Scheifele et al., 1983). На ранних стадиях развития плода или эмбрионных телек in vitro наблюдается некоторое снижение образования числа сокра-
Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиомииогенезе

продукцию α-, β-ТЦА, ТЦМ-2в, антидигуретического пептида и
нарушению архитектоники саркомеров (Fassler, Meyer, 1995).
Обычно остаются в живых только клетки с выраженным пей-мекерогенным свойствами. Нарушение клеточного распреде-
ления интегринов-у и сверхрегуляции интегрина-3 коррелируют
с ростом и выживанием эмбриональных пейсмекерных клеток
на ранней стадии дифференцировки. Однако интегрины требу-
ются для специализации, терминальной дифференцировки и про-
явления специфических кардиальных фенотипов у эмбриональ-
ных клеток (Fassler et al., 1996; Guan et al., 2001).

1.3.3. Роль внутриклеточного кальция
в регуляции пролиферации и
dифференцировки ЭСК в КМЦ

Кальций-зависимые протеины в процессе регуляции пролифе-
рации и дифференцировки ЭСК в кардиомиоциты стали исполь-
зовать относительно недавно. Так, было показано, что кальцием-
кулин способен воздействовать на разнообразные функции кле-
tок, включая регуляцию кальциевого гомеостаза, синтеза и
транспорта ионных каналов, поверхностных рецепторов, интег-
ринов, транспортеров. Часто эти эффекты связаны с взаимодей-
ствием цитокинематического домена интегриновых рецепторов
(Coppolino et al., 1997). Снижение кальциемокулина в системе in
vivo заметно снижает формирование сердечной ткани и повы-
шает апоптоз КМЦ. В культуре ткани in vitro дефицит данного
белка приводит к ухудшению клеточной адгезии и дифференци-
ровки ЭСК в кардиомиоциты. Кроме того, снижается количество
клеток, способных к сокращению в экстраксионных тяжах
(Rauch et al., 2000). Однако механизм вышеупомянутых феноменов оста-
ется неясным и требует более детального исследования. Сердеч-
ный риноводородный рецептор (РР) играет важную роль в регуля-
ции уровня кальция в цитозолях КМЦ через специальные кан-
алы. Они появляются на самых ранних стадиях развития миокар-
da и отвечают за способность его к сокращению. Выключение
данного гена приводит к кальциемокулинской гиперракте плазмы
мышей на 10-е сутки развития (Takeshima et al., 1998). ЭСК от
таких животных, наряду с ускоренной дифференцировкой их в
КМЦ, проявляют низкую сократительную способность. Кроме
того, у них нарушен процесс диастолической деполяризации кле-
tок. Предполагается, что регуляция внутриклеточного уровня
кальция в КМЦ через РР предотвращает увеличение частоты сер-
дцебиений выше предельного уровня и неадекватную перфузию
крови в сердечно-сосудистой системе (Bogdanov et al., 2001; Yang
et al., 2002).

В недавнем исследовании (Harvard Medical School) скринингу
подверглись 850 биологически активных веществ на предмет ин-
dукции дифференцировки ЭСК кардиомиоциты. ЭСК предвари-
tельно были трансформированы ген-конструкцией, содержащей
сердечный тканеспецифический промотор и ген флуоресцентного
целого белка. То есть при образовании кардиомиоцитов клет-
ки начинали светиться зеленым светом в флуоресцентном мик-
роскопе. Оказалось, что только аскорбиновая кислота (витамин
С) дает максимальное число светящихся клеток, т.е. кардиомио-
цитов. Эти клетки ритмично сокращались и экспрессировали
кардиомиоцитарные маркеры.

1.4. ПЕРСПЕКТИВЫ РАЗВИТИЯ КЛЕТОЧНОЙ
ТЕРАПИИ ЭСК В МЕДИЦИНЕ И
КАРДИОЛОГИИ

Еще вышеупомянутые данные об удивительных свойствах
ЭСК позволили некоторым ученым выделить ряд основных на-
pриложений клеточной терапии, среди которых можно указать:
1. Восстановление поврежденных тканей и органов, в т.ч.
микока, проводящей системы и сосудов.
2. В репродукционной медицине.
3. В биотехнологии при создании новых лекарственных препа-
ратов, гормонов, ростовых факторов и т.п.
4. В токсикологии и радиологии.
5. В геронтологии и биологии развития человека и животных.

Как отмечает В.С. Репин (2000), способность "ЭСК к неогра-
nиченной пролиферации и вторичной дифференцировке в куль-
tуре только начинает использоваться для создания нового "бизи-
цария" для трансплантации вклад донорских органов и феталь-
ной ткани. Потребность медицины в новом биосыве практически
неограничена: только 10–20% людей вылечиваются благода-
ря удачной пересадке органа, 70–80% погибают без лече-
ния на листе ожидания операции".

На практике, как отмечает T. Thomson (2000), только в США
выложены ЭСК из более 60 генетических вариантов. Теоретически,
если удается разработать адекватные и воспро-
изводимые методы получения из них клеточных линий с напра-
водождением выше предельного уровня и неадекватную перфузию
крови в сердечно-сосудистой системе (Bogdanov et al., 2001; Yang
et al., 2002).

В недавнем исследовании (Harvard Medical School) скринингу
подверглись 850 биологически активных веществ на предмет ин-
dукции дифференцировки ЭСК кардиомиоциты. ЭСК предвари-
tельно были трансформированы ген-конструкцией, содержащей
сердечный тканеспецифический промотор и ген флуоресцентного
целого белка. То есть при образовании кардиомиоцитов клет-
ки начинали светиться зеленым светом в флуоресцентном мик-
роскопе. Оказалось, что только аскорбиновая кислота (витамин
С) дает максимальное число светящихся клеток, т.е. кардиомио-
цитов. Эти клетки ритмично сокращались и экспрессировали
кардиомиоцитарные маркеры.

1.4. ПЕРСПЕКТИВЫ РАЗВИТИЯ КЛЕТОЧНОЙ
ТЕРАПИИ ЭСК В МЕДИЦИНЕ И
КАРДИОЛОГИИ

Еще вышеупомянутые данные об удивительных свойствах
ЭСК позволили некоторым ученым выделить ряд основных на-
pриложений клеточной терапии, среди которых можно указать:
1. Восстановление поврежденных тканей и органов, в т.ч.
микока, проводящей системы и сосудов.
2. В репродукционной медицине.
3. В биотехнологии при создании новых лекарственных препа-
ратов, гормонов, ростовых факторов и т.п.
4. В токсикологии и радиологии.
5. В геронтологии и биологии развития человека и животных.

Как отмечает В.С. Репин (2000), способность "ЭСК к неогра-
nиченной пролиферации и вторичной дифференцировке в куль-
tуре только начинает использоваться для создания нового "бизи-
цария" для трансплантации вклад донорских органов и феталь-
ной ткани. Потребность медицины в новом биосыве практически
неограничена: только 10–20% людей вылечиваются благода-
ря удачной пересадке органа, 70–80% погибают без лече-
ния на листе ожидания операции".

На практике, как отмечает T. Thomson (2000), только в США
выложены ЭСК из более 60 генетических вариантов. Теоретически,
если удается разработать адекватные и воспро-
изводимые методы получения из них клеточных линий с напра-
продукцию α-, β-ТЦМ, ТЦМ-2α, антидиуретического пептида и
нарушению архитектоники саркомеров (Fassler, Meyer, 1995).
Обычно остаются в живых только клетки с выраженным пей-
мезекромобными свойствами. Нарушение клеточного распреде-
ления интегринов и сверхреакция интегрин-3 коррелируют
с ростом и выживанием эмбриональных пеймезекромобных клеток
на ранней стадии дифференцировки. Однако интегрины требу-
ются для специализации, терминальной дифференцировки и про-
явления специфических кардиальных фенотипов у эмбриональ-
ных клеток (Fassler et al., 1996; Guan et al., 2001).

1.3.3. Роль внутриклеточного кальция
в регуляции пролиферации и
dифференцировки ЭСК в КМЦ

Кальцийзависимые протеины в процессе регуляции пролифе-
рации и дифференцировки ЭСК в кардиомиоциты стали упоми-
новаться относительно недавно. Так, было показано, что калцике-
кулин способен воздействовать на разнообразные функции кле-
tок, включая регуляцию казеинового гомеостаза, синтеза и
транспорта ионных каналов, поверхностных рецепторов, интег-
ринов, транспортёров. Часто эти эффекты связаны с взаимодей-
ствием цитотиперативных геномов интегриновых рецепторов
(Coppolino et al., 1997). Снижение кальциемулированной в системе in
vivo заметно снижает формирование сердечной ткани и повы-
шает аплазию КМЦ. В культуре ткани in vitro дефицит данного
беля приводит к угнетению клеточной адгезии и дифференци-
ровки ЭСК в кардиомиоциты. Кроме того, снижается количество
клеток, способных к сокращению в эмбриональных телях (Rauch
et al., 2000). Однако механизм вышеописанных феноменов оста-
ется неясным и требует более детального исследования. Сердеч-
ный разнородный рецептор (PP) играет важную роль в регуля-
ции уровня кальция в цитозоле КМЦ через специальные кана-
лы. Они появляются на самых ранних стадиях развития миокар-
да и отвечают за способность его к сокращению. Выключение
dанного гена приводит к кальциемулированной гибели плаценты
мышц на 10-e сутки развития (Takeshita et al., 1998). ЭСК от
таких животных, наряду с ускоренной дифференцировкой их в
КМЦ, проявляют низкую сократительную способность. Кроме
того, у них нарушен процесс диастолической деформации кле-
tок. Предполагается, что регуляция внутриклеточного уровня
кальция в КМЦ через PP предотвращает увеличение частоты сер-
дечного ритма выше предельного уровня и неадекватную перфузию
крови в сердечно-сосудистой системе (Bogdanov et al., 2001; Yang
et al., 2002).

В недавнем исследовании (Harvard Medical School) скринингу
предварительно 850 биологически активных веществ на предмет ин-
dукции дифференцировки ЭСК в кардиомиоциты. ЭСК предвари-
tельно были трансформированы ген-конструцией, содержащей
сердечный генахроматический промотор и ген флуоресцентного
белка. То есть при образовании кардиомиоцитов клет-
ки начинали светиться зеленым светом в флуоресцентном мик-
роскопе. Оказалось, что только аскорбиновая кислота (витамин
С) дает максимальное число светящихся клеток, т.е. кардиомио-
цитов. Эти клетки ритмично сокращались и экспрессировали кар-
диомиоцитарные маркёры.

1.4. ПЕРСПЕКТИВЫ РАЗВИТИЯ КЛЕТОЧНОЙ
ТЕРАПИИ ЭСК В МЕДИЦИНЕ И
КАРДИОЛОГИИ

Все вышеупомянутые данные об удивительных свойствах
ЭСК позволили некоторым ученым выделить ряд основных на-
правлений клеточной терапии, среди которых можно указать:
1. Бесподражательные трюмы тканей и органов, в том чис-
ле миокарда, проводящей системы и сосудов.
2. В репродукционной медицине.
3. В биотехнологии при создании новых лекарственных препа-
ратов, гормонов, ростовых факторов и т.п.
4. В токсикологии и радиологии.
5. В геронтологии и биологии развития человека и животных.

Как отмечает В. С. Репин (2000), способность "ЭСК к неогра-
ниченной пролиферации и вторичной дифференцировке в куль-
тюре только начинает использоваться для создания нового "био-
сърда" для трансплантации взамен донорских органов и феталь-
ной ткани. Потребности медицины в новом биоматериале практиче-
ски неограинченны: только 10–20% людей вылечиваются благо-
даря удачной пересадке органа, 70–80% людей погибают без ле-
чения на листе ожидания операции".

На практике, как отмечает T. Thompson (2000), только в США
выделены ЭСК из более 50 генетических различных бластоидов.
Теоретически, если удастся разработать адекватные и воспро-
изводимые методы получения из них клеточных линий с направ-
Глава 1. Развитие снарда. Роль эмбриональных стволовых клеток в кардиомиогенезе

ленной дифференцировочной, с созданием соответствующего клеточного банка, то практическое применение ЭСК для лечения заболеваний сердечно-сосудистой системы, дегенеративных заболеваний, иммунодефицитов, травм и др. станет реальностью (Вермель, 2004).

Обнаруженный факт превращения ЭСК в кардиомиобласты представляет собой существенный прогресс в кардиологии. Эти клетки могут стать потенциальным источником лечения инфаркта миокарда, кардиосклероза, сердечной недостаточности, порока сердца, повреждений сосудов и т.д.

Однако без генетических манипуляций, как уже отмечалось, процент превращения ЭСК в кардиомиобласты остается невысоким. Кроме того, для ЭСК, в отличие от мезенхимных СК, характерна высокая доля образования пейсмекерных клеток, что увеличивает риск формирования очагов экстраксиологии. ЭСК способны свиваться с кардиомиобластами, формируя химерные клетки. Хорошо это или плохо с патогенетических позиций — остается неясным.

Еще одним недостатком является то, что ЭСК, благодаря высокому дифференцировочному потенциалу, могут легко дифференцироваться в другие типы клеток, например в фибробласты, жировые клетки, гладкомышечные элементы и т.д., что снижает их терапевтическое воздействие.

Несмотря на низкую антигенную активность, их способность проявлять после дифференцировки в зрелые клетки иммунные свойства донора может привести к развитию реакции отторжения или, напротив, формированию РППХ.

Работа с ЭСК связана с этическими и религиозными аспектами, т.к. они проводятся на человеческих эмбрионах, пусть даже на самых ранних стадиях их развития.

Однако главным негативным моментом является то, что они могут превращаться в опухолевые клетки, например, типа тератокарциномы.

Тем не менее, при решении всех перечисленных проблем, ЭСК остаются достаточно перспективным, многообещающим материалом, который в настоящее время требует дальнейшего, более глубокого исследования.

Глава 2. МЕЗЕНХИМОПОЭЗ. СИСТЕМА МЕЗЕНХИМАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК

2.1. МЕЗЕНХИМАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ

Основоположником учения о мезенхимальных стволовых клетках считается наш соотечественник А.Я. Фридентштейн, который в начале 70-х годов прошлого века открыл популяцию стволовых гемопоэтических клеток, которые в культуре ткани формировали так называемые колониообразующие единицы фибробластов (КОЕф). В его лаборатории было установлено, что данная популяция редокс-клеток обнаруживается не только в костном мозге, но и в лимфоидных органах. Часть из них способна к циркуляции (Фридентштейн, Львкина, 1973; Фридентштейн А.Я., Лурье Е.А., 1980).

Глава 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиомиогенезе

ленной дифференцировкой, с созданием соответствующего клеточного банка, то практическое применение ЭСК для лечения заболеваний сердечно-сосудистой системы, дегенеративных заболеваний, иммунодефицитов, травм и др. станет реальностью (Вермель, 2004).

Обнаруженный факт превращения ЭСК в кардиомиоциты представляет собой существенный прогресс в кардиологии. Эти клетки могут стать потенциальным источником лечения инфаркта миокарда, кардиосклероза, сердечной недостаточности, пороков сердца, повреждений сосудов и т.д.

Однако без генетических манипуляций, как уже отмечалось, процент превращения ЭСК в кардиомиоциты остается невысоким. Кроме того, для ЭСК, в отличие от мезенхимальных СК, характерна высокая доля образования пейсмекерных клеток, что увеличивает риск формирования очагов экстрасистолии. ЭСК способны сливатся с кардиомиоцитами, формируя химерные клетки. Хорошо это или плохо с патогенетических позиций — остается неясным.

Еще одним недостатком является то, что ЭСК, благодаря высокому дифференцировочному потенциалу, могут легко дифференцироваться в другие типы клеток, например в фибробласты, жировые клетки, гладкомышечные элементы и т.д., что снижает их терапевтическое воздействие.

Несмотря на низкую антителную активность, их способность проникать после дифференцировки в зрелые клетки иммунные системы донора может привести к развитию реакции отторжения или, напротив, формированию РПТХ.

Работа с ЭСК связана с этическими и религиозными аспектами, т.к. она проводится на человеческих эмбрионах, пусть даже на самых ранних стадиях их развития.

Однако главным негативным моментом является то, что они могут превращаться в опухолевые клетки, например, типа тератоморфных.

Тем не менее, при решении всех перечисленных проблем, ЭСК остаются достаточно перспективным, многообещающим материалом, который в настоящее время требует дальнейшего, более глубокого исследования.
Глава 2. Мезенхимопоза. Система мезенхимальных стволовых клеток

ИЛ-10, -13, -17, фактора некроза опухолей β (ФНО-β) и костимулирующие молекулы для Т-клеток типа CD80 и CD86 (Wilson et al., 2003; Sun et al., 2003). Около 66% МСК человека в обычных условиях находится в G0 фазе клеточного цикла (Rangappa et al., 2003). Следует подчеркнуть, что мультипотентностью во взрослом организме обладают не только МСК, но и другие типы СК, например, нейральные и эпителиальные (табл. 2.1). Кроме того, существует класс более дифференцированных СК, которые могут определяться в отделных органах и тканях, которые обладают низким дифференцировочным потенциалом, их роль, очевидно, ограничивается самоподдержанием. В частности, речь идет о сателлитных мышечных клетках, овальных клетках в печени, клетках-предшественниках в базальной сае роговицы и т.д. (Bianco et al., 2001; Dennis, Charbord, 2002).

Кроме того, не исключено, что в костном мозге могут находиться еще более примитивные СК, способные к более 80 удвоениям в культуре ткани и дифференцироваться не только в клетки мезенхимальных линий, но и в эндотелиальные и эпидермальные прекурсоры, в частности, с формированием печеночных и эпителиоидных клеток (Schwartz et al., 2002; Reyes et al., 2001, 2002).

Таблица 2.1
Основные типы мультипластарных стволовых клеток, определяемых в взрослом организме

<table>
<thead>
<tr>
<th>Тип стволовых клеток</th>
<th>Локализация</th>
<th>Путь дифференцировки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мезенхимальные СК</td>
<td>Костный мозг, хрящевая ткань</td>
<td>Кардиомиоциты, миоциты, гладкомышечные клетки, астроциты, костная, хрящевая, мышечная ткани. Здесь клетки, сателлиты.</td>
</tr>
<tr>
<td>Кроветворные СК</td>
<td>Костный мозг, селезенка (грызуны)</td>
<td>Эритроциты, гранулоциты, моноциты, макрофаги, емкость, клетки Купфера, лимфоциты, тромбоциты</td>
</tr>
<tr>
<td>Нейральные СК</td>
<td>Головной мозг, кожа</td>
<td>Нейроны, астроциты, олиго-девоциты, клетки крови</td>
</tr>
<tr>
<td>Эпителиальные СК</td>
<td>Кожа, эпителий</td>
<td>Все типы клеток в эпителиальных красках, все типы клеток эпидермального слоя</td>
</tr>
<tr>
<td>Печёночные стволовые клетки</td>
<td>Печень</td>
<td>Гепатоциты, эмбриональные железы, хранящий эпиэпителий, клетки ходообразной железы, хилоциты</td>
</tr>
<tr>
<td>Гематоэпителиоидные клетки</td>
<td>Кожа</td>
<td>Нейроны, гипоксические клетки, адипоциты</td>
</tr>
</tbody>
</table>

Интересно, что если МСК костного мозга взрослого организма ввести в раннюю бластоциту, то из них образуются практически все типы соматических клеток. Более того, при трансплантации в организме облученных животных из них формируются не только мезенхимальные ткани, но и кроветворные, эпителиальные, лейкемические, желудочно-кишечные, нейро-эктодермальные элементы (Bianco et al., 1999; Kopen et al., 2000; Iang et al., 2002). Все это делает МСК идеальным источником стволовых клеток для проведения клеточной терапии заболеваний сердечно-сосудистой системы.

В настоящем разделе мы остановимся только на классе мезенхимальных (мезенхимных) стволовых клеток костного мозга. Это продиктовано тем, что данная категория прогенераторных клеток наиболее изучена по отношению их морффункциональных свойств, генетипу, способности к компетентированию, пролиферации, дифференцировке в направлении кардиомиогенеза, ангиогенеза, фибромедутаз и других линий тканей, принимающих участие в механизмах адаптации и восстановления поврежденных структур сердца (Kopen et al., 1999; Reyes et al., 1999; Makino et al., 1999; Toma et al., 1999; Weissman et al., 2000; Dennis, Charbord, 2002).

Главными функциями МСК костного мозга являются:
1. Формирование, гемопоэзиндуцирующего микроокружения (ГИМ).
2. Формирование стromального микроокружения (СМ).
3. Участие в морфогенезе.
4. Самоподдержание и восстановление пуль МСК.
5. Участие в гомеостатических реакциях организма и в процессах регенерации, репарации и адаптации системы мезенхимальных клеток (костный мозг, мышечной, костной, хрящевой и др. тканей) в норме и патологии.

С филогенетических позиций мезенхимальные клетки появляются раньше, чем кроветворная и сосудистая система, по видимому, во время образования групп животных, лишенных костей и полостных жидкостей, таких как губки, кишечно-полостные и прочие черви (Maximov, 1927; Заварзин, 1953; Otkreyd, 1977). У губок они представляют собой наземные амебоиды, располагающиеся в мезогле и обладающие полифункциональными свойствами (Хадыри, Венер, 1989). Амебоиды, из которых при контакте с различными поверхностями обладают способностью уплощаться и формировать одночрные синцитии. Кроме
ИЛ-10, IL-13, IL-17, факторы некроза опухолей β (ФНО-β) и костимулирующие молекулы для Т-клеток типа CD80 и CD86 (Wilson et al., 2003, Sun et al., 2003). Около 66% МСК человека в обычных условиях находится в Г1, фазе клеточного цикла (Rangappa et al., 2003). Следует подчеркнуть, что мультипотентностью во взрослом организме обладают не только МСК, но и другие типы СК, например, нейральные и эпителиальные (табл. 2.1). Кроме того, существует класс более дифференцированных СК, которые могут определяться в отдельных органах и тканях, которые обладают низким дифференцировочным потенциалом, и их роль, очевидно, ограничивается самоподдержанием. В частности, речь идет о сателлитных мышечных клетках, овальные клетках в печени, клетках-предшественниках в базальном слое роговицы и т.д. (Bianco et al., 2001; Dennis, Charbord, 2002).

Кроме того, не исключено, что в костном мозге могут находиться еще более примитивные СК, способные к более 80 удвоениям в культуре ткани и дифференцирующимся не только в клетки мезенхимальной лиши, но и в эндотелиальные и эпителиальные факторы, в частности, с формированием жировых и эпителиальных клеток (Schwartz et al., 2002; Reyes et al., 2001, 2002).

Таблица 2.1

<table>
<thead>
<tr>
<th>Тип стволовых клеток</th>
<th>Локализация</th>
<th>Путь дифференцировки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мезенхимальные СК</td>
<td>Костный мозг, хрящевая ткань</td>
<td>Кардиомиоциты, миосители, гладкомышечные клетки, астроциты, нейросекретные клетки, хрящевая ткань, хрящи, суставы, кости</td>
</tr>
<tr>
<td>Кроветворные СК</td>
<td>Костный мозг, селезенка (грушу)</td>
<td>Эритроциты, гранулоциты, моноциты, макрофаги, лейкоциты, клетки Купфера, лимфоциты, тромбоциты</td>
</tr>
<tr>
<td>Нейральные СК</td>
<td>Головной мозг, кожа</td>
<td>Нейроны, астроциты, проме-нейрона, клетки костной ткани</td>
</tr>
<tr>
<td>Эпителиальные СК</td>
<td>Кожа, эпидермис</td>
<td>Все типы клеток в эпителиальных тканях, все типы клеток эпителиального слоя</td>
</tr>
<tr>
<td>Почековые стволовые клетки</td>
<td>Печень</td>
<td>Гепатоциты, эпителиальные клетки, клетки эпителиальных тканей, клетки-макрофаги</td>
</tr>
<tr>
<td>Дermalные стволовые клетки</td>
<td>Кожа, слизистые</td>
<td>Неоплазмы, гладкие клетки, астроциты</td>
</tr>
</tbody>
</table>

Интересно, что если МСК костного мозга взрослого организма ввести в раннюю бластоциту, то из них образуются практически все типы соединительных клеток. Более того, при трансплантации в организмы облученных животных из них формируются не только мезенхимальные ткани, но и кроветворные, эпителиальные, лимфоцитарные, жировые, мио-эндотелиальные и нейральные клетки (Bianco et al., 1999; Kopen et al., 2000; Lang et al., 2002). Все это делает МСК идеальным источником стволовых клеток для проведения клеточной терапии заболеваний сердечно-сосудистой системы.

В настоящем разделе мы остановимся только на классе мезенхимальных стволовых клеток костного мозга. Это позволит видеть, что данная категория гемопоэтических клеток наиболее изучена по отношению к их морфофункциональным свойствам, фенотипу, способности к самоподдержанию, пролиферации, дифференцировке в направлении кардиомиогенеза, ангиогенеза, фиброгенеза и других линий тканей, принимающих участие в механизмах адаптации и восстановления поврежденных структур сердца (Kopen et al., 1999; Reyes et al., 1999; Makino et al., 1999; Toma et al., 1999; Weissmann et al., 2000; Dennis, Charbord, 2002).

Главными функциями МСК костного мозга являются:
1. Формирование гемопоэзиндуцирующего микроокружения (ГИМ).
2. Формирование стromального микроокружения (CM).
3. Участие в морфогенезе.
4. Самоподдержание и восстановление пупа МСК.
5. Участие в гемостатических реакциях организма и в процессах регенерации, репарации и адаптации системы мезенхимальных клеток (костный мозг, мышечная, костная, хрящевая и др. ткани), в норме и патологии.

С филогенетических позиций мезенхимальные клетки появляются раньше, чем кроветворная и сосудистая системы, по видимому, во время появления группы животных, лишенных костей и половыых жилищ, таких как губки, кишечнополосные и плоские черви (Maximov, 1927; Zavarzina, 1953; Otkreyd, 1977). У губок они представляют так называемые амебоиды, располагающиеся в мезогле и обладающие полифункциональными свойствами (Хадри, Венер, 1989). Амебоиды иглоожных при контакте с различными поверхностями обладают способностью уплотняться и формировать однослойный синцитий. Кроме
Глава 2. Мезенхимные клетки. Система мезенхимных стволовых клеток

того, они могут формировать многоклеточные агрегаты и многоядерные симплайсы (Заварин, 1985; Новицкий и др., 1997).

Следует подчеркнуть, что миграция МСК из костного мозга в органы в большинстве случаев происходит только тогда, когда происходит опустошение (ионостез) в периферическом компартменте системы МСК или при повреждении ткани. Такой процесс наблюдается при переломах костей, повреждении мышечной ткани (Shahak и др., 2003; Ferrari et al., 1998). В обычных условиях процесс физиологической регенерации в этих тканях, очевидно, не требуют дополнительного притока МСК из центрального организма и осуществляются за счет собственных резервов. Несколько иная ситуация разыгрывается в микрокоде при его повреждении, и в нем отсутствуют МСК. Более детально эта проблема будет рассмотрена в главе 3.

Синонимами обозначения МСК могут выступать также термины как КОБ, мезенхимальные прогениторные клетки, стволовые клетки костного мозга, мезенхимные или мезодермальные СК (Conget, Minguell, 1999; Minguell et al., 2001; Dennis J., Charles, 2002). Большинство названий отражает скорее смысловую, не жели функциональную сторону вопроса. В нашей работе мы будем использовать термины мезенхимные стволовые клетки", "мезенхимоиндукторы", "система мезенхимных клеток".

В жидкой культуре костного мозга с низкой плотностью клеток МСК формируют колонии, состоящие преимущественно из фибробластоподобных клеток разной степени зрелости (Фридъштейн, Львкина, 1973; Fridenstein et al., 1976; Castro-Malaspina et al., 1980). Исследование клеточного цикла показало, что только 10% клеток в мезенхимных колониях участвуют в процессах пролиферации (фазы S+G2+M). Большинство фибробластоподобных элементов находится в состоянии покоя (фазы G0/G1). В свою очередь, на основании анализа ДНК и РНК, а также характера культивирования было установлено, что покоящиеся МСК представляют собой неоднородную группу. Часть из них, по-видимому, осталась на пути коммутации и дифференцировки в том или ином направлении (Tamir et al., 2000). Гетерогенность клеток, входящих в состав колоний, отчетливо проявляется по отношению к их пролиферативной активности. Так, одни МСК способны к 3–4 удвоениям, тогда как другие – к 15 и более (Bruder et al., 1997; Digirolamo et al., 1999; Phinney et al., 1999). Многие авторы подчеркивают, что такой разнообразной в полученной информации может быть вызван не только функциональными особенностями МСК, но и техникой выделения, культивирования клеток, состоянием донора и его возрастом, наличием там или иной патологии и т.п. (Blazsek et al., 1999; Koc et al., 1999; Galotto et al., 1999).

В процессе культивирования МСК, как правило, сохраняют свою карциномат и гемолизитическую активность. В отличие от кроветворных стволовых клеток, мезенхимальные МСК не склонны к дивергенции и образование в конце концов специфические рецепторы на поверхности CD45, CD34 и CD14 (Conget et al., 1999; Pittenger et al., 1999).

Основные функциональные и фенотипические характеристики МСК представлены в таблице 2.2.

МСК формируют достаточно динамичную систему в костном мозге, состоящую из дифференцированных фибробластов, ретикулярных клеток, эндотелия, компонентов экстрацеллюлярного матрикса, цитокинов. При этом взаимодействие между собой и другими клетками осуществляется через специфические рецепторы в молекулы адгезии (табл. 2.2) (Klein, 1995; Reese et al., 2019; Cheng et al., 2019). Особенно важным в этом процессе является экспрессия CD44 антигена. Трансмембранный протеин CD44 представляет собой рецептор для различных лигандов, таких как гиалурон и остеопонин. Эти рецепторные взаимодействия, по-видимому, могут играть важную роль в пространственной организации межклеточного материала не только в костном

<table>
<thead>
<tr>
<th>Тип межклеточной молекулы</th>
<th>Факторы</th>
<th>Характеристика, тип</th>
</tr>
</thead>
<tbody>
<tr>
<td>Межклеточные рецепторы</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
того, они могут формировать многоклеточные аггегаты и многоядерные симпласты (Заварзин, 1985; Новицкий и др., 1997).
Следует подчеркнуть, что миграция МСК из костного мозга в органы в большинстве случаев происходит только тогда, когда происходит опустошение (ионирование) в периферическом компартменте системы МСК или при повреждении ткани. Такой процесс наблюдается при переломах костей, повреждениях мишенной ткани (Шахов и др., 2003; Ferrari et al., 1998). В обычных условиях процесс физиологической регенерации в этих тканиях, очевидно, не требуют дополнительного притока МСК из центрального органа и осуществляются за счет собственных резервов. Несколько иная ситуация разрабатывается в миоарде при его повреждении, т.к. в нем отсутствуют МСК. Более детально эта проблема будет рассмотрена в главе 3.
Синонимами обозначения МСК могут выступать такие термины как КОФ, мезенхимальные гемопоэтические клетки, костномозговые стромальные клетки, мультипотентные стволовые клетки костного мозга, мезенхимные или перipherальные СК (Cornet, Minguell, 1999; Minguell et al., 2001; Denis J., Charbon, 2002). Большинство названий отражает скорость гловыми, не
желая функциональную сторону вопроса. В нашей работе мы будем использовать термины "мезенхимальные стволовые клетки" (т.е. "мезенхимопоза", "система мезенхимальных клеток").
В жидкой культуре костного мозга с низкой плотностью клеток МСК формируют колонии, состоящие преимущественно из фибробластоподобных клеток разной степени зрелости (Фриденштейн, Лыжкина, 1973; Fridenstein et al., 1976; Castro-Malaspina et al., 1980). Исследование клеточного цикла показало, что только 10% клеток в мезенхимных колониях участвует в процессах пролиферации (фазы: S+G2+M). Большинство фибробластоподобных элементов находится в состоянии покоя (фазы: G0/G1). В свою очередь, на основании анализа ДНК и РНК, а также характера культивирования было установлено, что покоящиеся МСК представляют собой неоднородную группу. Часть из них, по-видимому, осталась на пути компетентного и дифференцировок в том или ином направлении (Tamir et al., 2000). Гетерогенность клеток, входящих в состав колоний, отчетливо проявляется по отношению к их пролиферативной активности. Так, одни МСК способны к 3–4 удвоениям, тогда как другие – к 15 и более (Bruder et al., 1997; Digirolamo et al., 1999; Phinney et al., 1999). Многие авторы подчеркивают, что такой разнообразный в по
лученной информации может быть вызван не только функціональными особенностями МСК, но и техникой выделения, куль
тивирования клеток, состоянием донора и его возрастом, налич
ием той или иной патологии и т.п. (Blazsek et al., 1999; Koc et al., 1999; Galotto et al., 1999).
В процессе культивирования МСК, как правило, сохраняют свой карциин и теломерную активность. В отличие от крове
станивых стволовых клеток, мезенхимные МСК не сидят на сво
й поверхности рецепторы CD45, CD34 и CD14 (Cornet et al., 1999; Pittenger et al., 1999).
Основные функциональные и генотипические характеристи
ки МСК представлены в таблице 2.2.
МСК формируют достаточно динамичную систему в костном
мозге, состоящую из дифференцированных фибробластов, рети
кулярных клеток, эндотелии, компонентов экстрацеллюлярного
матрикса, цитокинов. При этом взаимодействие между собой и с другими клетками осуществляется через специфические рецеп
торы в молекулах адгезии (табл. 2.2) (Klein, 1995; Reese et al., 1999; Cheng et al., 2000). Особенно важным в этом процессе яв
ляется экспрессия CD44 антигена. Трансмембранный протеин
CD44 представляет собой рецептор для различных лигандов, та
ких как ганулар и остеоптин. Эти рецепторные взаимодей
ствия, по-видимому, могут играть важную роль в пространственн
ной организации межклеточного материала не только в костном

<table>
<thead>
<tr>
<th>Таблица 2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Основные функциональные и генотипические характеристики костномозговых МСК (по J. Minguell et al., 1999, с дополнениями)</td>
</tr>
<tr>
<td>Тип межклеточных молекул или факторов</td>
</tr>
<tr>
<td>Специфические антигены</td>
</tr>
<tr>
<td>Подвижные цитокиновые и ростовые факторы</td>
</tr>
<tr>
<td>Рецепторы для цитокиновых и ростовых факторов</td>
</tr>
<tr>
<td>Молекулы адгезии</td>
</tr>
<tr>
<td>Молекулы экстрацеллюлярного матрикса</td>
</tr>
</tbody>
</table>
Глава 2. Мезенхимопоз. Системы мезенхимальных стволовых клеток

мозге, но и в костной ткани (Minguell, 1993; Yamazaki et al., 1991). С помощью культуральных методов был выявлен ряд факторов, способных вызывать дифференцировку МСК в том или ином направлении (табл. 2.2). Следует подчеркнуть, что ни в одном исследовании (кроме опытов с трансfecцией специфических кардиомиогенных генов) не удалось вызвать перепрограммирование данной категории СК, превышающей 40–60%. Более подробно эти вопросы будут рассмотрены ниже, в главе 3.

Когда культуры костномозговых МСК исследуют по отношению к их пролиферативному статусу, то часто выявляется их неоднородность. Так, D. Colter et al. (2000) показали, что в культуре ткани обнаруживается так называемый несомпрогененный пул МСК (МСКн). МСКн представлены незначительным количеством малых в агрегуированных клетках с низкой способностью к формированию колоний и не реагирующих на специфический Ki-67 антиген клеточного цикла, которые отличаются от более дифференцированных (компетентных) МСК низкой пролиферативной активностью. Число покоящихся МСК в культуре ткани обычно не превышает 1%. Они вступают на путь компетирования и дифференцировки под продолжительным действием эмбриональной телемной сыворотки (ЭТС) и зависят от присутствия фактора роста фибробластов 2-го типа (ФРФ-2) (Kagawa et al., 2000). МСКн практически не чувствительны к антиметаболиту – 5-фторурацилу, не неразреженные, характерных для остеогенных, адипогенных клеток, имеют низкое содержание РНК и высокий уровень экспрессии гена для ODC, что указывает на непролиферативный статус клетки (Berardi et al., 1995; Juan, Darzyńskiiewicz, 1998; Ivata et al., 1999). Логично предположить, что между различными субпопуляциями МСК существует тесная взаимосвязь. Очевидно, что более примитивные пролиферативные клетки, к которым можно отнести пул МСКн, являются базовыми звеном, обеспечивающим самоподдержание стволовых клеток в костном мозге на постоянном уровне и слабо реагирующих на факторы активации и супрессии. Более дифференцированные МСК обеспечноывают пластичность и адекватный ответ на действие экстренных факторов. Ряд авторов считает, что такое взаимодействие регулируется по аутоиннервному механизму (Colter et al., 2000). Однако прямых данных, подтверждающих или опровергающих это предположение, нет.

Следует подчеркнуть, что доказательства существования МСКн получены в основном при изучении клеточных культур костного мозга in vitro. Несмотря на все успехи, еще предстоит выяснить, имеются ли в целостном организме человека аналоги МСКн (Gastro-Malaspina et al., 1980). Это чрезвычайно трудная задача, так как количество "обычных", компетентных МСК в костном мозге не превышает 1-5х10⁶, тогда как для МСКн это количество, согласно культуральным исследованиям, меньше и не должно превышать величину 0,1-1х10⁷.

2.2. Компетентные МСК Костного Мозга (МСКн)

Как уже было сказано, в культуре костного мозга наряду с пулом МСКн существует более многочисленная категория, обладающая высоким пролиферативным потенциалом, которую можно отнести к компетентным МСК (МСКн). Эти пролиферативные клетки также не являются однородными. Условно среди них можно выделить СК, способные дифференцироваться в:

- кардиомиоциты, скелетные миоциты, гладкомышечные миоциты, остеоциты, хондроциты и адипоциты;
- остеоциты, хондроциты и адипоциты;
- остеоциты и адипоциты или хондроциты и адипоциты;
- эндотелиоидные клетки.

Дифференцировка МСКн в том или ином направлении в системе in vitro можно добиться путем добавления индукторов и супрессоров. Так, например, остеогенную дифференцировку можно вызвать добавление в культуру β-глицерофосфата и аскорбиновой кислоты, адипогенез – за счет введения декаметазона, изобутилметилксантин и метидола. Хондрогенез стимулируют трансфорамиция фактором роста-α (ТФР-α), моногенез и кардиомиогенез – аскорбиновой кислотой, декаметазоном и 5-азациdinном (табл. 2.3).

Таким образом, мезенхимопоз на уровне компетентных МСК представляет собой сложный многоступенчатый процесс постепенного ограничения пролиферативной и дифференцировочной способностей пролиферативных клеток. По мере продвижения исходных клеток к конечному фенотипу, они, с одной стороны, теряют способность к самоаспевственному и, с другой, – усиливают процессы дифференцировки (Potten, 1986; Beresford et al., 1992; Dennis, Caplan, 1996; Hicok et al., 1998; Rao, Dravid, 1999).

Большинство исследователей придерживаются мнения, что компетентные, пролиферации, дифференцировка и созревание
Глава 2. Мезенхимопоз. Системы мезенхимальных стволовых клеток

2.2. Компетентные МСК костного мозга (МСКк)

мозге, но и в костной ткани (Mignegg, 1993; Yamazaki et al., 1994). С помощью культуральных методов был выявлен ряд факторов, способных вызывать дифференцировку МСК в том или ином направлении (табл. 2.2). Следует подчеркнуть, что ни в одном исследовании (кроме опытов с трансплантацией специфических кардиомиогенных генов) не удалось вызвать перепрограммирование данной категории СК, превышающей 40–60%. Более подробно эти вопросы будут рассмотрены ниже, в главе 3.

Когда культуры костномозговых МСК исследуют по отношению к их пролиферативному статусу, то часто выявляется их недородность. Так, D. Colter et al. (2000) показали, что в культуре ткани обнаруживается так называемый несомкнутый пул МСК (МСКк). МСКк представлены незначительным количеством малых в агрегатных клеток с низкой способностью к формированию колоний и не вырабатывающих на специфических Ki-67 антител клонального цикла, которые отличаются от более дифференцированных (компетентных) МСК низкой пролиферативной активностью. Число покоящихся МСКк в культуре ткани обычно не превышает 3%. Они вступают на путь компетентации и дифференцировки под продолжительным действием эмбриональной тельщей сыворотки (ЭТС) и зависят от присутствия фактора роста остеобластов 2-го типа (FRP-2) (Kagawa et al., 1999). МСКк практически не чувствительны к антиметаболиту – 5-фторурацилу, не несут маркеров, характерных для остеогенных, атропротенных клеток, имеют низкое содержание РНК и высокий уровень экспрессии гена для ОСД, что указывает на непролиферативный статус клетки (Berardi et al., 1995; Juan, Darzyntkiewicz, 1998; Iwata et al., 1999). Логично предположить, что между различными субпопуляциями МСК существуют тесная взаимосвязь. Очевидно, что более примитивные прогенераторные клетки, к которым можно отнести пулу МСКк, являются базовыми элементами, обеспечивающими самоподдерживающийся стволовый клеток в костном мозге на постоянном уровне и слабо реагирующим на факторы активации и супрессии. Более дифференцированные МСКк обеспечивают пластичность и адекватный ответ на действие экстримальных факторов. Ряд авторов считает, что такое взаимодействие регулируется по аутокринному механизму (Colter et al., 2000). Однако прямых данных, подтверждающих или опровергающих это предположение, нет.

Следует подчеркнуть, что доказательства существования МСКк получены в основном при изучении клеточных культур костного мозга in vitro. Несмотря на все успехи, еще предстоит выяснить, идентифицировать ли в целостном организме человека аналог МСКк (Castro-Malaspina et al., 1980). Это чрезвычайно трудная задача, так как количество "обычных", компетентных МСК в костном мозге не превышает (1–5)×10⁸, тогда как для МСКк это количество, согласно культуральным исследованиям, еще меньше и не должно превышать величину (0,1–1)×10⁷.

2.2. КОМПЕТЕНТНЫЕ МСК КОСТНОГО МОЗГА (МСКк)

Как уже было сказано, в культуре костного мозга наряду с пулем МСКк существуют более многочисленная категория, обладающая высоким пролиферативным потенциалом, которую можно отнести к компетентным МСК (МСКк). Эти прогенераторные клетки также не являются однородными. Существуют следующие из них, виды клеток:

а) кардиомиоциты, скелетные миоциты, гладкомышечные миоциты, остеоциты, эпителиоциты и адонциты;

б) остеоциты, скелетные миоциты, гладкомышечные миоциты, остеоциты, эпителиоциты и адонциты;

в) эпителиоциты и адонциты.

Дифференцировка МСКк в том или ином направлении в системе in vitro можно добиться путем добавления индукторов и супрессоров. Так, например, индуктивную дифференцировку можно вызвать добавление в культуру 1-глицерофосфата и аскорбиновой кислоты, адопогенекс – за счет введения декаметазона, изобутилметилксантина и метильдина. Хондрогенекс стимулируют трансформирующим фактором роста-α (ТФР-α), Мигенинов и кардиомиогенекс – аскорбиновой кислотой, декаметазоном и 5-азацитидином (табл. 2.3).

Таким образом, мезенхимопоз на уровне компетентных МСК представляет собой сложный многоступенчатый процесс, определяющийся ограничением пролиферативной и дифференцировочной способностью прогенераторных клеток. По мере продвижения исходных клеток к конечному фенотипу, они, в свою очередь, теряют способность к самоуправлению и, с другой, – усиливают процессы дифференцировки (Potten, 1986; Beresford et al., 1992; Dennis, Caplan, 1996; Hicok et al., 1998; Rao, Dravid, 1999).

Большинство исследователей придерживаются мнения, что компетентные, пролиферация, дифференцировка и созревание
Глава 2. Мезенхимопоза. Система мезенхимальных стволовых клеток

Таблица 2.3

<table>
<thead>
<tr>
<th>Путь дифференцировки</th>
<th>Активаторы</th>
<th>Супрессоры</th>
<th>Фенотипические маркеры: молекулярные</th>
<th>клеточные</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кардиомиоциты, мышечные клетки, гладкомышечные клетки</td>
<td>GATA-4, 5, 6, MEF-2C, TEER-2, COX</td>
<td>MyD Myf 5 и 6 MEF-2, и миозин, MRf4</td>
<td>Сокращающиеся клетки</td>
<td></td>
</tr>
<tr>
<td>Адипоциты</td>
<td>PPARγ2, CEBPα, CEBPβ, дикаллез 1, 2</td>
<td>PPARγ2, CEBPβ, ацетильная липаза</td>
<td>Липидные вакуоли в цитоплазме</td>
<td></td>
</tr>
<tr>
<td>Хондриоциты</td>
<td>Sox-9, TGF-β, асборбционная кислота</td>
<td>NFATc</td>
<td>Матрикс из коллагена-2, IX типов</td>
<td></td>
</tr>
<tr>
<td>Остеосаркомы</td>
<td>Cbfa-1, МБК-2, дикаллез 1, 2, в-в-стероидные фосфаты</td>
<td>PPARγ2, Остеогенез, адипоцитарный, асборбционный и секретарский фосфат, Cbfa-1</td>
<td>Кольцо-1 и III типов</td>
<td></td>
</tr>
</tbody>
</table>

Примечание: Cbfa-1 — основная связывающая фактор; A1; PPARγ2 — персиссипный активируемый рецептор перфоратора 2; CEBPα/β — фактор, связывающий белок α/β; NFATc — цитозин 1- faktor активации; MEG-2C — миозин-связывающий фактор 2; TEER-2 — основной регуляторный элемент, связывающий белок. MBK — морфогенетический базис кости.

лубых типов СК, включая и мезенхимальные, зависят от интегрального действия разнообразных факторов, формирующих структурное идентифицирующее микросреду. Исходя из этого подхода, ряд авторов пытается построить иерархическую структуру мезенхимальных клеток как для обычных, так и экстремальных условий (Карпов, Шахов, 2001; Caplan, 1995; Fukushima, Ohkawa, 1995; Bach et al., 2000) (рис. 2.1). Первые попытки схематически изобразить иерархическую структуру развития МСК были предприняты в 1995 г., когда А. Caplan предложил "тетраподу мезенхимального процесса". Вслед за этим последовал ряд моделей, большинство из которых предполагали наличие иерархической структуры для так называемых исходных остеогенных клеток, принимая участие в процессе развития костных клеток.

Рис. 2.1. Иерархическая модель мезенхимопоза в направлении образования кардиомиоцитов: МСКи — некоммитированные (коммитированные мезенхимальные стволовые клетки), МСКафроуз — миоциклические, гладкожккие, и другие — миоциклические стволовые клетки, способные формировать миоциты, адипоциты, фибробласты, хондриоциты, остеогенные и гладкомышечные клетки, КМЦ — кардиомиоциты (Haynesworth et al., 1992; Grontos et al., 1999; Bordignon et al., 1999). Основным недостатком иерархической модели мезенхимопоза является то, что многие цитокины, ростовые и диф-
Глава 2. Мезенхимоплаза. Система мезенхимальных стволовых клеток

Таблица 2.3

<table>
<thead>
<tr>
<th>Путь дифференцировки</th>
<th>Активаторы</th>
<th>Супрессоры</th>
<th>Фактические маркеры:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GATA-4,5,6,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEF-2C;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VTBE-2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C, 5-азадиамин,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>витамины D15E,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>дексаметазон</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Адипоциты</td>
<td>PPAR-1;2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/EBP-α,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>дексаметазон,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>изоформы</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Каскин, инсулин,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>инометазин</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Хондроциты</td>
<td>Sox9, TGF-β,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>аскорбиновая</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>кислота</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Остеобласты</td>
<td>Cbfα-1, MБК-2,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>дексаметазон,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>витамины C,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-глициферофаг</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Фактические маркеры:
- молекулярные
- клеточные
- Сохраняющиеся

Рис. 2.1. Иерархическая модель мезенхимоплазы и направления образования кардиомиоцитов: MCK(α) – номамитированные (компактированные мезенхимальные стволовые клетки), MCK(β) – мезенхимальные, гладкие, гладкие, сглаживающие стволовые клетки, адипоциты, фибробласты, хондроциты, хондроциты, хондроциты, хондроциты, КМЦ – кардиомиоциты.

(Hasenwirth et al., 1992; Grontos et al., 1999; Bordinronon et al., 1999). Основным недостатком иерархической модели мезенхимоплазы является то, что многие цитокины, ростовые и диф-
Глава 2. Мезенхимообразование в системе мезенхимальных стволовых клеток

ференцирующие факторы, активаторы, супрессоры и ингибито-
ры, действующие на уровне МСК, пока не определены. Кроме
того, пластичность МСК, их способность изменять свой фе-
нотип в зависимости от обстоятельств, а также отсутствие на-
дежных генов-маркеров для МСК или МСКи и их дифференци-
рованных потомков достаточно трудно объяснить с вышукла-
занных позиций (Minguell et al., 2001).

2.3. СПОСОБНОСТЬ КОСТНОГО МОЗГА ЧЕЛОВЕКА И ЖИВОТНЫХ ФОРМИРОВАТЬ КОЛОНИИ МЕЗЕНХИМАЛЬНЫХ КЛЕТОК В СИСТЕМЕ IN VITRO

Для определения общего количества МСК, формирующих колоннеобразующие единицы фиbroblastов (KOEф), была ис-
пользована техника А.Я. Фридеништейна (1977) с некоторыми
модификациями. Опыты были проведены на 55 мышах-грибах F1 (CBAхC57Bl/6) обоего пола, массой 18–20 г. Кроме того, ис-
пользовали клетки костного мозга самцов крыс породы Вистар,
массой 150–160 г. У животных из бедренной кости вынимали
костный мозг полной средой, состоящей из 90% среды DI-MEM
"Sigma", 10% эмбриональной телечьей сыворотки (ЭТС) "Sigma",
250 мг/л L-глютамин "Merck", 10–6 М декаметазона "Sigma",
100 ЕД/мл пенициллина "Sigma", 100 мкг/мл стрептоми-
цы "Sigma". Клеточность жизнеспособных клеток довольна,
до 10 1–10 10/мл и разделяли по 10 мкл в 50-мл флаконы "Orange
Scientific". Клетки культивировали в течение 2–4 недель при
37°C, 100% влажности и 5% CO2. Через 3 суток неприлипшие
клетки собирали вместе с надсосудистой средой и замешивали
новой порцией полной среды. Замену среды проводили через 4–6
суток. В течение всех сроков культивирования готовили препа-
раты клеток для цитологических (ауэр II-эозин), цитохимиче-
ских (на щелочную фосфатазу, α-нафтиламин феназин, цитоcek
проводимый красный O) и иммунноферментных анализов. Под
колониями (KOEф) подразумевали клеточные аггегаты, содержащие
более 50 клеток (Гольдберг и др., 1992).

В результате проведенных исследований было установлено,
что адгезирующие клетки костного мозга в 5–6-м сутках форми-
руют колонии, содержащие округлые клетки (рис. 2.3, 2.4), ко-
торые к 12–14-м суткам превращаются в фиbroblastоидные и
иные элементы (рис. 2.2, 2.5, 2.7).

Также на 14–18-е сутки клетки дифференцировались в фиbroб-
ластоидные, миоцитоидные, ретикулярные, хондрогенные, ос-
тевые, адипоцитоидные, эндотелиоидные и другие эле-
менты, что соответствует данным других авторов (Фридеништейн,
Лурия, 1980; Bianco et al., 2000, 2002). Некоторые типы клеток
представлены на рис. 2.6–2.10.

Часть клеточного материала после 14 суток инкубации диссo-
ционировали с помощью раствора трипсина и версена, реже с
помощью кольеназы и феразы и переносили в новые флаконы
и культивировали еще 14 дней. Эффективность клонирования
KOEф представлена в табл. 2.4 и на рис. 2.11 (KOEф).

Таблица 2.4

<table>
<thead>
<tr>
<th>N/н. группы</th>
<th>Количество вводимых клеток, x10^3</th>
<th>Количество KOEф в перечной культуре</th>
<th>Количество результатов культивированых клеток, x10^3</th>
<th>Количество KOEф по вторичной культуре</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>7,1±0,3</td>
<td>10</td>
<td>5,5±1,2</td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>14,5±1,9</td>
<td>20</td>
<td>8,9±2,2</td>
</tr>
<tr>
<td>3</td>
<td>1,0</td>
<td>30,2±4,1*</td>
<td>40</td>
<td>17,3±3,3*</td>
</tr>
<tr>
<td>4</td>
<td>2,0</td>
<td>50,2±7,7*</td>
<td>80</td>
<td>25,3±5,5*</td>
</tr>
</tbody>
</table>

Примечание: * – означены достоверные значения (P<0,05) по сравнению с 1-й группой.

Рис. 2.2. Многочисленные колонии, выросшие на 14-е сутки культивирования клеток костного мозга мыши F1 (CBAхC57Bl/6), окрашены ауер II-эозином.
Глава 2. Мезенхимопоз. Система мезенхимальных ствольных клеток

ференцирующие факторы, активаторы, супрессоры и ингибито-
ры, действующие на уровне МСК, пока еще не определены. Кро-
ме того, пластичность МСК, их способность изменять свою фе-
нотип в зависимости от обстоятельств, а также отсутствие на-
жинных генов-маркеров для МСКи или МСКк и их дифференци-
рованных потомков достаточно трудно объяснить с вышеука-
занных позиций (Minguell et al., 2001).

2.3. СПОСОБНОСТЬ КОСТНОГО МОЗГА ЧЕЛОВЕКА И
ЖИВОТНЫХ ФОРМИРОВАТЬ КОЛОНИИ МЕЗЕНХИМАЛЬНЫХ
КЛЕТОК В СИСТЕМЕ IN VITRO

Для определения общего количества МСК, формирующих колониеобразующие единицы фиbroblastов (КОЕф), была ис-
пользована техника А. Я. Фридеништейна (1977) с некоторыми моли-
фикациями. Опыты были проведены на 55 мышах-гидрах F1 (СВАхС57Бн/д) обоего пола, массой 18–20 г. Кроме того, ис-
пользовали клетки костного мозга самцов крыс породы Вистар,
массой 150–160 г. У животных из бедренной кости вымывали
костный мозг полной средой, состоящей из 90 % среды DMEM
"Sigma", 10 % эмбриональной телячьей сыворотки (ЭТС) "Sigma",
250 μM/L L-глютамина "Merck", 10–6 M декаметазона "Sigma",
100 мг/мл пенициллина "Sigma", 100 мкг/мл стрептоми-
цина "Sigma". Клеточность жизнеспособных клеток доводили
до (0,1–10)х10⁶ /мл и разделяли по 10 мл в 50-мл фракони "Orange
Scientific". Клетки культивировали в течение 2–4 недель при
37 С, 100 % влажности и 5 % CO₂. Через 3 сутки непривычные
клетки собирали вместе с надосадочной средой и замещали но-
вой порцией полной среды. Замену среды проводили через 4–6
сутки. В течение всех сроков культивирования готовили препа-
раты клеток для цитологических (асау II-эозин), цитохимиче-
ских (на щелочную фосфатазу, а-нафтиламинат эстеразу, алкалаз-
риновый красный О) и иммунологических анализов. Под колони-
ями (КОЕф) подразумевались клеточные агрегаты, содержащие
более 50 клеток (Гольденберг и др., 1992).

В результате проведенных исследований было установлено,
что адгезирующие клетки костного мозга в 5–6-м сутках форми-
руют колонии, содержащие округлые клетки (рис. 2.3, 2.4),
которые в 12–14-м сутках превращаются в фиbroblastоподобные
и иные элементы (рис. 2.2, 2.5, 2.7).

Так что на 14–18-е сутки клетки дифференцировались в фиbro-
blastоподные, миоцитоподобные, ретикулярные, хондрогенны, ос-

2.3. Способность костного мозга человека и животных формировать колонии...

<table>
<thead>
<tr>
<th>N/Н. группы</th>
<th>Количество вводимых клеток, к/л</th>
<th>Количество KOEф в первой культуре</th>
<th>Количество результативных клеток, к/л</th>
<th>Количество KOEф во второй культуре</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1</td>
<td>7,1±0,3</td>
<td>10</td>
<td>5,5±1,2</td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>14,5±1,9</td>
<td>20</td>
<td>8,9±2,2</td>
</tr>
<tr>
<td>3</td>
<td>1,0</td>
<td>30,3±4,1</td>
<td>40</td>
<td>17,3±3,3</td>
</tr>
<tr>
<td>4</td>
<td>2,0</td>
<td>50,2±7,7</td>
<td>80</td>
<td>25,3±5,5</td>
</tr>
</tbody>
</table>

Примечание: * – обозначены достоверные значения (P<0,05) по сравнению с 1-й группой.

Рис. 2.2. Многочисленные клонокультурные выросшие на 14-е сутки культивирования клеток костного мозга мыши F1/СВАхС57Бн/д. Окраска асаз а-эозином

тегенные, адипоцитоцитогенные, эндотелиоидные и другие эле-
менты, что соответствует данным других авторов (Фридеништейн,
Лурье, 1980; Bianco et al., 2000, 2002). Некоторые типы клеток
представлены на рис. 2.6–2.10.

Часть клеточного материала после 14 суток инкубации дис-
социировала с помощью раствора триспина и версена, реакции
с помощью коллагеназы и протра и переносили в новые фраконы
и культивировали еще 14 дней. Ефективность клонизации
КОЕф представлена на рис. 2.4 и на рис. 2.11 (КОЕф).

У людей костный мозг получали путем аспирации его из под-
мышечной кости. После чего материал переносили в центрифуги-
Глава 2. Мезенхима. Система мезенхимальных стволовых клеток

Рис. 2.3. Нескелетная мезенхимальная колония (а, ув. 400х) и ее фрагмент (б, ув. 900х), выросшая на 7-е сутки культивирования клеток костного мозга мыши \(F_1 (CBAxC57BL/6), \) окраска азур II-эозином

Рис. 2.4. Электронная микроскопия "окрулой" клетки, выросшей на 7-е сутки культивирования клеток костного мозга мыши \(F_1 (CBAxC57BL/6), \) ув. 19200х

2.3. Способность костного мозга человека и животных формировать колонии...

Рис. 2.5. Зрелая колония, состоящая из множества фибробластоподобных клеток, выросшая при культивировании костного мозга мыши \(F_1 (CBAxC57BL/6), \) ув. 100х, окраска азур II-эозином

Рис. 2.6. Ретикулярная клетка, обнаруженная в культуре ткани костного мозга мыши \(F_1 (CBAxC57BL/6) \) на 14-е сутки, ув. 900х, окраска азур II-эозином

Рис. 2.7. Фибробластоподобные клетки, выделенные в культуре ткани костного мозга крысы породы Вестер, на 14-е сутки, ув. 900х, окраска азур II-эозином
Глава 2. Мезенхима. Система мезенхимальных стволовых клеток

2.3. Способность костного мозга человека и животных формировать колонии...

Рис. 2.3. Незрелая мезенхимальная колония (а, ву. 400х) и ее фрагмент (б, ву. 900х), выросшая на 7-е сутки культивирования клеток костного мозга мыши F_{1}(CBAxCS7Bl/4), окраска азур II-эозином.

Рис. 2.4. Электронная микрофотография "окружен" клетки, выросшей на 7-е сутки культивирования клеток костного мозга мыши F_{1}(CBAxCS7Bl/4), ву. 19200х.

Рис. 2.5. Зрелая колония, состоящая из многочисленных фибробластоподобных клеток, выросших при культивировании костного мозга мыши F_{1}(CBAxCS7Bl/4), ву. 100х, окраска азур II-эозином.

Рис. 2.6. Ретикулярная клетка, обнаруженная в культуре тканей костного мозга мыши F_{1}(CBAxCS7Bl/4) на 14-е сутки, ву. 900х, окраска азур II-эозином.

Рис. 2.7. Фибробластоподобная клетка, выделенная из культуры тканей костного мозга крысы породы Вистар на 14-е сутки, ву. 900х, окраска азур II-эозином.
Глава 2. Месенджеры. Система мезенджерных стволовых клеток

Рис. 2.8. Эндотелиальные клетки, обнаруженные в культуре ткани костного мозга мыши F1(CBAxCS7/X) на 12-е сутки, ув. 900х, окраска азур II-эозином

Рис. 2.9. Микроцифтиальные клетки, обнаруженные в культуре ткани костного мозга мыши F1(CBAxCS7/X) на 14-е сутки, ув. 900х, окраска азур II-эозином

Рис. 2.10. Апоциты, обнаруженные в культуре ткани костного мозга мыши F1(CBAxCS7/X) на 14-е сутки, ув. 600х, окраска азур II-эозином

2.3. Способность костного мозга человека и животных формировать колонии

ные пробирки, содержащие среду RPMI-1640 ("Sigma"), содержащую 1% биологического сывороточного альбумина ("Sigma") и 100 ЕД/мл гепарина ("Sofa"). После двухкратного центрифугирования при 3000 об./мин в течение 10-15 мин при 0 °С и замены на свежую порцию, материал освобождали от эритроцитов путем их пиза в трис-буфере (Гольдберг и др., 1992). Затем налодочную жидкость удаляли и замещали полной средой, состоящей из 90% среды D-MEM "Sigma", 10% эмбриональной теленовой сыворотки (ЭТС) "Sigma", 280 мг/л L-глютамина "Merck", 10-6 М дексаметазона "Sigma", 100 ЕД/мл пенициллина "Sigma", 100 мкг/мл стрептомицина "Sigma". Клеточность жизнеспособных клеток доводили до (0,5-1)х10^6/мл и разливали по 10 мл в 50-мл флаконы "Orange Scientific". Клетки культивировали в течение 2-3 недель при 37 °С, 100% влажности и 5% CO2. Через 3 суток непрорезающие клетки собирали вместе с надосадочными и замещали новой порцией полной среды. Затем среду проводили через 4-6 суток. В течение всей культивирования готовили препараты клеток для цитотехнических (азур II-эозин), цитохимических (на железо, фосфатазу, алкалазиновый красный О и иммуноферментных анализов. Под колониями (KOEФ) подразумевали клеточные агрегаты, содержащие более 50 клеток (Гольдберг и др., 1992).

Эффективность культивирования KOEФ из костного мозга человека была на 20-40% ниже, чем у мышей, наименее вероятно за счет вариабельности материала, разбавления его кровью и по-
Глава 2. Мезенихимальные стволовые клетки

Рис. 2.8. Эндотелиальные клетки, обнаруженные в культуре ткани костного мозга мыши F/1CBAc578/4(1) на 12-е сутки, ув. 900x, окраска азур II-зозионом

Рис. 2.9. Миксгепатоцитарные клетки, обнаруженные в культуре ткани костного мозга мыши F/1CBAc578/4(1) на 14-е сутки, ув. 900x, окраска азур II-зозионом

Рис. 2.10. Апериоды, обнаруженные в культуре ткани костного мозга мыши F/1CBAc578/4(1) на 14-е сутки, ув. 600x, окраска азур II-зозионом

2.3. Способность костного мозга человека и животных формировать колонии...
тери части МСК во время выделения, а также особенностей культивуральной среды, т. к. была использована среда D-MEM, а не DI-MEM. По своей морфологии плацентальные клетки человека отличались от мышиньих по строению ядра и цитоплазмы (рис. 2.12—2.16). В направлении дифференциации в нашей системе также имелись отличия, которые заключались в том, что меньше образовывались остеогенных и хондрицитоподобных элементов, положительно окрашивающихся ализариновым красным.

Таким образом, в результате проведенных исследований было показано, что в популяции адгезирующих клеток костного мозга

Рис. 2.12. Скелетные фибробластоподобные клетки, выросшие из костного мозга человека на 10-е сутки культивирования. Окраска алурин-л-эозином, ув. 800х

Рис. 2.13. Фрагмент колонии фибробластоподобных клеток, выросших из костного мозга человека на 14-е сутки культивирования. Окраска алурин-л-эозином, ув. 800х

Рис. 2.14. Микрокопические клетки, выросшие из костного мозга человека на 14-е сутки культивирования. Окраска алурин-л-эозином, ув. 200х

Рис. 2.15. Фибробластоподобные клетки, выросшие из костного мозга 37-летней женщины на 18-е сутки культивирования. Окраска гематоксилин-азуром, ув. 400х

Рис. 2.16. Адипоцит и фибробластоподобная клетка, выросшие из костного мозга 37-летней женщины на 14-е сутки культивирования. Окраска гематоксилин-азуром, ув. 200х

2.3 Способность костного мозга человека и животных формировать колонии...
тери части МСК во время выделения, а также особенностей культуральной среды, т.к. была использована среда D-MEM, а не D1-MEM. По своей морфологии стromальные клетки человека отличались от мышиных по строению ядра и цитоплазмы (рис. 2.12–2.16). В направленности дифференциации в нашей системе также имелись отличия, которые заключались в том, что меньше образовывались остеогенных и хондроподобных элементов, положительно окрашивающихся ализариновым красным.

Таким образом, в результате проведенных исследований было показано, что в популяции адгезирующих клеток костного мозга

Рис. 2.12. Скелетные фибробластоподобные клетки, выросшие из костного мозга человека на 10-е сутки культивирования. Окраска эозин-эозином, ув. 800х

Рис. 2.13. Фрагмент колонии фибробластоподобных клеток, выросших из костного мозга человека на 14-е сутки культивирования. Окраска эозин-эозином, ув. 800х

Рис. 2.14. Миоцитоподобные клетки, выросшие из костного мозга человека на 14-е сутки культивирования. Окраска эозин-эозином, ув. 800х

Рис. 2.15. Фибробластоподобные клетки, выросшие из костного мозга 37-летней женщины на 18-е сутки культивирования. Окраска гематоксилином-эозином, ув. 900х

Рис. 2.16. Адонийнт и фибробластоподобная клетка, выросшие из костного мозга 37-летней женщины на 14-е сутки культивирования. Окраска гематоксилин-эозином, ув. 900х
2.4. МЕЗЕНХИМОПОЗ

Стромальные клетки составляют популяцию клеток, которые в костном мозге формируют специфическое гемопоэтическое окружение (ГИМ), которое создает оптимальный режим функционирования кроветворных СК за счет регуляции процесссов пролиферации и дифференцировки для гемопоэтических СК (ГСК) и их потомков в норме и патологии (Чертков, Гуревич, 1984; Дыгай, Шахов, 1989; Scholfield, 1978).

Изучение экспрессии разнообразных маркеров на стромальных клетках человека и животных в долгосрочных культурах костного мозга установило, что они являются потомками СК, несущих маркер для сосудистых гладкомышечных клеток (СГМК) (Bianco et al., 1989).

СГМК являются интересной моделью для изучения свойств и функций СК. Основные работы по данной проблеме выполнены на двух главных линиях, выделенных из костного мозга человека и крыс.

Первая была получена из первичной культуры стромальных элементов, а вторая — из Stro-1 клеток. Они имеют характерные маркеры для цитоскелета и экстрацеллюлярного (веклеточного) матрикиса (ЭЦМ), часто специфические для СГМК комплекса (Galmiche et al., 1993; Lerat et al., 1993; Li et al., 1999).

Следует отметить, что аналогичные линии клеток, несущих маркер СГМК, обнаружены не только в костном мозге, но и в других органах, таких как почки, желудочно-кишечный тракт и другие ткани, что, очевидно, свидетельствует о перемещении этих клеток в эмбриогенезе, в котором производят функции миграции гемопоэтических СК (Remy-Martin et al., 1999; Char-bord et al., 2000).

Активы являются одним из самых ранних маркеров, позволяющих их с клеток различных линий. Эти МСК при пересеве переходят в активную фазу клеточного роста с формированием новых колоний.

Оказалось, что популяция стромальных клеток гетерогенна и может изменять направление своей дифференцировки в зависимости от их физиологии или при патологических состояниях (Desmoulie et al., 1995).

Так, наблюдается ранней стадии развития стромы человека в долгосрочных культурах позвоны выявить следовательность образования белков, которые экспрессируются всеми типами мезенхимальных клеток, включая СГМК (Galmiche et al., 1993; Lerat et al., 1993; Li et al., 1995; Char-bord et al., 1999). Более того, стромальные клетки всех линий, независимо от происхождения, экспрессируют вмементы, лимфоциты и макрофаги. Хорошо известен факт, что вмементы представляют собой промежуточный интегральный белок, широко представленный в клетках мезенхимального происхождения. Лимфоциты и фибробласты обнаружены на СГМК до стадии гастродуации, а макрофаги — в течение этого процесса развития эмбриона (Remy-Martin et al., 1999; Cooper et al., 1983; Thiery et al., 1988; Thayer et al., 1995).

По-видимому, из-за специфического распределения в естественных условиях вмементы, лимфоциты, фибробласты и макрофаги можно считать, что они являются достаточно адекватными маркерами мезенхимальных клеток, в частности, выявленных в длительных культурах in vitro типа Декстера (Char-bord et al., 2000).

Стромальные клетки-предшественники человека могут быть выделены с использованием моноклональных антител против Stro-1-антител (Simmons, Torok-Storb, 1991). У животных клетки эти клетки выделены с использованием моноклональных антител против Thy-1, которые преобразуются соединения клеток 1-го типа, макрофагов, субэпителиальной и CD 146 (Guerrier et al., 1997; Filshie et al., 1998; Majumdar et al., 2000; Deschaseaux, Char-bord, 2000; Simmons et al., 2001).
человека и животных (мыши, крысы) присутствуют прогенеративные стromальные клетки, способные в культуре ткани формировать многочисленные колонии, состоящие из клеток разных степеней зрелости и направленности дифференцировки, т.е. мультипотентных СК (рис. 2.12–2.16). Эти МСК при пересеве переходят в активную фазу клеточного роста с формированием новых колоний.

2.4. МЕЗЕНХИМОПОЗ

Стромальные клетки составляют популяции клеток, которые в костном мозге формируют специфическое гемопоэтикуирующее окружение (ГИМ), которое создает оптимальный режим функционирования кроветворных СК за счет регуляции процессов пролиферации и дифференцировки для гемопоэтических СК (ГСК) и их потомков в норме и патологии (Чертков, Гуревич, 1984; Дьяков, Шахов, 1989; Scholfield, 1978).

Изучение экспрессии разнообразных маркеров на стromальных клетках человека и животных в долгосрочных культурах костного мозга установило, что они являются потомками МСК, несущих маркер для сосудистых гемоидыческих клеток (ГГМК) (Bianco et al., 1999).

СГМК являются интересной моделью для изучения свойств и функций МСК. Основные работы по данной проблеме выполнены на двух главных линиях, выделенных из костного мозга человека и крыс.

Первая была получена из первичной культуры стromальных элементов, а вторая — из Stro-1+ клеток. Они имеют характерные маркеры для цитоскелета и экстрацитокардиального (внеклеточного) матрикса (ЭЦМ), часто специфические для SGМК комплекса (Galimiche et al., 1993; Lerat et al., 1993; Li et al., 1999).

Следует отметить, что аналогичные линии клеток, несущие маркер SGМК, обнаружены не только в костном мозге, но и в желудочном мешке, области аорто-гиа-нефрон, фетальной печени и селезенки, что, очевидно, свидетельствует о перемещении этих клеток в эмбриогенезе, во многом повторяющем путь миграции гемопоэтических СК (Remy-Martin et al., 1999; Char- bord et al., 2000).

Актив является одним из самых ранних маркеров, представляющих на гладкомышечных клетках, а также изоформ фибронectина, имеющих экстрасом с RGD-зависимыми, связывающими клетки, сайтом. Позднее появляются белки цитоскелета типа метавинкулина, h-каллидогена, ламинина, актив-связывающего винокулина, кальцитонина и мизонина. В некоторых линиях стromальных клеток мыши обнаруживаются десмин и промежуточные специфические для мыши формации (Owens et al., 1995).

Оказалось, что популяция стromальных клеток имеет более высокие проявления в морфологических и патологических состояниях (Desmoulleire et al., 1995).

Так, наблюдениях ранней стадии развития стромы человека в долгосрочных культурах позволили установить последовательность образования белков, которые экспрессируются всеми типами мезенхимальных клеток, включая SGМК (Galimiche et al., 1993; Lerat et al., 1993; Li et al., 1995; Charbord et al., 1999). Более того, стromальные клетки всех линий, независимо от происхождения, экспрессируют винокулин, ламинин и остеопонтин. Хорошо известный факт, что винокулин представляет собой компонент сеточной нитевидный белок, широко представленный в клетках мезенхимального произхождения. Ламины и фибронектин обнаружены на SGМК до стадии гаструляции, а остеопонтин — в течение этого процесса развития эмбриона (Remy-Martin et al., 1999; Cooper et al., 1983; Thiery et al., 1988; Thayer et al., 1995).

Подвидом, из-за специфического распределения в экстрасомных условиях винокулина, ламинина и остеопонтика можно считать, что они являются достаточно адекватными маркерами мезенхимальных клеток, в частности, выявляемыми в длительных культурах in vitro типа Декстера (Charbord et al., 2000).

Стromальные клетки-предшественники человека могут быть выделены с использованием моноклональных антител против Stro-1-антитела (Simmons, Torok-Storb, 1991). У животных эти клетки выделены с использованием моноклональных антител против Thy-1, молекулы адгезии сосудистых клеток 1-го типа, индинокина, субединицы а1-интегрина и CD146 (Guerrier et al., 1997; Filshie et al., 1998; Majumdar et al., 2000; Deschauex, Charbord, 2000; Simmons et al., 2001).
Глава 2. Мезенхимология. Система мезенхимальных стromальных клеток

У мышей стromальные предшественники можно сортировать с использованием анти-Sca-1-антигена (van Vliet et al., 1994). Технически данный тип предшественников мог бы быть выявлен в жидкости (Фридман М., Лыскина, 1973) или полувзвешенной среде (Sensebe et al., 1995).

Было показано, что эндотелиальные клетки экспрессируют молекулы СГМК. При этом эндотелиальные клеточные линии и первичных культур могут изменить свой фенотип. Так, например, клетки, экспрессирующие фактор Виллебранта, начинают проявлять СГМК-фенотип под влиянием трансформирующего ростового фактора-α (Amberger et al., 1991; Schor et al., 1997).

Эмбриональные эндотелиальные клетки, выделенные из стенок аорты, проявляют трансдифференцировку с экспрессией ASMA-рецепторов при перенесении их в субэндотелиальную область (DeRuiter et al., 1997; Gittenberger et al., 1999). ЭСК, имеющие рецептор I для сосудистого эндотелиального фактора роста (СЭФ), способны дифференцироваться в эндоотелиоциты в ответ на СЭФ и СГМК (Yamashita et al., 2000).

В пределах гемопоэтических участков мезенхимальные или эндотелиальные СК способны дифференцироваться в зрелые формы под влиянием аутокринных молекул экстра cellularного матрикса и цитокинов. Такая гипотеза соответствовала бы модели, высказанной P. Bianco et al. (1999), в которой гемопоэза предшествовал процесс инвазии сосудов. Это подтверждает, что формирование ГИМ в костном мозге 2 недельного плода человека и независимость процесса продукции эндотелиальных клеток предшествуют их колонизации гемопоэтическими элементами (Charbord et al., 1996). Возможно, такой процесс можно использовать при проведении клеточной терапии инфаркта миокарда и СН.

Различные медиаторы по-разному экспрессируются и секретируются эндотелиальными клетками, что, очевидно, играет важную роль в реорганизации индифференцировки СК и СГМК (Cooper et al., 1986; Owens, 1995; Desmouliere, Gabbianni, 1995; Owens et al., 1996; Hungerford, Little, 1999; Miano, Berk, 2000). Этот процесс, по-видимому, происходит при сложном взаимодействии между ростовым фактором, высвобождающимся из тромбоцитов (ПФБТ), другими тканевыми факторами и индукцией (Li et al., 1999).

Кроме того, нельзя исключать, что данный механизм контролируется и другими, пока еще не идентифицированными, макромолекулами, способствующими индукции продукции факторов трансформации, в частности микрогенез-усиливающего фактора-2С (МУ-Ф-2С) (Lin et al., 1998).

Во многом подобный процесс наблюдается при инфаркте миокарда и формировании рубцовой ткани. И в этом случае активация генома всегда приводит к гиповаскуляризации (Новикова, 1994).

Дифференцировка СК и СГМК, очевидно, регулируется за счет сочетанного действия ряда стимулирующих молекул, таких как ТРФ-α, фактор роста фибробластов-2 (ФРФ-2), инсулиноподобный фактор роста (ИФФР), эндоотелий, антитоксин-II, гепарансульфат, лицини, коллаген-IV и ретинины, а также и ингибиторы молекулы типа РФБТ, интерферон и фибронектин. Более того, сама форма клеток также играет важную роль в дифференцировке СК в сторону мышечных и гладкомышечных элементов (Yang et al., 1999; Mack et al., 2001).

В контроле за ростом СК важную роль играют разнообразные цитокины и ростовые факторы (ТРФ, ТФР, γ-интерферон, ФНС, интерлейкины-1, -6, ПФБТ и др.). Эффекты данных молекул в системе in vitro во многом зависят от условий культивирования, типа сыворотки, среды, субстрата и количества пассажей. При этом такие факторы, как ПФБТ и ТФР, при взаимодействии с экстра целлулярным матриксом способствуют мышечной и гладкомышечной дифференцировке СК (Sensebe et al., 1997; Serti, Gabbianni, 1997).

С другой стороны, сами по себе стromальные клетки участвуют в создании гемопоэтического микроокружения, синтезируя множество цитокинов и молекул агглютинации (Чертков, Гюревич, 1994; Charbord, 2001). Они вовлечены в перенос гемопоэтических клеток в синусах, а также определяют характер соединения эндотелия (Lichtman et al., 1998). Кроме того, мезенхимальные клетки определяют химический пейзаж, создаваемый их симбиозом с другими клетками (Bleul et al., 1996).

Очевидно, в обычных условиях процесс физиологической регенерации мышечной, костной, соединительной ткани, печени и др. осуществляется за счет собственных силовых и (или) СК клеток. При действии экстремальных факторов, стресса, повреждений или травм собственного резервов, и поступление СК происходит из центрального органа костного мохра и депо, например, жировой ткани. Так, часть эндогенных СК, в том числе и циркулирующих, после экспериментального
Глава 2. Мезенхимозой. Система мезенхимальных стромальных клеток

У мышей стромальные предшественники можно сортировать с использованием анти-Sca-1-антигена (van Vlaselaar, 1994). Технически данный тип прекурсоров может быть выявлен в жидкости (Фридекиштейн, Лыкина, 1973) или полувзрослой среде (Sensebe et al., 1995).

Было показано, что эндотелиальные клетки экспрессируют молекулы СГМК. При этом часть эндотелиальных клеточных линий и первичных культур могут изменить свой фенотип. Так, например, клетки, экспрессирующие фактор Вилле-Бранка, начинают проявлять СГМК-фенотип под влиянием трансформирующего ростового фактора (Amberger et al., 1991; Schor et al., 1997).

Эмбриональные и эндотелиальные клетки, выделенные из стенки аорты, проявляют трансформирующий эффект с экспрессией ASMA-рецепторов при перенесении их в субэндотелиальную область (DeRuijter et al., 1997; Gittenberger et al., 1999). ЭСК, имеющие рецептор 1 для сосудистого эндотелиального фактора роста (СЭФР), способны дифференцироваться в эндотелиоидный ответ на СЭФР и СГМК (Yamashita et al., 2000).

В пределах гемопоэтических участков мезенхимальные или эндотелиальные СК способны дифференцироваться в зрелые формы под действием аутоцензируемых молекул экстрацеплярного матрикса и цитокинов. Такая гипотеза соответствовала бы модели, высказанной R. Bianco et al. (1999), в которой гемопоэз предшествовал процесс инвазии сосудов. Это подтверждает, что формирование ГИМ в костном мозге 2 недельного плода человека и активация процесса продукции эндотелиоидных клеток предшествуют их колонизации гемопоэтическими элементами (Chabbert et al., 1996). Возможно, такой процесс может происходить при проведении клеточной терапии инфаркта миокарда и СН.

Различные медиаторы гомого гипо-дифференцируют эндотелиальные клетки, что, очевидно, играет важную роль в рекрутировании и дифференцировании МСК и СГМК (Cooper et al., 1983; Owens, 1995; Desmouliere, Gabbiani, 1995; Owens et al., 1996; Hungerford, Little, 1999; Miano, Berk, 2000). Этот процесс, по-видимому, происходит при сложившемся взаимодействии между ростовыми факторами, высвобождающимися из тромбоцитов (РФБТ), другими тканевыми факторами и эндоцелием (Li et al., 1999).

Кроме того, нельзя исключать, что данный механизм контролируется и другими, пока еще не идентифицированными, макромолекулами, способствующими индукции продукции факторов транскрипции, в частности миогенез-усиливающего фактора-2С (МУФ-2С) (Lin et al., 1998).

Во многом подобный процесс наблюдается при инфаркте миокарда и формировании рубцовой ткани. И в этом случае актива-

2.4. Мезенхимозой

ция процессов, которые осуществляются под воздействием ангиоицию (Немоляев, 1991).

Дифференцировка МСК и СГМК, очевидно, регулируется за счет совместного действия ряда стимулирующих молекул, таких как ТРФ-2, фактор роста фиброзбластов-2 (ФРФ-2), инсулин, по-двойной фактор роста (ПФРФ), эндотелию, ангиотензин II гепарансульфат, ламина, коллаген-IV и ретиноиды, а также и ингибитирующие молекулы типа РФБТ, интерферон и фибронек-}

...
Глава 2. Мезенхимопоза. Система мезенхимальных стволовых клеток

ией травмы способны рекрутироваться в мышечные, гладкомышечные и другие типы клеток, играя роль дополнительного пластического материала, достигая области повреждения ткани (Han et al., 2001).

Происхождение новых клеток при патологии могло бы быть объяснено феноменом микродифференцировки между мезенхимальными клетками костного мозга и СТМК. Обе эти популяции локализуются в одном и том же органе. Это предположение подтверждается, в частности, исследованием Кузнецов и соавторов (2001), которые обнаружили прямую активацию мезенхимальных клеток и адаптационных изменений в структуре СТМК.

Как уже было сказано выше, в СТМК костного мозга способны к дифференцировке и саморазмножению контрастирующие стволовые клетки, элементы ГИМ, скелетную, гладкомышечную и сердечную мускулатуру (Попов и др., 2004; Шахов и др., 2003, 2004; Caplan, 1991; Prockop, 1997; Pfitzer et al., 1999; Dennis et al., 1999; Dennis et al., 2002). МСК с мультипotentными свойствами присутствуют в эмбриональной печени человека в первый триместр развития плода.

При этом остается неясным, как происходит взаимодействие между МСК и ГИМ (Campagnoli et al., 2001). По мнению M. Reyes et al. (2001), МСК, очевидно, образует все типы клеток, входящих в состав ГИМ.

Учитывая все вышесказанное, можно полагать, что МСК формируют микрокружение не только для костного мозга, но и для других органов и тканей, включая сердце и сосуды.

Способность к самообновлению со стороны МСК достаточно трудно определить из-за низкого уровня кругоборота этих клеток в обычных условиях. Пластичность мезенхимального происхождения клеток не совсем соответствует этому уровню, который теоретически можно наблюдать у стволовых клеток с высокой способностью к самообновлению.

Кроме того, если в других системах, например кроветворной, есть строгое соответствие между ежедневными потерями клеток, которые равны от 10^9 до 10^11 клеток на 1 кг веса, и их восстановлением (Чертков, Френкель, 1977), то для мезенхимопоза в обычных условиях данное правило практически не работает.

В частности, показан кругоборот костных структур, протекающий за счет сложной работы остеокластов и остеобластов, однако параметры его точку не установлены. Оказалось, что все костные структуры регенерируют с одинаковой скоростью (Pereira et al., 1998). Более того, модуляция часть трубчатой кости замещается гораздо быстрее, чем костная масса. При травме, генетических мутациях продукции коллагена, несбалансированности работы парцентовидной железы и повреждении костного мозга может наблюдаться супрессия процесса образования кости из МСК (Gazit et al., 1990; Whittfield et al., 1996; Lucas et al., 1997; Mundy, 1999).

Еще одна отличительная особенность данных прекурсоров заключается в том, что происхождение дифференцированных потомств из МСК не имеет таких четких границ, как для зрелых элементов гемопоэтической ткани. Можно полагать, что данный процесс протекает не на уровне одного или нескольких клонов. Интересно, что МСК, вставшие на тот или иной путь дифференцировки, могут содержать маркеры других клеточных линий. Так, гипертрофические хондроциты могут иметь положительную реакцию на остеоактивные, и нематозные, сосуды, основной связывающий фактор гликопротеинов и аминокислот. Эти клетки формируют минерализованный матрикс, что характерно для стволовых элементов (Bennett et al., 1991; Enami et al., 1991; Gentili et al., 1993; Roach et al., 1995).

Мезенхимальные клетки человека с СГМК-фенотипом позитивны на определенные фосфатазу и коллаген, являющиеся ранними маркерами остеобластических клеток. Кроме того, они могут содержать включения лиофилов, что делает их сходными с адипоцитами, а также миофибриллами, связанными с фибронектином, что характерно для скелетных и сердечных мышечных клеток (Dennis et al., 2000). Учитывая эти данные, ряд авторов предполагает превращение остеогенеза модели регрессии и индукции мезенхимных стволовых клеток (Dennis, Carbob, 2003). Во многих случаях гемопоэтической модели МСК напоминает таковую, описанную для гемопоэтических СК (Чертков, Гуревич, 1984; Lemischka, 2001).

Другой важной особенностью, которая объясняется изучению поведения МСК in vitro, является неразличимая модель дифференцировки данных клеток, т.к. в культуре ткани никакие биохимические признаки не выявляются (рис. 2.17) (Muraglia et al., 2000; Minguezi et al., 2001). В то же время, неразличимая модель также не может в полной мере объяснить выявленную пластичность МСК, в частности их способность дифференцироваться в переходные формы, обладающие мультипotentными дифференцировочным потенциалом (Gimble, 1980).
Глава 2. Мезенхимопоза. Система мезенхимальных стволовых клеток

ион травмы способны рекрутироваться в мышечные, гладкомышечные и другие типы клеток, играя роль дополнительного пластического материала, доставляя области повреждения ткани (Han et al., 2001).

Происхождение новых клеток при репарации могло бы быть объяснено фенотипическим и функциональным сходством между мезенхимальными клетками костного мозга и СГМК. Обе эти популяции локализуются в одном и том же органе. Это предположение подтверждается исследованием S. Kuznetsova et al. (2001), которые сообщили о циркуляции мезенхимальных преклеток, давших начало образованию СГМК, остеогенным клеткам и адипоцитам.

Как уже было сказано выше, МСК костного мозга способны к дифференцировке в адипоциты, кондроциты, остеобласты, элементы ГИМ, скелетную, гладкомышечную и сердечную мускулатуру (Popov et al., 2004; Sloboh et al., 2003, 2004; Caplan, 1991; Prockop, 1997; Pittenger et al., 1999; Dennis et al., 1999, Dennis et al., 2002). МСК с мультипотентными свойствами присутствуют в эмбриональной печени человека в первый триместр развития плода.

При этом остается неясным, как происходит взаимодействие между МСК и ГИМ (Campagnoli et al., 2001). По мнению M. Reyes et al. (2001), МСК, очевидно, образует все типы клеток, входящих в состав ГИМ.

Учитывая все вышеизложенное, можно полагать, что МСК формируют микроорганизм не только для костного мозга, но и для других органов и тканей, включая сердце и сосуды.

Способность к самообновлению со стороны МСК достаточно трудно определить из-за низкого уровня кругосвета этих клеток в обычных условиях. Пластичность мезенхимального происхождения клеток не совсем соответствует тому уровню, который теоретически можно наблюдать у стволовых клеток с высокой способностью к самообновлению.

Кроме того, если в других системах, например кроветворной, есть стволовые клетки, например, у ядровых и эритроидных клеток, которые разделяются от 10^3 до 10^1 клеток на 1 клетку, а их восстановление (Михайлов, Фридманов, 1977), то для мезенхимопозы в обычных условиях данное правило практически не работает.

В частности, показаны кругосветные структуры, протекающие за счет сложной работы остеокластов и остеобластов, однако параметры его точно не установлены. Оказалось, что не все костные структуры регенерируют с одинаковой скоростью (Pereira et al., 1998). Более того, межклеточная часть трубчатой кости замещается гораздо быстрее, чем грибковая. При травме, генетических мутациях продукции коллагена, недостаточности работы парашютной железы и повреждении костного мозга может наблюдаться супрессия процесса образования костей из МСК (Gazit et al., 1990, Whitfield et al., 1996, Lucas et al., 1997, Mundy, 1999).

Еще одна отличительная особенность данных преклеров заключается в том, что происхождение дифференцированных потомков из МСК не имеет таких четких границ, как для зрелых элементов гемопоэтической ткани. Можно полагать, что данный процесс протекает на уровне одного или нескольких клонов. Интересно, что МСК, вставшие на тот или иной путь дифференцировки, могут содержать маркеры других клеточных линий. Так, гепатоцеллюлярные гонады и миоциты дают положительную реакцию на остеокальцин, белок фосфата, основной связывающий фактор трансляции A1 (OC-Factor), способны формировать минерализованный матрикс. Это характерно для стволовых элементов (Bennett et al., 1991; Chen et al., 1991; Gentili, 1993; Roach et al., 1995).

Другой точкой зрения, которая основывалась на изучении поведения МСК in vitro, является инвитроактивная модель дифференцировки данных клеток, т.к. в культуре ткани никакие биопотенциальные предшественники не выявлялись (рис. 2.17) (Muraglia et al., 2000; Mingueli et al., 2001). В то же время, инвертированная модель также не может в полной мере объяснить выявленную пластичность МСК, в частности их способность дифференцироваться в гигантские формы, обладающие мультипотентным дифференцировочным потенциалом (Gimble, 1990).
Вероятно, МСК содержит широкий набор генов, способных включать или выключать ту или иную программу развития стволовых клеток. Этот контроль может осуществляться через различные механизмы, включая дисметилирование, деактивацию и модификацию ДНК, модификацию структуры хроматина и другие, пока еще не выясненные, механизмы (Bird, Wolffe, 1999). Происходит ли данный процесс случайно или под действием какого-либо фактора - остается неясным.

Мы считаем, что коммитирование на уровне МСК является случайным, стохастическим процессом. Однако после его рекрутирования в пул МСК дальнейшая дифференцировочная программа осуществляется не за счет репрессии или активации четырех групп генов, как считают J. Dennis, P. Charbord (2002), ответственных за коммитирование в сторону образования специфических клеток, а гораздо больше набора генетического материала, т.к. мезенхимальные проклетки способны образовывать кроме вышеупомянутых карциноцитов еще и мышечные, сосудистые и другие элементы (рис. 2.6-2.16, табл. 2.1).

Согласно статистической гипотезе, процессы репрессии и активации МСК не являются строго детерминированными. При этом МСК при развитии полностью не утрачивают способность к изменению направленности дифференцировки. Можно полагать, что данный процесс под действием внешних факторов (гормонов, цитокинов или молекул адгезии) регулируется изменением их соотношения и комплексного воздействия на МСК, компоненты которого одновременно на нескольких гистогенетических линиях. Интегральное преобразование тех или иных факторов определяет выбор основного направления дифференцировки.

Стимуляция МСК с экспрессией их фенотипа в ту или иную сторону идет за счет активации или репрессии меланосферы. Данная концепция впервые была подтверждена на примере MyoD-фактора транскрипции мышц, способного стимулировать экспрессию целого набора мышечных специфических генов (Buckingham, 1994).

Е. 1986 г. Lassar et al. ввели ДНК мышечной ткани в фибробластоподобные клетки линии C3H10T1/2, имеющие мезенхимальные потенции. В результате они трансформировались в мышечные клетки, ДНК, выделенная из фибробластов или других клеток, такую реакцию не вызывала. Далее было показано, что такая же способностью обладает м-РНК, полученная из миобластов. Установлено, что эта мРНК ингибирует выработку 1-го протеина, получившего название MyoD (Davis et al., 1987). MyoD-ген экспрессируется только в клетках мышечной линии. Было высказано предположение, что этот ген выполняет роль "master switch" - главного переключателя, приводящего к передифференцировке клеток других линий в мышечные. Для проверки этой гипотезы MyoD-ген был клонирован и введен в вирусный вектор так, чтобы он был связан с активным вирусным промотором и находился в так называемом перевернутом состоянии. Оказалось, что когда эту систему вводили в различные типы клеток (пигментные, нервные, жировые, печеночные, фибробласты и др.), то они трансформировались в мышечноподобные элементы (Weintrone et al., 1989).

MyoD кодирует ядерные ДНК-связанные белки. Они могут крошить реплику ДНК, приминая к мышечным специфическим генам, а затем их активировать. Например, MyoD-протеины проявляют направленную активацию мышечно-специфического гена креатин-фосфатазы, которые связываются в...
Глава 2. Мезенхимопоза. Система мезенхимальных стволовых клеток

Вероятно, МСК содержит широкий набор генов, способных включить или выключить ту или иную программу развития стволовых клеток. Этот контроль может осуществляться через различные механизмы, включая диметилирование, деактилизацию ДНК, модификацию структуры хроматина и другие. Пока еще не выяснены, механизмы (Bird, Wolffe, 1999). Происходит ли данный процесс случайно или под действием какого-либо фактора – остается неясным.

Мы считаем, что комбинирование на уровне МСК является случайным, стехиометрическим процессом. Однако после его рекутирования в пул МСК дальнейшая дифференцировочная программа осуществляется не за счет репрессии или активации чьи-то групп генов, как считают J. Dennis, P. Charbordb (2002), ответственных за комбинирование в сторону образования структур, костных, хрящевых, жировых клеток, а гораздо больше набора генетического материала, т.к. мезенхимальные прекурсоры способны образовывать как вышепомянутые карни-

Рис. 2.17. Статусная модель мезенхимопоза в корне мозга (по Muraklai et al., 2000, с дополнениями)

циты еще и мышечные, сосудистые и другие элементы (рис. 2.6–2.16, табл. 2.11).

Согласно статусной гипотезе, процесс репрессии и активации МСК не являются строго детерминированными. При этом МСК при развитии полностью не утрачивают способность к изменению направленности дифференцировки. Можно полагать, что данный процесс под действием внешних факторов (гормонов, цитокинов или молекул адгезии) регулируется изменением их соотношения и комплексного воздействия на МСК, компетентные одновременно по нескольким гистогенетическим линиям. Интегральное преобладание тех или иных факторов определяет выбирать основного направления дифференцировки.

Стимуляция МСК с экспрессией их функции в ту или иную сторону идет за счет активации или супрессии майстер-гена. Данная концепция впервые была подтверждена на примере MyoD-фактора транскрипции мышц, способного стимулировать экспрессию целого набора мышечных специфических генов (Buckingham, 1994).

В 1986 г. Lassar et al. ввели ДНК мышечной ткани в фибробластоподобные клетки линии C3H10T/2, имеющие мезенхимальные потенции. В результате они трансформировались в мышечные клетки. ДНК, выделенная из фибробластов или других клеток, такую реакцию не вызывала. Далее было показано, что такой же способностью обладает мРНК, полученная из миофибробластов. Установлено, что эта мРНК инициирует выработку 1-го протеина, получившего название MyoD (Davis et al., 1987). MyoD-ген экспрессируется только в клетках мышечной линии. Было высказано предположение, что этот ген выполняет роль "master switch" – главного переключателя, приводящего к передифференцировке клеток других линий в мышечные. Для проверки этой гипотезы MyoD-ген был клипирован и введен в вирусный вектор так, чтобы он был связан с активным вирусным промотором, и находился в так называемом включенном состоянии. Оказалось, что когда эту систему вводили в разные типы клеток (пигментные, нервные, жировые, печеночные, фибробласты и др.), то они трансформировались в мышечноподобные элементы (Weintrone et al., 1989).

MyoD кодирует ядерные ДНК-связанные протеины. Они могут прикреплять регионы ДНК, примыкающие к мышечным специфическим генам, и затем их активировать. Например, MyoD-протеины проявляют направленную активацию мышечно-специфического гена креатин-фосфокиназы, которые связываются в
Глава 2. Мезенхима. Система мезенхимальных сплоченных клеток

Не все гены проявляют мышечный фенотип прямым путем. MyoD способны к непрямой активации других регуляторных генов, которые затем активируют структурно-мышечно-специфические гены. Myod — это не только "включатель" мышечных генов. Имеется семейство MyoD-подобных белков, имеющих очень сходную структуру и функцию. Эта группа получила название MyoD-семейства (или мифотинов [Myotins]) и включает продукцию миозина, Myt-5 и Myt-6, которые расположены в соседних регионах ДНК. Первые две гены в различных типах культивируемых клеток также экспрессируются в тех мышечных фенотипах, где MyoD экспрессирует миозин. С другой стороны, миозинные гены активируют MyoD и ряд других генов (Thiagalingam et al., 1989).

Они являются миофорами мышечных клеток, вызываями их транскрипцию (Sasson et al., 1984). Эти Myt-5- и Myt-6-единицы развиваются на ранней стадии в мышечных клетках. При этом в миофорах MyoD и миозин вызывают их сливание. Использованное развитие мышечной системы с различными дефектами генов MyoD, Myt-5 и Myt-6 показало, что они способны взаимодействовать друг с другом (Hasty et al., 1993, Nabeshima et al., 1993). Другими регуляторами миозина являются:

- MyoD — ген, который отнесен к суперсемейству генов с терминальной фенотипической активностью. Проявляет активный регуляторных генов, ростом и пролиферации мышечных клеток, концентрация которого регулирует процесс генерации мышечной массы;

- ростовой фактор для рецептора-связанного протеина-2 ассоциируется с активированным тирозин-фосфорилированным белком MyoD-рецептора и РФРГ-рецептора, регулирует дифференцировку мышечных клеток;

- гепатопоцитарный ростовой фактор является миозиновым ростовым фактором, регулирует миозин-специфические белки из сомитов в лимбическую область;

- HGF receptor, поддерживая выживаемость и пролиферацию мышечных клеток в течение миозин-специфической активности. HGF-2-рецептор содержит миозин-специфические белки, индуцирующие созревание и дифференцировку мышечных клеток.

Таким образом, MyoD-семейство генов выполняет две основные функции. Она связана с комитированием нервных стволовых клеток в мышечные линии. Другая функция заключается в активации специфических мышечных клеток, генерирующих мышечно-специфические клетки и сократительные белки. У мышей MyoD и Myt-5 способны к перекомпоновке соматических клеток в мышечные — миофибрилы. MyoD может индуцировать превращение миофибрил в миоцины, а Myt-6 вызывает образование мышечно-специфических белков и сократительные белки в миофибриллах.
Глава 2. Мозенкимбласты. Система мозенкимбластных специфических клеток

...ДНК непосредственно выше их прикрепления (Lasser et al., 1989). Соответственно, существуют два типа связывания MyoD в ДНК, расположенные рядом с субъединицами генов для рецепторов к ацетилхолину в мышцах птиц (Piette et al., 1990). Они также могут направлять самоактивировать себя. Однако MyoD-ген продуцирует белки, связанные с ДНК, рядом с другим геном MyoD и включает его (Thiagavel et al., 1989). В другом случае эффект MyoD-гена может не проявляться.

Не все гены проявляют мышечный фенотип прямым путем. MyoD способны к непрямой активации других регуляторных генов, которые затем активируют структурно-мышечно-специфиче-

ские гены. MyoD – это не только "включатель" мышечных генов. Имеется семейство MyoD-подобных протеинов, имеющих очень сходную структуру и функцию. Эта группа получила на-

звание MyoD-семейство или миокинов (Mykines) и включает про-

дукцию миогена, Myt-5 и Myt-6, которые располагаются в со-

седнем регионе ДНК. Перенос этих генов в различные типы куль

tурированных клеток также экспрессирует в них мышечный фен

tоптии. MyoD экспрессирует миоген. С другой стороны, мо

шечные гены активируют MyoD и ряд других генов (Thiagavel et al., 1989).

У эмбрионов птиц MyoD активирует ствольные клетки уже на ранней стадии развития сомитов, которые покрывают нейральну

tрубку. По мере созревания сомитов в них экспрессируется

Myt-5-ген. Часто соматоидерные клетки содержат рассеяно-

ную популяцию миотипических клеток, экспрессирующих MyoD-1,

Myt-5- и Myt-6-протеины (Pownall, Emerson, 1992). Возможно, что клетки нейральной трубки секретируют факторы, повышаю-

щие уровень экспрессии этих протеинов в соседних соматичес-

У мышей наблюдалась необычно низкая последовательность.

Первыми продуцируются Myt-5-протеины в эпителиальных клетках сомитов, покрывающих нейральную трубку (Lyons, Bucking-

Они являются мессенджерами для мышечно-специфических контактовых протеинов, вызывающей транскрипцию (Sisson et al., 1984). Эти Myt-5- и Myt-6-единицы развиваются на ранней стадии дифференцировки мышечных клеток. При этом в миообласть MyoD и миоген вызывают их сливание. Использова-

ние мышей с различными дефектами генов MyoD, Myt-5 и Myt-6 показали, они способны взаимодействовать друг с другом (Hasty et al., 1993; Nabeshima et al., 1993). Другими регуляторами миогенеза является:

- miostatin, который относится к суперсемейству TGF-β и индуцирует гипертрофию мышечной массы;
- ростовой фактор для рецептора связанных интегринов (TGF-β) ассоциируется с активированной тирозин-фосфорилирован-

ным СЭФ-рецептором и регулирует дифференцировку миогенеза клеток;
- экзоплазматический ростовой фактор является миогенным ро

ственным фактором, регулирует миогенез миообластов из соми

та в лимфическую область;
- c-MET: HGF-рецептор, поддерживаящий дифференцировку и про-

лиферацию миообластов.
- Калликреин стимулирует амилозин стимулированные протеинов фосфатазы, стимулирует мышечную гипертрофию;
- МЕФ-2-семейство содержит различно-специфические повышаю-

щие факторы 2A, 2B, 2C, индуцирующие созревание и мышечную дифференцировку.

Таким образом, MyoD-семейство генов выполняет две основные функции. Она связана с компонентами незрелых ство-

лочных клеток в мышечные линии. Другая сопровождается акти-

вацией специфических мышечных генов, генерирующих мышеч-

но-специфические энзимы и сократительные белки. У мышей MyoD и Myt-5 способны к перекрестной дифференцировке соматических клеток в мышечные — миообласть (Pinney et al., 1989). Миогенез может затем индуцировать превращение миообластов в миотобы, а Myt-6 вызывает образование мышечно-специфических белков и созревание в миотобах зрелых миофибрилл.

Последующие исследования показали, что миогенная дифференцировка регулируется набором факторов транскрипции, ко

торые включают MyoD, Myf5, миоген и MEF4. Каппиды в миооблас

тах для других мезенхимных клеток были также идентифицированы. В частности, оказалось, что существует гамма-

альфа-рецептор-2 пероксидазный активатор пероксидазы (PRPPА) для адипозитов, Csf1 - для остеобластов. PRPPА спо

собствуя индукции трансформации фибробластов в адипозиты.
Глава 2. Мезенхимология. Система мезенхимальных стволовых клеток

(Tontonoz et al., 1994). Кроме того, адипогенез регулируется и другими генами типа wit-10b (Fajas et al., 1998; Ross et al., 2000).

В свою очередь, было показано, что СК жировой ткани способны трансформироваться в мышечные, костные, хрящевые клетки, включая кардиомиоциты (Zak et al., 2000, Gojo, Umezawa, 2003).

С другой стороны, была установлена важная роль wit-10b и GATA-2,3-генов в супрессии адипогенеза (Ross et al., 2000; Tong et al., 2000). Изучение гистогенеза в мышцах с некоагулятор гена Cb1a, было показано, что он необходим и для развития кости (Ducey et al., 1997; Ducey et al., 1998).

Линейная регрессия, очевидно, является общим механизмом регуляции МСК. Одним из примеров таких мессенджеров, которые модулируют дифференцировку МСК через регрессию ядерного T-фактора. При выключении гена ядерного T-фактора (ЯТФ) у мышей наблюдается экспрессия кондоргенеза в экстраселекциональной области соединительной ткани. Кондоргенную индукцию также вызывает регрессия ЯТФ-гена, а повышение экспрессии данного гена, напротив, угнетает образование хрящевой ткани из МСК (Lecka-Czernik et al., 1999; Ranger et al., 2000).

Таким образом, мезенхимальной ткани присущи все черты, характерные для любой системы. Она имеет центральный орган — костный мозг, циркулирующий пул и периферический отдел.

Однако отличительной особенностью мезенхимы, например, от гемопоэза является то, что он сохраняет черты незрелой эмбриональной ткани, которой присуща достаточно большая пластичность. Четкую границу между центральным и периферическим отделами провести чрезвычайно трудно. МСК способны к одновременному развитию по нескольким направлениям. Они имеют "плавающий" фенотип. Очевидно, данный процесс находится под влиянием многочисленных индуктивных и супрессорных факторов, которые часто действуют одновременно. Это создает возможность к повышению маркеров для разных типов дифференцировки и затрудняет идентификацию клеток. Другая интересная особенность МСК, отличающая их от кроветворных, кишечных и эпидермальных СК, заключается в том, что дифференцированные потомки данных клеток способны к реверсии, т.е. к экспрессии генов материнских клеток. Интересно то, что их дифференцировка не является необратимой и они могут включать различные пути своего дальнейшего развития. С теоретических позиций мультипленинность МСК может быть объяснена статистической моделью, где пластичность комитированных клеток открывает дифференцировочный компартмент. Этот механизм, по-видимому, носит общефилогенетический характер, т.к. в некоторых случаях анаэробная функциональная "гибкость" наблюдается и у непереносимых организмов, в частности, у нейро-эктодермальных (нейрона, астроциты и олиго-дентриоциты) и эпидермальных (ренотоциты) стволовых клеток (Sanchez-Ramos et al., 2000; Woodbury et al., 2000; Oh et al., 2000).

2.5. МСК из других, не костномозговых, источников во взрослому организму

МСК можно выделить не только из костного мозга, но и из других тканей взрослого организма. Однако вопрос, сколько из клеток идентичны МСК костномозгового генеза, обладают такой же пластичностью и пролиферативным потенциалом, остается неясным. С другой стороны, стroma костного мозга может иметь генетические дефекты, что затрудняет применение клеточной терапии и требует поиска иных источников МСК. Это чрезвычайно важно при разработке правильной тактики лечения болезней с той или иной патологией и для предупреждения негативных явлений.

2.5.1. МСК из жировой ткани

Теоретически количество МСК, определяемых в жировой ткани, сопоставимо (и даже может превышать) с таковым в костном мозге. Однако их способность к мобилизации МСК из жирового депо, по-видимому, ограничена (Zak et al., 2000). Стромальные клетки жировой ткани содержат МСК на разных этапах развития, а также стромально-заселяемые клетки (СВК), которые считаются слабо дифференцированными протогенераторными жировыми клетками. В организме СВК под действием глюкокортикOIDов, ИПРФ и инсулина (Grecoire et al., 1998; Rajkumar et al., 1999). Как СВК, так и МСК костномозгового происхождения могут дифференцироваться в другие ткани под действием глюкокортикOIDов, ИПРФ и инсулина (Grecoire et al., 1998; Rajkumar et al., 1999). Это свидетельствует в пользу того, что СВК представляют собой вид комитированных мезенхимальных пролифератов, находящийся на пути развития, отличного от пути развития МСК костномозгового генеза.
Глава 2. Мезенхимология. Система мезенхимальных стволовых клеток

(Tontonoz et al., 1994). Кроме того, адипогенез регулируется и другими генами типа wt-10b (Fajas et al., 1998; Ross et al., 2000). В свою очередь, было показано, что КК жировой ткани способны трансформироваться в мышечные, костные, хрящевые клетки, включая кардиомиоциты (Zak et al., 2000, Gojo, Umezawa, 2003). C другой стороны, была установлена важная роль wt-10b и GATA-2,3-генов в супрессии адипогенеза (Ross et al., 2000; Tong et al., 2000). Изучена гистогенез в мышцах с некаутом гена Cbfa1, было показано, что он необходим для развития кости (Ducy et al., 1997; Ducy et al., 1998). Под его воздействием незаконченные стволовые клетки превращаются в остеогенные (Sato et al., 2000). Более подробно вопросы адипогенеза описаны в обзоре M. Francine et al. (1998).

Линейная репрессия, очевидно, является общим механизмом регуляции МСК. Одним из примеров таких мессенджеров, которые модулируют дифференцировку МСК через репрессию ядерного T-фактора. При выключении гена ядерного T-фактора (ЯТФ) у мышей наблюдается экспрессия кондоматеза в экстрацеллюлярной области соединительной ткани. Кондоматезную индукцию также вызывает репрессия ЯТФ-гена, а повышенная экспрессия данного гена, напротив, угнетает образование костной ткани из МСК (Lecka-Czernik et al., 1999; Ranger et al., 2000)

Таким образом, мезенхимальной ткани присущи все черты, характерные для любой системы. Она имеет центральный орган — костный мозг, циркулирующий пуф и периферический отдел. Однако отличительной особенностью мезенхимопсиса, например, от гемопоэза является то, что он сохраняет черты незрелой эмбриональной ткани, которой присущи достаточно большие пластичность. Четкую границу между центральным и периферическим отделами провести чрезвычайно трудно. МСК способны к одновременному развитию по нескольким направлениям, т. е. они не имеют "плавающий" фенотип. Основной способ их развития — находитя под влиянием многочисленных индуктивных и супрессорных факторов, которые часто действуют одновременно. Это соединяет мезенхимные клетки строительных маркеров для разных типов дифференцировки, что позволяет мезенхимным клеткам костного мозга индуцировать разные пути развития. С теоретических позиций мультитиплненность МСК может быть объяснена структурно-функциональной гибкостью, где пластичность компетентных клеток создается дифференцировочным компартментом. Этот механизм, по мнению авторов, имеет общезоологический характер, т. к. во многих аналогичных функциональных "гигантских" наблюдается и у незаконченных элементов, в частности, у нейрона-эктодермальных (нейрона, астроцитов и олиго-дентритов) и эндоотермальных (гепатоциты) стволовых клеток (Sanchez-Ramos et al., 2000; Woodbury et al., 2000; Oh et al., 2000).

2.5. МСК из других, не костномозговых, источников во взрослом организме

МСК можно выделить не только из костного мозга, но и из других тканей взрослого организма. Однако вопрос, насколько эти клетки идентичны МСК костномозгового генеза, обладают такой же пластичностью и пролиферативным потенциалом, остается неясным. С другой стороны, схема костного мозга может иметь генетические дефекты, что затрудняет проведение клеточной терапии и требует поиска иных источников МСК. Это очевидно важно при разработке технологий лечения больных с той или иной патологией и для предупреждения негативных явлений.

2.5.1. МСК из жировой ткани

Теоретически количество МСК, определяемых в жировой ткани, может быть очень большим. Однако их способность к мобилизации МСК из жирового депо, по-видимому, ограничена (Zak et al., 2000). СтROMальные клетки жировой ткани содержат МСК на разных этапах развития, что позволяет считать их дифференцированными генераторами стволовых клеток. В организме МСК, в особенности, в иммунологических и гормональных контекстах взаимодействуют с МСК, в том числе активируясь в адипоцитах (Buikowciak et al., 1985; Rajkumar et al., 1999). Как СВК, так и МСК костномозгового происхождения могут дифференцироваться в адипоциты под действием глукокортикостероидов, ИПР-1 и инсулина (Grecoire et al., 1998; Rajkumar et al., 1999). Это свидетельствует в пользу того, что СВК представляют собой вид компетентных мезенхимальных генераторов клеток, имеющих способность дифференцироваться в адипоциты, а также в костные, хрящевые и другие типы стволовых клеток. Некоторые авторы предполагают, что мезенхимальная ткань может быть источником клеток, способных к дифференцировке в различные типы стволовых клеток, что подтверждает наличие в ней клеток, способных к дифференцировке в различные типы стволовых клеток.
дящихся в жировой ткани и обладающих мультипотентным потенциалом дифференциации, поскольку они способны дифференцироваться в адипоциты, хондроциты, кардиомиоциты, миоциты и нейральные клетки (Hellstrom et al., 1999, Zak et al., 2002). Являются ли МСК костного мозга и жировой ткани идентичными по своим морфофункциональным свойствам, остается малоизученным. В частности, их антигенный состав не идентичен. Так, жировые МСК экспрессируют CD49d (4-интегрин), а костномозговые — нет. С другой стороны, на костномозговых МСК определяется CD106, которого нет в адипоцитарных МСК. Кроме того, между ними имеются различия в кинетике роста и качественно состава колоний (Dennis et al., 2001, 2002). Исследования, проведенные с использованием клонированных клеток, выделенных из насыщенного жиром костного мозга, подтвердили предположение, что исходные клетки, находящиеся в жировой ткани, обладают большим потенциалом дифференциации. Установлено, что исходные клетки, находящиеся в жировой ткани, способны дифференцироваться в адипоциты и нервные (Park et al., 1999). Появились единичные сведения о возможности части МСК жировой ткани формировать кардиомиоциты. Кроме того, стромальные клетки жировой ткани секретируют факторы, стимулирующие ангиогенез, и ингибируют апоптоз (Rehman et al., 2004). Это может быть использовано в дальнейшем при комбинированном введении МСК, выделенных из костного мозга и поджожной клетчатки, для усиления эффективности проведения клеточной терапии. Однако эти данные требуют проверки и более углубленного исследования.

2.5.2. МСК из мышечных клеток

В результате проделанной работы над скелетными мышцами взрослого человека доказано существование клеток со свойствами ранних многопотенциальных клеток (Williams et al., 1998). При проведении данного исследования было замечено, что после ферментативной диссоциации ткани и культивирования клетки образующаяся первичная культура формируется из смеси звездчатых клеток и многоядерных миотрубок. После изоляции и культивирования клеток в среде, содержащей лозадную сыворотку, клетки растут без каких-либо признаков дифференциации. Однако когда клетки помещались в другую среду, в которой присутствовал дексметазон, они вновь начинали дифференцироваться.

Как следует из морфологического и гистохимического анализа, дифференцированная популяция содержит клетки с фенотипом скелетных и гладких мышц, кости, хряща и жира. Хотя условия культивирования, использованные при проведении данного эксперимента (лохадная сыворотка и добавка к желатину), отличаются от условий, в которых обычно растут и развиваются МСК из костного мозга, результаты эксперимента указывают на то, что в скелетных мышцах присутствуют комбинированные МСК (Conget, Minguell, 1999; Digirolamo et al., 1999; Pitlenger et al., 1999).

Эти опыты не исключают вероятности того, что некомбинированные МСК также могут быть обнаружены в мышечной ткани. Они отличаются от "сателлитных" клеток, находящихся в скелетной мышце, в частиности по своему фенотипу и способности к редифференциации. В частности, они не способны к полной редифференциации, а также не являются предшественниками для формирования клеток, характерных для мышечной ткани, такие как MDR1, Sc-1 или Nod (Shinoda et al., 1999). По отношению к мышечным клеткам, они положительно реагируют на стимуляторы, такие как Y11-111 или Y11-110, которые могут быть использованы для углубленного исследования.

2.5.3. МСК из костной ткани

Для того чтобы получить представление о характеристиках и потенциале дифференциации находящихся в кости мезенхимальных...
дящихся в жировой ткани и обладающих мультипотентным потенциалом дифференциации, поскольку они способны дифференцироваться в адипоциты, хондроциты, кардиомиоциты, миоциты и нейральные клетки (Hellstrom et al., 1999, Zak et al., 2002). Являются ли МСК костного мозга и жировой ткани идентичными по своим морфофункциональным свойствам, остается малоизвестным. В частности, их антигенный состав не идентичен. Так, жировые МСК экспрессируют CD49d (4-интегрин), а костномозговые — нет. С другой стороны, на костномозговых МСК определяется CD106, которого нет в адипоцитарных МСК. Кроме того, между ними имеется различия в кинетике роста и качественном составе колоний (Dennis et al., 2001, 2002). Исследования, проведенные с использованием клонированных клеток, выделенных из нссыщенного жиром костного мозга, подтвердили предположение, что исходные клетки, находящиеся в жировой ткани, обладают большим потенциалом дифференциации. Установлено, что исходные клетки, находящиеся в жировой ткани, способны дифференцироваться в адипоциты и остеобласты (Park et al., 1999). Появились единичные сведения о возможности части МСК жировой ткани формировать кардиомиоциты. Кроме того, стромальные клетки жировой ткани секретируют факторы, стимулирующие ангиогенез, и ингибиторы ангиогенеза (Rehman et al., 2004). Это может быть использовано в дальнейшем при комбинированном введении МСК, выделенных из костного мозга и подкожной клетчатки, для усиления эффективности проведения клеточной терапии. Однако эти данные требуют проверки и более углубленного исследования.

2.5.2. МСК из мышечных клеток

В результате проделанной работы над скелетными мышцами взрослого человека доказано существование клеток со свойствами ранних многоногих исходных клеток (Williams et al., 1999). При проведении данного исследования было замечено, что после ферментативной диссоциации ткани и культивирования клетки образующаяся первичная культура формируется из смеси звездчатых клеток и многоядерных митотубок. После изоляции и культивирования клеток в среде, содержащей лошадиный сыворотку, клетки растут без каких-либо признаков дифференциации. Однако когда клетки помещались в другую среду, в которой присутствовал дексаметазон, они вновь начинали дифференцироваться.

Как следует из морфологического и гистохимического анализа, дифференцированная популяция содержит клетки с фенотипом скелетных и гладких мышц, кости, хряща и жира. Хотя условия культивирования, использованные при проведении данного эксперимента (лошадиная сыворотка и добавка к желатину), отличаются от условий, в которых обычно растут и развиваются МСК из костного мозга, результаты эксперимента указывают на то, что в скелетных мышцах присутствуют комбинированные МСК (Conget, Minguell, 1999; Digirolamo et al., 1999; Pitteger et al., 1999).

Эти опыты не исключают вероятности того, что некомбинированные МСК также могут быть обнаружены в мышечной ткани. Они отличаются от "сателлитных" клеток, находящихся в состоянии покоя и способные при пересадке переходить в активную фазу роста с образованием многочисленных колоний, т.е. рекрутироваться в комбинированный пул мезенхимальных прекурсоров (Barolli et al., 1995, Beauchamp et al., 1999; Gross, Morgan, 1999). На некомбинированном этапе развития мезенхимальные исходные клетки, находящиеся в скелетной мышце, равно как и клетка с2, продолжают оставаться неразборчивыми одноядерными клетками, даже если они подвергаются дифференцированным стимулам (Yoshida et al., 1999). Клетки не только скелетных мышц, но и других видов, таких как сердечная мышца, проявляют свойства мезенхимальных исходных клеток.

Ранее считалось, что в норме в сердечной ткани взрослого организма нет прогенеративных клеток. Однако оказалось, что это не совсем так. В частности, примитивные стволовые клетки, способные дифференцироваться в миоциты, были идентифицированы в области предсердий. Они несли характерные поверхностные маркеры, такие как c-kit, MDR1 и Sca-1. Кроме того, здесь же были выявлены предшественники для эндотелиальных и гладкомышечных клеток (Anversa, Nadal-Ginard, 2002; Nadal-Ginard et al., 2003). Однако при инфаркте миокарда или других патологиях сердца эти клетки, как впрочем, и циркулирующие МСК, в силу пока еще не расшифрованных механизмов, не способны к ремоделированию поврежденной ткани. Это затрудняет их применение в регенераторной медицине.

2.5.3. МСК из костной ткани

Для того чтобы получить представление о характеристиках и потенциале дифференциации находящихся в кости мезенхимальных клеток...
Глава 2. Мезоэлементы. Система мезенхимальных стволовых клеток

nych исходных клеток из костной ткани, использовали ряд экспериментальных подходов. В ходе одного из этих экспериментов из первичных культур выделили и отобрали четыре подгруппы клеток в соответствии с характерными образцами проявления гена-маркера (STRO-1) стromальной клетки-предшественника и остеобластного гена-маркера щелочного фосфата (ЦФ) (Gronthos et al., 1999). Подгруппа клеток STRO-1+/ЦФ+ проявила повышенный межклеточный матрикс кости, а также характеризуются отсутствием костного сапелопротеина, остеопантала и рецептора гормона остеоцитового желазы на своей поверхности. Другие группы клеток соответствовали промежуточным и полностью готовым формам созревающих и дифференцированных остеобластов. После отбора и рекультивирования только клетки из STRO-1+/ЦФ+ субдокументы смогли генерировать все четыре подгруппы STRO-1/ЦФ клеток, присутствующих в первоначальной культуре.

Это свидетельствует о том, что культуры человеческой кости не однородны, в них сопроизводят биопотенциал (остеогенные/адипогенные) прекурсоры (Nuttall et al., 1998). Путь дифференциации, избирательная эти эти клетки, определяется рядом факторов, таких как жировые клетки, ЭИ-1Р и/или ТЭФ-Р.

Мультипotentный стволовые проявляют клетки РСК 3.1, извлеченные из черепного свода эмбриона крысы. Он способен под воздействием индукторов дифференцироваться в четыре мезенхимальных клеток. Так, под воздействием ацинарной кислоты, β-глицерофосфата, дексаметазона из него образуются мускулатуры клетки (9–10-день), адиопоты (12-день), хондросомы (после 16-день и костная ткань (после 21-день) (Grigoriadis et al., 1988; 1990). Кроме МСК в костной ткани, по крайней мере, в процессе эмбриогенеза можно выделить и некоммитированную пул МСК, который имеет медленный цикл развития, не проявляет связанные с дифференцировкой маркерные гены, а при помещении в культуру формирует мышечные, хрящевые, жировые, костные клетки (Zotar et al., 1997; Ghizion et al., 1989). Возможно, именно за счет генетического, а не костномозгового пула МСК происходит процесс репарации и регенерации костной ткани при переломах и травмах (Li et al., 1994).

Таким образом, в культурах МСК костного происхождения присутствуют как некоммитированные, так и коммитированные МСК.

2.5. МСК из других, не костномозговых, источников во взрослом организме

2.5.4. МСК из хрящевой ткани и сухожилий

В организме суставная хрящевая ткань имеет ограниченную способность к восстановлению. Обычно для ее выделения используют набор ферментов, ключевым из которых является гиалуронидаза. Предполагается, что, несмотря на преобладание в ней МСК, способных проявлять хондроцитарный фенотип, их количество в восстанавливаемой ткани ограничено (Komaki et al., 1995; Metersanta et al., 1996; Tonna et al., 1997; Fujimoto et al., 1999). Причины этого феномена остаются непонятными. По-видимому, пролиферативный потенциал МСК (или способность к перепрограмму клеток, выделенных из хрящевой ткани) достаточен и низок, так они не способны восстанавливать поврежденные структуры хряща при травме (Urist et al., 1978; Shapiro et al., 1999; Boyan et al., 1999).

Мало того, посвящено изучению вопроса выявления МСК в сухожилиях. Так, использование метода серийного культивирования тенозитов из пяточного сухожилия молодого кролика, было показано, что культуры клеток первой и второй генераций содержат маркерные гены дифференцировки для коллагена I типа и декорина, характерные для тенозитов. Однако при последующих пересевах клетки начинают проявлять модифицированный фенотип (Bernard-Beaugeois et al., 1997). Несмотря на огромное количество информации по факторам, которые регулируют рост сухожилий и условий коммитирования находящихся в сухожилиях клеток-предшественников практически нет (Becker et al., 1981; Hanil, Abrahamsson, 1996; Wieg et al., 1996; Abrahamsson, 1997; Kang, Kang, 1999).

2.5.5. МСК сосудистого генеза

Практически все сосуды формируются из эмбриогенезе из эндотелиальной трубы, на которой впоследствии образуется слой сосудистых гладкомышленных клеток (перицитов) (СГМК), развивающихся, в свою очередь, из МСК. Перинактивные МСК способны по многим своим морфофункциональным свойствам с костномозговым отелом мезенихимопеза. Выше мы обсуждали эти свойства для СГМК при рассмотрении вопроса о пластичности МСК. Несмотря на то, что данный класс прекурсоров проявляет ряд свойств, характерных для МСК костного мозга, в частности по отношению к экспрессии гладкомышечного актина, рецепторов для высвобождающего из тромбоцитов ростового фак-
Глава 2. Мезенхимоген. Система мезенхимальных стволовых клеток

нных исходных клеток из костной ткани, использовали ряд экспериментальных подходов. В ходе одного из этих экспериментов на первичных культурах выделяли и отбирали четыре подгруппы клеток в соответствии с характерными образцами проникновения гена-маркера (STRO-1) стromальной клетки-предшественника и остеобластического гена-маркера щелочной фосфатазы (ФФ) (Gronthos et al., 1999). Подгруппа клеток STRO-1+/ЩФ+ проявляла преостеобластический фенотип. В отличие от остеобластов, они обладают сниженной способностью формировать минерализованный остеокластовый матрикс кости, а также характеризуются отсутствием костного синтеза, остеопитина и рецептора гормона остеоцитоидной железы на своей поверхности. Другие группы клеток соответствовали промежуточным и полностью готовым формам созревающих и дифференцированных остеобластов. После отбора и рекультивирования только клетки из STRO-1+/ЩФ+ могут сформировать все четыре подгруппы STRO-1/ЩФ клеток, присутствующих в первоначальной культуре.

Это свидетельствует о том, что культуры человеческой кости не однородны, и их соприкасаются с факторами (оссенных/адипогенез культивированные) (Nuttall et al., 1998). Пусть дифференциации, изолированы этими клетками, определяются рядом факторов, таких как миозин, НЛ-1Р и/или ТФР-N.

Мультипотентные свойства проявляют клетки RCJ 3.1, извлеченные из трепанного свода эмбриона крысы. Он способен последействием индукторов дифференцироваться в четыре мезенхимальных фенотипа. Так, под влиянием аскорбиновой кислоты, β-глациферофила, экскретирован из него образуются мышечные клетки (9-10-й день), адиопозиты (12-й день), хондроциты (после 16-го дня) и костная ткань (после 21-го дня) (Grigoriadis et al., 1988; 1990). Кроме МСК в костной ткани, по крайней мере, в процессе эмбриогенеза можно выделить и некоммитированный пул МСК, который имеет медленный цикл развития, не проникает в связанные с дифференцировкой маркеры генов, а при помещении в культуру формирует мышечные, хрящевые, жировые, костные клетки (Zohar et al., 1997; Ghilzon et al., 1999). Возможно, именно за счет остеогенного, а не костногоного пула МСК происходит процесс репарации и регенерации костной ткани при переломах и травмах (Liu et al., 1994).

Таким образом, разных МСК костного происхождения присутствуют как некоммитированные, так и коммитированные МСК.

2.5. МСК из других, не костномозговых, источников во взрослых организмах

2.5.4. МСК из кривлевой ткани и сухожилий

В организме суставная кривлевая ткань имеет ограниченную способность к восстановлению. Обычно для ее выделения используют набор ферментов, ключевым из которых является гиалуронидаза. Предполагается, что, несмотря на присутствие в ней МСК, способных проявлять хондроцитарный фенотип, их количество в восстанавливающейся ткани ограничено (Komaki et al., 1996; Metsaranta et al., 1996; Tonna et al., 1997; Fujimoto et al., 1999). Причины этого феномена остаются неясными. По-видимому, пролиферативный потенциал МСК (или способность к перемещению клеток, выделенных из кривлевой ткани) достаточно низок, т.к. они не способны восстанавливать поврежденные структуры хряща при травме (Urist et al., 1978; Shapiro et al., 1993; Boyan et al., 1999).

Мало посвоено изучению вопроса выявления МСК в сухожилиях. Так, метод серийного культивирования тенденциоз из пяточного сухожилия молодого кролика, было показано, что культуры клеток первой и второй генерации содержат маркеры генов дифференцировки для коллагена I типа, гексозаминиды, характерные для тенденциоз. Однако при последующей генерации пересечении клетки начинают проявлять модулируемый фенотип (Bernard-Beaurisbois et al., 1997). Несмотря на огромное количество информации по факторам, которые регулируют рост клеток сухожилий, новые виды исследования, данных о происхождении клетки и условиях коммитирования находящихся в сухожилиях клеток-предшественников практически нет (Becker et al., 1981; Hanif, Abrahamsson, 1996; Wiig et al., 1996; Abrahamsson, 1997; Kang, Kang, 1999).

2.5.5. МСК сосудистого генеза

Практически все сосуды формируются из эмбриогенезе из экзотеллиальной ткани, на которой впоследствии образуются слой сосудистых гладкомышечных клеток (поперечных) (СГМК), развивающихся, в свою очередь, из МСК. Периваскулярные МСК способны по многим своим морфофункциональным свойствам с костномозговым отдельм мезенхимоплота. Выше мы обсуждали эти свойства для СГМК при рассмотрении в опытах о пластичности МСК. Несмотря на то, что данный класс предшественников проявляет ряд свойств, характерных для МСК костного мозга, в частности по отношению к экспрессии гладкомышечного актина, рецепторов для высвобождаемого из тромбоцитов ростового фак-
Глава 2. Мезенхимозои. Система мезенхимных стволовых клеток

2.6. МОБИЛИЗАЦИЯ МСК

Считается, что костный мозг является центральным органом мезенхимоза. Из него МСК выводятся, транспортируются через кровь и располагаются в отделенных участках мезенхимной ткани (Caplan, 1994; Mingel et al., 2001). Механизм этого процесса малоизучен. Возможно, в процессе мобилизации МСК проходят стадию коммитирования и дифференцировки, в соответствии с запросом от периферического отдела. Предполагается, что этот процесс осуществляется в специфических для мезенхимных клеток нишах, которые регулируют процесс их развития (Lazarus et al., 1997; Watt, Hogan, 2000). Морфологический субстрат этих ниш для костного мозга до настоящего времени не определен. После создания критической массы МСК, подготовленной для дальнейшей экспансии, стволовые клетки поступают в кровоток. При этом периферическая кровь и, очевидно, лимфа должны представлять собой транспортное средство для переноса МСК к месту назначения, т.е. в нужную микросреду той или иной ткани. В результате химотропных фибропластоподобные клетки прикрепляются к клеткам и/или компонентам экстрацеллюлярного матрикса и начинают дифференцироваться и дифференцироваться в соответствующем локальном микроокружении направлении. Попадая в тучную или иную ткань, МСК способны к локальной миграции, что подтверждают опыты при изучении восстановления хряща, костной ткани, регенерации мышц, нервной ткани (Carnes et al., 1997; Kopen et al., 1999).

Следует отметить, что факт присутствия циркулирующих МСК (КОМС) в крови взрослого человека в обычных условиях, пока еще не установлен. Данный феномен доказан лишь для животных (Fridenshtein, Lurie, 1980; Reading et al., 2000). Ряд авторов считает, что у людей циркулирующие МСК появляются только при действии экстремальных факторов, например цито-

статиков или цитокинов типа гранулоцитарного и гранулоцито-макрофагального колонистимулирующих факторов (ГКСФ, HM-
КСФ), или при патологических процессах (Piecha et al., 1985; Ojciea-Urhe et al., 1993; Lazarus et al., 1997; Fernandez et al., 1997; Reading et al., 2000).

При этом, как и миозин класс МСК - коммитированный или некоммитированный - покидает костный мозг, также остается невизименным. От решения этого вопроса во многом зависит тактика проведения клеточной терапии, в частности, остро и инфаркт миокарда, и синдром абсцесса, а также, например, за счет мобилизации МСК из костного мозга с помощью цитокинов. Если окажется, что происходит выброс МСК из ванны, облачающих низкой пролиферативной активностью, то при правильном введении он не обеспечит реализовать свой пролиферативный потенциал и образовать необходимое количество новых НМЦ, позволяющее осуществить эффективную кардиомиопластку.

Другим негативным последствием стимуляции выброса МСК из костного мозга в фазу активации стволовых клеток в минокарде после инфаркта может быть образование из них вместо мышечных клеток-фибробластов и усиления роста рубца. Кроме того, ГКСФ и ГМ-КСФ активируют функцию ноотрофильных макрофагов, гемопоэтических СК, что может усилить сосудистую реакцию не только вокруг зоны инфаркта, но и в местах проведения хирургического вмешательства, например, коронарографии.

Вторым очевидным доказательством того, что МСК человека способны к циркуляции, является факт их обнаружения в пуповинной крови. Они проявляют свойства, во многом аналогичные для стволовых клеток гепатоцеллюлярного стroma, и дифференцируются в остеоидные, хондральные и адипогенные элементы.

Более того, в культуре таких клеток около 5-10% можно отнести к классу некоммитированных МСК. Существуют прямые корреляции между стадией генеза плода и количеством циркулирующих МСК (Shields et al., 1988; Erices et al., 2000). Однако МСК костного мозга значительно лучше развиваются в культуре образца кости, быстрее "накрывают биомассу" и легче дифференцируются, чем МСК пуповинной и периферической крови (Wexler et al., 2003). Следовательно, циркулирующие и иммобилизированные в костном мозге МСК представляют собой либо разные популяции клеток, либо разные функциональные состояния одной и той же популяции прекурсоров.
тора, тем не менее, они являются нетождественными стволовыми клетками (Galmine et al., 1993; Hellstrom et al., 1999). Так, МСК сосудистого происхождения (из пупочного канатика) в культуре ткани имеют фенотип CD29*, CD44*, CD14*, CD45*. Они формируют хондрогенез клетки, экспрессирующие коллаген II и IX типов, скелетные миофибриллы (положительные на α-актин, кальцитонин, кальксомин, α-тубулин цепь миозина), элементы CD-34*, но не жировые клетки (Tintut et al., 2003).

2.6. МОБИЛИЗАЦИЯ МСК

Считается, что костный мозг является центральным органом мезенхимопоза. Из него МСК выходит, транспортируются через кровь и распределяются в отделенных участках мезенхимальной ткани (Cepian, 1994; Mingel et al., 2001). Механизм этого процесса малоизучен. Возможно, в процессе мобилизации МСК проходят стадию коммитирования и дифференцировки, в соответствии с запросом от периферического отдела. Предполагается, что этот процесс осуществляется в специфических для мезенхимальных клеток нишах, которые регулируют процесс их развития (Lazarus et al., 1997; Watt, Hogan, 2000). Морфологический субстрат этих ниш для костного мозга до настоящего времени не определен. После создания критической массы МСК, подготовленной для дальнейшей экспансии, стволовые клетки поступают в кровоток. При этом периферическая кровь и, очевидно, мышечная должна представлять собой транспортное средство для перемещения МСК к месту назначения, т.е. в нужную микро- среду той или иной ткани. В результате содержания протеогликанов, фибронектиновых подобных белков привлекаются к клеткам и/или компонентам экстраклеточного матрикса и инициируют пролиферацию и дифференцировку в соответствии локальным миросреде направлению. Подобная в тую или иную ткань, МСК способны к локальной миграции, что подтверждают опыты при изучении восстановления хряща, костной ткани, регенерации мышц, нервной ткани (Carnes et al., 1997; Kopen et al., 1999).

Следует отметить, что факт присутствия циркулирующих МСК (КОФ) в крови взрослого человека в обычных условиях, пока еще не установлен. Данный феномен доказан лишь для животных (Fridenstein, Lurin, 1980; Reading et al., 2000). Ряд авторов считает, что у людей циркулирующие МСК появляются только при действии экстремальных факторов, например ион- статиков или цитокинов типа гранулоцитарного и гранулоцито- макрофагального колониестимулирующих факторов (ГСФ, ГМ- КСФ), или при патологических процессах (Piersma et al., 1983; Ojea-Urube et al., 1993; Lazarus et al., 1997; Fernandez et al., 2000; Reading et al., 2000).

При этом, какой именно класс МСК — коммитированный или некоммитированный — покидает костный мозг, также остается неизвестным. От решения этого вопроса во многом зависит тактика проведения клеточной терапии, в частности, острого ишемического инсульта, например, за счет мобилизации МСК из костного мозга с помощью цитокинов. Если окажется, что происходит выброс МСК, обладающих низкой пролиферативной активностью, то при появлении в сердце они не успеют реализовать свой пролиферативный потенциал и образовать необходимое количество новых КМЦ, позволяющее осуществить эффективную кардиомопластик.
Глава 2. Мезенхима. Система мезенхимальных стволовых клеток

2.7. СТРОМАЛЬНОЕ МИКРООРУЖИЕ ДЛЯ МСК

Поддержание жизнедеятельности СК любого генеза осуществляется не только дистантными механизмами (гормонами, цитокинами, нервными импульсами и т.п.), но и локальным микроокружением той или иной ткани. Каждая ткань имеет свое специфическое микроокружение, среди которого достаточно условно можно выделить гуморальный и клеточный компоненты. Они во многом определяют дальнейшую судьбу СК, попадающих в ту или иную зону индуцирующего микроокружения. Особенность мезенхимоэпюза является то, что клетки сами создают для себя базовую основу для микроокружения.

Стромальное микроокружение (СМ), по-видимому, контролирует процесс ассиметричного деления, характерного для мультипотентных клеток, в частности МСК и ГСК (Дыгай, Шахов, 1989; Murgela et al., 2001). Помимо этого, СМ вырабатывает факторы, являющиеся своеобразным репликатором, определяющим количество делений стволовых клеток. Очевидно, этот механизм реализуется с участием теломеразы (Watt, 1998).

Стромальное микроокружение не ограничивается только элементами, входящими в состав костного мозга стromальных мезенхимоцитов, эндотелия, резидентных макрофагов, остеобластов, но, особенно при экстремальных воздействиях (стRESS, воспаление, некроз, инфаркт и т.п.), может принимать в свой состав и другие клетки, в частности Т-лимфоциты и макрофаги. Вместе они создают динамическую систему, способную к стимуляции, супрессии, сужению, или расширению площаца СМ (табл. 2.5, рис. 2.18). Так, в экспериментах на животных было показано, что стресс сопровождается активацией СМ, которую можно регистрировать путем переноса костного мозга под капсулу почки. В результате формируется новый орган кроветворения за счет пролиферации и дифференцировки стromальных клеток, переносящих гемопоэзиндуцирующее микроокружение (ГИМ) (Дыгай, Шахов, 1989, Шахов, 1991, Шахов и др., 1995; Карлов, Шахов, 2001).

Способно ли стромальное микроокружение, по аналогии с гемопоэзом, обладать индуцирующими по отношению МСК свойствами практически не известно. Ниже мы коснемся вопросов о роли Т-лимфоцитов и макрофагов в регуляции функции стromальных СК, ответственных за перенос ГИМ.

Интересной моделью для изучения стromального микроокружения является способ эктопического костообразования (Фри...
2.7. СТРОМАЛЬНОЕ МИКРООКРУЖЕНИЕ ДЛЯ МСК

Поддержание жизнедеятельности СК любого генеза осуществляется не только дистантными механизмами (гормонами, цитокинами, нервными импульсами и т.п.), но и локальным микроокружением той или иной ткани. Каждая ткань имеет свое специфическое микроокружение, среди которого достаточно условно можно выделить гуморальный и клеточный компоненты. Они в том числе определяют дальнейшую судьбу СК, попадающих в ту или иную зону индуцирующего микроокружения. Особенностью мезенхимоэпидоня является то, что клетки сами создают для себя базовую основу для микроокружения.

Стромальное микроокружение (СМ), по-видимому, контролирует процесс асимметричного деления, характерного для мультипotentных клеток, в частности МСК и ГСК (Дыгай, Шахов, 1989; Murgela et al., 2001). Помимо этого, СМ вырабатывает факторы, являющиеся своеобразным счетчиком, определяющим количество делений стволовых клеток. Очевидно, этот механизм реализуется с участием теломеразы (Watt, 1998).

Стромальное микроокружение не ограничивается только элементами, входящими в состав костного мозга стromальных мезанхоманитов, эндотелия, резидентных макрофагов, остеобластов, но, особенно при экстремальных воздействиях (стресс, воспаление, некроз, инфаркт и т.п.), может принимать в свой состав и другие клетки, в частности T-лимфоциты и макрофаги. Вместе они создают динамическую систему, способную к стимуляции, супрессии, сужению или расширению площади СМ (табл. 2.5, рис. 2.18). Так, в эксперименте на животных было показано, что стресс сопровождается активацией СМ, которую можно регистрировать путем переноса костного мозга под капсулу почки. В результате формируется новый процесс кроветворения за счет пролиферации и дифференцировки стromальных клеток, переносящих гемопозиндуцирующее микроокружение (ГИМ) (Дыгай, Шахов, 1989, Шахов, 1991, Шахов и др., 1995; Карлов, Шахов, 2001).

Способно ли стromальное микроокружение, по аналогии с гемопозией, обладать индуцирующими по отношению МСК свойствами практически не известно. Ниже мы коснемся вопросов о роли T-лимфоцитов и макрофагов в регуляции функции стromальных СК, ответственных за перенос ГИМ.

Интересной моделью для изучения стromального микроокружения является способ эктопического костообразования (Фри...
2.7. Стромальное микроокружение для МСК

Таблица 2.5

Динамика содержания общего количества миелокарцинов (ОКК), гранулоцито-макрофаговых колониобеднообразующих единиц (ГМ-КОЕ), КОЕф, клеточности и массы "терминальных" (коммитированных МСК) и "атерогенов" (некоммитированных МСК) эктопических очагов костеврения из костного маргеза мышей \(f_t (CBAxC57BL) \), подвергнутых 10-часовой иммобилизации

<table>
<thead>
<tr>
<th>Время после иммобилизации, сут.</th>
<th>ОКК, x10⁶</th>
<th>ГМ-КОЕ, x10⁴</th>
<th>КОЕф, x10⁴</th>
<th>МСКклеточность, x10⁶</th>
<th>Масса, мг</th>
<th>МСКклеточность, x10⁶</th>
<th>Масса, мг</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>15,2</td>
<td>4,2</td>
<td>9,5</td>
<td>2,6</td>
<td>1,2</td>
<td>2,1</td>
<td>1,0</td>
</tr>
<tr>
<td>3</td>
<td>15,9</td>
<td>19,9</td>
<td>14,1</td>
<td>8,5</td>
<td>0,9</td>
<td>4,5</td>
<td>1,1</td>
</tr>
<tr>
<td>5</td>
<td>19,8</td>
<td>16,4</td>
<td>15,3</td>
<td>7,9</td>
<td>2,0</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>6</td>
<td>24,8</td>
<td>8,5</td>
<td>9,7</td>
<td>5,5</td>
<td>1,7</td>
<td>3,0</td>
<td>1,2</td>
</tr>
<tr>
<td>7</td>
<td>29,1</td>
<td>7,0</td>
<td>8,1</td>
<td>3,8</td>
<td>1,1</td>
<td>2,5</td>
<td>0,1</td>
</tr>
<tr>
<td>8</td>
<td>14,5</td>
<td>4,1</td>
<td>9,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание: "*" - P< 0,05.

денстейй, Лыткина, 1973; Карлов, Шахов, 2002). Если фрагмент костного мозга нанести на кальционосфератную поверхность с определенным содержанием Ca / P и специфическим микрокряжеем пористой поверхности (диаметр пор от 100 до 300 микрон) и имплантировать материал под кожу, то через 1–1,5 месяца из него образуется ткань, содержащая костные, хрящевые, жировые, мышечные элементы, фрагментированные новыми капиллярами (рис. 2.18, 2.19). Очевидно, это свидетельствует о том, что в имплантированном костном мозге присутствуют МСК, обладающие мультипотентностью.

Скорее всего, данную систему следует использовать для моделирования процессов склерозирования тканей, в частности, при развитии патогенеза кардиосклероза и атеросклероза, когда наблюдаются изменения в направленности дифференцировки МСК и процессы кальцификации исследуемого объекта.

2.7.1. Роль Т-лимфоцитов и моноклонарных фагоцитов в регуляции функции стromальных клеток, переносящих ГИМ

Ранее нами было показано, что при стрессе происходит последовательная каскадоподобная активация нейроэндокринной, Т-лимфоцитарной и ретикулоэндотелиальной систем, приводящей к стимуляции процессов пролиферации и дифференцировки костных/макрофагальных клеток-предшественников и КОЕф. Этот процесс сопровождается гиперинлазацией костномозговой ткани и лейкоцитозом и эритроцитозом (Шахов, 1996, 1997). Учитывая обстоятельство, что кроветворная и костно-хрящевая ткани также взаимосвязаны, логично было предположить, что подобный механизм может играть важную роль в стимуляции стromальных генераторов клеток типа МСК, ответственных за перенос костномозгового микроокружения (Чертов, Гураев, 1984). Стесс представляет собой неспецифическую реакцию и развивается в ответ на действие любых чрезвычайных раздражителей, включая травму, инфаркт миокарда, теплое или холодное воздействие и т. п. (Шахов, 1991, 1997). Это достаточно простая и удобная модель, позволяющая изучать одновременно как дольергенов, так и локальные механизмы регуляции функции элементов, входящих в состав СМ и ГИМ.

Опыты проводились на мышах линии СВА или гибридах \(f_t (CBAxC57BL) \). Стесс-реакция вызывалась путем иммобилизации мышей в течение 10 часов. Эктопическая трансплантация осуществлялась по методу М. Тавасоли, Р. Кхаедери (1980), для чего клетки костного мозга имплантировали под кожу пояса донора (рис. 2.20). Через 7 сут часть ресипиентов забивали, и образовавшийся "первичный" хондростromальный очаг переохлаждали под кожу пояса интактных ресипиентов. Масса образовавшейся хрящевой ткани подсчитывалась через 1 месяц после трансплантации. Ряд животных получал Тло-1-монокло-
Таблица 2.5

<table>
<thead>
<tr>
<th>Время после иммобилизации, сут.</th>
<th>ОКК, мг/л</th>
<th>ГМ-КОЕ, 10^3</th>
<th>КОЕф, 10^3</th>
<th>МСк</th>
<th>МСКн</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>19,9</td>
<td>19,9</td>
<td>14,1</td>
<td>3,6</td>
<td>8,5</td>
</tr>
<tr>
<td>5</td>
<td>19,8</td>
<td>16,4</td>
<td>15,3</td>
<td>7,9</td>
<td>2,0</td>
</tr>
<tr>
<td>6</td>
<td>29,1</td>
<td>7,0</td>
<td>8,1</td>
<td>3,8</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Примечание: * - P<0,05

денитей (Лалякина, 1973; Карлов, Шахов, 2002). Если фрагмент костного мозга нанести на кальцофосфатную поверхность с определенным содержанием Са / Р и специфическим микрорельефом частицкей поверхности (диаметр пор от 100 до 300 мкм) и имплантировать материал под кожу, то через 1–1,5 месяца из него образуется ткань, содержащая костные, хрящевые, жировые, мышечные элементы, пронизанные новыми капиллярами (рис. 2.18, 2.19). Очевидно, это свидетельствует о том, что в имплантированном костном мозге присутствует МСК, обладающие мултипотентностью.

Скорее всего, данную систему следует использовать для моделирования процессов склерозирования тканей, в частности, при изучении патогенеза кардиосклероза и атеросклероза, когда наблюдаются изменения в направленности дифференцировки МСК и процессы кальцификации исследуемого объекта.

2.7.1. Роль Т-лимфоцитов и мононуклеарных фагоцитов в регуляции функции стромальных клеток, переносящих ГИМ

Ранее нами было показано, что при стрессе происходит последовательная каскадная активация нейро-эндокринной, Т-лимфоцитарной и ретикулоэндотелиальной систем, приводящей к стимуляции процессов пролиферации и дифференцировки кроветворных клеток-предшественников и КОЕф. Этот процесс сопровождается гиперплазией костномозговой ткани и лейкоцитозом и эритроцитозом (Шахов, 1996, 1997). Учитывая это обстоятельство, что кроветворная и костно-хрящевая ткани тесно взаимосвязаны, логично было предположить, что подобный механизм может играть важную роль в стимуляции стромальных и гемопоэтических клеток типа МСК, ответственных за перенос костномозгового микроокружения (Чертков, Гурович, 1984).

Стрес-реакция связывает действием любых чрезвычайных раздражителей, включая травму, инфаркт миокарда, теплое или холодное воздействие и т. п. (Шахов, 1991, 1997). Это достаточно просто и удобная модель, позволяющая изучить однородно как дельфидальные, так и локальные механизмы регуляции функции элементов, входящих в состав СМ и ГИМ.

Опыты проводились на мышах линии СВА или гибридах F1 (СВАхC57BL/6). Стрес-реакция вызывалась путем иммобилизации мышей в течение 10 часов. Экстопическая трансплантация осуществлялась по методу M. Tavasoli, R. Khaderi (1980), для чего клетки костного мозга имплантировали под кожу пошечно донара (рис. 2.20). Через 7 сут часть репликативных образцов, и образовавшихся "первичный" хондро-страктовый очаг, перенесли под кожу почек интактным реципиентам. Масса образовавшейся хрящевой ткани подсчитывалась через 1 месяц после трансплантации. Ряд животных получал Тилу-1-монокло-
Гипотеза о существовании "ниш" для МСК в виде структурно-функционального образования – мезенхимального острвола

Ранее нами было показано, что не только макрофаги, но и фибробласты (рис. 2.21), а также эндотелии могут выполнять роль центральной регулирующей клетки (Дагай, Шахов, 1989; Гольдберг и др., 1992).

Интересно, что часть гемопоэтических островоров может при введении в селезенку лабораторных мышей формировать колонии. Причем структура колоний состоит из островоров разной степени зрелости, начиная от недифференцированных элементов, заканчивая зрелыми гранULOцитами и эритроцитами (рис. 2.22). Это свидетельствует о репликации как гемопоэтического, так и стromального компонента в данных острворах (Шахов и др., 1999; Shahov et al., 1999). Возможно, что в структуре гемопоэтических острворов находится преобразованный, общий для кроноцитов и стromальных элементов, например, типа мезенхимальных стromальных клеток (МСК), обеспечивающих образование не центральной и кроноцитов, и макрофагов.

Теоретически МСК могут формировать структурно-функциональное образование в виде острворов (Шахов и др., 2004). Следует еще раз учесть тот факт, что природа и свойства стро-
<table>
<thead>
<tr>
<th>Место экстракционного очага, в мг</th>
<th>КОЭф, х 10^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,33±0,11</td>
<td>0,95±0,02</td>
</tr>
</tbody>
</table>

Примечание: * — при \(P < 0,05 \) по сравнению с нестрессированными животными.

Мозг, но и в других тканях и органах, в частности в сердце и сосудах.

2.8. ГИПОТЕЗА О СУЩЕСТВОВАНИИ "НИЩИ" ДЛЯ МСК В ВИДЕ СТРУКТУРНО-ФУНКЦИОНАЛЬНОГО ОБРАЗОВАНИЯ — МЕЗЕНХИМАЛЬНОГО ОСТРОВА

Предполагается, что процесс "хранения", пролиферации и дифференцировки СК осуществляется в специальных "нишах" — структурно-функциональных единицах той или иной ткани. M. Bessis (1963) одним из первых показал, что в костном мозге существуют специфические структурно-функциональные комплексы, состоящие из центральной клетки (макрофага) и окружающих его эритроидных элементов различной степени зрелости. В них происходит процесс созревания элементов костной крови, начиная от эритроидных колониообразующих единиц и заканчивая гемоцитами (Захаров, Рассохин, 2002; Гольдберг и др. 1998). При этом макрофаг играет роль своеобразного регулятора, контролирующего процесс пролиферации и дифференцировки окружающих его эритроидных элементов. Кроме того, было установлено, что и для миелоядерных клеток существуют аналогичные клеточные системы (Шахов, 1986; Crocker, Corden, 1985).

Ранее нами было показано, что не только макрофаги, но и фибробLASTy (рис. 2.21), а также эндотелий могут выполнять роль центральной регулирующей клетки (Дагай, Шахов, 1989; Гольдберг и др., 1992).

Интересно, что часть гемопоэтических островков может при введении в селезенку летально облученных мышей формировать колонии. Причем структура колоний состоит из островков разной степени зрелости, начиная от недифференцированных элементов, заканчивая зрелыми гранулоцитами и эритроцитами (рис. 2.22). Это свидетельствует о репликации как гемопоэтического, так и стромального компонентов данных образований (Шахов и др., 1999; Shahov et al., 1999). Возможно, что в структуре гемопоэтических островков находится преобразец, общий для гемо-эндокринных и стромальных элементов, например, типа мезенхимальных стволовых клеток (МСК), обеспечивающих образование центральной и кроноидных клеток.

Теоретически МСК могут формировать структурно-функциональные образования в виде островков (Шахов и др., 2004). Следует еще раз учесть тот факт, что природа и свойства стро-
Гипотеза о существовании "ниши" для МСК.

Опыты были проведены на 110 мышах обоего пола линии СВА, C57Bl/6, Balb/c или гибридах F1(CBAхC57Bl/6) массой 18-21 г. Животных забивали методом смещения шейных позвонков. После чего в стерильных условиях извлекали бедренную кость. Костный мозг вымывали с помощью шприца во флаконы. После получения гомогенной массы подсчитывали клеточность и жизнеспособность с помощью трипанового синего. Концентрацию клеток доводили до (3-5)×10^6/мл полной среды и разливали по 20 мл в 50-мл пластиковые флаконы фирмы Falcon. В качестве полной среды использовали: 75% среды ДМEM, 12,5% эмбриональной телячьей сыворотки, 12,5% лошадиевой сыворотки, 1 мкг/мл нисогуна, 5 мкг/мл трансферрина, 5 мкг/мл натрия селенита, 120 мкг пируваната, 10^{-7} М дексаметазона, 250 мкг/дЛ L-глутамина, 100 ЕД/мЛ пенициллина, 40 мкМ хлоргидраты, 100 мкг/мЛ стрептомицина (все реактивы были получены от фирмы "Sigma"). Клетки культивировали при 37 °C. Через 3 суток надосадочную жидкость удаляли и заменяли свежей порцией полной среды. Культивирование продолжали в течение 24 суток с заменной среды через каждые 3-6 суток. Периодически проводили забор материала с проведением фазово-контрастной микроскопии, прижизненной окраской нейтральным красным, окраской фиксированных препаратов по Романовскому-Гимзе или проведением цитохимических реакций на железо и окраска его фосфатгуазу, альфа-нафтлиновой кислоты, или проводили эквивалентную электронную микроскопию.

В процессе культивирования было установлено, что к 6-10-м суткам преобразующим элементом были так называемые "окруженные" клетки, имеющие относительно небольшое ядро и раз-
Глава 2. Мозгомозговка. Система мезэнцефальных стволовых клеток

Рис. 2.21. Гемоэнцефалические структуры (а), нервные волокна (б), нервные волокна (в) и нервные волокна (г) типов. Аур г-эозин, ув. 800х

Рис. 2.22. Мозговой срез пластины, состоящий из мелких колоний клеток и клеток. Аур г-эозин, ув. 800х

2.3. Гипотеза о существовании "микро" для МСК...

Многочисленные микрокружки являются наиболее полно охарактеризованы только для генополетических, нервных и эпителиальных, но не для мезэнцефальных стволовых клеток. Гипотеза предполагает, что они могут существовать в пограничной перистомальной зоне (Чертков, Гуревич, 1984; Landsdorp, 1985; Watt, Hogan, 2000). Однако до настоящего времени данные обнаружены в МСК не были. Кроме того, следует учитывать, что количество таких МСК в костном мозге чрезвычайно мало и, по-видимому, уменьшается в течение жизни (Mackay et al., 1999; Pittenger et al., 1999), что значительно усложняет решение поставленной задачи на уровне целостного организма. На первом этапе, чтобы проверить эту гипотезу, нами была выбрана система in vitro, позволяющая создать высокую концентрацию мезэнцефальных стволовых клеток.

Опыты проведены на 110 мышах обоего пола линии CBA, C57Bl/6, Balb/c или гибридах F1(CBAxC57Bl/6), массой 18-21 г. Животных забивали методом смещения шейных позвонков. После чего в стерильных условиях извлекали бедренную кость. Костный мозг вымывал с помощью шприца во фракции. После получения гомогенной массы подсчитывали клеточность и жизнеспособность с помощью триполового синара. Концентрацию клеток доводили до (3-5)·10^6/мл полной среды и разводили на 20 мл в 50-мл пластиковые флаконы. В качестве полной среды использовали: 75% среды DMEM, 12,5% эмбриональной телячей сыворотки, 12,5% лошадиной сыворотки, 1 мкг/мл нисулина, 5,5 мкг/мл трансферина, 5 мкг/мл натрия ноксилита, 120 мкг пирувата, 10^-7 М дексаметазон, 250 мкг/л L-глутамина, 100 ЕД/мл пенициллина, 40 мМ хлорид буфер, 100 мкг/мл стрептомицина (все реактивы были получены от фирмы "Sigma"). Клетки культивировали при 37 °С. Через 3 суток надосадочная жидкость удаляли и замещала свежей порцией полной среды. Культивирование продолжали в течение 24 суток с заменой среды через каждые 3-6 суток. Периодически проводили забор материала с проведением фазово-конструктивной микроскопии, прижизненной окраской белыми и синим, окраской фиксированных препаратов по Романовскому-Гимзе или проведением цитохимических реакций на желчную фосфатазу, альфа-фазилкатетестеразу. или проводили сканирующую электронную микроскопию.

В процессе культивирования было установлено, что к 6-10-м суткам преобладающими элементами были так называемые "окруженные" клетки, имеющие относительно небольшое ядро и раз-
витую цитоплазму (рис. 2.23), которые к 12–14-му дню трансформировались в различные клеточные линии.

Доминирующей популяцией были фиброblastоподобные элементы (28,3 ± 3,4%), затем идут так называемые "округлые" клетки (21,2 ± 2,2), хондроцитоподобные (18,9 ± 3,7), миоцитоподобные элементы (14,0 ± 2,9), нейральные (9,7 ± 3,1), эпителиоподобные (4,1 ± 1,2) и незифференцированные клетки (2,8 ± 0,4).

Колонии в культуре обнаруживаются, начиная с 6-х суток — (4,3 ± 3,3)x10⁶, достигая максимума к 12–14-му дню — (20,1 ± 7,3)x10⁶, после чего синтезировали и формируют монослой (рис. 3.24). Об этом аналогичные данные получены и другими авторами (Шумаков и др., 2003; Minguell et al., 2001; Dennis et al., 2002).

Начиная с 7–8-х суток, в культуре определяются своеобразные образования, которые состоят из крупной эпителиоподобной центральной клетки, окруженной кореной кругих клеток (рис. 2.25–2.27). Их количество возрастает, достигая максимума к 14-м суткам, после чего наблюдаются изменения формы, по- тери клеток и исчезновение большей, но не всей части МО к 24-му дню (табл. 2.7). Была выявлена дозовая зависимость между количеством пассируемых клеток и количеством данных образований, что свидетельствует об их клоногенной природе (табл. 2.7).

![Рис. 2.23. Скопление "округлых" клеток, выращенных из костного мозга мышей линии СВА in vitro на 7-e (a) и 10-e (b) сутки культивирования. На 10-й день, в отличие от 7-го, клеточные элементы начинают дифференцироваться с образованием цито-

![Рис. 2.24. Монолей клеток, выросших из костного мозга мышей линии СВА на 7-e сутки культивирования. Вид клеток виден зрительной мишенью. Ув. 400x, окраска гематоксилин-эозином]

![Рис. 2.25. Незрелые мезенхимальные остроки 1, 2 и 3-го классов, выросшие из культуры костного мозга мышей линии БА:УС на 10-e сутки. Ув. 200x, окраска гематоксилин-эозином]

Вотучие от эритроцитов и гемопоэтических остроков, центральная клетка не имела макрофагом и имела эпителиоподобную структуру (рис. 2.26).
витую цитоплазму (рис. 2.23), которые к 12−14-му дню трансформировались в различные клеточные линии.

Доминирующей популяцией были фибросетастоподобные элементы (28,3 ± 3,4%), затем шли так называемые "округлые" клетки (21,2 ± 2,2), хондроцитоподобные (18,9 ± 3,7), миоцитоподобные элементы (14,0 ± 2,9), нейральные (9,7 ± 3,1), эпителиоподобные (4,1 ± 1,2) и недифференцированные клетки (2,8 ± 0,4).

Колонии в культиве обнаруживаются, начиная с 6-х суток − (4,3 ± 3,3)х10⁶, достигая максимума к 12−14-му дню − (20,1 ± 7,3) х10⁶, после чего сжимаются и формируют монослои (рис. 3.24). Во многом аналогичные данные получены и другими авторами (Пушаков и др., 2001; Minguell et al., 2001; Dennis et al., 2002).

Начиная с 7−8-х суток, в культиве определяются своеобразные образования, которые состоят из крупной эпителиоподобной центральной клетки, окруженной короткими округлыми клетками (рис. 2.25−2.27). Их количество возрастает, достигая максимума к 14-м суткам, после чего наблюдают изменение формы, потеря клеток в короне и исчезновение большей, но не всей части МО к 24-му дню (табл. 2.7). Была выявлена дозовая зависимость между количеством пассивируемых клеток и количеством данных образований, что свидетельствует об их клоногенной природе (табл. 2.7).

Рис. 2.23. Сглажение "округлых" клеток, выращенных из костного мозга мышей линии CBA in vitro на 7-e (a) и 10-e (b) сутки культивирования. На 10-й день, в отличие от 7-го, клеточные элементы начинают дифференцироваться в сформированных клеточно-гемопоэтических структурах в виде выростов и несколько изменяются по форме. Появляются вытянутые мезенхимальные элементы. Ув. 660x, окраска хроматином.

Рис. 2.24. Мезенхимальные клетки, выросшие из костного мозга мышей линии CBA на 28-e сутки культивирования. В ряде клеток видны прямые микрофаги. Ув. 400x, окраска гематоксилин-эозином.

В отличие от эритроидных и гемопоэтических островков, центральная клетка не делялась макрофагом и имела эпителиоподобную структуру (рис. 2.26).
Глава 2. Мезенхима. Система мезенхимальных стволовых клеток

Таблица 2.7

<table>
<thead>
<tr>
<th>N/N груп</th>
<th>Количество вводимых клеток (10^6/мл)</th>
<th>Время культивирования (сут) и число МО (на 10^3 клеток в культуре)</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2</td>
<td>0,1±0,02, 17,0±6,9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3,1</td>
<td>0,8±0,1, 35,3±2,1*</td>
<td>0,3±0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5,7</td>
<td>1,5±0,9*, 46,0±1,5*</td>
<td>1,4±0,7*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание: * — обеспечены значения Ру <0,05 по отношению к первой группе.

Рис. 2.26. Мезенхимальные островки, выросшие из костного мозга мышей линии CBA (а) и линии C57Bl/6 (б) на 10-е сутки культивирования. Серия аэро II-ацетин, ув. 800х

Рис. 2.27. Наглядный препарат (в темном поле) мезенхимального островка, выросшего из костного мозга мышей линии CBA на 12-е сутки культивирования. Ув. 600х

Рис. 2.28. Скандинский препарат мезенхимальных островков. В центре располагается гигантская клетка-мамба, тесно связанные гистоплазматическими отростками с окружающими её МО. Направленное серебро. Ув. 2500х

Тот факт, что во время прижизненной окраски центральная клетка не фагоцитирует нейтральный красный, а также не дает положительную реакцию на кислу фосфатазу (фиксированные препараты) свидетельствует в пользу того, что она не относится к макрофагальной линии клеток.

По количеству клеток, формирующих корону, МО островки можно разделить на три класса: 1-го — от 3 до 16, 2-го (в среднем 10–25%) от всей популяции МО, исключая колонии — от 17 до 128 (60–80%) и 3-го — свыше 128 карцинозитов (5–15%) (рис. 2.25–2.27). По степени зрелости МО подразделяются на незре-
Глава 2. Мезенхима. Система мезенхимных стволовых клеток

Таблица 2.7

Дозозависимость между количеством вводимых в культуру клеток и числом образовавшихся мезенхимных островков (без учета их числа в колониях) на 10, 12 и 24-е сутки инкубации (X, P0)

<table>
<thead>
<tr>
<th>N/ (\Phi) группы</th>
<th>Количество вводимых клеток ((10^6/мл))</th>
<th>Время культивирования (сут.) и число МО (на (10^3) клеток в культуре)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>1,2</td>
<td>0,1±0,02</td>
</tr>
<tr>
<td>2</td>
<td>3,1</td>
<td>0,8±0,1</td>
</tr>
<tr>
<td>3</td>
<td>5,7</td>
<td>1,5±0,9*</td>
</tr>
</tbody>
</table>

Примечание: * — обнаружены значения \(P0 < 0,05 \) по отношению к первой группе.

Тот факт, что во время прижизненной окраски центральная клетка не фагоцитирует нейтральный красный, а также не дает положительную реакцию на кислую фосфатазу (фиксированные препараты) свидетельствует в пользу того, что она не относится к макрофагальной линии клеток.

Поскольку клеток, формирующих корону, МО островки можно разделить на три класса: 1-го — от 3 до 16; 2-го (в среднем 10—25% от всей популяции МО, исключая колонны) — от 17 до 128 (60—80%) и 3-го — свыше 128 карнозитов (5—15%) (рис. 2.25–2.27). По степени зрелости МО подразделяются на незре-

Рис. 2.26. Мезенхимальные островки, выросшие из костного мозга мышей линии СБА (а) и линии С57Б/6 (б) на 12-е сутки культивирования. Серия азур II-кишном, ув. 800х

Рис. 2.27. Нативный препарат (в темном поле) мезенхимального островка, выросшего из костного мозга мышей линии СБА на 12-е сутки культивирования. Ув. 600х

Рис. 2.28. Свёркающая электронная микроскопия мезенхимальных островков. В центре расположены нейтрофильные клетки-пеницы, тесно связанные цитоплазматическими отростками с окружающими их МО. Направление серебром. Ув. 2500х

Межклеточные связи (содержание из недифференцированных округлых клеток), соединяющие (около 30% клеток короны являются дифференцированными, а 70% — недифференцированными клетками) и зрель (70% и более клеток короны составляют зрелые, а 30% и менее — незрелые клетки). Большинство МО содержит одну
Глава 2. Мезенхимальная система мезенхимальных стволовых клеток

Рис. 2.29. Сканы, показывающие зоны микроскопии мезенхимального острова, центральной клеткой которого является МСК (круглые хроматиды клеток). Ув. 2100х

Рис. 2.30. Культура костного мозга мышей линии BALB/c на 14-е сутки инкубации. Цифры 1 и 2 обозначены острова с двумя центральными клетками. Окраска по Гентш.-Ротт. Ув. 200х

2.9. Феномен слияния (полиплоидии) мезенхимальных стволовых клеток в MO

В 2003 г. в опытах на животных был установлен факт того, что при введении гемопоэтических СК в сердечную, нервную или ненецкую ткани происходит не прямая их дифференцировка в соответствующий тип клеток, а их слияние с окружающими карциномами. Образующихся гибридов несут в себе характерные свойства обеих клеток. Этот феномен был обнаружен как для системы in vitro, так и in vivo, и касается преимущественно кроветворных прегенераторных клеток (Alvarez-Dolado et al., 2003; Wang et al., 2003). Вопрос о том, работает ли подобный механизм в отношении мезенхимальных СК, остается открытым.

Этот исследования еще раз подтверждают, что гемопоэтические СК костного мозга не способны дифференцироваться в КМЦ, клетки печени, нервной ткани, а образуются гибриды с соответствующими фенотипическими маркерами сердечной или иной ткани. Тем не менее, в эксперименте и практике при введении мононуклеаров костного мозга, содержащих ГСК, часто наблюдается очевидный клинический эффект. Так что вопрос о том, хорошо ли слияние клеток для организма или плохо, пока не имеет ответа.

Очевидно, гигантские клетки формируются в результате полиплоидии МСК, т.к. количество хромосом в ядре было гаплоидным ~ 2n (рис. 2.31). Ряд авторов считает, что полиплоидия является важным приспособительным звеном в адаптации клеток к изменяющимся условиям (Рэнкс, 1966). Явление полиплоидии в настоящее время достаточно хорошо описано на уровне ЭСК (Terada et al., 2002; Ying et al., 2002).

Способность СК взрослого организма продуцировать гигантское количество прегенераторных клеток вызывает много вопросов с позиции биологической целесообразности, т.к. возрастает риск их трансформации в опухолевые элементы.

Одним из механизмов ограничения пролиферации избыточного количества СК может быть формирование гибридов путем их слияния с окружающими клеточными формами. Образовавшийся гибрид, по-видимому, имеет ограниченный пролиферативный потенциал, и может проявлять повышенную функционально
Глава 2. Мезенхимальная система мезенхимальных стволовых клеток

2.9. Феномен слияния (полиплоидии) мезенхимальных стволовых клеток в МО

В 2003 г. в опытах на животных был установлен факт того, что при введении гемопоэтических СК в сердечную, нервную или печень, происходят не прямая, а дифференцировка в соответствующий тип клеток, а их слияние с окружающими клетками. Образующиеся гибридные клетки в себе характеризуются слияния клеток. Этот феномен был обнаружен как для систем in vitro, так и in vivo, и происходит преимущественно в кроветворных гибридных клеток (Alvarez-Dolado et al., 2003; Wang et al., 2003). Вопрос о том, работает ли подобный механизм в отношении мезенхимальных клеток, остается открытым.

Это исследование еще раз подтверждает, что гемопоэтическое стволовое число СК не способно дифференцироваться в КМЦ, ключевое клеточное вещество, а образуются гибридные клетки с соответствующими фенотипическими маркерами сердечной или иной ткани. Тем не менее, в эксперименте при введении гибридных в костный мозг содержащих ГСК, часто наблюдается отдельный клинический эффект. Так что вопрос о том, хорошо ли слияние клеток для организма или плохо, пока еще не имеет ответа.

Очевидно, гигантские клетки формируются в результате полиплоидии МСК, т.к. количество хромосом в ядре было гаплоидным (рис. 2.31). Ряд авторов считает, что полиплоидия является важным признаком гигантских клеток, адаптированных к изменяющимся условиям (Рэфф, Кофмен, 1986). Явление полиплоидии в настоящее время достаточно хорошо описано на уровне ЭСК (Terada et al., 2002; Ying, et al., 2002).

Способность СК взрослого организма продуцировать гигантские клетки в гипертрофированных клетках вызывает много вопросов. С одной стороны, взрослый организм способен к трансформации в опухолевые элементы.

Одним из механизмов ограничения пролиферации избыточного количества клеток волочиться не только через гибридные пути, но и через эффекты с окружающими клеточными формами. Образовавшиеся гибридные клетки, по-видимому, имеют ограниченный пролиферативный потенциал, и могут проявлять повышенную функциональность.
ну активность. Отдельные этапы слияния МСК в культуре представлены на рис. 2.32.

Следует отметить, что в обычных условиях слияние клеток встречается чрезвычайно редко, не более одного на (1-10)×10^4 карипоцитов. При этом гибридные карипоциты напоминали по морфологии эритроплоэозные элементы, имели крупное ядро с многочисленными ядрышками и тетраплоидное количество хромосом.

В наших опытах частота слияния составляет около 1×10^3, что почти на порядок превышает таковые величины, наблюдавшие у ЭСК. Впервые единичные полиплоидные клетки появляются на 5-7-e сутки культивирования в результате тесного контакта округлых клеток. Затем появились тетраплоидные клетки увеличивают свое количество за счет деления (рис. 2.32), образуя скопление крупных клеток. Именно они, по-видимому, колонизируются незрельми МСК, образуя сложные клеточные ассоциации в виде островков или колоний. Однако мы не имели возможности проведения кинетических исследований с постоянным мониторингом роста клеток в культуре ткани. Вследствие этого нельзя исключить и того, что островки образуются одновременно с процессом слияния клеток, а колонии являются результатом последовательной репликации МО. Являются ли эти полиплоидные клетки полноценными элементами? Сохраняют ли они свойства исходных МСК? Происходит ли аналогичный процесс in vivo? Несут ли в себе потенциальную угрозу для организма в виде опухолевой или иной трансформации? Можно ли их использовать при проведении клеточной и регенераторной терапии?

Все это пока остается непонятным и требует всестороннего изучения. Ряд авторов считает, что пластичность СК может быть обусловлена формированием полиплоидных клеток, которые, как известно, обладают более высокой функциональной активностью.

Феномен слияния ЭСК с нервными, кроветворными, мышечными клетками чрезвычайно редок даже в системе in vitro. Имеет ли место данное явление в живом организме, остается неясным. Возможно, именно таким путем образуются полиплоидные клетки в печени или сердечной ткани. Все эти моменты требуют проведения более углубленного исследования при разработке
Глава 2. Мезенхимология. Система мезенхимальных стволовых клеток

2.9. Феномен слияния (полиплоидизации) мезенхимальных стволовых клеток в МО

Впервые единичные полиплоидные клетки появляются на 5-7-е сутки культивирования в результате тесного контакта вокруг клеток. Затем появляющиеся тетраплоидные клетки увеличивают свое количество за счет деления (рис. 2.32), образуя скопления крупных клеток. Именно они, по-видимому, колонизируются незрелыми МСК, образуя сложные клеточные ассоциации в виде островков или колоний. Однако мы не имели возможности проведения кинетических исследований с постоянным мониторингом роста клеток в культуре ткани. Вследствие этого нельзя исключать того, что островки образуются одновременно с процессом слияния клеток, а колонии являются результатом последовательной репликации МО. Являются ли эти полиплоидные клетки полноценными элементами? Сохраняют ли они свойства исходных МСК? Происходит ли аналогичный процесс in vivo? Несут ли в себе потенциальную угрозу для организма в виде опухолевой или интракдукционной трансформации? Можно ли их использовать при проведении клеточной и регенераторной терапии?

Все это пока остается непонятным и требует всестороннего изучения. Ряд авторов считает, что пластичность СК может быть обусловлена формированием полиплоидных клеток, которые, как известно, обладают более высокой функциональной активностью.

Феномен слияния ЭСК с нервными, кроветворными, мышечными клетками чрезвычайно редок даже в системе in vitro. Имеет ли место данное явление в живом организме, остается неясным. Возможно, именно таким путем образуются полиплоидные клетки в течении или сердечной ткани. Все эти моменты требуют проведения более углубленного исследования при разработке дальнейших направлений исследования.
стратегии и тактики проведения клеточной терапии (Рэф, Коро-чен, 1986; Terada et al., 2002; Ying et al., 2002).

Мы не исключаем того, что полиплоидные МСК приобретают новые качества, обеспечивающие их высокую пластичность. Однако, с нашей точки зрения, эти клетки выполняют роль "регуляторов", клетки-"наны" для окружающих их МСК. Подтверждением тому, что в состав мезенхимальных клеток входят стволовые клетки, послужили опыты, в которых МО, полученные на 8–10-е суточ культивирования, извлекали с помощью раствора трипсина и ЭДТА и переносили в чашки Петри. После чего с помощью микроманипулятора выделяли отдельные островки, содержащие не менее 16 кардиомиоцитов, т.е. проникшие не менее 4 генераций, и механизически диссоциировали на отдельные клетки. Клетки культивировали еще 10–14 суток в среде D-MEM с низким содержанием глюкозы, 10% ЭТС, гентамицином, L-глютамином, 10^{-6} M лекарственном при 37 °С, 100% влажности и 5% CO_2. Замену среды проводили каждые 4–5 суток.

В результате было установлено, что в составе МО есть прогениторные стволовые клетки, способные формировать колонии, состоящие из фибробластоподобных клеток (рис. 2.33). При этом наблюдалась дозависимая зависимость между количеством входящих в культуру клеток, выделенных из мезенхимальных островков, и количеством образовавшихся из них КСФ (табл. 2.8). Мы ожидали более высокий выход КСФ, однако число МСК в островках, способных к формированию колоний, варьировало в пределах 4–12%. Очевидно, часты МСК относятся к некомплексированному пути или встали на путь глобальной дифференцировки.

Между центральной клеткой и окружающими ее мезенхимальными элементами существуют генетические межклеточные контакты (рис. 2.26–2.29), что, очевидно, указывает на их структуровязь. Еще одним доказательством функционального взаимодействия ЦК с окружающими клетками является подтверждение данных образований и колоний. Оказалось, что часть колоний состоит из многочисленных МО (рис. 2.34).

<table>
<thead>
<tr>
<th>N, группы</th>
<th>Количество входящих клеток</th>
<th>Количество КСФ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>8,1±0,3</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>12,8±1,9</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>20,6±2,9*</td>
</tr>
<tr>
<td>4</td>
<td>145</td>
<td>33,7±3,7*</td>
</tr>
</tbody>
</table>

Примечание: * – значения P<0,05 по сравнению с первой группой.

Рис. 2.33. Два колонии фибробластоподобных клеток, выросших из МО костного мозга мыши пяты C57Bl/6 на 14-е сутки культивирования после репопулации. Окраска гематоксилином. Ув. 100x

Рис. 2.34. Фрагмент колоний, выросших на 7-е (a) и 10-е (b) сутки культивирования клеток костного мозга мышей линии CBA, состоящих из многочисленных мезенхимальных островков. Ув. 200x (a), 400x (b), окраска гематоксилин–эозином.
стратегии и тактики проведения клеточной терапии (Рафф, Коген, 1986; Terada et al., 2002; Ying et al., 2002).

Мы не исключаем того, что полициклонные МСК приобретают новые качества, обесценивающие их высокую пластичность. Однако, с нашей точки зрения, эти клетки выполняют роль "регулятора", клетки-"пациенты" для окружающих их МСК. Подтверждением тому, что в состав мезенхимальных клеток входят стволовые клетки, послужили опыты, в которых MO, полученные на 8–10 сутки культивирования, извлекали с помощью раствора трипсина и ЭДТА и переносили в чашки Петри. После чего с помощью микроманипулятора выделяли отдельные островки, содержащие не менее 16 кардиоцитов, т.е. пролежавшие не менее 4 генераций, и механически диссоциировали на отдельные клетки. Клетки культивировали еще 10–14 суток в среде D-MEM с низким содержанием глюкозы, 10% ЭСС, гентамицином, L-глютамином, 10^(-6) M декаметазоном при 37 °C, 100% влажности и 5% CO_2. Замену среды проводили каждые 4–5 суток. В результате было установлено, что в составе MO есть прогениторные стволовые клетки, способные формировать колонии, состоящие из фибробластоподобных клеток (рис. 2.33). При этом наблюдалась дозовая зависимость между количеством вводимых в культуру клеток, выделенных из мезенхимальных островков, и количеством образовавшихся из них КОЭф (табл. 2.8). Мы ожидали более высокий выход КОЭф, однако число МСК в островках, спо собных к формированию колоний, варьировало в пределах 4–12%. Очевидно, часть МСК относится к некомпетентному пулу или встали на путь глубокой дифференцировки.

Между центральной клеткой и окружающими ее мезенхимальными элементами существуют тесные межклеточные контакты (рис. 2.26–2.29), что, очевидно, указывает на их структурное взаимодействие. Еще одним доказательством функционального взаимодействия ЦК с окружающими ее клетками является поведение данных образований в колониях. Оказалось, что часть колоний состоит из многочисленных МО (рис. 2.34).

Количественно образовавшихся из них КОЭф (табл. 2.8). Мы ожидали более высокий выход КОЭф, однако число МСК в островках, способных к формированию колоний, варьировало в пределах 4–12%. Очевидно, часть МСК относится к некомпетентному пулу или встали на путь глубокой дифференцировки.

Между центральной клеткой и окружающими ее мезенхимальными элементами существуют тесные межклеточные контакты (рис. 2.26–2.29), что, очевидно, указывает на их структурное взаимодействие. Еще одним доказательством функционального взаимодействия ЦК с окружающими ее клетками является поведение данных образований в колониях. Оказалось, что часть колоний состоит из многочисленных МО (рис. 2.34).

Таблица 2.8

<table>
<thead>
<tr>
<th>N N, группы</th>
<th>Количество вводимых клеток</th>
<th>Количество КОЭф</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>8,1±0,3</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>12,3±1,9</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>20,0±4,5</td>
</tr>
<tr>
<td>4</td>
<td>145</td>
<td>33,7±3,7</td>
</tr>
</tbody>
</table>

Примечание: * – значения P<0,05 по сравнению с первой группой.

Рис. 2.33. Две колонии фибробластоподобных клеток, выросших из MO костного мозга мыши линии C57Bl/6 на 14-е сутки культивирования после репопулаций. Окраска гематоксилином. Ув. 100х.

Рис. 2.34. Фрагменты колоний, выросших на 7-е (а) и 10-е (б) сутки культивирования клеток костного мозга мышей линии CBA, состоящих из многочисленных мезенхимальных островков. Ув. 200х (а), 400х (б). Окраска гематоксилином-эозином.
Глава 2. Мезенхимные клетки

На ранних стадиях (7-10-е сутки) своего развития центральные клетки окружены многочисленными незрелыми МСК, которые со временем начинают дифференцироваться и превращаться в зрелые элементы, морфологически соответствующие всем вышеКазанным линиям, включая миоциты (рис. 2.35). Постепенно дифференцированные клетки покидают колонии (14-24-е сутки) (рис. 2.36). Интересно, что внутри колонии между центральными клетками обнаруживаются скопления незрелых мезенхимных элементов, напоминающих кластеры (рис. 2.34). Возможно, именно такое строение имеет ниша в костном мозге микробиологической. Следует отметить, что в колониях количество ЦК составляет около 12-18% от всей клеточной популяции (Шахов и др., 2003, 2004).

Начиная с 14-х суток, часть ЦК утрачивает свою округлую форму и образуют многочисленные цитоплазматические отростки, которые контактируют с аналогичными клеточными формами, расположенными рядом. Образуется сложная многомерная структура, напоминающая эмбриональную мезенхиму (рис. 2.37).

Следует отметить, что около 1-5% MO сохраняют свою изначальную форму и содержат в своем составе округлые недифференцированные клетки. Возможно, что они таким образом "консервируют" МСК, оставляя их в G₀-фазе клеточного цикла.

Рис. 2.35. Колония, выросшая на 7-е сутки после 7-го и 10-й суток (слева) и на 10-е сутки (справа) культивирования клеток костного мозга мышей линии СВА, состоящих из многочисленных мезенхимных острожков. Ув. 400х, окраска гематоксилин-эозином

Рис. 2.36. Колония, выросшая на 24-е сутки культивирования клеток костного мозга мышей линии СВА, состоящих из многочисленных мезенхимных острожков. Ув. 400х, окраска гематоксилин-эозином

Рис. 2.37. Мезенхимные острожки, выросшие из клеток костного мозга больного К. на 14-е сутки культивирования. Окраска гематоксилин-эозином. Ув. 200х

Мезенхимные острожки обнаруживаются не только у мышей различных линий или их гибридов, но и при культивировании костномозговых клеток крыс и человека (рис. 3.37). В пос-
Глава 2. Мезенхимные клетки. Система мезенхимных стволовых клеток

На ранних стадиях (7–10-е сутки) своего развития центральные клетки окружены многочисленными незрелыми МСК, которые со временем начинают дифференцироваться и превращаться в зрелые элементы, морфологически соответствующие всем вышеуказанным линиям, включая миозиты (рис. 2.35). Постепенно дифференцированные клетки покидают колонии (14–24-е сутки) (рис. 2.36). Интересно, что внутри колоний между центральными клетками обнаруживаются скопления незрелых мезенхимных элементов, напоминающих кластеры (рис. 2.34). Возможно, именно такое строение имеет ниша в костном мозге мелкопитающих. Следует отметить, что в колониях количество ЦК составляет около 12–18% от всей клеточной популяции (Шахов и др., 2003, 2004).

Начиная с 14-х суток, часть ЦК утрачивает свою округложенную форму и образуют многочисленные цитоплазматические отростки, которые контактируют с аналогичными клеточными формами, расположенными рядом. Образуется сложная многомерная структура, напоминающая эмбриональную мезенхиму (рис. 2.37).

Следует отметить, что около 1–5% МО сохраняют свою изначальную форму и содержат в своем составе округлые недифференцированные клетки. Возможно, что они таким образом "консервируют" МСК, оставляя их в G₀-фазе клеточного цикла.

Рис. 2.36. Колонии, выросшие на 24-е сутки культивирования клеток костного мозга мышей линии СВА, состоящей из многочисленных мезенхимных островков. Ув. 400x, окраска гематоксилин-эозином

Рис. 2.37. Мезенхимные островки, выросшие из клеток костного мозга больного К. на 14-е сутки культивирования. Окраска гематоксилин-эозином. Ув. 200x

Мезенхимные островки обнаруживаются не только у мышей различных линий или их гибридов, но и при культивировании костномозговых клеток крыс и человека (рис. 3.37). В пос-
Глава 2. Мезенхимолог. Система мезенхимальных стволовых клеток.

Во избежании ненужных повторений приведем только некоторые из них, т.к. при выделении клеток костного мозга, мышечных и некоторых других типов, число МСК теряется. При этом, если количество остротовок у мышей и крыс составляет около (50–60)×10^6 адгезирующих клеток в культуре ткани, то у людей эта величина равна (1–3)×10^9.

Таким образом, представленные данные свидетельствуют о том, что в системе in vitro мелкоочищенных обнаруживаются специфические образования — мезенхимальные островки. Они состоят из центральной полиплоидной клетки, окруженной округлыми мезенхимальными карниоцитами разной степени зрелости. Период развития островков в данной системе достаточно короток и обычно не превышает 24 суток, при крайней мере, в нашей системе культивирования. Однако этого времени достаточно для образования более зрелых элементов. Вопрос о том, существуют ли подобные структуры в живом организме, как в эмбриогенезе, т.е. и постнатальном периоде в норме и патологии, остается открытым и требует более углубленного изучения.

Исходя из полученных данных, теоретически можно предположить, какое количество МО может находиться в костном мозге человека и животных в обычных условиях. Если учесть тот факт, что большая часть МО содержится от 16 до 50 карниоцитов, которые можно отнести к категории МСК, то число мезенхимальных островков должно быть не менее чем в 10 раз ниже количества выделяемых мультифункциональных клеток. В среднем число МСК в костном мозге составляет (1–15)×10^6 клеток, в зависимости от возраста. Следовательно, содержание МО должно быть значительно выше в пределах (1–5)×10^7 карниоцитов. При этом следует помнить, что центральная клетка может быть в непосредственном контакте с окружающими клетками, а также с соседними мезенхимальными стволовыми клетками. Тогда число данных образований можно значительно увеличить в 10 раз, т.е. количество МО значительно меньше, чем в нормальных условиях костного мозга можно было выявить данные образования. Для того, чтобы найти мезенхимальные островки в кроветворной ткани, следует вызвать ее опухолевое состояние, например, с помощью облучения или химиотерапии. Данный подход, с одной стороны, снижает клеточность костного мозга в десятки и даже сотни раз, с другой — позволяет стимулировать механизмы регенерации и роста. Можно полагать, что в этом процессе вовлекается и МСК, который может быть, например, с помощью облучения или химиотерапии. Данный подход, с одной стороны, снижает клеточность костного мозга в десятки и даже сотни раз, с другой — позволяет стимулировать механизм регенеративного роста. Можно полагать, что в этом процессе вовлекается и МСК, который может быть, например, с помощью облучения или химиотерапии.

<table>
<thead>
<tr>
<th>Время культивирования</th>
<th>МСК</th>
<th>Гигантские клетки</th>
<th>Острогонок, 10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>без внутр. 5-ФУ</td>
<td>19,1±1,7</td>
<td>0</td>
<td>55,1±1,7</td>
</tr>
<tr>
<td>1-е сут</td>
<td>4,5±0,3</td>
<td>7,±2,1</td>
<td>4,1±0,3</td>
</tr>
<tr>
<td>2-е сут</td>
<td>6,1±0,5</td>
<td>9,±2,1</td>
<td>6,3±0,5</td>
</tr>
<tr>
<td>3-е сут</td>
<td>11,5±1,1</td>
<td>11,5±2,3</td>
<td>15,1±1,9</td>
</tr>
<tr>
<td>4-е сут</td>
<td>10,1±2,5</td>
<td>5,5±1,8</td>
<td>26,7±2,9</td>
</tr>
<tr>
<td>5-е сут</td>
<td>12,9±3,7</td>
<td>2,9±0,5</td>
<td>33,3±4,5</td>
</tr>
<tr>
<td>7-е сут</td>
<td>14,3±2,3</td>
<td>0</td>
<td>35,3±3,9</td>
</tr>
</tbody>
</table>

Примечание: * — P<0,05.

Динамика общей клеточности костного (ОКК) и числа остротовок в костном мозге мышей линии Balb/c с после-введения 5-фторурацила (X=m, PI)

Шахов и др., 2004; Berardi et al., 1995; Juan, Darzynkiewicz, 1998; lwata et al., 1999.

Для проверки этого положения опыты были проведены на 35 мышах-самцах линии Balb/c с массой 18–21 г. Живыми внутрь животным вносили 5-фторурацил (Дарница, Украина) в дозе 300 мг/кг. Через 1, 2, 3, 4, 6 и 7 суток из бедра извлекали костный мозг, определяли клеточность, делали микрограммы. Часты ткани костного мозга инкубировали 30–40 мин при 37 °C в среде ИФР-240 с 1% коллагеназы, 0,5% ДНКазы для выделения остротовок. Динамика общей клеточности костного (ОКК) и числа остротовок представлена в табл. 2.9.

Оказалось, что при введении цитостатика у животных наблюдаются глубокая депрессия кроветворения с уменьшением количества миелобластов в костном мозге с пиком на 1–2 сутки опыта (табл. 2.9). При этом, уже начиная с первых суток, в гемопоэтической ткани наблюдалась гигантские клетки, не являющиеся макрофагами, ретикулярными элементами, емкими, но слизистыми, макрофагами, ретикулярными элементами, емкими, но слизистыми, имеющими, по-видимому, также двойной набор хромосом (рис. 2.38). Максимального числа они достигают к 3-м суткам, после чего постепенно исчезают (к 7-му дню наблюдения). Интересно, что, наряду с обычными кроветворными остротовками, число которых падает примерно в 10 раз
в ряду случаев получить данные об образовании труднее, т.к. при выделении клеток костного мозга, по-видимому, часть МСК теряется. При этом, если количество остротов у мышей в ткани составляет около (50−60)×10^4 адгезирующих клеток в культуре ткани, то у людей эта величина равна (1−3)×10^5.

Таким образом, представленные данные свидетельствуют о том, что в системе in vitro клеток, обнаруживаются специфические образования — мезенхимальные остротовки. Они состоят из центральной полянарной клетки, окруженной круглыми мезенхимальными карниозами разной степени зрелости. Период развития остротов в данной системе достаточно короток и обычно не превышает 24 суток, по крайней мере, в нашей системе культивирования. Однако это не преграда для образования более зрелых элементов. Относительно их структуры в живом организме (как в эмбриогенезе, так и в постнатальном периоде в норме и патологии), остаётся открытым и требует более углубленного изучения.

Исходя из полученных данных, теоретически можно определить, какое количество МО может находиться в костном мозге человека и животных в обычных условиях. Если учесть, что большая часть МО содержится у взрослого человека, то число мезенхимальных остротов может быть не менее чем в 10 раз ниже количества выделенных гематопоэтических клеток. В среднем число МСК в костном мозге составляет (1−5)×10^5 клеток, в зависимости от возраста. Следовательно, содержание МО должно быть в пределах (1−5)×10^5 МСК. При этом следует помнить, что центральная клетка может быть в неактивном состоянии или взамодействовать с более 10 мезенхимальными стволовыми клетками. Тогда число данных образований может быть увеличено на порядок. В любом случае, количество МО с лихом мало, чтобы в нормальном костном мозге можно было выявить данные образование. Для того, чтобы найти мезенхимальные остротовки в кроветворной ткани, следует вызвать ее опустошение, например, с помощью облучения или цитостатиков. Данное воздействие, с одной стороны, снижает клеточность костного мозга в десятки или даже сотни раз, с другой — вызывает стимуляцию механизмов регенераторной регенерации. Можно полагать, что в этом процесс включается и МСК, по крайней мере, их компонентированный пул, с переходом их из состояния покоя в активный митотический цикл и увеличением числа "ниги", в которых они будут проходить процесс пролиферации и дифференцировки (Шахов и др., 2004; Berardi et al., 1995; Juan, Darzynkiewicz, 1998; lwata et al., 1999).

Для проверки этого положения опыты были проведены на 35 мышах-самцах линии Balb/c с массой 18−21 г. Животным внутривенно вводили 5-фторурацил (Дарница, Украина) в дозе 300 мг/кг. Через 1, 2, 3, 4, 6 и 7 суток из бедра извлекали костный мозг, определяли клеточность, делали микролергаму. Часть ткани костного мозга культивировали 30−40 мин при 37 °C в среде 10%F2M1640 с 1% коллагеназы, 0,5% ДНКазы для выделения остротов. Динамика общей клеточности костного (ОКК) и числа остротов представлена в табл. 2.9.

Оказалось, что при введении цитостатика у животных наблюдалась глубокая депрессия кроветворения с уменьшением количества миелокариозитов в костном мозге и пиком на 1−2-е сутки опыта (табл. 2.9). При этом, уже начиная с первых суток, в гемопоэтической ткани наблюдался гигантский клетки, не являющиеся микрофагами, ретикулярными элементами, мегакариоцитами, остеобластами или остеокластами, имеющими, по-видимому, также двойной набор хромосом (рис. 2.38). Максимального числа остротов достигают в 3-4 суток, после чего постепенно исчезают (к 7-му дню наблюдения). Интересно, что, наряду с обычными кроветворными остротовками, числа которых падает примерно в 2.9. Феномен сглаживания (гипертропии) мезенхимальных стволовых клеток в МО

<table>
<thead>
<tr>
<th>Время</th>
<th>Общее число</th>
<th>Гигантские клетки</th>
<th>Остротовки, х10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 сут</td>
<td>19±1,7</td>
<td>0</td>
<td>51±1,7</td>
</tr>
<tr>
<td>2 сут</td>
<td>4,5±0,3*</td>
<td>7±2,1*</td>
<td>4,1±0,3*</td>
</tr>
<tr>
<td>3 сут</td>
<td>6,1±0,5*</td>
<td>9±3,1*</td>
<td>6,3±0,9*</td>
</tr>
<tr>
<td>4 сут</td>
<td>5,7±0,4*</td>
<td>11,5±2,3*</td>
<td>5,6±0,3*</td>
</tr>
<tr>
<td>5 сут</td>
<td>10±1,2*</td>
<td>15±1,9*</td>
<td>7,5±1,3*</td>
</tr>
<tr>
<td>6 сут</td>
<td>10±1,2*</td>
<td>15±1,9*</td>
<td>7,5±1,3*</td>
</tr>
<tr>
<td>7 сут</td>
<td>10±1,2*</td>
<td>15±1,9*</td>
<td>7,5±1,3*</td>
</tr>
</tbody>
</table>

Примечание: * — P<0,05.
но в 10 раз, появляются ассоциации, состоящие из гигантских карноцитов, окруженных коровым клеток. Однако, в отличие от системы in vitro, в живом организме данный тип островков сохранял не только гемопоэтические, но и единичные окуляры клетки и фибробластонные элементы (рис. 2.38, 2.39).
Так как не было проведено специфических маркерных реакций, определяющих фенотип и функциональную активность, например, с помощью CD 34, 44 монооклональных антител или соотвтствующего ПЦР-анализа, мы не можем однозначно утверждать, что данные структурно-анатомические единицы идентичны МО, выявляемым в системе in vitro. Кроме того, ферментная обработка костного мозга в том режиме, который был нами использован, не сохраняет точные межклеточные взаимодействия между МСК и окружающих их стромой. В дальнейшем мы планируем усовершенствовать данную технологию и провести более углубленное изучение гигантских клеток и их роли в мезенхимопозе in vivo. Тем не менее, эти данные подтверждают предположение, что при опустошении костного мозга в нем в фазе регенерации появляются структурные клеточные ассоциации, отвечающие по своей структуре и организации от костных эритроидных и гемопоэтических островков (Шахов и др., 2001; Shakhov et al., 2004).

КРАТКОЕ ЗАКЛЮЧЕНИЕ

Обобщая представленный в данной главе материал, можно сделать вывод, что мезенхимопоз представляет собой сложный многоступенчатый процесс компонирования и постоянного ограничения способности пролиферации и дифференцировки мезенхимальных стволовых клеток с образованием специализированных форм — кардиомиоцитов, миоцитов, гладкомышечных клеток, хондроцитов и др. При этом благодаря пластичности МСК их можно использовать для регенерации и/или дифференцировки в кардиомиоциты с помощью стандартных трансдукционных систем. Таким образом, они могут быть использованы для регенерации и/или дифференцировки в кардиомиоциты с помощью стандартных трансдукционных систем.
Глава 2. Мезенхимосца. Система мезенхимальных стволовых клеток

но в 10 раз, появляются ассоциации, состоящие из гигантских кардиомиоцитов, окруженных корой клеток. Однако, в отличие от системы in vitro, в живом организме данный тип островков содержит не только гемопоэтические, но и единичные округлые клетки и фибробластондные элементы (рис. 2.38, 2.39).

Так как не было проведено специфических маркерных реакции, определяющих фенотип и функциональную активность, например, с помощью CD 34, 44 миокардиальных антител или соотвествующего ПЦР-анализа, мы не можем однозначно утверждать, что данные структурно-анатомические единицы идентичны MO, вырабатываемым в системе in vitro. Кроме того, ферментная обработка костного мозга в том режиме, который был нам использован, не сохраняет тонкие межклеточные взаимодействия между МСК и окружающих их стroma. В дальнейшем мы планируем усовершенствовать данную технологию и провести более углубленное изучение гигантских клеток и их роли в мезенхимопозе in vivo. Тем не менее, эти данные подтверждают предположение, что при опостроении костного мозга в нем в фазе регенерации появляются структурные клеточные ассоциации, отвечающиеся за своенную структуру и организацию клеток которых от классических эритроидной и гемопоэтических островков (Шахов и др., 2001; Shakhov et al., 2004).

Рис. 2.38. Гигантские клетки, выявленные в костном мозге мышей линии BALB/c на 2-е сутки после введения 5-фторурацила. Окраска азур II-зозионом. Ув. 100х

Рис. 2.39. Островок, выделенный из костного мозга мышей линии BALB/c на 3-е сутки после введения 5-фторурацила. Окраска азур II-зозионом. Ув. 200х

КРАТКОЕ ЗАКЛЮЧЕНИЕ

Обобщая представленный в данной главе материал, можно сделать вывод, что мезенхимопоз представляет собой сложный многоступенчатый процесс коммитированы и постоянного ограничения способности профилактики и дифференцировки мезенхимальных стволовых клеток с образованием специализированных форм — кардиомиоцитов, моноцитов, гладкомышечных клеток, остеоидов и др. При этом благодаря пластичности МСК их цитохимию трудно рекрутировать в кардиомиоциты с помощью стандартных химических агентов для клеточной терапии. Именно пластичность и отсутствие четких границ экспрессии генов, ответственных за проявление мышечного фенотипа, приводит к тому, что МСК вместо КМЦ способны образовывать адипоциты, скелетные и гладкомышечные волокна или грубую рубцовую и даже костную ткань. Возможно, что именно этот феномен объясняет тот факт, что предсердные, а также циркулирующие МСК не способны включить адекватный механизм регенерации и регенерации тканей, например, после остого инфаркта миокарда. Необходимо более детально разработать технологию получения и подготовки МСК к клеточной терапии больных с недостаточностью сердца, ограничивающих в их вероятность спонтанной передифференцировки в нежелательном направлении, чтобы исключить возможность получения вместо стимуляции кардиогенеза и ангиогенеза усиления роста рубца или жировой ткани. Более детально эти вопросы будут рассматриваться в 3-й главе данной монографии.
Глава 3

ИНФАРКТ МИОКАРДА.
КАРДИОМИОПЛАСТИКА ИНФАРКТА МИОКАРДА МУЛЬТИПОТЕНТНЫМИ СТВОЛОВЫМИ КЛЕТКАМИ

Направление использования стволовых клеток в кардиологии интенсивно разрабатывается в последние 5–7 лет благодаря тому, что в 1999 г. появились работы, в которых удалось получить КМЦ из мезенхимальных стволовых клеток костного мозга (Makino et al., 1999). Были получены настолько удачные экспериментальные данные, что уже через 2–3 года данную клеточную технологию начали использовать в клинике. Было доказано, что МСК костного мозга человека обладают способностью стимулировать рост новых сосудов (ангиогенез) и улучшать питание кровью исхимизированных участков миокарда. Однако является ли этот эффект прямым действием МСК или опосредованным, через продукцию цитокинов и ростовых факторов — остается неясным. Продолжаются исследования по совершенствованию методов выделения и очистки МСК, получения из них регенераторных клеток для кардиогенеза и ангиогенеза. Так как манипуляции на уровне ДНК стволовых клеток с целью встраивания генов, отвечающих за формирование КМЦ, запрещены ВОЗ для клинического применения, то в настоящее время акценты делаются на поиске чётких химических индукторов дифференцировки и получении "чистой" функционирующей ткани сердечной мышцы. Следует отметить, что фундаментальные работы в данной области медицины отстают от попыток использования клеточных технологий в практической кардиологии. Отсутствие четких патогенетических представлений о механизме действия стволовых и вспомогательных клеток на миокард при его повреждении может привести не только к дискредитации самого метода, но и к возникновению серьезных осложнений вплоть до летального исхода. Мы считаем, что для того, чтобы лучше понять эту тему, надо рассмотреть общие вопросы, связанные с патогенезом острого инфаркта миокарда и возможными механизмами его регенерации.

3.1. ИНФАРКТ МИОКАРДА

Как уже отмечалось ранее, распространенность ишемической болезни сердца (ИБС) в последнее время приобрела характер эпидемии, что сделало ее основной проблемой здравоохранения многих экономически развитых стран мира, включая Россию (Бекерин, Гуляев, 2001).

Инфаркт миокарда (ИМ) — это ограниченный некроз сердечной мышцы. Некроз в большинстве случаев бывает коронарогенным и ишемическим. Реже встречаются некрозы без коронарного поражения: при стрессе, дисбалансе в эндоцирриной системе, действии цитостатиков, нарушениях электролитного баланса. В большинстве случаев ИМ рассматриваются как результат ишемического некроза сердечной ткани из-за полной или частичной обтурации венечных артерий (Новиков, 2000). Наиболее частой причиной ИМ является гипертоническая болезнь, сочетающаяся с атеросклерозом коронарных сосудов и образованием тромба, реже — эмболия (Горб, 1997; Жданов и др., 2002).

При наличии атеросклеротических бляшек изменяются гемодинамика. Возникающие при этом гидродинамические нагрузки могут провоцировать активацию свертывающей системы и локальную коагуляцию крови с образованием тромба. Разрыв или изъятие атеросклеротической бляшки является достаточным стимулом при прогрессировании атеросклеротического процесса в сосудах. Дестабилизация бляшки иногда может привести без выраженных симптомов, либо, напротив, вызывать бурную клиническую картину с развитием острого коронарного спазма и даже смерти больного (Мазур, 1985; Зайчик, 2000). Поэтому так происходит, до конца остается неясным. Часто отмечаются несоответствия между патологоанатомическими данными и клиническими проявлениями заболевания, что затрудняет использование структурных изменений сосудов в качестве критерия оценки тяжести и прогноза у этой категории больных. Тем не менее, данная патология часто зависит не только от морфоло-
Глава 3

ИФАРКТ МИОКАРДА.
КАРДИОМИОПЛАСТИКА ИФАРКТА
МИОКАРДА МУЛЬТИПОТЕНТНЫМИ
СТВОЛОВЫМИ КЛЕТКАМИ

Направление использования стволовых клеток в кардиологии интенсивно разрабатывается в последние 5–7 лет благодаря тому, что в 1999 г. появились работы, в которых удалось получить КМЦ из мезенхимальных стволовых клеток костного мозга (Makino et al., 1999). Были получены настолько удачные экспериментальные данные, что уже через 2–3 года данную клеточную технологию начали использовать в клинике. Было доказано, что МСК костного мозга человека обладают способностью стимулировать рост новых сосудов (ангиогенез) и улучшать питание кровью инсениализированных участков миокарда. Однако является ли этот эффект прямым действием МСК или опосредованным, через продукцию цитокинов и ростовых факторов — остается неясным. Продолжаются исследования по совершенствованию методов выделения и очистки МСК, получения из них регенераторных клеток для кардиомиогенеза и ангиогенеза. Так как манипулирование уровне ДНК стволовых клеток с целью встраивания генов, отвечающих за формирование КМЦ, запрещены ВОЗ для клинического применения, то в настоящее время акценты делаются на поиске чётких химических индикаторов дифференцировки и получении "чистой" функционирующей ткани сердечной мышцы. Следует отметить, что фундаментальные работы в данной области медицины отстают от попыток использования клеточных технологий в практической кардиологии. Отсутствие четких патогенетических представлений о механизме действия стволовых и вспомогательных клеток на миокард при его повреждении может привести не только к дискредитации самого метода, но и к возникновению серьезных осложнений вплоть до летального исхода. Мы считаем, что для этого, чтобы лучше понять эту тему, надо рассмотреть общие вопросы, связанные с патогенезом острого инфаркта миокарда и возможными механизмами его регенерации.

3.1. ИФАРКТ МИОКАРДА

Как уже отмечалось ранее, распространенность ишемической болезни сердца (ИБС) в последнее время приобрела характер эпидемии, что сделало ее основной проблемой здравоохранения многих экономически развитых стран мира, включая Россию (Векери, Гуляев, 2001).

Инфаркт миокарда (ИМ) — это ограниченный некроз сердечной мышцы. Некроз в большинстве случаев бывает коронарным или ишемическим. Реже встречаются некрозы без коронарного повреждения: при стрессе, дисбалансе в эндоцирной системе, действии цитостатиков, нарушениях электролитного баланса. В большинстве случаев ИМ рассматривают как результат ишемического некроза сердечной ткани из-за полной или частичной обтурации венечных артерий (Новиков, 2000). Наиболее частой причиной ИМ является гипертоническая болезнь, сочетающаяся с атеросклерозом коронарных сосудов и образованием тромба, реже — эмболия (Гоги, 1997; Жданов и др., 2002).

При наличии атеросклеротических бляшек изменяются гемодинамика. Возникающие при этом гидродинамические нагрузки могут спровоцировать агрегацию свертывающей системы и локальную коагуляцию крови с образованием тромба. Разрыв или изъявление атеросклеротической бляшки является достаточно частым вовлечением при прогрессировании атеросклеротического процесса в сосудах. Дестабилизация бляшки иногда может протекать без выраженных симптомов, либо, напротив, вызывать бурную клиническую картину с развитием острого коронарного синдрома и даже смерти больного (Мазур, 1985; Зайчик, 2000). Поэтому так происходит, до конца остается неясным. Часто отмечают несоответствие между патологоанатомическими данными и клиническими проявлениями заболевания, что затрудняет использование структурных изменений сосудов в качестве критерия оценки тяжести и прогноза у этой категории больных. Тем не менее, данная патология часто зависит не только от морфоло-
Глава 3. Инфаркт миокарда. Ходиомиоциты и инфаркт миокарда...

Ряд проведенных эпидемиологических исследований свидетельствует о наличии связи некоторых факторов сердечных заболеваний, включая инфаркт миокарда, с риском атеросклероза, причем риск развития сердечно-сосудистых осложнений при повышенной фибриногенемии плазмы, фактора свертывания VII (Ф VII) даже выше, чем при росте холестерина (Hultin, 1981). Среди других факторов развития нарушений следует выделить течение активатора плазминогена (ТАП), ингибитор активатора плазминогена первого типа (ИАП-1), фактор роста Виллебранда (ФРВ), которые играют важное значение в оценке риска развития тромбна инфаркта миокарда и его повторного возникновения (Jansson et al., 1991; Pedersen et al., 1993). Мелкоочаговый инфаркт миокарда составляет примерно 20% всех случаев инфаркта миокарда. Нередко (примерно в 30% случаев) мелкоочаговый инфаркт миокарда может трансформироваться в крупноочаговый, в связи с чем он может быть рассечен как прединфарктное состояние. К мелкоочаговому инфаркту миокарда относятся случаи возникновения у больных исемической болезнью сердца мелких очагов некроза сердечной мышцы, характеризующиеся более легким по сравнению с крупноочаговым инфарктом миокарда клиническим течением. При мелкоочаговом инфаркте миокарда отсутствуют такие тяжелые осложнения, как аневризма серда, разрыв серда и др. Значительно реже возникает сердечная недостаточность, фибрилиация желудочков, асистолия тромбоэмболий и т.д.

Крупноочаговый инфаркт миокарда — острое заболевание, возникающее при развитии в сердечной мышце крупноочагового некроза вследствие окклюзии атеросклеротически измененных (одной или нескольких) венечных артерий тромбом или атеросклеротической бляшкой. Это заболевание следует рассматривать как патологическую стадию развития миокардита, который ведет к гибели сердечной мышцы и развитию острых его осложнений, включая инфаркт миокарда, 3.1. Инфаркт миокарда
Ряд проведенных эпидемиологических исследований свидетельствует об наличии связи некоторых факторов свертывания с риском атеротромбоза, причем риск развития сердечно-сосудистых осложнений при повышении фибриногена плазмы, фактора свертывания VII (Ф VII) даже выше, чем при росте холестерина (Hultin, 1991). Среди других факторов свертывания следует выделить тканевой активатор плазминогена (ТАП), ингибитор активатора плазминогена первого типа (ИАП-1), фактор фон Виллебрanda (ФВБ), которые играют важное значение в оценке риска развития рецидива инфаркта миокарда и его повторного возникновения (Jansson et al., 1991; Pedersen et al., 1993). Мелкоочаговый инфаркт миокарда составляет примерно 20% всех случаев инфаркта миокарда. Нередко (примерно в 30% случаев) мелкоочаговый инфаркт миокарда может трансформироваться в крупноочаговый, в связи с чем он может быть рассечен как прединфарктное состояние. К мелкоочаговому инфаркту миокарда относят случаи возникновения у больных ишемической болезнью сердца мелких очагов некроза сердечной мышцы, характеризующиеся более легким по сравнению с крупноочаговым инфарктом миокарда клиническим течением. При мелкоочаговом инфаркте миокарда отсутствуют такие тяжелые осложнения, как аневризма сердца, разрыв сердца и др. Значительно реже возникает сердечная недостаточность, фибрилляция желудочков, астиология тромбоэмболий и т.д.

Крупноочаговый инфаркт миокарда — остое заболевание, возникающее при развитии в сердечной мышце крупноочагового некроза вследствие окклюзии атеросклеротически измененных (одной или нескольких) венечных артерий тромбом или атеросклеротической бляшкой. То есть непосредственно причиной развития инфаркта миокарда является острый наступающий несоответствие коронарного кровообращения запросам миокарда вследствие окклюзии коронарной артерии или резкого уменьшения зритка крови по ней с последующей ишемией и некрозом. Крупноочаговый инфаркт миокарда в зависимости от локализации может на переднем, заднем, боковом и различных комбинациях между этими тремя локализациями. От этого зависит до ступень, через который планируется осуществить клецикую терапию (Матусова, Боровков, 1999; Сорока, 2003).

Однако на раннем этапе развития наиболее значительное значение в диагностике этого заболевания имеет гиперферментемия за счет аспитиновой и лактатдегидрогеназы ЛДГ и ее изоферментов, креатинфосфокиназы, а также воспалительно-некротические процессы (Селев, 1961, 1977; Мелесон, 1991; Непомнящих, 1991; Матусова, Боровков, 1999, Елисеев, Сапрыкин, 2000). Риск возникновения ИМ возрастает у лиц с повышенной свертываемостью крови. Кроме того, процесс тромбообразования может быть иннициирован распадом атеросклеротической бляшки, развитием аневризмы антериорного инфаркта и другим атерома инфарктом миокарда инфаркта миокарда в различные инфарктов и тем более в смерти. Мы уже отмечали, что инфаркт миокарда — достаточно распространенные заболевания сердечно-сосудистой системы — является самой частой причиной внезапной смерти. Проблема инфаркта миокарда не решена, смертность от него продолжает увеличиваться. Следует отметить, что инфаркт миокарда встречается в молодом возрасте. В возрасте от 35 до 50 лет инфаркт миокарда встречается в 50% случаев у мужчин, чем у женщин, что, по мнению, обусловлено различной гормональной структурой человека (Хофбауер, 2002).

У 60—80% больных инфаркт миокарда развивается не внезапно, а имеет место прединфарктный (продромальный) синдром, который встречается в четырех вариантах: 1) стенокардия в первый раз, с быстрым течением — самая частая форма;
2) стенокардия протекает спокойно, но вдруг переходит в нестабильную (возникает при других ситуациях, не стало полного синуса болях);
3) приступы острой коронарной недостаточности;
4) стенокардия Принцметала.
Инфаркт миокарда — очень тяжелое заболевание с частым летальным исходом, особенно частый осложнений в I и II периодах (Новиков, 2000; Сорока, 2003).

К ранним осложнениям, развивающимся в первые дни заболевания, относятся нарушения ритма и проводимости, кардиогенный шок, острая сердечная недостаточность, разрыв сердца. К поздним, возникающим через 2—3 недели от начала заболевания, относят постинфарктный синдром, хроническую недостаточность кровообращения. Такие осложнения, как аневризма сердца, тромбоэмболии, наблюдаются как в ранних, так и в поздних стадиях крупноочагового инфаркта миокарда (Добронравов, 2002).

Нарушение ритма и проводимости сердца — наиболее частые осложнения острого крупноочагового инфаркта миокарда. Иногда они могут быть первыми и единственными проявлениями заболевания, особенно при повторных инфарктах миокарда. Из нарушений ритма сердца особенно опасны желудочковая форма перикардальной тахикардии и полиэдральные желудочковые экстрасистолии. Это может привести к фибрилляции желудочков (клиническая смерть) и к остановке сердца. Следует отметить, что фибрилляция желудочков может произойти и в прединфарктный период. Считается, что если на ЭКГ регистрируются полиэдры, групповые и ранние желудочковые экстрасистолии, то возникает опасность развития пароксизмальной желудочковой тахикардии и фибрилляции желудочков. Примерно у 25% больных регистрируется предсердная экстрасистолия, которая может быть предвестником пароксизмальной предсердной тахикардии, мерцания или трепетания предсердий. У некоторых больных наблюдается узловая предсердно-желудочковая тахикардия. Длительно существующая пароксизмальная тахикардия или тахиаритмия ведет к образованию сердечной недостаточности и аритмогенного шоку. При развитии крупноочагового инфаркта миокарда наблюдаются все виды нарушений проводимости. Значительную опасность для больных представляет предсердно-желудочковая блокада и особенно асистолия, которая может явиться непосредственной причиной смерти (Новиков, 2000; Хоффбаузер, 2002).

Кардиосклероз постинфарктный развивается при очаговом или диффузном разрастании соединительной ткани в сердечной мышце после гибели в ней мышечных волокон. Это уже исход инфаркта миокарда, связанный с формированием рубца. Иногда его еще называют ишемической кардиопатией. Основные проявления: нарушения ритма, проводимости, сократительной способности миокарда. Наиболее частая локализация — верхушка и периферия стенки. Как правило, при кардиосклерозе гибель мышечных волокон сопровождается их замещением соединительной тканью, что приводит к нарушению нормального кровотока в венечных артериях с развитием ишемии и некроза мышечных волокон.

После инфаркта миокарда формируется очаговый постинфарктный кардиосклероз. Чаще поражаются левые желудочки. Обширность зубцовых полей зависит от величины зоны инфаркта миокарда.

Заместительный кардиосклероз наблюдается при стенозировании атеросклерозом венечных артерий сердца при отсутствии очаговых некротических изменений в миокарде в силу постепенной, медленно развивающейся дистрофии, атрофии и гибели отдельных мышечных волокон в связи с гипоксией и нарушением метаболизма миокарда, сопровождающимся огрублением стромы.

Миокардиальный кардиосклероз — главный компонент желудочкового ремоделирования после инфаркта миокарда. Кроме нарушений в гемодинамике постинфарктный фиброз может развиваться и в более отдаленных от первичного и вторичного некроза миокарда районах, вероятно, за счет изменений в экстраэллиптическом миокарде и увеличения продукции коллагена I, III и IV типов и β-ТГФ, стимулирующих фибробlastы (Новиков, 2000; Горокнавский, 2001).

По А. Л. Мишникову, существует 3 варианта кардиосклероза:
1) ишемический, развивающийся медленно с диффузным поражением сердечной мышцы;
2) постинфарктный (постnekротический) на месте бывшего некроза вследствие перенесенного инфаркта миокарда;
3) переходный или смешанный, при котором на фоне медленно диффузного развития соединительной ткани периодически образуются крупные очаги после повторных инфарктов миокарда.
Сердечная недостаточность является результатом снижения
Глава 3. Инфаркт миокарда. Кардиосклероза ишемия миокарда...

2) стенокардия протекает спокойно, но вдруг переходит в нестабильную (возникает при других ситуациях, не стало полного снятия болей); 3) приступы острой коронарной недостаточности; 4) стенокардия Принцметала. Инфаркт миокарда — очень тяжелое заболевание с частым летальным исходом, особенно при длительных осложнениях (Новиков, 2000; Сорока, 2003).

К ранним осложнениям, развивающимся в первые дни заболевания, относятся нарушения ритма и проводимости, кардиогенный шок, острая сердечная недостаточность, разрывы сердца. К поздним, возникающим через 2—3 недели после развития заболевания, относятся острые инфаркты синдром, хроническую недостаточность кровообращения. Такие осложнения, как анеуприяма сердца, тромбоэмболия, наблюдаются как в ранних, так и в поздних стадиях крупноочаговых инфарктов миокарда (Добронраво, 2002).

Нарушение ритма и проводимости сердца — наиболее частые осложнения остrego крупноочагового инфаркта миокарда. Иногда они могут быть первыми и единственными проявлениями заболевания, особенно при повторных инфарктах миокарда. Из нарушений ритма сердца особенно опасны желудочковая форма пароксизмальной такикардии и полиаритмия желудочковые экстрасистолии. Эта может привести к фибрилляции желудочков (клиническая смерть) и остановке сердца. Следует отметить, что фибрилляция желудочков может произойти и в прединфарктный период. Считается, что если на ЭКГ регистрируются полиаритмические и гипертрофические желудочковые экстрасистолии, то возникает опасность развития пароксизмальной желудочковой такикардии и фибрилляции желудочков. Примерно у 25% больных регистрируется предсердная экстрасистолия, которая может быть предвестником пароксизмальной предсердной такикардии, мерцания или трепетания предсердий. У некоторых больных наблюдается узловая предсердно-желудочковая такикардия. Длительно существующая пароксизмная такикардия или тахиаритмия ведет к образованию сердечной недостаточности и аритмогенного шока. При развитии крупноочагового инфаркта миокарда наблюдаются все виды нарушений проводимости. Значительную опасность для больных представляет предсердно-желудочковая блокада, особенно асистолия, которая может явиться непосредственной причиной смерти (Новиков, 2000; Хоффбаэр, 2002).

Кардиосклероз постинфарктный развивается при очаговых или диффузном разрастании соединительной ткани в сердечной мышце после гибели в ней мышечных волокон. Это уже исход инфаркта миокарда, связанный с формированием рубца. Иногда его еще называют атеросклеротической кардиомиопатией. Основные проявления: нарушения ритма, проводимости, скратителной споспособности миокарда. Наиболее частая локализация — верхушка и перегородка стенок. Как правило, при кардиосклерозе гибель мышечных волокон сопровождается их замещением соединительной тканью, что приводит к нарушению нормального кровообращения в ветвях артерий с развитием ишемии и некроза мышечных волокон.

После инфаркта миокарда формируется очаговый постинфарктный кардиосклероз. Чаще поражается левый желудочек. Обширность рубцовых полей зависит от величины зоны инфаркта миокарда.

Заместительный кардиосклероз наблюдается при стенозирующих атеросклерозе венечных артерий сердца при отсутствии очаговых некротических изменений в миокарде в силу постепенной, медленно развивающейся дистрофии, атрофии и гибели отдельных мышечных волокон в связи с гипоксией и нарушением метаболизма миокарда, сопровождающимся огрубением стромы.

Миокардиальный кардиосклероз — главный компонент желудочкового ремоделирования после инфаркта миокарда. Кроме нарушений в гемодинамике постшемической фиброз может развиваться и в более отдаленных от первоначального участка первого некроза миокарда, в связи с гипоксией и изменениями в экстрацеллюлярной матриксе. Стимулирующие фибробласты (Новиков, 2000; Горюнов, 2001).

По А.Л. Мясниковой, существует 3 варианта кардиосклероза: 1) ишемический, развивающийся медленно с диффузным поражением сердечной мышцы; 2) постинфарктный (поствиктимический) на месте бывшего некроза вследствие перенесенного инфаркта миокарда; 3) переходный или смешанный, при котором на фоне медленного диффузного развития соединительной ткани периодически образуются крупные очаги после повторных инфарктов миокарда.

Сердечная недостаточность является результатом снижения
Глава 3. Ишемия миокарда. Клиническая картина ишемии миокарда...

наркологической функции сердца. Она может быть острой и хронической, левосторонней (левожелудочковой) и правосторонней (правожелудочковой) типов. При прогрессировании сердечной недостаточности левого типа к ней присоединяется правожелудочковая сердечная недостаточность, т.е. сердечная недостаточность становится тотальной.

3.2. МОДЕЛИРОВАНИЕ ОСТРОГО ИШЕМИЧЕСКОГО МИОКАРДИОЗА В ЭКСПЕРИМЕНТЕ

Экспериментальное моделирование остroго инфаркта миокарда в сочетании с современными и классическими методами исследования незаменимо в решении проблемы для понимания патогенетических механизмов развития данного заболевания у людей и разработки новых способов его лечения. После анализа многочисленных способов моделирования ИМ (фармакологические, воздействие низких или высоких температур, ультразвуковая, лазерная, КВЧ, токсичных, стресса и т.п.) мы остановились на общепринятой хорошо воспроизводимой технике, которая достаточно просто и полно имитирует ситуацию, возникающую при данной патологии, путем перевязки коронарной артерии — коронарной артерии (Непомняших, 1981, 1991).

Нами проведено исследование динамики тканевых и функциональных свойств миокарда у крыс (обеих полов возрастом 200–240 г; породы "Бистар") и мышей (линии СВА, C57Bl/6J, 129/SvEvTc/J, C57Bl/6J) после проведения коронарной артерии в нижней трети передней левожелудочковой коронарной артерии (рис. 3.1).

Через 24 часа после моделирования ИМ в зоне ишемии наблюдаются все признаки, характерные для стадии ишемии при наблюдаемой воспалительной реакции, сопровождающиеся отеком и набуханием МСД, появлением дистрофических и дегенеративных признаков. КМЗ начинают терять свою поперечную исчерченность (рис. 3.2). Четких границ зоны некроза в этот период выявить не удалось (рис. 3.3). В интерстициальной соединительной ткани между мышечными волокнами появляются
насосной функции сердца. Она может быть острой и хронической, левосторонней (левожелудочковой) и правосторонней (правожелудочковой) типов. При прогрессировании сердечной недостаточности левого типа к ней присоединяется правожелудочковая сердечная недостаточность, т.е. сердечная недостаточность становится тяжелой.

Причинной сердечной недостаточности является атеросклеротическое или постинфарктное атеросклеротическое поражение сердечной мышцы, приводящее к нарушению сократительной способности миокарда. При доминировании поражения левого отдела сердца развивается сердечная недостаточность левого типа, при преимущественном поражении правого отделов сердца — сердечная недостаточность правого типа. При миокардите, вызванном инфекцией, развивается сердечная недостаточность с преимущественным симптомом аритмии правожелудочковой недостаточности, так как в первую очередь нарушается сократительная способность более слабых (правого по сравнению с левым) отделов сердца (Матуэла, Боровков, 1999; Добронравов, 2002; Сорокин, 2003).

3.2. МОДЕЛИРОВАНИЕ ОСТРОГО ИНФАРКТА МИОКАРДА В ЭКСПЕРИМЕНТЕ

Экспериментальное моделирование острых инфарктов миокарда в сочетании с современными и классическими методами исследования незаменимо в решении проблемы для понимания патогенетических механизмов развития данного заболевания у людей и разработки новых способов его лечения. После анализа многочисленных способов моделирования ОИМ (фармакологические, воздействие низких или высоких температур, ультразвука, лазера, КВЧ, токсинов, стресса и т.п.), мы остановились на общепринятой хорошо воспроизведенной технике, которая достаточно просто и полно имитирует ситуацию, возникающую при данной патологии, путем перевязки коронарной артерии — коронарной коронарной артерии (Непомнящих, 1981, 1991).

Нами проведено исследование динамики тканевых и функциональных свойств миокарда у крыс с обеих полушарий массой 200–240 г (портал "Бистар") и мышей (линии СВА, СВ71/с, СВ716) после проведения коронарной коронарной артерии в нижней трети передней левожелудочковой коронарной артерии (рис. 3.1).

Через 24 часа после моделирования ОИМ в зоне ишемии наблюдаются все признаки, характерные для стадии альтерации при наблюдаемой воспалительной реакции, сопровождающиеся отеком и набуханием КМЦ, появлением дистрофических и дегенеративных признаков. КМЦ начинают терять свою поперечную исчерченность (рис. 3.2). Четких границ зоны некроза в этот период установить не удалось (рис. 3.3). В интересициальной соединительной ткани между мышечными волокнами появляются...
Глава 3. Ишемия миокарда. Кардиомиопатия и инфаркт миокарда...

Рис. 3.3. Микрофотография сердца крысы на 1-e сутки после коронарографии. Зона инфаркта не имеет четких границ и инфузий крови лейкоцитами (правая часть препарата). Миоциты нередко образуются между зонами некроза. В сосудах, в губчатую мозаичную структуру, лейкоциты. Четкие границы зон некроза не наблюдается. Ув. 200x, окраска гематоксилином.

Рис. 3.4. Микрофотография сердца крысы на 2-e сутки после коронарографии. В интерстициальной зоне между кардиомиоцитами видны инфильтраты лейкоцитов, фагоцитирующие клеточные обломки. В нижней части представлена КМЖ с некротическими зонами и гибелью клеток в миокарде. Ув. 500x

Рис. 3.5. Микрофотография сердца крысы на 3-e сутки после коронарографии. Наиболее высокие уровни

К 3-7-м суткам можно более определенно судить о площади инфаркта, т.к. начинают появляться четкие границы некроза. В интерстициальной зоне все еще наблюдается скопления лейкоцитов, хотя их количество начинает снижаться (рис. 3.5, 3.6). Капилляры вокруг поврежденных КМЖ часто остаются тромбированными, а стенки их разрушаются. Миокард приобретает гратозный вид, за счет фагоцитоза и выделения лиосомальных ферментов (рис. 3.7) (Маковский, 1989). В патолого-анатомическом процессе включаются гибель и некроз клеток, расположенных в верхней и средней стенах левого желудочка. В микрондне появляются неоднородные, мезенхимальные клетки со структурой клеткоэпителиоидного типа (рис. 3.8). Следует подчеркнуть, что пролиферативная реакция со стороны соединительной ткани является основным патолого-анатомическим процессом, который вызывает новообразование в микрондне и инфарктных зонах.
Глава 3. Инфаркт миокарда. Кардиомиоглостика инфаркта миокарда

Рис. 3.3. Микрофотография 1-го суток после коронароэктомии. Зона инфаркта не имеет четких границ и инфильтрации лейкоцитами (правая часть препарата). Мышечные волокна в периинфарктной зоне набухают. В сосудах видны гистосмешенные стволы лейкоцитов. Четких границ между зонами некроза не наблюдается. Ув. 200x, окраска гематоксилином

Рис. 3.4. Микрофотография 2-го суток после коронароэктомии. В интерстициуме между кардиомиоцитами видны мигрирующие лейкоциты, фагоцитирующие клеточные обломки. В нижней части представлен КМС с мелкими присосками, вегетацией — набухание и деструкция критил в митохондриях, изменение структуры мышечных волокон. Ув. 5600x

Рис. 3.5. Микрофотография 3-го суток после коронароэктомии. На наблюдается выход нейтрофилов (1), лимфоцитов (2) в интерстициальный слой между кардиомиоцитами (3) из сосуда (4). Нейтрофилы фагоцитируют клеточные обломки. Ув. 5600x

клеточные инфильтраты, содержащие нейтрофилы, мононуклеары и лимфоциты (рис. 3.4, 3.5). Выраженность некротических нарушений во многом зависит от степени развития изменений в гемодинамике. В тех участках, где они были более выражены, там наблюдался и более обширный некроз мышечных волокон. Нарушения со стороны сосудов и микроциркуляции сопровождались появлением отека, стаза клеток крови, кровоизлияния и лейкостазом инфилтрации. Все эти нарушения в миокарде соответствуют тем данным, которые наблюдали при аналогичных ситуациях и других авторов (Саркисов, 1970; 1977; 1977; Чазов и др., 1976; Непомнящих, 1991, 1996).

К 3—7-м суткам может быть определено, что в зоне инфаркта, т.к. начинают появляться четкие границы некроза. В периинфарктной зоне все еще наблюдается скопление лейкоцитов, хотя их количество начинает снижаться (рис. 3.5, 3.6). Капилляры вокруг поврежденных КМС часто остаются тромбироваными или подвергаются разрушению. Мышиные клетки начинают подвергаться резорбции, очевидно, за счет фагоцитоза и выделения лизосомальных ферментов (рис. 3.7) (Минский, Минский, 1989). В патологическом процессе включаются ткани, расположенные в верхней и средней степенях левого желудочка. В миокарде появляются неиндивидуированные мезенхимальные клетки со стромальным фенотипом (рис. 3.8). Следует подчеркнуть, что постинфарктная реакция со стороны соединительной ткани не только препятствует распространению инфаркта, но и способствует его заживлению.
3.2. Моделирование острого инфаркта миокарда в эксперименте

Рис. 3.6. Мягкое кровь на 3-е сутки после коронарного поражения. Кардиомиоциты набухают, стенки, часть из них перерекаются, деструкции. Между вяжущими веществами определяются многочисленные пейсиотромы. Ув. 400х, окраска гематоксилином

Рис. 3.7. Фрагмент кардиомиоцита в периферической зоне миокарда крысы на 7-е сутки после коронарного поражения. Видны нарушения в строении миофibrил, они деформированы, митохондрии детергируют. Ув. 1020х

на инфарктной ткани возникает именно в тот период, когда вместо гранулоцитов в миокарде начинают преобладать мононуклеарные клетки (моноциты, макрофаги, лимфоциты), что наблюдало и другие авторы (Непомнящих, 1981, 1991).

Рис. 3.8. Электронная микроскопия миокарда крысы печенечной зоне на 7-е сутки после коронарного поражения. В центре расположен фибробласт, секретирующий коллагеновые волокна. Ув. 3500х

Рис. 3.9. Электронная микроскопия миокарда крысы в зоне развития кардиосклероза на 12-е сутки после коронарного поражения. В центре расположен фибробласт, секретирующий коллагеновые волокна. Ув. 1020х

На 10-14-е сутки наблюдения в перифериферальной зоне обнаруживаются гетерогенные по своему составу КМЦ. Часть из них несет признаки атрофии — внутриклеточного некроза и лизиса пептама (рис. 3.7). Фибробласты активно продуктируют колла-
Глава 3. Инфаркт миокарда. Кардиомиопатия инфаркта миокарда...

Рис. 3.6. Микрофотография миокарда крысы на 3-й сутки после коронарографии. Кардиомиоциты набухают, степенное, часть из них перерождение изменяется. Межмышечными волокнами определены многочисленные лейкоциты. Ув. 400х, окраска гематоксилином.

Рис. 3.7. Фрагмент кардиомиоцита в перифокальной зоне миокарда крысы на 7-е сутки после коронарографии. Видны изменения в структуре кардиомиоцита, они деформированы, митохондрии деградируют. Ув. 1024х.

Рис. 3.8. Электронная микрофотография миокарда мыши на 7-е сутки после коронарографии. В нижней части расположены кардиомиоциты с умеренными признаками дегенерации, над которыми обнаруживаются три фибробласты, находящиеся в коллагеновых волокнах. Ув. 3500х.

Рис. 3.9. Электронная микрофотография миокарда крысы в зоне развития кардиомиопатии на 12-е сутки после коронарографии. В центре расположены фибробласты, секретирующие коллагеновые волокна. Ув. 1000х.

На 10-14-е сутки наблюдения в перифокальной зоне обнаруживаются гетерогенные по своему составу КМЦ. Часто из них несёт признаки атрофии — внутриклеточное некрозы и лизис органел (рис. 3.7). Фибробласты активно продуцируют колла-
Глава 3. Инфаркт миокарда. Кардиомиопатия инфаркта миокарда...

Рис. 3.10. Электронная микроскопия. Пограничная зона между зоной инфаркта и кардиомиоцитами на 14-е сутки после моделирования острого инфаркта миокарда. Видны многочисленные фрагменты генерирующих КМЦ. Ув. 5800х.

Рис. 3.11. Электронная микроскопия пограничного участка между зоной кардиосклероза (левая часть препарата) и миокардом (правая часть препарата) у крыс на 16-е сутки после коронарной окклюзии. Часть КМЦ несет признаки атрофии – внутрисклерозного некроза, деструкции и дегенераций митохондрий. Ув. 7200х.

gen (рис. 3.9, 3.10). Между зоной некроза и мышечной тканью прослеживается достаточно четкая граница (рис. 3.11).

На 30-е сутки в миокарде подопытных животных наблюдается развитие рубцовой ткани, занимающей до 60−70% от площади левого желудочка, сочетающейся с гипертрофией сердца на 230−240% от исходного уровня.

3.2. Моделирование острого инфаркта миокарда в эксперименте

Исследование функциональных свойств миокарда показало, что изменения со стороны ЭКГ выявляются только у части животных в первые сутки опыта в виде нарушений ритма, появления экстрасистолии, изменений в зубце QRS (рис. 3.12).

Рис. 3.12. Электрокардиограмма сердца здоровых (a) и после коронарной окклюзии (b) крыс. На рис. (b) видно развитие нарушений ритма и мерцательной аритмии сердца.

Рис. 2.13. На фотографии представлен фрагмент установки для изучения сократительной способности изолированного сердца.
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Рис. 3.10. Электронная микроскопия. Пограничная зона между зоной инфаркта и кардиомиоцитами на 14-е сутки после моделирования острого инфаркта миокарда. Видны многочисленные фрагменты дегенерирующих КМЦ. Ув. 5800x.

Рис. 3.11. Электронная микроскопия пограничного участка между зоной кардиосклероза (правая часть препарата) и миокардом (левая часть препарата) у крыс на 18-е сутки после коронарэктомии. Часты КМЦ несут признаки атрофии - внутрисетчатого некроза, деструкции и лизиса митохондрий. Ув. 7200x.

Исследование функциональных свойств миокарда показало, что изменения со стороны ЭКГ выявляются только у части животных в первые сутки опыта в виде нарушений ритма, появления экстрасистолии, изменений в зубце QRS (рис. 3.12).

Рис. 4.12. Электрокардиограмма сердца здоровых (a) и после коронарэктомии (1-е сутки) (b) крыс. На рис. (b) видно развитие нарушения ритма и мерцательной аритмии сердца.

Рис. 5.13. На фотографии представлен фрагмент установки для изучения сократительной способности изолированного сердца.

gен (рис. 3.9, 3.10). Между зоной некроза и мышечной тканью прослеживается достаточно четкая граница (рис. 3.11).

На 30-е сутки в миокарде подопытных животных наблюдается развитие рубцовой ткани, занимающей до 60-70% от площади левого желудочка, сочетающейся с гипертрофией сердца на 230-240% от исходного уровня.
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Спустя 2 недели мы не обнаружили никаких-либо отклонений в ЭКГ по сравнению со здоровыми животными.
Измерение порога фибрилизации желудочков показало, что он снижается на 30-40% по сравнению с контролем.
Опыты на изолированном сердце показали, что у животных с кардиосклерозом и гипертрофией миокарда отмечается снижение сократительной функции миокарда (рис. 3.13).
Таким образом, проведенные исследования показали, что при моделировании острого инфаркта миокарда методом коронароинъекции можно воспроизвести картину ИФ, наблюдаемую у человека, с развитием характерных для данного заболевания морфофункциональных изменений.
Для того чтобы перейти к следующему этапу исследований, необходимо рассмотреть вопрос, связанный с особенностями развития репаративных процессов в сердечной ткани при остром инфаркте миокарда.

3.3. Общие принципы кардиомиопластики с использованием клеточных технологий

Концепция регенеративной медицины, базирующейся на использовании собственных стволовых клеток для восстановления поврежденных тканей, сосудов и органов, в последние годы привлекает внимание большого количества исследователей. Данный метод является альтернативой многим известным методам лечения заболеваний сердца (мединаментозных, хирургических, вплоть до пересадки сердца). Однако многие критерии проведения клеточной терапии, ее показания и противопоказания при конкретной патологии все еще остаются на уровне интуитивных догадок, без серьезных экспериментальных и теоретических обоснований.
Следует отметить, что возможности клеточных технологий в кардиологии остаются малоисследованными и переработанными. Одной из причин этого является отсутствие ясности в представлениях о регенераторных возможностях миокарда (Платонов и др., 2001).
Общепринятой логикой считается, что во взрослом организме животных и человека КМП утрачивают способность к регенерации (см. главу 1). В отличие от скелетной мускулатуры и гладкомышечных волокон, миокард не содержит стволовых или сателлитных клеток, способных к пролиферации и замещению образовавшегося дефекта. Вместо мышечной ткани при инфаркте миокарда активируется стромагенез и формируется рубец (Новиков, 2000; Kajstura et al., 1998). Иными словами, если возникает повреждение сердечной мышцы, то оно необратимо приходит к развитию кардиосклероза, а при обширном инфаркте миокарда – к нарушению его функциональных и биомеханических свойств, компенсаторной гипертрофии. Что часто заканчивается развитием СН в течение нескольких месяцев или лет (Боль и др., 1995; Бокерия, Гудков, 2001).
Следует подчеркнуть, что фибробласты, принимающие участие в образовании рубца, являются производными МСК. Почему эти клетки, обладающие чрезвычайно широкими пластическими свойствами, не превращаются в кардиомиоциты – остается нерешенной, т. к. явных ограничений для их превращения в мышечные и сосудистые элементы нет. Можно предположить, как минимум, два варианта развития событий. Согласно одному из них, клетки-предшественники фибробластов и эндотелия необратимо входят на путь терминальной дифференцировки и не могут образовывать иные типы клеток, а МСК не попадают в повреждённый миокард, т. к. не происходят их мобилизации из депо, в частности, костного мозга. Согласно другому варианту, в поврежденном миокарде не формируются соответствующие условия для реализации пластических свойств МСК в направлении кардиомиогенеза.
Мнения о том, что в сердечной ткани отсутствуют клетки, способные к кардиомиогенезу, в последние годы пересматриваются. Данные последних лет свидетельствуют в пользу того, что в сердечной ткани сохраняются клеточные элементы, способные к пролиферации и образованию новых КМП. Так, в работах коллектива авторов, представленных Л.В. Полежаевым (1965, 1995), было показано, что в некротическом миокарде при введении биомодуляторов и ингибиторов его рубцевания на короткий срок гоняются клетки, которые можно морфологически идентифицировать как слабо дифференцированные миобласты. Кроме того, под влиянием указанной терапии уменьшались размеры новообразованной рубцовой ткани по сравнению с контролем. Однако происхождение "миобластоподобных клеток" осталось невыясненным: являлись ли они КМП или относились к другим мышечным элементам, например гладкомышечным клеткам, предшественники которых обнаруживаются в предсердиях. Позднее Л. В. Полежаевым (2000) было показано, что миокард крыс обладает способностью к восстановлению своей структуры под действием гидролизата сердечной мышцы, гомогенатов скелет-
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Спустя 2 недели мы не обнаружили каких-либо отклонений в ЭКГ по сравнению со здоровыми животными.
Измерение порога фибрилляции желудочков показало, что он снижается на 30–40% по сравнению с контролем.
Опыты на изолированном сердце показали, что у животных с кардиосклерозом и гипертрофной миокардиальной отмечается снижение сократительной функции миокарда (рис. 3.13).
Таким образом, проведенные исследования показали, что при моделировании остrego инфаркта миокарда методом коронированных швов можно воспроизводить картину ИФ, наблюдаемого у человека, с развитием характерных для данного заболевания морфофункциональных изменений.
Для того чтобы перейти к следующему этапу исследований, необходимо рассмотреть вопрос, связанный с особенностями развития репаративных процессов в сердечной ткани при остroм инфаркте миокарда.

3.3. Общие принципы кардиомиопластики с использованием клеточных технологий

Концепция регенеративной медицины, базирующаяся на использовании собственных стволовых клеток для восстановления поврежденных тканей, сосудов и органов, в последние годы привлекает внимание большого количества врачей. Данный метод является альтернативой многим известным методам лечения заболеваний сердца (медикаментозных, хирургических, вплоть до пересадки сердца). Однако многие критерии проведения клеточной терапии, ее показания и противопоказания при конкретной патологии все еще остаются на уровне интуитивных догадок, без серьезных экспериментальных и теоретических обоснований.
Следует отметить, что возможности клеточных технологий в кардиологии остаются малознацными и неразработанными. Одной из причин этого является отсутствие ясности в представлениях о регенеративных возможностях миокарда (Постоянов и др., 2001).
Общеприниным до сих пор считается, что во взрослом организме животных и человека КМЦ утрачивают способность к регенерации (см. главу 1). В отличие от скелетной мускулатуры и гладкомышечных волокон, миокард не содержит стволовых или существенных клеток, способных к пролиферации и замещению образовавшегося дефекта. Вместо мышечной ткани при инфаркте миокарда активируется стромгенез и формируется рубец (Новиков, 2000; Kajstura et al., 1998). Иными словами, если возникает повреждение сердечной мышицы, то оно необратимо приходит к развитию кардиосклероза, а при остром инфаркте миокарда — к нарушению его функциональных и биомеханических свойств, компенсаторной гипертрофии, что часто заканчивается развитием СН в течение нескольких месяцев или лет (Боль и др., 1995; Бокеев, Гудкова, 2001).
Следует подчеркнуть, что фибробласты, принимающие участие в образовании рубца, являются производными МСК. Поэтому эти клетки, обладающие чрезвычайно широкими пластическими свойствами, не превращаются в кардиомиоциты — остается неясным, т. к. явных ограничений для их превращения в мышечные и сосудистые элементы нет. Можно предположить, как минимум, два варианта развития событий. Согласно одному из них, клетки-предшественники фибробластов и здюля необратимо встали на путь терминальной дифференцировки и не могут образовывать иные типы клеток, а МСК не попадают в поврежденный миокард, т. к. не происходят их мобилизации из депо, в частности, костного мозга. Согласно другому сценарию, в поврежденном миокарде не формируются соответствующие условия для реализации пластических свойств МСК в направлении кардиомиогенеза.
Мнение о том, что в сердечной ткани отсутствуют клетки, способные к кардиомиогенезу, в последние годы пересматривается. Данные последних лет свидетельствуют в пользу того, что в сердечной ткани сохраняются клеточные элементы, способные к пролиферации и образованию новых КМЦ. Так, в работах коллектива авторов, представленных Л.Б. Полежаевым (1965, 1995), было показано, что в некротическом миокарде при введении биомодуляторов и угнетателей его рубцевания на короткий срок выявляются клетки, которые можно морфологически идентифицировать как слабо дифференцированные миобласты. Кроме того, под влиянием указанных терapiй уменьшились размеры носовокровной рубцовой ткани по сравнению с контролем. Однако процессы "миобластоподобных клеток" оставались невыясненными; являлись ли они КМЦ или относились к другим мышечным элементам, например гладкомышечным клеткам, предшественники которых обнаруживаются в предсердиях. Позднее Л.Б. Полежаевым (2000) было показано, что миокард кроликов обладает способностью к восстановлению своей структуры под действием гидролизата сердечной мышицы, гомогенатов скелетных...
Глава 3. Инфаркт миокарда. Кардиомиопатия инфаркта миокарда...

ных мышц и других бисептаратов. По-видимому, в данном случае мы имеем пример, когда индукция морфогенеза происходит под действием IMK, факторов роста мышечной ткани типа Muoy и т.п., которые способны вызывать мышечную экспрессию, в том числе и в фиброblastах (Tann et al., 1986; Murty et al., 1996). Так, Salvato et al. (1995) показали, что если фиброblastы линии 101/2 культивируются совместно с миобластами линии С2С12 или скелетными миобластами, то они дифференцируются в мышечные трубочки (1-10% от всей популяции).

По мнению П.П. Румянцева (1982), КМЦ не могут пролиферировать, так как строго ориентированные агрегаты сохраняют прочных берегов в КМЦ и наличие вложенных дисков создает препятствия для цитокинеза при митозе.

Именно поэтому для внедрения новых КМЦ в структуру миокарда необходимо индуцировать обратную деструкцию (разборку) его миофibrилла, т.е. вызывать умеренную дифференцировку сердечной ткани. По-видимому, из-за отсутствия условий для реализации этих процессов, в частности при ИМ, митотическое деление в КМЦ обычно не идет дальше карнокинеза, и регенерация заканчивается формированием полиплоидных КМЦ (Бродер, 1995). Кроме того, в ткани миокарда взрослого организма в обычных режимах не найдены структуры, подобные МСК, сельтительными клетками скелетных мышц, миобласты или незрелые кардиомиоциты, сохраняющие способность к делению. Обнаруженные в желудочках крыс популяции КМЦ (около 10%), обладающие способностью накапливать 3H-тимидин, чтобы, можно отметить к клеткам, оставшимся на стадии карнокинеза с формированием полиплоидных (двуядерных) клеток. Они, по-видимому, играют важную роль в адаптивной перестройке миокарда при его гипертрофии. Довольно редко можно наблюдать митозы КМЦ в перинифарктной зоне, которые, как правило, задерживаются щитокинезом. Они, как впрочем, и циркулирующие МСК, не способны к репарации в полном объеме, восстановление миокарда и нивелирование рубца (Румянцев, 1982; Гурьев, 1989). Согласно мнению Д.С. Саркисова (1979), уменьшение размеров рубца, показанное в опытах Л.В. Полежаева (1965), связано не с репаративной регенерацией, а с предотвращением вторичных волн некроза в миокарде. С позицией разработанной им теории внутриклеточной регенерации, сердце относится к органам, в которых при повреждении преобладают не пролиферативные процессы в паренхиме, а фиброblastические реакции стромы, которые почти необратимы. Щелевыми словами, следует сказать, что дефицит функции КМЦ в миокарде возникает не за счет скорости пролиферации, а посредством внутриклеточных гиперплазических реакций (Саркисов, 1979).

3.3. Общие принципы кардиомиопатий с использованием клеточных технологий

3.3.1. Каскадоподобный механизм адаптации и репарации сердечной ткани при инфаркте миокарда

ности, мышечные волокна и другие биосинтетические процессы. По-видимому, в данном случае мы имеем дело с процессами, способными индуцировать обратимую деструкцию (разборку) миофibrилл, вызывающей умеренную дифференцировку сердечной ткани. По-видимому, отсутствие условий для реализации этих процессов, в частности при ИМ, и митотическое деление в КМЦ обычно не идет дальше карницина, и регенерация заканчивается формированием полиплоидных клеток (Бродский, 1995). Кроме того, в ткани миокарда взрослого организма в обычных условиях не найдены структуры, подобные МСК, сателлитными клетками макрофагов, миобластов или незрелые кардиомиоциты, сохраняющие способность к делению. Обнаруженные в желудочках крыс популяции КМЦ (около 10%), обладающие способностью к антигенической иммуногенетической (37-тиклеточной) иммунной системой, не включены в клетки, оставшиеся на стадии карницина с формированием полиплоидных (двойных) клеток. Они, по-видимому, играют важную роль в адаптивной перестройке миокарда при его гипертрофии. Довольно редко можно наблюдать митозы КМЦ в периинфарктной зоне, которые, как правило, заканчиваются цитотоксикой. Они, как и в предыдущем случае, не включаются в клетки, оставшиеся на стадии карницина, и регенерация заканчивается формированием полиплоидных (двойных) клеток. По-видимому, эти клетки могут быть ответом на изменение условий, способных индуцировать обратимую деструкцию (разборку) миофibrиллов, вызывающую умеренную дифференцировку сердечной ткани. По-видимому, отсутствие условий для реализации этих процессов, в частности при ИМ, и митотическое деление в КМЦ обычно не идет дальше карницина, и регенерация заканчивается формированием полиплоидных клеток (Бродский, 1995). Кроме того, в ткани миокарда взрослого организма в обычных условиях не найдены структуры, подобные МСК, сателлитными клетками макрофагов, миобластов или незрелые кардиомиоциты, сохраняющие способность к делению. Обнаруженные в желудочках крыс популяции КМЦ (около 10%), обладающие способностью к антигенической иммуногенетической (37-тиклеточной) иммунной системой, не включены в клетки, оставшиеся на стадии карницина с формированием полиплоидных (двойных) клеток. Они, по-видимому, играют важную роль в адаптивной перестройке миокарда при его гипертрофии. Довольно редко можно наблюдать митозы КМЦ в периинфарктной зоне, которые, как правило, заканчиваются цитотоксикой. Они, как и в предыдущем случае, не включаются в клетки, оставшиеся на стадии карницина, и регенерация заканчивается формированием полиплоидных (двойных) клеток. По-видимому, эти клетки могут быть ответом на изменение условий, способных индуцировать обратимую деструкцию (разборку) миофibrиллов, вызывающую умеренную дифференцировку сердечной ткани. По-видимому, отсутствие условий для реализации этих процессов, в частности при ИМ, и митотическое деление в КМЦ обычно не идет дальше карницина, и регенерация заканчивается формированием полиплоидных клеток (Бродский, 1995). Кроме того, в ткани миокарда взрослого организма в обычных условиях не найдены структуры, подобные МСК, сателлитными клетками макрофагов, миобластов или незрелые кардиомиоциты, сохраняющие способность к делению. Обнаруженные в желудочках крыс популяции КМЦ (около 10%), обладающие способностью к антигенической иммуногенетической (37-тиклеточной) иммунной системой, не включены в клетки, оставшиеся на стадии карницина с формированием полиплоидных (двойных) клеток. Они, по-видимому, играют важную роль в адаптивной перестройке миокарда при его гипертрофии. Довольно редко можно наблюдать митозы КМЦ в периинфарктной зоне, которые, как правило, заканчиваются цитотоксикой. Они, как и в предыдущем случае, не включаются в клетки, оставшиеся на стадии карницина, и регенерация заканчивается формированием полиплоидных (двойных) клеток. По-видимому, эти клетки могут быть ответом на изменение условий, способных индуцировать обратимую деструкцию (разборку) миофibri
Глава 3. Инфаркт миокарда. Кардиомиопатия инфаркта миокарда...

могут протекать и по сетевому принципу, т.е. одновременному развитию по нескольким направлениям. В частности, параллельно вышеуказанному гипофизарно-ипоталамо-адреналовому пути стимуляции кровотворения может осуществляться с помощью симпатических, перераспределительных и адrenalергических механизмов, что позволяет более гибко реагировать на изменяющиеся условия жизнедеятельности. В любом случае дигитальная, идущая от вышестоящих отделов КПМА к нижестоящим информационный сигнал имеет адресный характер.

Включение КПМА зависит от сильы, характера и частоты действия экстремального фактора и исходного состояния как всего организма, так и звеньев самого адаптивного механизма.

Для каждого уровня КПМА существует свой специфический регулятор. Так, для передней доли гипофиза кортикоклинария в передней доле гипофиза вырабатывается АКТГ. AKTT, в свою очередь, стимулирует выработку глюкокортикоидов в надпочечниках. Глюкокортокоиды вызывают миграцию T-лимфоцитов из тимуса. T-клетки вырабатывают колониестимулирующие факторы, ИЛ-3 и другие факторы, активирующие миелогенез, стромогенез и клетки РЭС. Каждый уровень КПМА работает по принципу функциональной системы (Анкохин, 1975), которая осуществляет восприятие и переработку идущей к ней специфической и неспецифической информации, с последующей интегральной оценкой и передачей ее к следующему звену КПМА. Блокада любого уровня КПМА при прохождении через него специфического сигнала приводит к супрессии, деформации или полному отсутствию апептогенного реагирования. Так, удаление надпочечников, тимуса или блокада РЭС или T-клеток с помощью антител полностью иногда стимулирует неспецифические стимуляторы, включая тимоцитов, восстанавливают вышеназванные повреждения (Шахов, 1991, 1996). Специфические сигналы определяют общий вектор развития КПМА.

Неспецифические регуляторы переводят отдельные звенья КПМА в режим сжигания (включения / выключения) и создают общую его гармонию. Специфические регуляторы могут стать неспецифическими, если будут действовать не адресно, т.е. не на свою специфическую мишень. Таковыми становится АКТГ, если действует не на T-клетки, а на фагоцитирующие моноциты (Манский, 1981). Вместе специфические и неспецифические регуляторы создают единую голографическую картину работы КПМА с учетом реального времени и перспектив его развития, позволяющей объединять многочисленные гемо- и гомолокализационные реакции в единое функциональное и гиперсугестивное систему. Если индукция КПМА обычно не превышает одну сутки, то его развитие и реализация зависит от 2 недель (гемопозез) до нескольких месяцев (костная ткань) (Шахов, 1997; Карлов, Шахов, 2001).

Анализ имеющейся информации и собственных данных позволяет предположить, что развитие острого инфаркта миокарда также происходит по типу реализации КПМА. Так, после ишемии, некроза миокарда, сопровождающегося выраженным болевым синдромом, происходит активация нервой, гипофизадrenalовой, иммунной и ретикулоэндотелиальной систем (Марков, 1982; Слобожан, 1987). В поврежденную ткань устремляются нейтрофильы, моноциты и лимфоциты (Гусев, 2000) (рис. 3.3–3.5, 3.14). В результате в миокарде развиваются микроагрегации. Очевидно, именно в этот период происходит выработка разнообразных ростовых и дифференцирующих факторов, готовых включать механизмы локальной регенерации в поврежденном миокарде. Однако в силу того, что в сердечной ткани нет КМЦ или MSC, способных дифференцироваться в кардиомиоциты, то вре-
может протекать и по сетевому принципу, т.е. одновременному развитию по нескольким направлениям. В частности, параллельно вышеуказанному гипофизарно-гипоталамо-адреналовому пути стимуляция кровотворения может осуществляться с помощью симпатических, парасимпатических и адренергических механизмов, что позволяет более гибко реагировать на изменяющиеся условия жизнедеятельности. В любом случае директивная, идущая от вышестоящих отделов КПМА к нижестоящим информаций (сигнал) имеет адресный характер.

Включение КПМА зависит от силы, характера и частоты действия экстремального и исходного состояния как всего организма, так и звеньев его адаптационного механизма.

Для каждого уровня КПМА существует свой специфический регулятор. Так, для передней доли гипофиза кортикалиберина в передней доле гипофиза вырабатывается АКТГ. АКТГ, в свою очередь, стимулирует выработку глюкокортикоксидов в надпочечниках. Глюкокортикоксиды вызывают миграцию Т-лимфоцитов из тимуса. Т-клетки вырабатывают колониестимулирующие факторы, ИЛ-2 и другие факторы, активирующие меланогенез, стромогенез и клетки РЭС. Каждый уровень КПМА работает по принципу функциональной системы (Аннокин, 1972), которая осуществляет восприятие и переработку идущей к ней специфической и неспецифической информации, с последующей интегральной оценкой и передачей ее к следующему звену КПМА. Блокада любого уровня КПМА при прохождении через него специфического сигнала приводит к супрессии, деформации или полному отключению неполного реагирования. Так, удаление надпочечников, тимуса или блокады РЭС или T-клеток с помощью антител полостью отменяет стимуляцию мезенхимальных стволовых клеток, отвечающих за переносят гемопоэзиндуцирующего микрокружения и КОЕф (см. главу 2; Шахов, 1991). Коррекция вышеуказанных повреждений, в частности за счет введения тимоцитов, восстанавливает вышеуказанные повреждения (Шахов, 1991, 1996). Специфические сигналы определяют общий вектор развития КПМА.

Неспецифические регуляторы переводят отдельные звенья КПМА в режим ожидания (включения / выключения) и создают общую его гармонию. Специфические регуляторы могут стать неспецифическими, если будут действовать не адресно, т.е. не на свою специфическую мишень. Таковым становится АКТГ, если действует не на T-клетки, а на фагоцитирующие моноциты (Мизинский, 1981). Вместе специфические и неспецифические

регуляторные механизмы создают единую голографическую картину работы КПМА с учетом реального времени и перспектив его развития, позволяющую объединить многочисленные гомеостатические реакции в единую функциональную гиперсистему. Если индукция КПМА обычно не превышает один суточ, то его развитие и реализация динамет стадия длительности в несколько месяцев (костная ткань) (Шахов, 1997; Карлов, Шахов, 2001).

Анализ имеющихся информации и собственных данных позволяет предположить, что развитие острового инфаркта миокарда также происходит по типу реализации КПМА. Так, после ишемии, некроза миокарда, сопровождающегося выраженным болевым синдромом, происходит активация нейральной, гипофизадреневой, иммунной и ретиналэндоститиальной систем (Мересон, 1977; Бушаков, 1997). В поврежденную ткань устремляются нейтрофильы, моноциты и макрофаги (Новиков, 2000) (рис. 3.3–3.5, 3.14). В результате в миокарде происходит микрокружение. Очевидно, именно в этот период происходит выработка разнообразных ростовых и дифференцирующих факторов, готовых включить механизмы локальной регенерации в поврежденном миокарде. Однако в силу того, что в сердечной ткани нет КМЦ или МСК, способных дифференцироваться в кардиомиоциты, то вме
Глава 3. Ишемия миокарда. Кардиомиопластика ишемии миокарда...

Стро кардиомиогенеза происходит активация стромальных и соединительных клеток, которые присутствуют в интерстициальном слое между мышечными волокнами и около сосудов. Попадают ли циркулирующие МСК в миокард, и, если так, что факт имеет место, то почему они не дифференцируются в КМЦ? Если предположить, что МСК все-таки мигрируют в сердце, то, возможно, они по каким-то причинам не могут реализовать свою репаративную миссию. Может быть, это происходит из-за того, что их количество недостаточно для включения механизмов регенерации миокарда. С другой стороны, нельзя исключить и того, что они не подготовлены к дифференцировке в направлении миогенеза. Кроме того, нельзя исключить, что микроскопирование и биомеханика поврежденного миокарда не создают необходимых условий для развития МСК в кардиомиофилы. Однако последние довод опровергается в опытах, когда МСК трансплантируют в сердечную ткань, о чем будет идти речь ниже.

3.3. Общие принципы кардиомиопластики с использованием клеточных технологий

Таким образом, представленные данные свидетельствуют о том, что при инфаркте миокарда может иметь место развитие КИМА (рис. 3.15). В то же время, в силу особенностей формирования сердца, терминальной дифференцировки КМЦ и отсутствия в них соответствующих стволовых клеток, вместо включения механизмов репаративной регенерации включается регенерация на уровне гипертрофии миокарда и возникновения полиморфных, с повышенной функциональной активностью клеток. Параллельно образующийся дефект необратимо замещается рубцовой тканью, что может привести к развитию разнообразных осложнений, включая и сердечную недостаточность.

Гипертрофия и переработка миокарда, развитие кардиосклероза и СН

Рис. 3.15. Схема развития КИМА при инфаркте миокарда: РЭС — регулируемая система, МСК — мезенхимальные стволовые клетки, СН — сердечная недостаточность

Рис. 3.16. Принципиальная схема коррекции развития кардиосклероза и сердечной недостаточности при использовании КИМА при инфаркте миокарда: РЭС — регулируемая система, МСК — мезенхимальные стволовые клетки, СН — сердечная недостаточность
Глава 3. Ишемия миокарда. Кардиопрофилактика ИМ и ИМП... сто кардиомиогенеза происходит активация стромальных и со- судистых клеток, которые присутствуют в интерстициальном слое между мышечными волокнами и около сосудов. Попадают ли циркулирующие МСК в миокард, и, если такой факт имеет место, то почему они не дифференцируются в КМЦ? Если пред- положить, что МСК все-таки мигрируют в сердце, то, возможно, они по каким-то причинам не могут реализовать свою репаративную функцию. Может быть, это происходит из-за того, что их количество недостаточно для включения механизмов регенерации миокарда. С другой стороны, нельзя исключить и того, что они не подготовлены к дифференцировке в направлении миогенеза. Кроме того, нельзя исключить, что микроскопирование и био- механика поврежденного миокарда не создают необходимых условий для развития МСК в кардиомиоциты. Однако последний довод опровергается в опытах, когда МСК трансплантуют в сердечную ткань, о чем будет идти речь ниже.

Таким образом, представленные данные свидетельствуют о том, что при ИМ может иметь место развитие КПА (рис. 3.15). В это время, в силу особых особенностей формирования сердца, терминальной дифференцировки КМЦ, и отсутствия в них соответствующих стволовых клеток, вместо включения механизмов репаративной регенерации включается генезис нейрогенеза на уровне гипертрофии миокарда и возникновения полипластических, с повышенной функциональной активностью клеток. Параллельно образующийся дефект необратимо замещается ручевой тканью, что может привести к развитию разнообразных осложнений, включая и сердечную недостаточность.

Теоретически изменить ход необратимых изменений в сердечной ткани при ИМ можно, если в каком-то дозированном механизм адаптации включить эндоцелевые клетки, обладающие миогенными и ангиогенными потенциалами (рис. 3.16). Того...

![Diagram](image-url)
Глава 3. Инфаркт миокарда, кардиомиопластия инфаркта миокарда...

da вместо кардиосклероза, образования рубцов и развития сердечной недостаточности будет включать механизм репаративной регенерации с восстановлением поврежденного миокарда. Во многом подобная идея высказывалась неоднократно в прошлом столетии. Этот вопрос достаточно неплохо освещен в обзоре И. В. Потапова с соавт. (2001). Так, было отмечено, что для активного участия пересаженных клеток в систоле левого желудочка (ЛЖ) должно соблюдаться несколько условий:
- клетки должны обладать способностью дифференцироваться в кардиомиоциты, содержащие сократительные структуры;
- между клетками должны присутствовать вставочные диски с целыми контактами для проведения потенциалов возбуждения к пересаженным клеткам от КМЦ хозяина;
- должна отсутствовать реакция отторжения;
- необходимо свести к минимуму ишемические повреждения, острый некроз и апоптоз пересаженных клеток;
- пересаженные клетки должны способствовать репарации поврежденного участка (замещение соединительной ткани и формирование полноценной биомеханической архитектуры сердечной ткани).

Большинству вышеуказанных критериев соответствуют мезенхимальные стволовые клетки. Однако ввиду того, что процесс превращения МСК костного мозга в кардиомиоциты и соединительные клетки был открыт только в 1999–2000 гг., многие вопросы, связанные с возможностью применения данных клеток в кардиологической практике, остаются открытыми. Так, S. Maki-no с соавт. (1999) получили кардиомиогенную клеточную линию из мышечных клеток стromы костного мозга, в которых после обработки 5-азацитидином in vitro были инициированы процессы дифференцировки КМЦ. Эффективность обработки составляла около 30%. Полученные клетки экспрессировали множество специфических для КМЦ генов, имели фенотип фетальных желудочков КМЦ. Дифференцированные таким образом КМЦ были связаны между собой вставочными дисками, формируя мышечные трубочки, спонтанно сокращаясь, имели КМЦ-подобную ультраструктуру, включая типичные саркомеры, центрально расположенным ядро, множественные гранулы гликогена и миотохондрин. Мишечные трубочки генерировали потенциалы действия, напоминающие таковые у желудочковых КМЦ. Во многом аналогичные данные были получены S. Tomita и др. (1999), которые вызывали повреждение миокарда с помощью жидкого азота. Кроме того, было установлено, что МСК наряду с образованием КМЦ формировали эндотелиальные и гладкомышечные клетки, что улучшало функцию сердца (Shumakov и др., 2003; Daviani et al., 2003). Интересно, что если МСК на костный мозг взрослого человека или фетальной печени ввести в плодовые яйца, то большинство донорских клеток обнаруживается в сегментах нейронов. Их уровень достигает 43.2%, в то время как среди кардиомиоцитов доля меченных клеток не превышала 0,01%. Это свидетельствует о том, что МСК принимают участие в морфогенезе не только мышечного компонента сердечной ткани, но и ее проводящей системы (Airay et al., 2004).

В основе строительной теории механизма ремоделирования миокарда закладываются трансплантированных клеток, многие авторы сходятся в том, что в результате проведенной клеточной кардиомиопластики можно достичь следующих эффектов:
1) предупреждение развития постинфарктной аневризмы;
2) ускорение процессов регенерации миокарда;
3) предотвращение распространения очага некроза и рубцовой ткани;
4) улучшение диастолических свойств миокарда и негативной работы сердца.
5) стимуляции процессов кардиогенеза и оксигенации миокарда.

T. Wang et al. (2000) выдвинули гипотезу, что микроокружение в миокарде создает определенные условия и сигналы для кардиомегенеза дифференцировки МСК. В их исследовании красные МСК после культивирования и удаления большинства гемоглобинсодержащих стволовых клеток были пресеменены в миокард и дифференцировались в КМЦ, образовывая клеточные контакты. С другой стороны, в опытных коррекциях с использованием меченных DAPI МСК и моноклональных костного мозга было показано, что стволовые, но не моноклональные элементы внедряются в сердечную ткань после коронарографии. При этом через 2 недели они образовывали компактные клеточные агрегаты в миокарде, которые не были тесно связаны с окружающим клеточным инцидентом. Интересно, что в обычных условиях МСК утрачивали способность внедряться в процессы клеточной регенерации миокарда (Zu et al., 2004), что, возможно, связано с индукцией кардиомегенеза в сердечной ткани только при экстримальных условиях. МСК взаимодействуют с КМЦ в сердце через C43 и C40 области межклеточных контактов с образованием симметричных гомотипичных и асимметричных (гетеротипичных)
да вместо кардиосклероза, образования рубцов и развития сердечной недостаточности будет включать механизм репаративной регенерации с восстановлением поврежденного миокарда. Во многом подобная идея высказывалась неоднократно в прошлом столетии. Этот вопрос достаточно неплохо освещен в обзоре И.В. Потапова с соавт. (2001). Так, было отмечено, что для активного участия пересаженных клеток в систоле левого желудочка (ЛЖ) должно соблюдаться несколько условий:

- клетки должны обладать способностью дифференцироваться в кардиомиоциты, сохранять сократительные структуры;
- между клетками должны присутствовать вставочные диски со швовыми контактами для проведения потенциалов возбуждения к пересаженным клеткам от КМЦ хозяина;
- должны отсутствовать реакции отторжения;
- необходимо свести до минимума ишемические повреждения, шок, некроз и апоптоз пересаженных клеток;
- пересаженные клетки должны способствовать репарации поврежденного участка (замещение соединительной ткани и формирование полноценной биомеханической архитектуры сердечной ткани).

Большинство вышеперечисленных критериев соответствуют мезенхимальным стволовым клеткам. Однако ввиду того, что процесс превращения МСК в кардиомиоциты в эмбриональные и соединительнотканные системы был открыт только в 1999–2000 гг., многие вопросы, связанные с возможностью применения данных клеток в кардиологической практике, остаются открытыми. Так, C. MAKINO с соавт. (1999) получили кардиомиогенную клеточную линию из мышечных клеток стромы костного мозга, в которых после обработки 5-азацитидином in vitro были индуцированы процессы дифференцировки в КМЦ. Эффективность обработки составляла около 30%. Полученные клетки экспрессировали множество специфических для КМЦ генов, имели фенотип фетальных желудочков КМЦ. Дифференцированные таким образом КМЦ были связаны между собой вставочными дисками, формируя мышечные трубочки, спонтанно сокращающиеся, имели КМЦ-подобную ультраструктуру, включая типичные саркомеры, центрально расположенные ядро, множественные гранулы гликогена и митохондрии. Мышечные трубочки генерировали потенциалы действия, напоминающие таковые у желудочковых КМЦ. Во втором аналогичные данные были получены S. Tomita и др. (1999), которые вызывали повреждение миокарда с помощью жидкого азота. Кроме того, было установлено, что МСК наряду с образованием КМЦ (формировали индентичные и гладкомышечные клетки, что улучшало функцию сердца (Shumakov и др., 2003; Davani et al., 2003). Интересно, что если МСК на костного мозга взрослого человека или фетальной печени ввести в слой овцы, то большинство донорских клеток обнаруживается в сегментах волокон Пуркинье. Их уровень достигает 43.2%, в то время как среди кардиомиоцитов доля меченных клеток не превышала 0.01%. Это свидетельствует о том, что МСК принимают участие в морфогенезе не только мышечного компонента сердечной ткани, но и в ее проводящей системе (Airy et al., 2004).

Не имея строгой теории механизма ремоделирующего действия трансплантаций клеток, многие авторы отмечают, что в результате проведенной клеточной кардиомиопластике можно достичь следующих эффектов:

1) предупреждения развития постинфарктной аневризмы;
2) ускорения процессов регенерации миокарда;
3) предотвращения распространения очага некроза и рубцовой ткани;
4) улучшения диастолических свойств миокарда и натяжительной функции сердца;
5) стимуляции процессов аггиогенеза и оксигенации миокарда.

T. Wang et al. (2000) выдвинули гипотезу, что микрообрушение в миокарде создает определенные условия и сигналы для кардиомиогенной дифференцировки MCK. В их исследованиях клетки MCK, после культуры их стволовых клеток были пересажены в миокард и дифференцировались в КМЦ, образовывались клеточные контакты. С другой стороны, в опытных условиях меченых DAPI МСК и моноклональных костного мозга было показано, что стволовые, но не моноклональные элементы встраиваются в сердечную ткань после коронарографии. При этом через 2 недели они образовывали компактные клеточные агрегаты в миокарде, которые были еще не связаны с окружающими клетками ткани. Интересно, что в обычных условиях MСK утрачивали способность включаться в процессы клеточной реапатии миокарда (Zu et al., 2004), что косвенно свидетельствует об индукции кардиомиогенеза в сердечной ткани только при экспериментальных условиях. МСК взаимодействуют с КМЦ в сердце через C48 и C40 области межклеточных контактов с образованнием симметричных гомотипических и асимметричных (гетероти-
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Таблица 3.1

<table>
<thead>
<tr>
<th>ЭСК</th>
<th>МСК костного мозга</th>
</tr>
</thead>
<tbody>
<tr>
<td>Плюс</td>
<td>Мультиплетность</td>
</tr>
<tr>
<td>Высокая способность к репликации, самоподдержанию и дифференцировке</td>
<td>Умеренная способность к репликации, самоподдержанию и дифференцировке</td>
</tr>
<tr>
<td>Грундо в получении ЭСК</td>
<td>Нет грундо в получении МСК</td>
</tr>
<tr>
<td>Высокий риск возникновения тератогенности</td>
<td>Значительная трансформация клеток не выявлены</td>
</tr>
<tr>
<td>Умеренные активные свойства, требуют применения иммунодепрессивных средств</td>
<td>Высокая биосовместимость, иммунодепрессивные препараты не нужны</td>
</tr>
<tr>
<td>Армирующий потенциал</td>
<td>Армирующий потенциал не выражен</td>
</tr>
<tr>
<td>Этические проблемы</td>
<td>Этический вопрос нет</td>
</tr>
<tr>
<td>Возможность изменения пути дифференцировки в многочисленных направления</td>
<td>Возможность изменения пути дифференцировки по 5-6 направления</td>
</tr>
</tbody>
</table>

3.3. Общие принципы кардиомиопластики с использованием клеточных технологий

дим микросклерозе для прогениторных клеток (Orlic et al., 2001). По сравнению с ЭСК мезенхимальные стволовые клетки имеют ряд преимуществ, некоторые из них приведены в табл. 3.1. Как уже говорилось ранее, многие недостатки и проблемы при использовании МСК для клеточной терапии связаны с тем, что ещё недостаточно изучены факторы их дифференцировки в vitro, их трудно получить в достаточном количестве для развития клинического эффекта после трансплантации. С возрастом их количества и терапевтический потенциал уменьшаются. Кроме того, МСК при трансплантации в организме показывают достаточно низкую приживляемость, что снижает их эффективность в системе in vivo (Mangi et al., 2003).

3.3.2. Исследование влияния МСК в сердечной ткани новорождённых животных

Существует ли сердечная ткань новорожденных животных кардиомиоциты, способные к делению?

Считается, что после рождения сердце млекопитающих утрачивает способность к делению, а КМЦ находится в стадии постнаточного развития в течение всего периода жизни организма. Однако, вероятно, существует незначительная популяция клеток в миокарде, обладающих свойствами стволовых клеток. По крайней мере, при повреждении сердца в нем обнаруживаются митотически активные кардиомиоциты. Доля их настолько мала, что они не способны участвовать в процессах ремоделирования миокарда (Rumiancev 1982; Nadal-Ginard et al., 2003). Остаётся неясным вопрос, сохраняются ли после рождения в сердечной ткани МСК.

В связи с этим мы решили изучить, могут ли клетки сердца новорожденных животных формироваться в системе in vitro колонии мезенхимальных клеток.

Одной из них была проведена на 20 одно- и двухсуточных новорожденных крысах породы Бистар. В контроле использовали сердечную ткань от 1-месячных крыс. Для выделения мозга юношеских клеток из миокарда сердце новорожденных крыс измельчали на небольшие фрагменты. Затем обрабатывали 0,1% раствором коллагеназы ("Sigma") и 0,1% ДНКазы ("Sigma") в течение 40-45 мин при 37°C. Фракционировали в градиенте фиколло- глик-фраколь ("Pharmacia") с плотностью 1,071 г/см³ и центрифугировали в силиконизирующих пробирках на 20 мин при 20000 г/мин и культивировали в течение 3 суток в полной среде D-MEM, содержащей 20% ЭТА, 40 мкг/мл гентамицина, 200 мкг/мл L-глю-
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Таблица 3.1

<table>
<thead>
<tr>
<th>ЭСК</th>
<th>МСК костного мозга</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пищеварительность</td>
<td>Мультиспецифичность</td>
</tr>
<tr>
<td>Высокая способность к репликации, самоимпрегнация и дифференцировка</td>
<td>Умеренная способность к репликации, самоимпрегнации и дифференцировке</td>
</tr>
<tr>
<td>Глубина проникновения</td>
<td>Нет глубин проникновения</td>
</tr>
<tr>
<td>Высокий риск возникновения тератогенеза</td>
<td>Значительная степень генетической изменчивости</td>
</tr>
<tr>
<td>Умеренные антигенные свойства, требуется применение иммуносупрессорных средств</td>
<td>Высокая биосовместимость, иммуносупрессорные препараты не нужны</td>
</tr>
<tr>
<td>Артериальный потенциал</td>
<td>Артериальный потенциал не выражен</td>
</tr>
<tr>
<td>Этические проблемы</td>
<td>Этический риск не существует</td>
</tr>
<tr>
<td>Возможность изменения путей дифференцировки в многочисленных направлениях</td>
<td>Возможность изменения путей дифференцировки от 5-6 направлений</td>
</tr>
</tbody>
</table>

3.3. Общие принципы кардиомиопластики с использованием клеточных технологий

дим микросреду для прогениторных клеток (Orlic et al., 2001). По сравнению с ЭСК мезенхимальные стволовые клетки имеют ряд преимуществ, некоторые из них приведены в табл. 3.1. Как уже говорилось выше, многие недостатки и проблемы при использовании МСК для клеточной терапии связаны с тем, что ещё недостаточно изучены факторы их дифференцировки in vitro, их ткань можно получить в достаточном количестве для развития клинического эффекта после трансплантации. С возрастом их количество и терапевтический потенциал уменьшаются. Кроме того, МСК при трансплантации в организмах показывают достаточно низкую приживаемость, что снижает их эффективность в системе in vivo (Mangi et al., 2003).

3.3.2. Исследование наличия МСК в сердечной ткани новорожденных животных

Содержит ли сердечная ткань новорожденных животных кардиомиоциты, способные к делению?

Считается, что после рождения сердце млекопитающих утрачивает способность к делению, и КМЦ находится в стадии пограничного развития в течение всего периода жизни организма. Однако, вероятно, существует незначительная популяция клеток, обладающих свойствами стволовых клеток. По крайней мере, при проникновении сердца в них обнаруживаются митотически активные кардиомиоциты. Доля их настолько мала, что они не способны участвовать в процессах ремоделирования миокарда (Rubiniacev, 1982; Nadal-Girard et al., 2003). Отчёта я неизвестен, сохраняют ли после рождения в сердечной ткани МСК.

В связи с этим мы решили изучить, могут ли клетки сердца новорожденных животных формировать систему in vivo клонов мезенхимальных клеток.

Были проведены на 20 одно- и двухсуточных новорожденных крысах породы Бистар. В контроле использовали сердечную ткань от 1-месячных крыс. Для выделения моноклональных клеток из сердца новорожденных крыс взятые на небольшие фрагменты. Затем образовывали 0,1% раствором коллагеназы ("Sigma") и 0,1% DNKазы ("Sigma") в течение 40-45 сек при 37 градусах. Фракционировали в градиенте фиколяганин ("Pharmacia") с плотностью 1,077 г/см³ и центрифугировали в силикокристильных пробирках 20 мин при 20000 об./мин и культивировали в течение 3 суток в полной среде D-MEM, содержащей 20% ЭТС, 40 мкг/мл гентамицина, 200 мкг/мл I-глю-
тамина в культуральных флановах. Среди выделенных клеток 95,1±1,1% приходилось на бластные клетки, 2,0±0,7% — на кардиомиоциты, 2,9±0,5% — на другие типы, включая кардиомиобласты и фетальные клетки. Около 1,0±0,1% кариноцитов находилось в стадии деления.

Клетки культивировали в течение 8–9 суток при 37 °С с заменой полуполной среды через 3 суток. После чего с помощью 0,2% раствора трипсина и версена выделяли прилипшие клетки из фланов и вводили подопытным животным. Из одного сердца в среднем было выделено около (3,6±0,1)×10⁶ мл мононуклеаров (рис. 3.17) при жизнеспособности 95,0±0,2%. Эффективность клонирования сердечной ткани была ниже, чем у костного мозга, и составила около (2,1±0,9)×10⁶. Около 30% клеток в коллекции давали положительную реакцию на железную фосфатазу — фермент, как принято считать, являющийся маркером данной категории прогениторных клеток. Моноклоналы односемянных крыс и взрослых животных также не обладали.

Таким образом, представленные данные свидетельствуют о том, что в сердце новорожденных крыс сохраняется пул МСК, отличных по своим морфологическим характеристикам от способных к делению нормальных, фетальных КМЦ и кардиомиобластов. Эти клетки наделены свойствами МСК, т. к. могут in vitro формировать фибробластоподобные колонии и, по-видимому, обладают карциномарным потенциалом (Shahov et al., 2002).

3.4. Кардиомиопластика острого инфаркта миокарда с помощью МСК...

Для того, чтобы осуществить патогенетическую кардиомиопластику с помощью МСК, мы поставили перед собой ряд задач:
1. Выбрать местоин мезенхимальных стволовых клеток (МСК) и определить их морфофункциональные свойства.
2. Разработать методы изменения дифференцировки МСК в сторону кардиогенеза и антигенеза в культуре ткани in vitro.
3. Выбрать оптимальные сроки, количество, частоту и путь доставки МСК в поврежденный миокард.
4. Разработать критерии оценки эффективности клеточной терапии (электрофизиологические, радиоизотопные, биохимические, функциональные и др. пробы).
Учитывая вышеизложенное, необходимо ответить на ряд принципиальных вопросов:
- Какое количество МСК, способных к кардиогенезу и антигенезу, содержится в используемом материале?
- Как увеличить количество МСК с нужными свойствами?
- Сколько МСК следует вводить для проведения клеточной терапии?
- Когда следует трансплантировать МСК?
- Какой использовать способ доставки МСК в поврежденный миокард, чтобы получить выраженный клинический эффект?

Опыты были проведены на 40 половозрелых крысах-самцах породы "Вистар" (массой 180–220 г) и 50 самках мышей линии СВА. C57Bl/6, гибридах F1 (CBAxC57Bl/6) (массой 18–21 г). Для моделирования постинфарктного кардиосклероза крысам (мыся) под эфирным наркозом в пятом межреберье пересекали два ребра. Затем осуществляли перикардотомию и перевязку в верхней части левой передней нисходящей коронарной артерии. Затем рану последовательно ушивали, предварительно удалив воздух из сердечной сумки. Через 3–18 суток животных повторно наркотизировали, вскрывали сердечную сумму и в сердце в области бассейна левой передней нисходящей коронарной арте-
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

tамина в культивируемых флагоцентрах. Среди выделенных клеток 95,1±1,1% приходилось на лимфоциты, 2,0±0,7% — на кардиомиоциты, 2,9±0,5% — на другие типы, включая кардиомиобласты и фетальные клетки. Около 1,0±0,1% карниоцитов находились в стадии деления.

Клетки культивировали в течение 8–9 суток при 37°С с заменой полной среды через 2 суток. После чего с помощью 0,2% раствора трипсина и версена выделяли прилипшие клетки из флагоцентра и вводили подопытным животным. Из одного сердца в среднем было выделено около (3,6±0,1)x10⁶/мл мозговуюкапелл (рис. 3.17) при жизнеспособности 95,0±0,2%. Эффективность клонирования сердечной ткани была ниже, чем у костного мозга, и составила около (2,1±0,9)x10⁷. Около 30% клеток в колониях давали положительную реакцию на щелочную фосфатазу — фермент, как принято считать, являющийся маркером данной категории генераторных клеток. Мозговуюкапелла одномомесячных крыс и взрослых животных такой способностью не обладали.

Таким образом, представленные данные свидетельствуют о том, что в сердце новорожденных крыс сохраняется пул МСК, отличных по своим морфологическим характеристикам от способных к делению нормальных, фетальных КМЦ и кардиомиобластов. Эти клетки индексированы в МСК, т.к. могут in vitro

формировать фибробластоподобные колонии и, по-видимому, обладают кардиогенным потенциалом (Shahov et al., 2002).

3.4. Кардиомиоплактика острого инфаркта миокарда с помощью МСК...

Для того, чтобы осуществить патогенетическое кардиомиопластику с помощью МСК, мы поставили перед собой ряд задач:
1. Выбрать источник мезенхимальных стволовых клеток (МСК) и определить их морфофункциональные свойства.
2. Разработать методы изменения дифференцировки МСК в сторону кардиогенеза и антигенеза в культуре ткани in vitro.
3. Выбрать оптимальные сроки, количество, частоту и путь доставки МСК в поврежденный миокард.

Учитывая вышеизложенное, необходимо ответить на ряд принципиальных вопросов:
- Какое количество МСК, способных к кардиогенной аномалии дифференцировке, содержится в используемом материале?
- Как увеличить количество МСК с нужными свойствами?
- Сколько МСК следует вводить для проведения клеточной терапии?
- Когда следует трансплантацию МСК?
- Какой использовать способ доставки МСК в поврежденный миокард, чтобы получить выраженный клинический эффект?

Опыты были проведены на 40 половозрелых крысах-самцах породы "Бишта" (массой 180–220 г) и 50 самцах мышей линии СВА, С57Bl/6, гибридах F1 (CBAxC57Bl/6) (массой 18–21 г). Для моделирования постинфарктного кардисклероза икры (мышей) под эфирным наркозом в пятом межреберии пересекали два ребра. Затем осуществляли перикардиотомию и перевязку в верхней части левой передней нисходящей коронарной артерии. Затем рану послойно ушивали, предварительно удалив воздух из сердечной сумки. Через 3–18 суток животных повторно наркотизировали, вскрывали сердечную сумму и в сердце в область бассейна левой передней нисходящей коронарной арте-
ри вводили мезенхимальные стволовые клетки (в разных концентрациях), либо эквивалентное количество питательной среды (контроль — фальс-опыт), после чего рану вновь послойно ушивали. Для оценки электрической стабильности миокарда (ЭСМ), крьс с постинфарктным кардиосклерозом, нарихтировали и вскрывали грудную клетку в области сердца.

Определение ЭСМ осуществляли по измерению порога фибрилляции желудочков (ПФЖ), за который принимали минимальную силу тока (тА), необходимую для возникновения фибрилляции желудочков (Belichard et al., 1994). С этой целью стенку правого желудочка раздражали прямоугольным импульсом тока длительностью 2 мс, наносимым в "управляемую" фазу сердечного цикла через биполярный электрод с помощью модифицированного кардиостимулятора ЭСМ-501 (Россия). Появление фибрилляции желудочков регистрировали на ЭКГ во втором грудном отведении (V2) с помощью усилителя биологических потенциалов УПФ-03, персонального компьютера и пакета прикладных программ.

Через 2.5 месяца сердце извлекали, морфометрическими методами измеряли площадь образовавшегося рубца, после чего материал фиксировали в 10% растворе формлина на фосфатном буфере и проводили гистологические исследования с окраской по Ван-Гизону и Маллори (Волкова, Елеккий, 1952).

Мезенхимальные стволовые клетки выделяли из костного мозга, как было описано в главе 2, с обработкой 5-азацитидином на 3-й сутки по методу S. Makino с соавт. (1999). В результате этого доля клеток с многоклеточной дифференцировкой возрастила с 23,1 до 35,7% (рис. 3.18). Клетки вводили в разных концентрациях и разные сроки после коронарэктомии путем инъекций вокруг зоны инфаркта в объеме 0,2 мл с помощью инсулинового шприца или внутривенно (рис. 3.21).

Выделение моноклональных костей мозга осуществляли из дренажной кости. С помощью шприцев и игл диаметром 0,9 мм материал гомогенизировали на одномодной супелекционной пробы концентрации, пропускали через металлическую сеточку (диаметр ячеек 100 мкм) и собирали в пластиковую центrifужную пробирку. Центрифугировали в течение 15-20 мин при 2000 об./мин на центрифуге ОПУ-3 ("Россия"). Надосадочную жидкость удаляли и заменяли 3-5 мл среды RPMI-1640 с 1% биомоноклональным альбумином (БА) ("Sigma"). Супернатан клеток наслаживали на раствор фильтрованной ("Pharmacis") с плотностью 1,077 г/см3 и центрифугировали 20 мин при 2000 об./мин. Образованное клапаностроительно соединяли с помощью пустышки Пастера и переносяли в новую центрифужную пробирку со средой с 1% БА и два раза путем центрифугирования (2000 об./мин — 20 мин) отмывали от гранул плотности. После чего определяли жизнеспособность моноклональных в камере Горяева с помощью окраски триг.
Глava 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

рии вводили мезенхимальные стволовые клетки (в разных концентрациях), либо эквивалентное количество питательной среды (контроль – фальсификация), после чего рану вновь послойно ушивали. Для оценки электрической стабильности миокарда (ЭМ), крыс с постинфарктным кардиосклерозом, наркотизировали и вскрывали грудную клетку в области сердца.

Определение ЭМС осуществляли по измерению порога фибрилляции желудочков (ПФЖ), за который принимали минимальную силу тока (мА), необходимую для возникновения фибрилляции желудочков (Belichard et al., 1994). С этой целью стенку правого желудочка раздражали прямоугольным импульсом тока длительностью 2 мс, наносимым в "уязвимую" фазу сердечного цикла через биполярный электрод с помощью модифицированного кардиостимулятора ЭС-50-1 (Россия). Появление фибрилляции желудочков регистрировали на ЭКГ во втором грудном отведении (V2) с помощью усилителя биологических потенциалов УПБ-03, персонального компьютера и пакета прикладных программ.

Через 2.5 месяца сердце извлекали, морфометрическими методами измеряли площадь образовавшегося рубца, после чего материал фиксировали в 10% растворе формалина на фосфатном буфере и проводили гистологические исследования с окраской по Ван-Гизону и Мальори (Волкова, Елцкий, 1982).

Мезенхимальные стволовые клетки выделяли из костного мозга, как было описано в главе 2, с обработкой 5-азацитидином на 3-й сутки по методу S. Makino с соавт. (1999). В результате этого доля клеток с многоядерной дифференцировкой возрастила с 23,1 до 35,7 % (рис. 3.18). Клетки вводили в разных концентрациях и разные сроки после коронарокюклюзии путем вливания вокруг зоны инфаркта в объеме 0,2 мл с помощью интубационного шприца или внутривенно (рис. 3.21).

Выделение мононуклеаров костного мозга осуществляли из берцовой кости. С помощью шприцов и игл диаметром 0,9 мм материал гомогенизировали на однородную суспензию, пропускали через металлическую сеточку (диаметр ячеек 100 мкм) и собирали в пластиковую центрифужную пробирку. Центрифугировали в течение 15–20 мин при 2000 об./мин на центрифуге ОПН-3 ("Россия"). Надосадочную жидкость удаляли и заменяли 3–5 мл среды RPMI-1640 с 1% библиоцитарным альбумином (БА) ("Sigma"). Суспензию клеток насыщали на раствор фиколл-гликол ("Pharmacia") с плотностью 1,077 г/см3 и центрифугировали 20 мин при 2000 об./мин. Образовавшийся клеточный осадок собирали с помощью пипетки Пастера и переносили в новую центрифужную пробирку со средой с 1% БА и два раза путем центрифугирования (2000 об./мин – 20 мин) отмывали от гранул плотности. После чего определяли жизнеспособность мононуклеаров в камере Гоняева с помощью окраски три-

Рис. 3.18. Культура клеток костного мозга мышей линии СВА на 14-е сутки исследования: a – снимки (окраска азур-Б-эозином, ув. 900x); b – панцирный микроскоп (с использованием монохроматических антител против α-актина, ув. 1000x).

Рис. 3.15. 14-сухотная культура мононуклеаров костного мозга крысы в системе культивирования in vitro по А.Я. Фридеништейну, К.С. Лалкин (1973) с модификацией. Обработка кардиомиоцитов не производилась. Клетки моноцитов, лимфоцитов и гематологических клеток в культуре ткани не было обнаружено. Окраска азур-Б-эозин, ув. 900x.
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Рис. 3.20. 7-дневная культура миокардиоцитов костного мозга мыши линии СМА в полувойдной среде для выявления их гемопотенциальных потенций. На микрофотографии представлена колония эритропоэтического типа. Окраска: а) зозином, б) 200х.

Рис. 3.21. Внутрикапельная (а) и внутриклеточная (б) инъекция МСК мышам линии С57/16 после коронаротомии.

Пановым синим и подсчитывали клеточность (Гольцберг и др., 1992). Часть материала использовалась для трансплантации. Другую исследовали на способность формировать кроветворные колонии, для чего использовали метод культивирования в 0,9% метиленобизо, содержащей 80% среды ДИ-МЕ, 20% ЭТС, 250 мкг/мл глюкозы, 100 ЕД/мл пенициллина, 100 мкг/мл стрептомицина, 1 ЕД/мл эритропоэтина, 2 мг/мл ГМ-КСФ, 40 мг/мл талассемии (все реактивы от "Sigma"). Клетки культивировали при 5% CO2, 100% влажности, 37 ºС в течение 7-14 суток.

Материал фиксировали в парах формалина и окрашивали азур-1-гозином или проводили цитохимическую реакцию на щелочную фосфатазу, пероксидазу, кислую фосфатазу, гемоглобин (Гольцберг и др., 1992).

Кроме того, из сердечной ткани готовили препараты для электронной микроскопии путем фиксации в 2% растворе глютарового альдегида до окраски осеменем, уранилациатом, окисления азидом и приготовления срезов по общепринятой методике (Унки, 1975) или проводили стандартные гистологические исследования ткани миокарда по Ван-Гизону и окраску гематоксилином-эозином.

В результате проведенных исследований было установлено, что при моделировании острого инфаркта миокарда на фоне введения МСК, но не моноцитов костного мозга, выживаемость животных составила 100%, тогда как без трансплантации стволовых клеток этот показатель составил 77,3% (P<0,05).

При этом не происходило развития гипертрофии миокарда и развития сердечной недостаточности, а площадь рубца уменьшилась на 31-44% (рис. 3.22).

Следует подчеркнуть, что эффективная доза МСК составила (0,3-0,6)×10^6 мезенхимальных стволовых клеток на 11-е сутки после коронаротомии (рис. 3.25). По результатам электронно-микроскопических, гистологических, функциональных и морфометрических исследований установлено, что оптимальный срок для трансплантации МСК лежит между 7 и 18-ми сутками после коронарескулации. Ранее в миокарде преобладают искривленные процессы, вызывающие гибель клеток. Позднее — фор-
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Рис. 3.20. 7-дневная культура миокарда крыс костного мозга мышей линии SJL в полуводной среде для выявления их геномических потенций. На микрофотографии представлена колония эритромицидного типа. Окраска азур II-эозином, ув. 200.

Рис. 3.21. Внутрибрюшинная (а) и внутриглазничная (б) инъекция МСК мышам линии C57Bl/6 после коронароксилозии

Азур II-эозином или проводили цитохимическую реакцию на щелочную фосфатазу, пероксидазу, кислую фосфатазу, гемоглобин (Гольдберг и др., 1992).

Кроме того, из сердечной ткани готовили препараты для электронной микроскопии путем фиксации в 2% растворе глютаратового сцингета по окраске оснёв, ураном, заключения в арахид и приготовления срезов по общепринятой методике (Уики, 1975) или проводили стандартные гистологические исследования ткани миокарда по Ван-Гизону и окраску гематоксилином-эозином.

В результате проведенных исследований было установлено, что при моделировании острового инфаркта миокарда на фоне введения МСК, но не моноклоналов костного мозга, выживаемость животных составила 100%, тогда как без трансплантации стволовых клеток этот показатель составил 77,3% (P<0,05).

При этом не происходило развития гипертрофии миокарда и развивалась сердечная недостаточность, а площадь рубца уменьшалась на 31–44% (рис. 3.22).

Следует подчеркнуть, что эффективная доза МСК составила (0,3–0,6)×10^6 лезвийных стволовых клеток на 1-е сутки после коронароксилозии (рис. 3.25). По результатам электронно-микроскопических, гистологических, функциональных и морфометрических исследований установлено, что оптимальный срок для трансплантации МСК лежит между 7 и 18-ми сутками после коронароксилозии. Ранее в миокарде преобладают некрозные процессы, вызывающие гибель клеток. Позднее — фор-

Рис. 3.22. Сердце дикой крысы (порода Бистер) (1) и через 2,5 месяца после коронароксилозии без (2) и с введением МСК (3)
Глава 3. Инфаркт миокарда. Кardiомиопластик инфаркта миокарда...

3.4. Кардиомиопластика острого инфаркта миокарда с помощью MCK...

Рис. 3.23. Порог фибрилляции миокарда крыс породы Вестер после коронарной стенок и введением MCK (* - P < 0,05 по сравнению с интактными животными, ** - P < 0,05 по сравнению с контролем, введением 5*10^6 моноклональных клеток костного мозга)

Рис. 3.24. Площадь рубца в зависимости от сроков введения MCK (0,3*10^6) и моноклональных клеток костного мозга (5*10^6, 12-е сутки) на 3, 7, 12 и 18-е сутки после коронарной стенок (*) - P < 0,05. Крысы породы Вестер

Рис. 3.25. Площадь рубца в миокарде мышей гамии после введения MCK на 11-е сутки после коронарной стенок (*) - P < 0,05

Рис. 3.26. Электронная микроскопия ткани миокарда после коронарной стенок и трансплантации миокарда моноклональных клеток костного мозга. На микрофотографии представлен активно фагоцитирующий макрофаг, № 7202x

смутуровали процесс появления в поврежденном миокарде макрофагов, активно фагоцитирующих клеточные обломки и ангиогенез (рис. 3.26, 3.27, табл. 3.2).

Если моноклональные клетки костного мозга содержали достаточное число кроветворных колониеобразующих единиц (KOE), то адаптированные структуры стимулировали процесс появления в поврежденном миокарде макрофагов, активно фагоцитирующих клеточные обломки и ангиогенез (рис. 3.26, 3.27, табл. 3.2).
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Рис. 3.23. Порог срабатывания миокарда у крыс породы Бистер после коронарэкспозиции и введения МСК (* — P < 0.05 по сравнению с интактными животными, ** — P < 0.01 по сравнению с контролем, введением 5×10⁶ мононуклеаров костного мозга)

Рис. 3.24. Площадь рубца в зависимости от сроков введения МСК (0,3×10⁶) и моноклональных моноклональных клеток костного мозга (3×10⁶, 12-е сутки) на 3, 7, 12 и 18-е сутки после коронарэкспозиции (* — P < 0.05). Крысы породы Бистер

Рис. 3.25. Площадь рубца в миксарде мышей крыс после введения МСК на 11-е сутки после коронарэкспозиции (* — P < 0.05)

Рис. 3.26. Электронная микроскопия ткани миокарда после коронарэкспозиции и трансплантации в ткань-среде моноклональных клеток костного мозга. На микрофотографии представлен активно фагоцитирующий макрофаг. У. 7200x

стимулировали процесс появления в поврежденном миокарде макрофагов, активно фагоцитирующих клеточные обломки и ангиогенез (рис. 3.26, 3.27, табл. 3.2). Если моноклональные клетки костного мозга содержали достаточное число кроветворных колониообразующих единиц (КОЕ), то ад-
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Рис. 3.27. Электронная микроскопия ткани миокарда после коронаропластики и трансплантации в ткани сердца мононуклеарных клеток костного мозга. На микрофотографии представлен необъясненный клапан. Ув. 5800х

Влияние коронаропластики и введения МСК или мононуклеаров костного мозга на количество микрососудов в миокарде крыс породы Вистер на 24-е сутки опыта (Х=±, РI)

<table>
<thead>
<tr>
<th>Здоровые животные</th>
<th>После коронаропластики (опытная группа)</th>
<th>После коронаропластики и введения МСК</th>
<th>После коронаропластики и введения МКМ</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>41,3±3,3%</td>
<td>75,8±4,1%*</td>
<td>55,9±1,7%*</td>
</tr>
</tbody>
</table>

Примечание: * - P<0,05 по сравнению с опытной группой.

Рис. 3.28. Двигательная активность в периинфарктной зоне миокарда на фоне введения МСК после коронаропластики. Электронная микроскопия ув. 5800х

3.4. Кардиомиопластика острого инфаркта миокарда с помощью МСК...

Таблица 3.3

<table>
<thead>
<tr>
<th>Количество вводимых клеток, 10⁴/мл</th>
<th>КОЭк x10⁴</th>
<th>КОЭф x10⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мононуклеары</td>
<td>Адгезирующие клетки</td>
<td>Мононуклеары</td>
</tr>
<tr>
<td>0,1</td>
<td>12,1±1,6*</td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>34,3±2,9*</td>
<td>0,3±0,1</td>
</tr>
</tbody>
</table>

Примечание: * - P<0,05 для КОЭк, ** - P<0,01 для КОЭф.

Рис. 3.29. Двигательная активность в периинфарктной зоне миокарда на фоне введения МСК после коронаропластики. Электронная микроскопия ув. 5800х

На 11-е сутки после коронаропластики в ткани регенерирующего миокарда наблюдался деления КМЦ (рис. 3.28). Внутривенное введение в наших опытах как МСК, так и мононуклеаров костного мозга, не вызвало каких-либо достоверных позитивных изменений со стороны ткани миокарда и его функциональных свойств после коронаропластики в опытах как на мышах, так и на крысах.

Таким образом, представленные данные свидетельствуют о том, что моноклональные мезенхимальные клетки, не мононуклеары костного мозга, способны в условиях моделирования острого инфаркта миокарда и кардиосклероза восстанавливать функцию поврежденного миокарда, способствовать инволюции...
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Влияние коронарокаюклюзии и введения МСК или мононуклеаров костного мозга на количество микрососудов в миокарде крыс породы Бистер на 24-е сутки опыта (Х=§, Р1)

<table>
<thead>
<tr>
<th>Здоровые животные</th>
<th>После коронарокаюклюзии (опытная группа)</th>
<th>После коронарокаюклюзии и введения МСК</th>
<th>После коронарокаюклюзии и введения МКМ</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>41,3±3,3%</td>
<td>75,8±4,1%</td>
<td>55,9±1,7%</td>
</tr>
</tbody>
</table>

Примечание: * — Р<0,05 по сравнению с опытной группой.

Газирующие клетки 14-суточной культуры, напротив, практически были лишены гемопоэтических клеток-предшественников. С другой стороны, для мононуклеаров костного мозга статистически значимых значений по отношению к КОЕф также не было, т.е. они не содержали МСК (табл. 3.3).

В результате трансплантации МСК подопытным животным на 11-е сутки после коронарокаюклюзии в ткани генерирующего миокарда наблюдались деление КМЦ (рис. 3.28).

Внутрикапиллярное введение в наших опытах как МСК, так и мононуклеаров костного мозга, не вызывало каких-либо достоверных позитивных изменений со стороны ткани миокарда и его функциональных свойств после коронарокаюклюзии в опытах как на мышах, так и на крысах.

Таким образом, представленные данные свидетельствуют о том, что костномозговые гемопоэтические клетки, но не мононуклеары данной культуры, способны в условиях моделирования остросного инфаркта миокарда и кардиосклероза восстанавливать функцию поврежденного миокарда, способствовать инволюции

3.4. Кардиомиопластика острого инфаркта миокарда с помощью МСК...

Таблица 3.3

Количество кроветворных и фибробластоподобных колониообразующих единиц (КОЕк, КОЕф), выявляемых in vitro инкубации мононуклеаров костного мозга мини-14-суточной культуры агрегирующих клеток костного мозга мышей линии CBA (Х=§, Р1)

<table>
<thead>
<tr>
<th>Количество вводимых клеток, ×10⁴/мл</th>
<th>КОЕк х10⁴</th>
<th>КОЕф х10⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Мононуклеары</td>
<td>Агрегирующие клетки</td>
</tr>
<tr>
<td>0,1</td>
<td>12,1±1,6*</td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>34,3±2,9*</td>
<td>0,3±0,1</td>
</tr>
</tbody>
</table>

Примечание: * — Р<0,05 для КОЕк, ** — Р<0,05 для КОЕф.

Рис. 3.26. Дейдвейш кардиомиоцит в перинфарктной зоне инфаркта на фоне введения МСК, после коронарокаюклюзии. Электронная микроскопия, ув. 5800х
рубцовой ткани и препятствовать развитию гипертрофии миокарда. Микронуклеарные костного мозга стимулируют воспалительные реакции в поврежденном миокарде в процессе антигенеза.

3.5. ГИПОТЕЗА ОБ УЧАСТИИ МСК В РАЗВИТИИ АТЕРОСКЛЕРОЗА

Атеросклеротическая бляшка представляет собой морфологический субстрат данного заболевания. Согласно современным представлениям, в её формировании важную роль играют как нарушения липидного обмена, так и изменения со стороны сосудистой системы. Следует отметить, что высокое содержание холестерина в крови, необходимо убедиться у 50% лиц, страдающих атеросклерозом (Шютц, 1966). Тем не менее, зона так называемой липидной инфилтрации интимы сосудов могут являться предвестниками возникновения бляшек. Именно в этих участках происходит миграция моноцитов в липидные полоски, где они трансформируются сначала в макрофаги, имеющие рецепторы к ЛПНП, а затем — в пенистые клетки. Считается, что пенистые клетки способны выделять биоактивные вещества, которые вызывают химический гладкомышечных клеток из глубоких участков сосудов. Хотя при этом нельзя исключить и того, что СГМК могут происходить из мезенхимальных стволовых клеток, которые также способны входить в состав стенок сосудов или мигрировать из крови, особенно на фоне воздействия экстремальных факторов и стресса. В любом случае возникновение агрегатов гладкомышечных клеток приводит к формированию новых вычёрнившихся эпителия в просвет сосудов. Дальнейшая эволюция бляшки осуществляется за счет образования в них фиброластов, секретирующих коллаген и эластические волокна (рис. 3.29). Образование объектных структур на стенках сосудов приводит к изменениям ламинарного потока крови, который становится турбулентным. Возникновение при этом зависит от сопровождающегося агрегацией эритроцитов и возникновением тромбов. По своей сути агрегацию клеток крепости крови можно расценивать как начальный этап локального тромбоза и кровоизлияния. Спустя годы, как хорошо известно, способны к формообразованию с образованием эпителиальных очагов костеобразования — остеонов (Меерсон, 1968; Миронов и др., 1997).

Как происходит процесс насыщения поверхностного слоя бляшки солями кальция и фосфора — остаётся не совсем понятным. Хорошо известен тот факт, что при формировании атеросклеротической бляшки на заключительном этапе ее развития в ее составе определяются кальций и фосфор. Химический состав, приводимый различными авторами, не позволяет сделать окончательный вывод, к какому классу биологических КФ они относятся. Это принципиальный вопрос, так как ответ на него позволит определить, какой гистогенетический линии относятся клетки, входящие в состав бляшки, и на основании полученных данных определить патогенез всего процесса.

В связи с этим мы провели эксперименты, в которых исследовали состав минеральной составляющей кальцифированных атеросклеротических бляшек, полученных из аорты во время проведения патологоанатомического вскрытия. Средний возраст умерших лиц составлял 60—70 лет. Материал был взят преимущественно у мужчин.

Индивидуальные атеросклеротические бляшки помещали в фарфоровые тигли и подвергали термической обработке в муфельной печи при 800 °C до полного удаления органических включений. После чего материал измельчали до получения однородного порошка. Его состав анализировали с помощью рентгеновского рефлектометра "ДРОН-3М". Условия проведения съемки: использовали катод "Cu", при напряжении 35 кВ и силье
Глава 3. Инфаркт миокарда. Кардиомиопатия инфаркта миокарда...

рубоцовой ткани и препятствовать развитию гипертрофии миокарда. Мононуклеары костного мозга стимулируют воспалительные реакции в поврежденном миокарде и процессы ангиогенеза.

3.5. ГИПОТЕЗА ОБ УЧАСТИИ МСК В РАЗВИТИИ АТЕРОСКЛЕРОЗА

Атеросклеротическая бляшка представляет собой морфологический субстрат данного заболевания. Согласно современным представлениям, её формирование важную роль играют нарушения липидного обмена, так и изменения со стороны сосудистой системы. Следует отметить, что высокое содержание холестерина в крови отсутствует у 50% лиц, страдающих атеросклерозом (Шутов, 1966). Тем не менее, зоны так называемой липидной инфильтрации интимы сосудов могут являться предвестниками возникновения бляшек. Именно в этих участках происходит миграция моноцитов в липидные нитеи, где они трансформируются сначала в макрофаги, имеющие рецепторы к ЛПН, а затем — в пенистые клетки. Считается, что пенистые клетки способны выделять биоактивные субстанции, которые вызывают химический гладкомышечных клеток из глубоких участок сосудов. Хотя при этом нельзя исключить и того, что СГМК могут происходить из мезенхимальных стволовых клеток, которые также способны входить в состав стенок сосудов или мигрировать из крови, особенно на фоне воздействия экстремальных факторов и стресса. В любом случае возникновение агрегации гладкомышечных клеток приводит к формированию небольших вылуплеений эпителия в просвет сосудов. Дальнейшая эволюция бляшки осуществляется за счет появления в них фиброластов, секретирующих коллаген и эластические волокна (рис. 3.29).

Образование объемных структур на стенках сосудов приводит к изменение лиминарного потока крови, который становится турбулентным. Возникновение при этом завихрений сопровождается агрегацией эритроцитов и возникновением тромбов. По своей сути, агрегацию клеток крови можно расценивать как начальный этап локального тромбоза и кровоизлияния. Сгустки крови, как хорошо известно, способны к формообразованию с образованием эмболических очагов костообразования — остеоидов (Меерсон, 1968; Миронов и др., 1997).

Как происходит процесс насыщения поверхностного слоя бляшки солями кальция и фосфора — остается не совсем понятным. Хорошо известен тот факт, что при формировании атеросклеротической бляшки на заключительном этапе её развития в её составе определяются кальций и фосфор. Химический состав, приводимый различными авторами, не позволяет сделать окончательный вывод, к какому классу биологических КФ они относятся.

Это принципиальный вопрос, так как ответ на него позволяет определить, к какой гистогенетической линии относится клетки, входящие в состав бляшек, и на основании полученных данных определить патогенез всего процесса.

В связи с этим мы провели эксперименты, в которых исследовали состав минеральной составляющей кальцифицированных атеросклеротических бляшек, полученных из аорты во время проведения патологоанатомического вскрытия. Средний возраст умерших лиц составлял 60—70 лет. Материал был взят преимущественно у мужчин.

Индивидуальные атеросклеротические бляшки помещали в фарфоровые тигли и подвергали термической обработке в муфельной печи при 800 °C до полного удаления органических включений. После чего материал измельчали до получения однородного порошка. Его состав анализировали с помощью рентгеновского рефлектометра "ДРОН-ЗМ". Условия проведения съемки: использовали катод "Cu", при напряжении 35 кВ и силе...
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

tока 25 мА, τ = 1 с., скорости съемки 2 о/мин, чувствительности 1x10^3. Данные обрабатывались с помощью программы "Origin"

![Graph](attachment://graph.png)

Рис. 3.30. Спектр минерального состава атеросклеротической бляшки, выделенной из эндартериоэктомии, проведенной в ОФП. Данный спектр характерен для высокоамплитудного гидроксиapatита

<table>
<thead>
<tr>
<th>Образец</th>
<th>Ф-апатит</th>
<th>Г-апатит</th>
<th>КД-апатит</th>
</tr>
</thead>
<tbody>
<tr>
<td>(15-876 ASTM)</td>
<td>(9-432)</td>
<td>(35-180)</td>
<td></td>
</tr>
<tr>
<td>d=8,566 12theta (CuKα)=10,33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 3.31. Сравнительный спектр тестируемого образца с эталонами ASTM: Ф-апатит = фосфат-апатит; Г-апатит = гидроксиapatит; КД-апатит. Хорошо видно, что исследуемая ткань соответствует гидроксиapatиту

3.5. Гипотеза об участии МСК в развитии атеросклероза

Pro 7.0". Сравнение рентгенограмм осуществляли по стандартам ASTM.

В результате проведенных исследований было установлено, что основным компонентом атеросклеротических бляшек был высокоамплитудный гидроксиapatит (98,3±1,2) (рис. 3.30, 3.31).

Он не является функционально активным, его активность в работе, как и в работе, не уменьшается, а увеличивается, что позволяет предположить, что при атеросклерозе в бляшку повреждаются МСК и под действием специфического микрокружения начинают дифференцироваться в остеоидную ткань.

Ранее нами при изучении поведения кальцификационных (КФ) биоматериалов для нужд травматологии и ортопедии была высказана гипотеза о том, что локалы остеиндуцируют (Shahov et al., 2000). В соответствии с выдвинутым предположением, феномен эктопического образования остеогенной ткани...
тока 25 mA, т = 1 с., скорости съёмки 2°/мин, чувствительности 1x10^3. Данные анализировали с помощью программы "Origin.

Рис. 3.30. Спектр минерального состава атеросклеротической бляшки, выделенной из эмб- ты И., 76 лет. Данный спектр характерен для высокоаналитического гидроксиа- лапатита

Рис. 3.31. Сравнительный спектр тестировочного образца с эталонами ASTM: Ф-апатит — фо- рирован; Г-апатит — гидроксиапатит; КА-апатит — карбоксиапатит. Хорошо видно, что иссле- дуемая ткань соответствует гидроксиапатиту

3.5. Гипотеза об участии МСК в развитии атеросклероза

Про 7.0°. Сравнение рентгенограмм осуществляли по стандартам ASTM.

В результате проведенных исследований было установлено, что основным компонентом атеросклеротических бляшек был высокоаналитический гидроксиапатит (98,3±1,2) (рис. 3.30, 3.31).

Он не является ни фторапатитом, ни карбонатной формой гидроксиапатита, на что указывают данные сравнительного анализа тестируемого материала и вышеуказанных соединений. Гидроксиапатит в организме встречается преимущественно в костной ткани. Иногда он выявляется в зонах эктопического ко- стеобразования, возникающих, например, при травмах, опера- циях в области гематом (Кож, 1963; Миронов и др., 1997). Эти данные позволяют предположить, что при атеросклерозе в бляш- ку падают МСК и под действием специфического микроокру- жения начинают дифференцироваться в остеонную ткань.

Ранее нами при изучении поведения кальцификационных (Кф) биоматериалов для нужд травматологии и ортопедии была выс- казвана гипотеза о том называемой опосредованной остеоиндукции (Shahov et al., 2000). В соответствии с выдвинутым предпо- ложением, феномен эктопического образования остеогенной тка-
ни на КФ поверхностях при имплантации их в мягкие ткани представляет собой опосредованный механизм. Сами по себе КФ не обладают прямыми остеоиндуктивными свойствами. В частности, при введении под кожу лабораторных животных КФ адсорбируют протеины, ростовые факторы и штампы, а также экзокриномодируют с макрофагами, лимфоцитами, создавая специфическое микроокружение для прикрепления МСК, находящихся в окружающей ткани. В результате происходят их рекрутирование в направлении остеогенеза со стимуляцией процессов пролиферации и дифференцировки, образованием костной ткани (рис. 3.32).

Следует подчеркнуть, что данный феномен проявляется не на всех КФ материалах, а только при соблюдении определенных условий, часть из которых мы уже отметили. Более детальную информацию по данной проблеме можно найти в нашей монографии, вышедшей в 2001 г. (Карпов, Шахов, 2001).

Следует отметить, что если в атеросклеротической бляшке образуются высококристаллические частицы гидроксиапатита, то такой процесс становится необратимым, т.к. константа растворения данной формы кальцияфосфатов в биологических жидкостях, к каковому относится и кровь, практически равна нулю (LeGeros, 1981).

Для проверки предположения о том, что МСК способны формировать на атеросклеротической бляшке остеоид, мы провели серию экспериментов и тестировали фрагменты аорты, полученные после вскрытия у больных с атеросклерозом. Использовали неповрежденные и поврежденные участки аорты, которые окисляли от прилегающих тканей от одного и того же больного. Вырезали небольшие квадраты со сторонами около 0,7х0,9 см.

Костный мозг получали из бедренной кости самцов мышей линии C57Bl/6 путем вымывания средой D-MEM с 5% ЭТС ("Sigma") с помощью шприца. На внутренней поверхности участка аорты формировали из костного мозга небольшой агрегат (рис. 3.33) и имплантировали под кожу другой партии мышей той же линии (рис. 3.34).

Через 1-1,5 месяца после имплантации животных забивали, острая извлекали исследуемые участки аорты, проводили морфометрию площади образовавшегося из костного мозга очага в опытной (поврежденной атеросклерозом, бляшками) и контрольной (неповрежденной атеросклерозом) группах (рис. 3.35). Из результатов исследований, представленных в табл. 3.4, видно, что на участках с явными признаками атеросклероза процесс эктопического костеобразования идет более интенсивно и превышает таковой у контрольной группы в 2,3 раза.
ни на КФ поверхностях при имплантации их в мягкие ткани представляет собой опосредованный механизм. Сами по себе КФ не обладают прямыми остеиндуктивными свойствами. В частности, при введении под кожу лабораторных животных КФ адсорбируют протеины, ростовые факторы и шитокины, а также взаимодействуют с макрофагами, лимфоцитами, создавая специфическое микроокружение для прикрепления МСК, находящихся в окружающей ткани. В результате происходит их рекрутирование в направлении остеогенеза со стимуляцией процессов профикации и дифференцировки, образованием костной ткани (рис. 3.32).

Следует подчеркнуть, что данный феномен проявляется не на всех КФ материалах, а только при соблюдении определенных условий, часть из которых мы уже отметили. Более детальную информацию по данной проблеме можно найти в нашей монографии, вышедшей в 2001 г. (Карлов, Шахов, 2001).

Следует отметить, что если в атеросклеротической бляшке образуются высококристаллические частицы гидроксиapatита, то такой процесс становится необратимым, т.к. константа растворения данной формы кальцифосфатов в биологических жидкостях, к каковы относятся и кровь, практически равна нулю (LeGeros, 1981).

Для проверки предположения о том, что МСК способны формировать на атеросклеротической бляшке остеоид, мы провели серию экспериментов и тестируя фрагменты аорты, полученные после вскрытия у больных с атеросклерозом. Использовали неповрежденные и поврежденные участки аорты, которые очищали от прилегающих тканей от одного и того же больного. Вырезали небольшие квадраты со сторонами около 0,7 х 0,9 см.

Костные мозги получали из бедренной кости самцов мышей линии C57B/6 путем вымывания средой D-MEM с 5% ЭТС ("Sigma") с помощью шприца. На внутренней поверхности участка аорты формировали из костного мозга небольшой агрегат (рис. 3.33) и имплантировали под кожу другой партии мышей той же линии (рис. 3.34).

Через 1–1,5 месяца после имплантации животных забивали, осторожно извлекали исследуемые участки аорты, проводили морфометрию площади образовавшегося из костного мозга очага в опытной (поврежденной атеросклерозом, бляшками) и контрольной (неповрежденной атеросклерозом) группах (рис. 3.35).

Из результатов исследований, представленных в табл. 3.4, видно, что на участках с явными признаками атеросклероза процессы

Рис. 3.33. Фрагменты аорты на одном из которых нанесен фрагмент костного мозга мыши линии C57B/6 перед имплантацией

Рис. 3.34. Момент введения костного мозга мыши линии C57B/6, расположенного на атеросклеротической "бляшке" фрагмента аорты, под кожу реципиента

эктоцеллюлярного костеобразования идет более интенсивно и превышает таковой у контрольной группы в 2,3 раза.

138

139
Глава 3. Инфаркт миокарда. Кардомиопатия инфаркта миокарда...

Рис. 3.35. На рисунке виден фрагмент аорты (с признаками атеросклероза) на которой в виде бугристой поверхности выросла эпителиальная остеосклерозная ткань из костного мозга мышей линии C57Bl/6 на 30-е сутки после имплантации.

Таблица 3.4

<table>
<thead>
<tr>
<th>№/№</th>
<th>Группа животных</th>
<th>S костного мозга (мм²)</th>
<th>S эктопического очага (мм²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Опыт</td>
<td>8,1±6,3</td>
<td>28,5±1,1*</td>
</tr>
<tr>
<td>2</td>
<td>Контроль</td>
<td>8,1±6,3</td>
<td>12,3±2,5*</td>
</tr>
</tbody>
</table>

Примечание: * – значения между площадью образовавшегося эктопического очага на участках аорты с атеросклерозом и без него, равным P<0,05.

Часть материала подвергали гистологическому исследованию после декальцификации с окраской гематоксилином по стандартной методике. В результате исследований было обнаружено, что на поверхности атеросклеротической бляшки формируется нередко остеоидная ткань (рис. 3.36).

Образование костной ткани в меньшей степени на "неповрежденном" участке аорты может быть вызвано тем, что и эта территория была поражена атеросклеротическим процессом, который морфологически пока еще никак не проявлялся.

Интересно, что высококристаллические микрочастицы гидроксиапатита при помещении их в среды, имитирующие состав плазмы крови до (а) и после (б) 4-суточной инкубации при 37°С. Ил. 40х.

Рис. 3.36. Гистологический препарат образования нервной остеоидной ткани, выросшей из костного мозга мышей линии C57Bl/6 на поверхности участка аорты, пораженной атеросклеротической бляшкой на 30-е сутки исследования. Окраска гематоксилином, ил. 40х.

Рис. 3.37. Кристаллы гидроксиапатита помещены в солевую среду, имитирующую состав плазмы крови до (а) и после (б) 1-суточной инкубации при 37°С. Ил. 40х.

Таким образом, представленные данные достаточно убедительно свидетельствуют о том, что кальциофосфаты на поверхности атеросклеротической бляшки, возможно, на вовлечении
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

Рис. 3.35. На рисунке виден фрагмент аорты (с признаками атеросклероза) на котором в виде буристой поверхности выделяется атеросклеротическая ткань из костного мозга мышей линии C57Bl/6 на 30-е сутки после имплантации.

Таблица 3.4

Площадь исходного костного мозга и эктопического очага (S), образовавшегося из костного мозга мышей линии C57Bl/6, очага в опытной (участок атеросклеротической бляшки) и контрольной (без морфологических признаков атеросклероза) группах, на поверхности фрагментов аорты на 30-е сутки исследований (кмг)

<table>
<thead>
<tr>
<th>№/Н</th>
<th>Группа животных</th>
<th>S костного мозга (мм²)</th>
<th>S эктопического очага (мм²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Опыт</td>
<td>8,1±6,3</td>
<td>28,5±1,1*</td>
</tr>
<tr>
<td>2</td>
<td>Контроль</td>
<td>8,1±6,3</td>
<td>12,3±2,5*</td>
</tr>
</tbody>
</table>

Примечание: * — значение между площадью образовавшегося эктопического очага на участке аорты с атеросклерозом и без него, равным P<0,05.

Часть материала подвергали гистологическому исследованию после декальцификации с окраской гематоксилином по стандартной методике. В результате исследований было обнаружено, что на поверхности атеросклеротической бляшки формируется нередко остеоидная ткань (рис. 3.36).

Образование костной ткани в меньшей степени на "неповрежденном" участке аорты может быть вызвано тем, что в этой территории была поражена атеросклеротическим процессом, который морфологически пока еще никак не проявлялся.

Интересно, что высококристаллические микрочастицы гидроксиapatита при помещении их в среды, имитирующие состав биологических жидкостей, приводят к развитию процесса эндогенной кристаллизации с ростом частиц и образованием крупных кристаллов и агрегатов кальцифосфатов (Карлов, Шахов, 2001) (рис. 3.37).

Таким образом, представленные данные достаточно убедительно свидетельствуют о том, что кальцифосфаты на поверхности атеросклеротической бляшки, возможно, на вовлечённой...
Глава 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда...

в этот процесс поврежденной стенке аорты, могут взаимодействовать с мезенхимальными стволовыми клетками и включать процесс эктопического костеобразования. Очевидно, что этот процесс осуществляется за счет процессов опосредованной остеоиндукции (Шахов и др., 1993). Однако мы не знаем, в какой момент своего развития атеросклеротическая бляшка становится привлекательной для ширикулирующих МСК. Может быть, именно из-за того, что данная категория родоначальных клеток способна осаждаться на атеросклеротической бляшке, существует своеобразный запрет на выход МСК из костного мозга в кровь, т.к. в обычных условиях они в ней не обнаружены. Если это так, то тогда все манипуляции со стволовыми клетками, аовидными в сосудистое русло или появляющимися там в результате мобилизации МСК, например, типа КСФ, чрезвычайно опасны для пациентов с атеросклерозом.

Процесс остеоидных превращений в склеротической бляшке позволяет во многом объяснить, почему у мужчин атеросклероз развивается раньше и часто бывает интенсивнее по сравнению с женщинами. Хорошо известен тот факт, что эстрогены снижают содержание кальция в крови, тогда как тестостерон, напротив, повышает. Поэтому женщины чаще болеют атеросклерозом, чем мужчины. Как показывают наши исследования, кальций необходим не только для построения костей, но и бляшек. Учитывая это, возможно, имеется необходимость пересмотра тактики лечения атеросклероза, по крайней мере, у мужчин, с помощью, например, комплексов или гормональных препаратов нового поколения.

ОБЩЕЕ ЗАКЛЮЧЕНИЕ

Конец XX века ознаменовался, по мнению журнала Science (1999), тремя принципиальными открытиями в области биологии и медицины:
1. Расшифровка двойной спирали ДНК.
2. Определение генома человека.
3. Открытие ЭСК человека и животных.

Из эпохи классической медицины, наивысшим достижением которой в области кардиологии являлась пересадка сердца и даже сердечно-легочных комплексов, в результате последнего открытия мы плавно перешли в эру регенераторной биомедицины. Чрезвычайная пластичность стволовых клеток, их способность к дифференцировке в разнообразные клеточные линии и к дальнейшему самовоспроизводству сулит в ближайшем будущем огромные перспективы. В кардиологии пока еще делается первые шаги в этом направлении. Они ограничиваются единичными попытками реконструкции поврежденного миокарда и сосудов с помощью стволовых клеток. Следующим этапом, очевидно, станет построение органов и структурно-функциональных единиц, которые уже сами по себе являются сложными микросистемами, способными анализировать ситуацию и выполнять простейшие операции, требующие принятия правильных решений. В какой-то мере этим критериям соответствуют выявленные нами мезенхимальные островки. В конечном счете, эволюция регенераторной и клеточной медицины подразумевает полную реконструкцию не только клапанов, желудочков, аорты, ветвей ритма, элементов проводящей системы, но и всего сердца, а также таких органов, как почки, печень, легкие, нервная ткань и т.д. Наиболее вероятно, что новые системы будут ком-
Глава 3. Инфаркт миокарда. Кардиомиопатия инфаркта миокарда...

в этом процессе поврежденной стенке аорты, могут взаимодействовать с мезенхимальными стволовыми клетками и включать процесс эндоотического костеобразования. Очевидно, что этот процесс осуществляется за счет процессов опосредованной остеоиндукции (Шахов и др., 1999). Однако мы не знаем, в какой момент своего развития атеросклеротическая бляшка становится привлекательной для циркулирующих МСК. Может быть, именно из-за того, что данная категория родоначальных клеток способна осаждаются на атеросклеротической бляшке, существует своеобразный запрет на выход МСК из костного мозга в кровь, т.к. в обычных условиях они в ней не обнаружены. Если это так, то тогда все манипуляции со стволовыми клетками, вводимыми в сосудистое усю или появляющимися там в результате мобилизующих агентов, например, типа КСФ, чрезвычайно опасны для пациентов с атеросклерозом. Получив тактическую выглу, можно позднее принять стратегический патологический удар в виде генерализации и усиления данного заболевания.

Процесс остеоидных превращений в склеротической бляшке позволяет во многом объяснить, почему у мужчин атеросклероз развивается раньше и часто бывает интенсивнее по сравнению с женщинами. Хорошо известен тот факт, что эстрогены снижают содержание кальция в крови, тогда как тестостерон, напротив, повышает. Поэтому женщины чаще болеют остеопорозом, чем мужчины. Как показывают наши исследования, кальций необходим не только для построения костей, но и бляшек. Учитывая это, возможно, является необходимость пересмотра тактики лечения атеросклероза, по крайней мере, у мужчин, с помощью, например, комплексов или гормональных препаратов нового поколения.

ОБЩЕЕ ЗАКЛЮЧЕНИЕ

Конец XX века ознаменовался, по мнению журнала Science (1999), тремя принципиальными открытиями в области биологии и медицины:
1. Расшифровка двойной спирали ДНК.
2. Определение гена человека.
3. Открытие ЭСК человека и животных.

Из эпохи классической медицины, наивысшим достижением которой в области кардиологии явилась пересадка сердца и даже сердечно-легочных комплексов, в результате последнего открытия мы плавно перешли к ведущим регенераторной биомедицины. Чрезвычайная пластичность стволовых клеток, их способность к дифференцировке в разнообразные клеточные линии и к длительному самосозреванию сулит в ближайшем будущем огромные перспективы. В кардиологии пока еще делается первые шаги в этом направлении. Они ограничиваются единичными попытками реконструкции поврежденного миокарда и сосудов с помощью стволовых клеток. Следующим этапом, очевидно, станет построение органов и структурно-функциональных единиц, которые уже сами по себе являются сложными микро- системами, способными анализировать ситуацию и выполнять простейшие операции, требующие принятие правильных решений. В какой-то мере этим критериям соответствуют выявленные нами мезенхимальные островки. В конечном счете, эволюция регенераторной и клеточной медицины подразумевает полную реконструкцию не только клапанов, желудочков, аорт, ведущих ритма, элементов проводящей системы, но и всего сердца, а также таких органов, как почки, печень, легкие, нервная ткань и т.д. Наиболее вероятно, что новые системы будут ком-
Общее заключение

биированы с биоинженерными конструкциями и интеллектуальными материалами, содержащими микрофлору, в том числе и биологические. В качестве практического примера можно привести создание принципиальной модели биосистем, идеалом которых является директор НИИ медицинских материалов и их сращивания с различными формами тканей. Томской, профессор В.Э. Гонтер, разрабатывающий на протяжении многих лет чрезвычайно интересный, на наш взгляд, материал — нитрид титана. Нами совместно с сотрудниками НИИ онкологии ТНЦ СО РАМН были проведены эксперименты, в которых в качестве своеобразного инкубатора для МСК использовали пористый нитрид титана. Нитрид титана представляет собой уникальный материал, который благодаря гистерезису способен изменять свои пластические свойства и обладает памятью формы. Эти особенности легли в основу разработки многочисленных медицинских изделий, успешно применяемых как у нас в стране, так и за рубежом (Гонтер и др., 1992, 1998). Оказалось, что МСК достаточно хорошо могут быть встроены в пористую структуру нитрида титана при культивировании и формировать биомиметические системы (рис. 4.1).

Теоретически такие объемные структуры могут найти самые разнообразные клинические применения: например, при пластике стенок миокарда, сосудов при аневризме, при протезировании аорт и т.п.

Следует подчеркнуть, что мы стоим только в начале этого сложного пути. Именно сейчас выделяются новые гипотезы, разрабатываются оригинальные технологии и идет накопление огромного фактического материала. Однако мы еще не достигли критической массы знаний даже для решения такого узкого вопроса, как лечение острого инфаркта миокарда. Требуется проведение фундаментальных работ в этом направлении кардиологии. Пока мы можем говорить лишь об основных направлениях, тенденциях, проверить в эксперименте и на практике первые результаты исследований.

Как мы уже говорили во введении, перед началом выполнения данной работы мы хотели для себя понять, почему в одних случаях трансплантация МСК является достаточно успешной процедурой, в других — нет. Для этого мы решили для себя определить:
- Какое количество МСК, способных к кардиомиогенезу и ангиогенезу, содержится в используемом материале?
- Как увеличить число MСK с нужными (кардиомиогенными, ангиогенными) свойствами?
- В какие сроки трансплантация MСК является наиболее оптимальной при лечении острого инфаркта миокарда?
- Сколько MСK следует вводить для проведения клеточной терапии?
- Какой использовать способ доставки MСK в поврежденный миокард, чтобы получить выраженный терапевтический эффект?

Анализируя полученные данные, мы устанавливаем, что использование клеток костного мозга при лечении острого инфаркта миокарда может стать обычной рутинной процедурой, если проводить ее правильно и своевременно. В любом случае клеточная
бионизированы с биоинженерными конструкциями и интеллектуальными материалами, содержащими микрочипы, в том числе и биологические. В качестве практического примера можно привести создание принципиальной модели биосистем, идеологом которых является директор НИИ медицинских материалов и имплантатов с памятью формы г. Томск, профессор В.Э. Гюнтер, разрабатывающий на протяжении многих лет чрезвычайно интересный, на наш взгляд, материал - никелевый титан. Нами совместно с сотрудниками ИИ инженерии ТНЦ СО РАМН были проведены эксперименты, в которых в качестве своеобразного инкубатора для МСК использовали пористый никелевый титан. Никелевый титан представляет собой уникальный материал, который благодаря гистерезису способен изменять свои пластические свойства и обладает памятью формы. Эти особенности легли в основу разработки многочисленных медицинских устройств, успешно применяемых как у нас в стране, так и за рубежом (Гюнтер и др., 1992, 1998). Оказалось, что МСК достаточно хорошо могут быть встроены в пористую структуру никелевого титана при культивировании и формировании биомиметических систем (рис. 4.1).

Теоретически такие объемные структуры могут найти самые разнообразные клинические применения: например, при пластике стенок миокарда, сосудов при аневризме, при протезировании аорт и т.п.

Следует подчеркнуть, что мы стояли только в начале этого сложного пути. Именно сейчас выдвигаются новые гипотезы, разрабатываются оригинальные технологии и идет накопление огромного фактического материала. Однако мы еще не достигли критической массы знаний даже для решения такого узкого вопроса, как лечение острого инфаркта миокарда. Требуется проведение фундаментальных работ в этом направлении кардиологии. Пока мы можем говорить лишь об основных направлениях, тенденциях, проверять в эксперименте и на практике первые результаты исследований.

Как мы уже говорили во введении, перед началом выполнения этой работы мы хотели для себя понять, почему в одних случаях с неполном материала, а в других - нет. Для этого мы решили для себя определить:
- Какое количество МСК, способных к кардиомиогенной и антигеннонной дифференциации, содержится в используемом материале?
- Как увеличивать число МСК с нужными (кардиомиогенными, антигеннонными) свойствами?
- Какие сроки трансплантации МСК является наиболее оптимальной при лечении острого инфаркта миокарда?
- Сколько МСК следует вводить для проведения клеточной терапии?
- Как использовать способ доставки МСК в поврежденный миокард, чтобы получить выраженный терапевтический эффект?

Анализируя полученные данные, мы устанавливали, что использование клеток костного мозга при лечении острого инфаркта миокарда может стать обычной рутинной процедурой, если проводить ее правильно и своевременно. В любом случае клеточная
терапия способна существенно улучшить качество жизни пациента, остановить или, по крайней мере, замедлить развитие кардиосклероза, гипертрофии сердца и СН.

Достаточно условно клеточную терапию острого инфаркта миокарда можно подразделить на два основных патогенетических метода, в зависимости от того, какие клетки используют при ее проведении:

1. Специфическую, с использованием аутологических МСК костного мозга (возможно, и жировой ткани), при дефекте костного мозга.

2. Неспецифическую, с применением аутологических мононуклеаров костного мозга.

В первом случае используют культуру перепрограммированных мезенхимальных клеток костного мозга с использованием в них способности к образованию кардиомиоцитов и сосудистых клеток, которые при попадании в миокард способны к пролиферации и делению с образованием специализированных кардиомиоцитов и сосудистых клеток, а также, вероятно, продукту концентрации многочисленных ростовых факторов и цитокинов, обеспечивающих процессы репаративной регенерации. Своевременная трансплантация МСК приводит к уменьшению рубца, улучшению соотношения и электрофизиологических свойств миокарда, улучшению его оксигенации, снижению гипертрофии сердца.

Во втором случае вводят мононуклеары костного мозга, в которых доля МСК минимальна, а потому они не восстанавливают миокард. Однако они способны стимулировать процесс образования новых сосудов, тем самым улучшая оксигенацию миокарда (стимулируя ангиогенез, усилению продукции цитокинов, ростовых факторов, усилению воспалительного процесса). Устранение рубцовой ткани не происходит.

Теоретически оба подхода можно проводить в комбинации, ожидая развития эффекта потенцирования. Например, впервые больному вводят моноцитами костного мозга с целью увеличения числа сосудов и подготовки необходимого микроокружения для последующей трансплантации МСК. Возможно и другие варианты. Однако все это требует глубокого и детального изучения.

Другим важным выводом оказалось то, что в организме существует строго определенная константа скорости развития склеротических изменений в миокарде, развивавшихся, по-видимому, по каскадоподобному механизму и с практического не измениющихся вектором развития. После стадии воспаления, стресса, адаптации и деадаптации, в силу того, что в миокарде практически нет МСК или других элементов, способных обозначить кардиомиоциты, начинается активирование процессов стромогенеза с образованием рубца. Для того, чтобы прекратить процесс кардиосклероза на пути формирования нового миокарда, МСК следует вводить в строго определенный период времени. Если трансплантацию осуществлять сразу после острого инфаркта, то воспаление, ишемия, гипоксия в поврежденном миокарде в сочетании с выбросом протеолитических ферментов и других факторов приводят к тому, что основная часть МСК погибает или покидае сердце. В более поздние сроки, когда необратимо активируются процессы фиброзования, стволовые клетки не могут попасть в перинфарктную зону, встраиваться в существующие ветви для становления клеток (их уже занимали предшественники фибробластов) и замещать несколько это возможно, рубовую ткань. Более того, благодаря своей пластичности и под действием, например, ФРФ или лекарственными формаменормирования в стромальные или гладкомышечные клетки, усилить тем самым развитие кардиосклероза. Оказалось, что в опытах над животными оптимальные сроки трансплантации МСК лежат между 6–7 и 14–18-ми сутками. Более ранние или, напротив, поздние введение МСК животным с острым инфарктом миокарда малозаffective.

В наших опытах мы использовали 5-азацитидин в сочетании с другими факторами. Оказалось, что если к индукции МСК в
терапия способна существенно улучшить качество жизни пациента, остановить или, по крайней мере, замедлить развитие кардиосклероза, гипертрофии сердца и СН.

Достаточно успешно клеточную терапию острого инфаркта миокарда можно подразделить на два основных патогенетических метода, в зависимости от того, какие клетки используют при ее проведении:

1. Специфическую, с использованием аутологических МСК костного мозга (возможно, и живой ткани), при дефекте костного мозга.

2. Неспецифическую, с применением аутологичных мононуклеаров костного мозга.

В первом случае используют культуру перепрограммированных мезенхимальных клеток костного мозга с усилением в них способности к образованию кардиомиоцитов и сосудистых клеток, которые при попадании в миокард способны к пролиферации и делению с образованием специализированных кардиомиоцитов и сосудистых клеток, а также, вероятно, продуцируют многочисленных ростовых факторов и цитокинов, обеспечивающих процессы регенерации.

Событием, которое впервые вводит миокард вложение, является замена клеток с повреждением миокарда, а также нейтрализацию гипертрофии сердца.

Во втором случае вводят мононуклеары костного мозга в клетки, в которых доля МСК минимальна, а потому они не восстанавливаются миокарда. Однако они способны стимулировать процесс образования новых сосудов, т.е. замена клеток с повреждением миокарда, а также нейтрализацию гипертрофии сердца.

Событием, которое впервые вводит миокард в состояние, является замена клеток с повреждением миокарда и нейтрализацию гипертрофии сердца.

Теоретически оба подхода можно проводить в комбинации, ожидая развития эффекта потенцирования. Например, первоначально больному вводят мононуклеары костного мозга с целью усиления числа сосудов и подготовки необходимого микроокружения для последующей трансплантации МСК. Вторыми и другими варианта. Однако все это требует глубокого и детального изучения.

Другим важным выводом оказалось то, что в организме существует строго определенная константная скорость развития склеротических изменений в миокарде, развивающихся по-видимому, по каскадному механизму, и с практически неизменяющимся вектором развития. После стадии воспаления, стресса, адаптации и деадаптации, в силу того, что в миокарде практически нет МСК или других элементов, способных образовывать кардиомиоциты, начинают активироваться элементы геноменеза с образованием рубца. Для того, чтобы обратиться процесса кардиосклероза на путь формирования нового миокарда, МСК следует вводить в строго определенный период времени. Если трансплантацию осуществлять сразу после острого инфаркта, то воспаление, ишемия, гипоксия в поврежденном миокарде в сочетании с выбросом прогестогенных факторов и других факторов приводят к тому, что основная часть МСК погибает или покидает сердце. В более поздние сроки, когда на обработку активно вступают процессы гипертрофии, стволовые клетки могут попасть в перинфарктную зону, возвращаясь в существующие и / или стволовые клетки, которые уже занимают пространство в кардиомиобластов и замещаются, насколько возможно, рубцовой тканью. Более того, благодаря своей пластики, и под действием, например, ФРФ они легко могут трансформироваться в стволовые или гладкомышечные клетки, усилив процесс замещения миокарда.

Оказалось, что в опыте, проведенные МСК животным с острый инфарктом миокарда малоэффективны.

Другой, не менее важный теоретический вопрос связан с тем, какое количество клеток требуется ввести в сердечную ткань. Согласно литературным данным, при введении стволовых кардиомиоцитов в поврежденный миокард существует определенный минимальный погодный предел, после которого его эффект не возрастает (Потапов и др., 2001). Так, после пересадки изогенных поврежденных КМЦ в криоинвертированный миокард через 18 часов погибло до 45% трансплантатов клеток. Полагали, что эти клетки в динамике нарастают довольно медленно, если вводились 3-10 млн клеток, а при пересадке 10-25 млн КМЦ их количество далее не увеличивалось (Zhang et al., 1999). Согласно литературным данным, только около 10–20% МСК костного мозга способны спонтанно трансформироваться в мышечные клетки (Makino et al., 1999). Устройством развитии невероятных дифференцировочных факторов можно увеличить эту величину втрое.

В наших опытах мы использовали 5-азацитидин в сочетании с другими факторами. Оказалось, что если к индукции МСК в
миоциты в контрольной группе оказались способными 14,7±2,3%, то после обработки дифференцируемыми факторами этот показатель достоверно возрастил до 33,9±3,1%.

Далее, при инъекциях перепрограммированных МСК в периферическую зону в различных дозах было установлено, что наиболее эффективное число этих клеток составляет около (1—10) x 10⁴ на м² площади миокарда.

Не менее актуальным вопросом является выбор оптимального пути введения МСК. Возможные пути доставки МСК к сердечной ткани представлены на рис. 4.2.

В наших опытах было обнаружено, что внутривеннное введение прегенераторных клеток практически не влияет на процесс развития кардиосклероза после коронарной тампонады, а также не предотвращает развития гипертрофии миокарда и снижения его функциональных свойств. Мы использовали только клетки, которые 91-гмидином. Оказалось, что при внутривеннем транс-фузии МСК их количество не превышало такого в других мышечных тканях (бедро) и составляло около 1—2%, тогда как внутрисердцевое введение повысило этот показатель (через 2 суток после инъекции) до 33—35%. На основании этих данных можно сделать вывод о том, что артерное внутрисердцевое введение является наиболее оптимальным методом доставки МСК в миокард, что согласуется с данными других авторов. Анализ литературных данных указывает на то, что региональное введение МСК через коронарные артерии может занимать важное значение между первым (внутривенным) и вторым (внутрисердечным) методами. Однако таких исследований мы не проводили.

На наш взгляд, наиболее целесообразно не подвергать пациента дополнительной хирургической травме, которая происходит при операциях на открытом сердце, а вводить МСК в сердечную ткань с помощью разнообразных экстракорпоральных систем. Эти данные приводят к мысли о том, что могут быть использованы разнообразные экстракорпоральные системы для электрофизиологических исследований сердца. Анализ (рис. 4.3) оригинальный аппаратный комплекс, позволяющий не только картировать миокард, но и доставлять МСК непосредственно в поврежденную ткань. Системы "Экгар" и "Экгар-Навигатор" хорошо себя зарекомендовали и прекрасно известны кардиологам. Это возможность позволяет нам делиться с корректирование данной системы для доставки МСК в поврежденное сердце и быстрое охватывание этой методикой специалистами.

Несмотря на многочисленные достаточно оптимистические настроения (основанные на результатах лабораторных исследований), которые имеют у кардиологов, успехи в области практического применения данных клеточных технологий на практике пока еще очень скромные. Как правило, СК вводятся на фоне других воздействий — стентирования, баллонной ангиографии, коронарошунтирования и т.п. Поэтому неясно, какая магия вносит основной вклад в улучшение состояния миокарда при инфаркте. Аргументы, выдвигаемые на урочное того, что больной не умер, явных осложнений после операции не выявлено, а
миоцисты в контрольной группе оказались способны 14,7±2,3%, то после обработки дифференцирующими факторами этот показатель достоверно возрастил до 33,9±3,1%.

Далее, при инъекциях перепрограммированных МСК в периинфарктный зону в различных дозах было установлено, что наиболее эффективное число этих клеток составляет около (1–10) x10^4 на м^3 миокарда.

Не менее актуальным вопросом является выбор оптимального пути введения МСК. Возможные пути доставки МСК к сердечной ткани представлены на рис. 4.2.

В наших опытах было обнаружено, что внутривенное введение прогениторных клеток практически не влияет на процесс развития кардиосклероза после коронарооклюзии, а также не предотвращает развития гипертрофии миокарда и снижения его функциональных свойств. Мы использовали только клетки,剁

На наш взгляд, наиболее целесообразно не подвергать пациента дополнительной хирургической травме, которая происходит при операциях на открытом сердце, а вводить МСК в сердечную ткани с помощью разнобобоших экстракорпоральных систем. Этот взгляд придерживается многие кардиологи. Учитывая это, мы совместно с медицинской промышленной компанией "Электропульс" (г. Томск) разработали на базе существующей системы для электрофизиологических исследований сердца и абляции (рис. 4.3) оригинальный аппаратный комплекс, позволяющий не только картировать миокард, выявлять зоны повреждения, но и доставлять МСК непосредственно в поврежденную ткань. Системы "Эккарт" и "Эккарт-Навигатор" хорошо себя зарекомендовали и прекрасно известны кардиологам. Это особенно позволяет разработать на скорое применение данной системы для доставки МСК в поврежденное сердце и быстрое овладение этой методикой специалистами.

Несмотря на многочисленные достаточно оптимистические настроения (основанные на результатах лабораторных исследований), которые имеются у кардиологов, успехи в области практического применения данных клеточных технологий на практике пока еще очень скромные. Как правило, СК вводятся на фоне других воздействий - стентирования, баллонной ангиографии, коронарошунтирования и т.п. Поэтому неясно, какая манипуляция вносит основной вклад в улучшение состояния миокарда при инфаркте. Аргументы, выдвигаемые на уровне того, что больной не умер, явных осложнений после операции не выявлено, а
его самочувствие вроде бы даже улучшилось, а большинство случаев носит субъективный, а не доказательный характер.

Та скорость, с которой клеточные технологии с использованием стволовых клеток внедряются в клиническую практику, выносит озабоченность у серьезных исследователей и кардиологов. Часто они не обоснованы патогенетически, проводятся специалистами, поверхностно знающими принципы регенераторной медицины, без учета индивидуальных особенностей организма и знаний развития возможных негативных последствий проводимых манипуляций. Осложнения могут возникнуть, если с клетками будут работать непрофессионалы: например, плохо отмыть от крови, содержи морозильник, его загрязнение микроорганизмами может вызвать не только развитие воспалительных, но и аллергических реакций, вплоть до анафилактического шока.

Почему-то, несмотря на все достижения в химии, биотехнологии и клеточно-молекулярной биологии, сроки внедрения лекарственных препаратов в практику от момента возникновения идеи или концепции до практического внедрения в среднем составляют 7-10 лет.

Стволовые клетки можно рассматривать как своеобразный биопрепарат, открытого которого для нужд кардиологии произошло только в 1990 г. Длительность наблюдений в эксперименте, как правило, не превышает одного года. Это чрезвычайно мало для выявления отдаленных негативных реакций. Мы не знаем, что произойдет в организме больного через 3 года и более после введения СК.

Очевидно, это понимает большинство серьезных исследователей, о чем свидетельствует тот факт, что общее число клинических испытаний СК для лечения инфаркта миокарда не превышает в настоящее время 200-300 случаев.

Общая имеющуюся информацию, можно сделать следующие выводы:
- Использование МСК для клеточной терапии острого инфаркта миокарда не является панацеей, с помощью которой можно
его самочувствие вроде бы даже улучшилось, а большинство случаев носит субъективный, а не доказательный характер.

Таким образом, с которой клеточной техникой с использованием стволовых клеток внедряются в клиническую практику, вносит озабоченность у серьезных исследователей и пациентов. Часто они не обоснованы патогенетически, проводятся специалистами, поверхностно знающими принципы регенераторной медицины, без учета индивидуальных особенностей организма и знании развития возможных негативных последствий проводимых манипуляций. Осложнения могут возникнуть, если с клетками будет работать непрофессионалы: например, плохо отмыть от среды, синтезировать криопротектора, заражение микроорганизмами может вызвать не только развитие воспалительных, но и аллергических реакций, вплоть до анафилактического шока.

Почему-то, несмотря на все достижения в химии, биотехнологии и клеточно-мOLEкулярной биологии, сроки внедрения лекарственных препаратов в практику от момента возникновения идеи или концепции до практического внедрения в среднем составляют 7—10 лет.

Стволовые клетки можно рассматривать как своеобразный биопрепарат, который можно использовать для нужд кардиологии произошло только в 1999 г. Длительность наблюдений в эксперименте, как правило, не превышает одного года. Это, что все же мало для выявления отдаленных негативных реакций. Мы не знаем, что произойдет в организме больного через 3 года и более после введения СК.

Очевидно, это понимает большинство серьезных исследователей, о чем свидетельствует тот факт, что изучение числа клинических использований СК для лечения инфаркта миокарда не превышает в настоящее время 200-300 случаев.

Общая имеющаяся информация, можно сделать следующие выводы.

- Использование СК для клеточной терапии острого инфаркта миокарда не является панацеей, с помощью которой можно
превратить всю фиброзную ткань в мышечную и полностью устранить рубец.
- Существуют строгие показания и противопоказания для проведения клеточной терапии.
- Трансплантация МСК в оптимальные сроки способствует увеличению количества кардиомиоцитов и числа вновь образуемых сосудов в пораженной сердечной ткани.
- Извлечение рубца происходит только при своевременном, адресном и строго определенном количестве вводимых МСК.
- Использование мононуклеаров костного мозга сопровождается увеличением ангиогенеза, оксигенации миокарда без замещения рубцовой ткани. Образование новых кардиомиоцитов не происходит.

Еще раз хочется подчеркнуть, что для всестороннего анализа использования СК в кардиологии требуется обработка информации от тысяч больных, наблюдение которых следует проводить в течение многих лет. Возможно, для интенсификации этого процесса следует, по аналогии с другими разделами медицины, создать единый национальный регистр использования СК в кардиологии под патронажем крупных медицинских центров. Именно с помощью национального регистра можно достаточно быстро собрать и проанализировать информацию о применении клеточных и критических технологий при лечении сердечно-сосудистых заболеваний. Участники данного проекта будут не только обмениваться своими достижениями и технологиями, но и оперативно получать всю необходимую информацию от других учреждений и сравнивать свои результаты со средними показателями по данному методу лечения.

Регистр позволит специалистам не стоять на месте, а постоянно развиваться, улучшать качество лечения на протяжении длительного периода времени, даже тогда, когда санитет вода анионного интереса к стволовым клеткам и начинается ее рутинная работа.

Именно такой подход, принятый во всех передовых странах мира, позволит российским кардиологам оставаться на самых передовых позициях и наиболее эффективно внедрять свои достижения в практику.
превратить всю фиброзную ткань в мышечную и полностью устранить рубец.
- Существуют строгие показания и противопоказания для проведения кластерной терапии.
- Трансплантация МСК в оптимальные сроки способствует увеличению количества кардиомиоцитов и числа вновь образуемых сосудов в пораженной сердечной ткани.
- Извлечение рубца происходит только при своевременном, адекватном и строго определенному количеству вводимых МСК.
- Использование мононуклеаров костного мозга сопровождается увеличением ангиогенеза, оксигенации миокарда без замещения рубцовой ткани. Образование новых кардиомиоцитов не происходит.

Еще раз хочется подчеркнуть, что для всестороннего анализа использования СК в кардиологии требуется обработка информации от тысяч больных, наблюдение которых следует проводить в течение многих лет. Возможно, для интенсификации этого процесса следует, по аналогии с другими разделами медицины, создать единый национальный регистр использования СК в кардиологии под патронажем крупных медицинских центров. Именно с помощью национального регистра можно достаточно быстро собрать и проанализировать информацию о применении клеточных и криогенных технологий при лечении сердечно-сосудистых заболеваний. Участники данного проекта будут не только обмениваться своими достижениями и технологиями, но и оперативно получать всю необходимую информацию от других учреждений и сравнивать свои результаты со средними показателями по данному методу лечения.

Регистр позволит специалистам не стоять на месте, а постоянно развиваться, улучшая качество лечения на протяжении длительного периода времени, даже тогда, когда снаивается волна акцентированного интереса к стволовым клеткам и начинается рутинная работа.

Именно такой подход, принятый во всех передовых странах мира, позволит российским кардиологам оставаться на самых передовых позициях и наиболее эффективно внедрять свои достижения в практику.
СПИСОК ОСНОВНОЙ ЛИТЕРАТУРЫ

14. Герасимова Л.П., Манаева Т.Е. и др. Функциональная характеристика кровенос-
Список основной литературы

132. Galmiche M.C., Koteliansky V.E., Briere J. et al. Stromal cells from human long-term marrow cultures are mesenchymal stem cells that differentiate following a vascular smooth muscle differentiation pathway // Blood. – 1993. – V. 82. – P. 66–76.

163

SUMMARY

V.P. Shakhov, C.V. Popov

STEM CELLS AND CARDIOMYOPLASTY
IN NORM AND PATHOLOGY

The authors of the monograph overview and generalize up-to-date information on morphologic-functional properties of stem cells, which are able to be differentiated into cardiomyocytes and cells of endothelium, participating in development of heart and its reparative after damage. Basing on many-year studies and literature data the authors consider fundamental mechanisms of committing of embryonic and mesenchymal stem cells as well as the issues of their contribution to reparative of heart tissue. The obtained results allow to define both the main criteria for carrying-out effective cell therapy of severe myocardial infarction and main prescriptions, possible complications and contraindications for its application.

The book is useful for patho-physiologist, surgeons, bio-engineers, bio-technologists, students and post-graduates as well as for specialists working in the field of cell and critical technologies and regenerative medicine.
SUMMARY

V.P. Shakhov, C.V. Popov

STEM CELLS AND CARDIOMYOPLASTY
IN NORM AND PATHOLOGY

The authors of the monograph overview and generalize up-to-date information on morphologic-functional properties of stem cells, which are able to be differentiated into cardiomyocytes and cells of endothelium, participating in development of heart and its reparation after damage. Basing on many-year studies and literature data the authors consider fundamental mechanisms of committing of embryonic and mesenchymal stem cells as well as the issues of their contribution to reparation of heart tissue. The obtained results allow to define both the main criteria for carrying-out effective cell therapy of severe myocardial infarction and main prescriptions, possible complications and contraindications for its application.

The book is useful for patho-physiologist, surgeons, bio-engineers, bio-technologists, students and post-graduates as well as for specialists working in the field of cell and critical technologies and regenerative medicine.
ОГЛАВЛЕНИЕ

Предисловие .. 5
Введение .. 8

ГЛАВА 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиогенезе .. 14
1.1. Развитие сердца .. 14
1.2. Сердечная ткань взрослого человека ... 20
 1.2.1. Рабочие (сократительные) кардиомиоциты ... 20
 1.2.2. Пейсмекеры (сократимые, клетки водителя ритма,
 клетки проводящей системы первого типа, P-клетки)
 кардиомиоциты ... 25
 1.2.3. Переходные кардиомиоциты (клетки проводящей
 системы второго типа) .. 26
 1.2.4. Клетки пучка Гиса и его ножек (волокна Пуркинье)
 (клетки проводящей системы третьего типа) .. 27
1.3. Дифференцировка плерипотентных эмбриональных
 стволовых клеток в кардиомиоциты .. 27
 1.3.1. Манипуляция над ЭСК, приводящая
 к их кардиогенной дифференцировке .. 32
 1.3.2. Роль цитоскелета и остеоиндукции матрикса
 в трансформации ЭСК в кардиомиоциты ... 35
 1.3.3. Роль внутриклеточного кальция в регуляции
 пролиферации и дифференцировки ЭСК в КМЦ 36
1.4. Перспективы развития клеточной терапии ЭСК
 в медицине и кардиологии ... 37

ГЛАВА 2. Мезенхимальная система
 мезенхимальных стволовых клеток ... 39
2.1. Мезенхимальные стволовые клетки .. 39
2.2. Коммитированные МСК костного мозга (МСКк) 45
2.3. Способность костного мозга человека и животных
 формировать колонии мезенхимальных клеток в системе in vitro 48
2.4. Мезенхимоплазм ... 56

2.5. МСК из других, не костномозговых источников
 во взрослом организме .. 67
 2.5.1. МСК из жировой ткани ... 67
 2.5.2. МСК из мышечных клеток ... 88
 2.5.3. МСК из костной ткани ... 69
 2.5.4. МСК из хрящевой ткани и сухожилий ... 71
 2.5.5. МСК сосудистого генеза ... 71
2.6. Мобилизация МСК .. 72
2.7. Стромальное микроокружение для МСК ... 74
 2.7.1. Роль Т-лимфоцитов и моноклональных фагоцитов
 в регуляции функции стromальных клеток,
 преносящих ГИМ .. 76
2.8. Гипотеза о существовании "ниш" для МСК в виде структурно-
 функционального образования — мезенхимального остовка 79
2.9. Феномен слияния (полиплоидия) мезенхимальных
 стволовых клеток в МО .. 87

Краткое введение .. 97

ГЛАВА 3. Инфаркт миокарда. Кардиомиоплазма и инфаркта
 миокарда мультипотентными стволовыми клетками 98
3.1. Инфаркт миокарда .. 98
3.2. Моделирование острого инфаркта миокарда в эксперименте 104
3.3. Общие принципы кардиомиопластики
 с использованием светочувствительной краски 112
 3.3.1. Космоплазманный механизм апоптоза и репозиции
 сердечной ткани при инфаркте миокарда .. 115
 3.3.2. Исследование влияния МСК в сердечной ткани
 наноразмерных животных ... 123
3.4. Кардиомиоплазма острого инфаркта миокарда с помощью
 МСК, выделенных из костного мозга ... 125
3.5. Гипотеза об участии МСК в развитии атеросклероза 134

Общее заключение ... 143
Список сокращений ... 153
Список основной литературы .. 155
Summary .. 167
ОГЛАВЛЕНИЕ

Предисловие ... 5
Введение ... 8

ГЛАВА 1. Развитие сердца. Роль эмбриональных стволовых клеток в кардиомиогенезе .. 14
1.1. Развитие сердца ... 14
1.2. Сердечная ткань взрослого человека .. 20
 1.2.1. Рабочие (сократительные) кардиомиоциты .. 20
 1.2.2. Пейсмекеры (секретные, клетки ведомства ритма, клетки проводящей системы первого типа, П-клетки) кардиомиоциты .. 25
 1.2.3. Переходные кардиомиоциты (клетки проводящей системы второго типа) .. 26
 1.2.4. Клетки пучка Гиса и его ветвей (волокна Пуркинье) (клетки проводящей системы третьего типа) .. 27
1.3. Дифференцировка плероцитов эмбриональных стволовых клеток в кардиомиоциты .. 27
 1.3.1. Манипуляции над ЭСК, приводящие к их кардиогенной дифференцировке .. 32
 1.3.2. Роль цитоскелета и миофибриллярного матрикса в трансформации ЭСК в кардиомиоциты .. 35
 1.3.3. Роль интерлейкина в регуляции пролиферации и дифференцировки ЭСК в КМЦ 36
1.4. Перспективы развития клеточной терапии ЭСК в медицине и кардиологии .. 37

ГЛАВА 2. Мезенхимозоф. Система мезенхимальных стволовых клеток .. 39
2.1. Мезенхимальные стволовые клетки .. 39
2.2. Коммитированные МСК костного мозга (МСКк) .. 45
2.3. Способность костного мозга человека и животных формировать колонии мезенхимальных клеток в системе in vitro .. 48
2.4. Мезенхимозоф ... 56
2.5. МСК из других, не костномозговых источников во взрослом организме .. 67
 2.5.1. МСК из жировой ткани ... 67
 2.5.2. МСК из мышечных клеток ... 88
 2.5.3. МСК из костной ткани ... 99
 2.5.4. МСК из хрящевой ткани и сухожилий ... 71
 2.5.5. МСК сосудистого генеза .. 71
2.6. Мобилизация МСК .. 72
2.7. Стромальное микроокружение для МСК .. 74
 2.7.1. Роль Т-лимфоцитов в моноклональных фагоцитах в регуляции функции стromальных клеток, переносящих ГИМ .. 76
2.8. Гипотеза о существовании "ниш" для МСК в виде структурно-функционального образования — мезенхимального острова .. 79
2.9. Феномен слияния (полиморфизм) мезенхимальных стволовых клеток в МО .. 87
Краткое заключение ... 97

ГЛАВА 3. Инфаркт миокарда. Кардиомиопластика инфаркта миокарда мультипотентными стволовыми клетками .. 98
3.1. Инфаркт миокарда .. 99
3.2. Моделирование острого инфаркта миокарда в эксперименте 104
3.3. Общие принципы кардиомиопластик с использованием светочувствительных клеток .. 112
 3.3.1. Кислородозависимая система адаптации и регенерации сердечной ткани при инфаркте миокарда .. 115
 3.3.2. Исследование наличия МСК в сердечной ткани новорожденных животных .. 123
3.4. Кардиомиопластика острого инфаркта миокарда с помощью МСК, выделенных из костного мозга .. 125
3.5. Гипотеза об участии МСК в развитии атеросклероза ... 134
Общее заключение ... 143
Список сокращений .. 153
Список основной литературы .. 155
Summary ... 167
НАУЧНОЕ ИЗДАНИЕ

Владимир Павлович Шахов
Сергей Валентинович Полов

СТВОЛОВЫЕ КЛЕТКИ И
КАРДИОМИОГЕНЕЗ В НОРМЕ
И ПАТОЛОГИИ

Издательство "СТИ" (Scientific & Technical Transactions)
Россия, 634021, г. Томск, д/я 1747
тел. (3822) 206857, факс (3822) 244688
e-mail: sti@stionline.com
Формат 84x108 1/16. Усл. п. л. 8,9. Уч.-изд. п. 9,1. Тираж 500 экз.
Бумага офсетная. Печать офсетная. Заказ №