УЛЬТРАЗВУКОВАЯ
ДИАГНОСТИКА
В ДЕТСКОЙ ПРАКТИКЕ

Библиотека непрерывного образования врача

Рекомендуется Учебно-методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебного пособия для системы послевузовского профессионального образования врачей

Москва
Издательская группа «ГЭОТАР-Медиа»
2008
Васильев А.Ю., Ольхова Е.Б.

ISBN 978-5-9704-0772-1

Издание предназначено для педиатров и врачей общей практики, владеющих методиками проведения ультразвуковых исследований.

В книге представлена ультразвуковая диагностика наиболее распространенных заболеваний детского возраста на основе использования ультразвуковой техники среднего класса. Особое внимание уделено периоду новорожденности и неотложной хирургической патологии.

Представлены разделы по нейросонографии, ультразвуковой диагностике заболеваний органов шеи (лимфоузлов, слюнных желез, гортани), легких и плевральных полостей. Детально изложены основы ультразвуковой диагностики заболеваний гепатопанкреатобилиарной системы у детей, острого аппендицита и его осложненных форм, мезаденита, кишечной инвагинации, различных вариантов кишечной непроходимости, в том числе и у новорожденных детей. Показаны возрастные особенности строения почек и разнообразная ренальная патология детского возраста, в том числе — варианты обструктивных уропатий, кистозных дисплазий, аномалий количества, положения и взаиморасположения почек. Подчеркнуты возможности ультразвуковой диагностики острого пиелонефрита, острой почечной недостаточности. Показаны возможности ультразвуковой диагностики травматических повреждений внутренних органов. Изложены принципы оценки репродуктивной системы и опорно-двигательного аппарата у детей, показаны основы диагностики патологии тазобедренных суставов у новорожденных. Указаны особенности проведения исследования, принципы подготовки детей, правила проведения осмотра, особенности общения с детьми различных возрастных групп и их родителями.

Книга содержит вопросы тестового контроля.

Издание подготовлено в рамках Национального проекта «Образование» по программе инновационного вуза.

Права на данное издание принадлежат издательской группе «ГЭОТАР-Медиа».
Воспроизведение и распространение в каком бы то ни было виде части или целого издания не могут быть осуществлены без письменного разрешения правообладателей.

ISBN 978-5-9704-0772-1
© Васильев А.Ю., Ольхова Е.Б., 2007
© Издательская группа «ГЭОТАР-Медиа», 2008
ВВЕДЕНИЕ

Уважаемые коллеги!

Перед вами, семейными врачами и врачами общей практики, стоит чрезвычайно важная и сложная задача: оказание медицинской помощи на первичном этапе людям самого разного возраста — от новорожденных до пожилых. Не исключено, что вам придется работать в условиях изоляции от специализированных стационаров, когда именно на ваши плечи лежит вся ответственность за максимально эффективное оказание помощи. Необходима своевременная и точная диагностика и, по возможности, профилактика заболеваний, особенно, когда речь идет о детях. Принципиально значимой в диагностике детских, прежде всего — неотложных, заболеваний является ультразвуковая диагностика (УЗД). Краткий курс УЗД, пройденный вами в рамках ординатуры или первичной специализации, позволит справиться с технической стороной вопроса, однако особенности применения УЗД в детской практике и основные эхографические синдромы у детей вам придется изучать самостоятельно. Настоящее методическое пособие — первая маленькая ступень на этом пути.

Ваши кабинеты оснащены ультразвуковой аппаратурой среднего класса, что облегчает задачу ее освоения, но умножает технические возможности диагностики. Скорее всего, в вашем распоряжении будет стандартный, «взрослый» набор датчиков, применение которых у детей также ограничивает возможности визуализации внутренних органов маленьких пациентов. Вместе с тем, вы сможете использовать аппаратуру по вашим потребностям, что определяет не только наиболее раннюю и точную диагностику, но и принципиально новый подход к профилактическим осмотрам, широкому внедрению скрининга детского населения. А это позволяет выявлять самые разные заболевания на доклиническом этапе.
СПИСОК СОКРАЩЕНИЙ

ГМ — головной мозг
НСГ — нейросонография
МВП — мочевыводящие пути
УЗД — ультразвуковая диагностика
УЗИ — ультразвуковое исследование
ЧЛС — чашечно-лоханочная система

ПОДГОТОВКА ДЕТЕЙ К УЗИ

Без подготовки выполняются УЗИ:
• щитовидной железы;
• вилочковой железы;
• молочных желез;
• суставов и мягких тканей;
• мошонки;
• нейросонография.

Строго натощак (не кормить, не поить в течение 8—10 часов для детей старше 7 лет, 6 часов — от 1 до 6 лет):
• УЗИ гепатопанкреатобилиарной системы.

С наполненным мочевым пузырем:
• почек и мочевыводящих путей,
• брюшной полости и малого таза.

УЗИ новорожденным в режиме скрининга проводится без специальной подготовки, обычно — после кормления (сытые — спят).
ОСОБЕННОСТИ ПРОВЕДЕНИЯ УЗИ У ДЕТЕЙ

В работе с детьми необходимо учитывать их психологические особенности: дети очень боятся любых медицинских процедур. Поэтому на спокойное, хотя бы нейтральное отношение ребенка к исследованию можно рассчитывать только с 6—7-летнего возраста пациента. И даже в этом возрасте дети практически не способны точно выполнять ваши распоряжения типа «дай на бочок и задержи дыхание».

УЗИ детям следует проводить в присутствии матери ребенка или лица, осуществляющего постоянный уход за ребенком (папа, бабушка и т.п.). Лучше, если во время осмотра мать обнимет ребенка. Если проводится осмотр ребенка, находящегося на грудном вскармливании, возможно проведение УЗИ на фоне кормления (как грудью, так и из бутылочки).

Кабинет УЗИ должен быть оснащен достаточным количеством ярких игрушек, желательно — из полимерных материалов, легко моющихся, которые можно дать ребенку в руки. Очень хороши в качестве отвлекающих игрушек сломанные пульты от электронной аппаратуры (телевизоров и пр.). Никакие жесткие предметы (включая игрушки, карандаши и пр.) ребенку во время УЗИ не должны быть доступны.

Тело ребенка, особенно раннего возраста, обнажается минимально. Это позволяет предотвратить переохлаждение, создает у ребенка ощущение защищенности. Обязательно надо снять с ребенка обувь, даже если он еще не ходит: при возбуждении и сопротивлении осмотру маленькие дети высоко «забрасывают» ножки и жесткой обувью могут травмировать и себя, и окружающих.

Если проводится осмотр новорожденного, то его не надо раздевать полностью: обнажаются только участки тела непосредственно в месте постановки датчика.

Проведение УЗИ подросткам имеет свои особенности. Подростки часто стесняются врача, особенно девочки, и им лучше проводить УЗИ в присутствии матери, тем более, если вы должны исследовать молочные железы или малый таз. Мальчики, наоборот, обычно не хотят, чтобы родители присутствовали на исследовании, и желание подростка целесообразно исполнить. Не стоит допускать присутствия родителей (особенно матерей) при УЗИ мошонки у подростков — лишние эмоции матери вовсе не нужны и без того смущенному ребенку. Дать сведения родителям можно сразу после окончания осмотра.
Детям 3–5 лет, которые опасаются осмотра, но, в принципе, готовы слушать врача, следует показать датчик, дать его потрогать, чтобы ребенок убедился, что «никаких иголочек там нет», дать потрогать гель. Можно позволить материи ребенка взять датчик и поставить его ребенку на животик, ведь «...мама никогда не делает больно...». Это займет минимум времени, а осмотр пройдет намного спокойнее.

Дети младшего возраста (1–2 года) часто бывают очень беспокойны при УЗИ, уговорить их практически невозможно, и для облегчения исследования ребенка надо просто фиксировать на кушетке (желательно наличие 2 помощников — фиксировать надо и ноги, и руки).

Учитывая, что вам потребуется общаться с родителями маленьких пациентов, отвечать на их вопросы относительно собственно метода УЗИ, предлагаю доступные ответы на наиболее частые вопросы родителей:

Вопрос: УЗИ не больно?

Ответ: Несколько. Ультразвуковое излучение никак не ощущается кожей человека в любом возрасте. Чувствуется только прикосновение датчика к телу и прохлада от геля, который наносится на кожу, чтобы между ней и датчиком не было воздушной прослойки.

Вопрос: УЗИ не вредно?

Ответ: Нет, проведение исследования абсолютно безвредно. Врач УЗД работает без всяких защитных приспособлений, в отличие от, например, рентгенологов. Иногда врач УЗД надевает перчатки, но это только для защиты от инфекции при работе с инфекционными больными.

Вопрос: С какого возраста можно делать детям УЗИ?

Ответ: С любого, никаких ограничений нет. Сейчас УЗ-сканирование новорожденных (тотальное обследование всех детей для выявления скрытых заболеваний) приобретает всё большее распространение, а в развитых странах он уже давно стал общепринятым делом. Могут осматриваться и недоношенные дети без всяких ограничений по весу и росту ребенка.

Вопрос: Сколько раз, с какой частотой можно делать УЗИ?

Ответ: в отличие от рентгеновских исследований, число УЗИ и их кратность не ограничены. Если это необходимо, УЗИ может выполняться многократно в течение суток.

Вопрос: Можно ли в один день делать и УЗИ, и другие исследования?

Ответ: Конечно. УЗИ не влияет на организм ребенка и никак не исказит результатов других исследований. Только необходимо придерживаться строгого правила: сначала УЗИ, потом болезненные и/или неприятные процедуры. Если сначала сделать внутривенную инъекцию, причинить ребенку боль, то негативная реакция на УЗИ будет неизбежной, и проводить обследование будет сложнее.
ОГЛА ВЛЕНИЕ

Введение .. 4

Список сокращений ... 5

Подготовка детей к УЗИ ... 5

Особенности проведения УЗИ у детей 6

ГЛАВА 1. Нейросонография .. 10
Образцы протоколирования нейросонографии 30

ГЛАВА 2. УЗИ мягких тканей шеи 35
Образцы протоколирования УЗИ органов шеи и тимуса 42

ГЛАВА 3. УЗИ легких и плевральных полостей 44
Образцы протоколирования УЗИ легких и плевральных
pолостей ... 52

ГЛАВА 4. Гепатопанкреатобилиарная патология 56
Образцы протоколирования УЗИ гепатопанкреатобилиарной
системы .. 77

ГЛАВА 5. УЗИ органов брюшной полости (желудок, кишечник) 85
Образцы протоколирования УЗИ органов брюшной полости у детей .. 105

ГЛАВА 6. УЗИ опорно-двигательного аппарата и мягких тканей у детей ... 110

ГЛАВА 7. УЗИ мошонки и внутренних гениталий у детей 118
Образцы протоколирования результатов УЗИ 126

ГЛАВА 8. УЗИ почек у детей .. 131
Образцы протоколирования результатов УЗИ 152

Вопросы тестового контроля ... 155
Вопрос: сколько времени продолжается исследование?
Ответ: это зависит от того, что именно надо посмотреть. В общем — совсем недолго, несколько минут (3—5). Максимальное время исследования при тяжелых заболеваниях может достигать 30—40 минут.
Вопрос: с какими жалобами можно идти на УЗИ?
Ответ: практически с любыми. УЗИ позволяет увидеть многие внутренние органы, а ребенок часто не может точно определить, что и где у него болит. В частности, дети почти всегда жалуются на боли в животе в районе пупка, а на самом деле это может быть аппендицит, гастрит, желчнокаменная болезнь, даже заболевание почек или гинекологические проблемы. Поэтому смотреть надо весь живот, а не ограничиваться какой-то одной зоной.
Если ваш малыш (грудничок) беспокоен, плохо спит и ест, срыгивает — надо тоже смотреть все: не только живот, но и голову, потому что именно неврологические проблемы у младенца могут проявляться в виде срыгивания и отказа от еды.
Если малыш плохо разводит ножки и опоред рекомендует УЗИ тазобедренных суставов, посмотрите младенцу еще и голову. Неврологические проблемы могут проявляться нарушением мышечного тонуса, спазмами мускулатуры и симулировать ортопедическую патологию.
Частой причиной направления на УЗИ являются немотивированные подъемы температуры у мальчика. Основное подозрение вызывают почки — нет ли врожденной аномалии, воспалительного процесса. Также целесообразно исследовать органов брюшной полости.
Вопрос: а если ребенок здоров — надо делать УЗИ?
Ответ: конечно. Рассмотрим несколько ситуаций:
• вы готовитесь к рождению ребенка или ваш малыш только-только появился на свет, и во время беременности на УЗИ все было хорошо, роды прошли нормально, ранее развитие тоже идет хорошо. В такой ситуации провести малышу УЗИ целесообразно в возрасте 1—1,5 месяцев, при этом оно должно включать в себя:
 • нейросонографию (УЗИ головного мозга через родничок),
 • УЗИ органов брюшной полости, почек и малого таза,
 • УЗИ тазобедренных суставов.
Коллеги, к сожалению, в сегодняшний момент тотального УЗ-скрининга детского населения, в том числе новорожденных, в стране нет. Эта программа требует вложений значительных средств. То, что в нашей руках имеется аппаратура, позволяющая осуществлять весь объем диагностического скринингового обследования младенца, и организационные возможности проведения таких осмотров — один из шагов на пути реализации этой программы.
Вашему малышу несколько месяцев, его ничего не беспокоит, но вдруг вы узнали, что можно посмотреть внутренние органы ребенка, чтобы исключить скрытые заболевания. Откладывать УЗИ не стоит, так как с возрастом ребенка некоторые исследования станут невозможными, а другие — менее информативными. Целесообразно провести нейросонографию и УЗИ брюшной полости и почек.

Вашему ребенку несколько лет, ничем особенным он не болел, чувствует себя хорошо, развивается соответственно возрасту. Можно и нужно сделать УЗИ живота (посмотреть все органы брюшной полости, почки, органы малого таза), убедиться в том, что у ребенка нет аномалий строения внутренних органов, которые могут никак себя не проявлять.

Вообще, отговорки типа «наш папа в детстве тоже плохо кушал» (вариант: не спал по ночам до трех лет, закатывался в плач до синевы, все время жаловался на боли в животе и тошноту и т. п.) — не более чем нежелание смотреть правде в глаза и стремление считать своего ребенка абсолютно здоровым вопреки простой логике. Сталкиваться с такими ситуациями приходится очень часто, особенно если речь идет о единственном ребенке у немолодой мамы. Что тут скажешь? Конечно, именно родителям решать, стоит ли обследовать и лечить своего ребенка, но ведь если вы не согласны с мнением вашего врача, что мешает обратиться к другому? Да, бывают ситуации, когда даже маленький ребенок (грудничок) обладает очень своеобразным характером, но говорить о характере в такой ситуации можно только после того, как исключены заболевания (хотя бы те, которые можно исключить на современном уровне развития медицины).

Обязательно обследуйте своего ребенка, если собираетесь отдать его в спортивную секцию. При некоторых аномалиях строения внутренних органов занятия определенными видами спорта не рекомендуются.

Если вашего ребенка уже обследовали с помощью УЗИ и ничего плохого найдено не было, то с профилактической целью осматривать его чаще, чем 1 раз в год, необходимости нет. Если же у малыша есть какие-то жалобы, то обследование будет носить не профилактический, а диагностический характер, но тут уже все будет решать ваш лечащий врач.

Целесообразно провести УЗИ ребенку до того, как он начнет ходить в детский сад или школу. В последнем случае с профилактической целью кроме УЗИ органов брюшной полости и почек следует провести УЗИ щитовидной железы.

В подростковом возрасте стоит обследовать, кроме вышеперечисленных областей, еще и внутренние гениталии у девочек.

Сердце в режиме скрининга целесообразно обследовать на УЗИ в возрасте около 1 года.
Глава 1
Нейросонография

Стандартная НСГ проводится через большой родничок во фронтальных и сагittalных сканах. Используется векторный датчик, при его отсутствии можно воспользоваться стандартным конвексным: тогда угол визуализации структур головного мозга (ГМ) будет меньше. Частота датчика при сканировании ГМ новорожденных — примерно 6 МГц, у старших грудничков — до 2 МГц. Стандартный фронтальный скан, в котором проводится измерение передних рогов боковых желудочков, проходит через III желудочек. При этом он и передние рога боковых желудочков образуют характерный рисунок — «тюльпан» (сплошная черная линия, рис. 1.1) (1 — хвостатые ядра; 2 — таламусы; 3 — полость прозрачной перегородки; 4 — мозолистое тело; 5 — передние рога боковых желудочков; 6 — III желудочек; 7 — межполушарная борозда). Структуры ГМ в норме всегда симметричны. Подкорковые ядра редко четко дифференцируются друг от друга, поскольку имеют одинаковую эхоструктуру. При проведении НСГ во фронтальной плоскости последовательно осматривается ГМ от лобных до затылочных отделов включительно. Визуализация 3 борозд в лобных долях является критерием зрелости структур ГМ.

Рис. 1.1.
В сагittalном скане (а) определяется проходимость ликворных путей, в парасагittalных — перивентрикулярные области, состоя- ния подкорковых ядер. В парасагittalных сканах (б) визуализи- руются сосудистые сплетения, проводятся измерения фрагментов боковых желудочков (рис. 1.2). Допустимая разница размеров между фрагментами правого и левого боковых желудочков не должна превышать 2 мм. Ликворная часть боковых желудочков в норме прослежива- ется, ширина ее кзади от сосудистых сплетений обычно не превышает 2–3 мм. Мозжечок имеет повышенную эхогенность относительно других отделов ГМ.

![Image](image_url)

Рис. 1.2.

НОРМАЛЬНЫЕ РАЗМЕРЫ

Нормальные размеры некоторых фрагментов ликворных путей и пространств следующие:

- передние рога боковых желудочков — до 4 мм;
- тела боковых желудочков — до 4 мм;
- затылочные рога боковых желудочков — до 12–16 мм;
- височные рога — в норме сомкнуты;
- III желудочек — 3 мм (право-левый размер на уровне таламусов);
- IV желудочек — до 8 мм;
• большая цистerna — до 10 мм;
• отверстие Монро — до 2 мм;
• субарахноидальное пространство — до 1–2 мм (может быть сомкнуто);
• межполушарная щель — до 4 мм (может быть сомкнута);
• ширина полости прозрачной перегородки — до 5 мм (у недоношенных — до 8–9 мм);
• сосудистые сплетения — до 12 мм.

Незрелость структур головного мозга наблюдается у недоношенных детей и проявляется в обеднении рисунка борозд и извилин, широкой полости прозрачной перегородки (2) между передними рогами боковых желудочков (1) и повышении экогенности перивентрикулярных областей (3) (рис. 1.3).

![Рис. 1.3.](image)

Перивентрикулярный отек эхографически диагностируется при повышении экогенности перивентрикулярных областей, равной или выше экогенности сосудистых сплетений (стрелки, a, зоны обведены пунктиром, б). Он имеет клиническое значение в совокупности с другим проявлением отека вещества ГМ — отсутствием визуализации ликвороочной (жидкостной) части боковых желудочков (рис. 1.4). Чаще встречается у недоношенных детей.
После тяжелого перивентрикулярного отека, на 3–4 неделе жизни могут развиться необратимые изменения перивентрикулярных областей в виде мелкокистозной дегенерации структуры ГМ — перивентрикулярной лейкомалии (рис. 1.5). Передние рога боковых желудочков отмечены (7). Постепенно происходит резорбция жидкости мелких кист и глиоз в местах малиации, к 4–5 месяцам жизни кисты исчезают. Массивная перивентрикулярная лейкомалия прогностически серьезна, определяет выраженный неврологический дефицит.
Субкортикальная мальция (стрелки, а) и парасагittalный ишемический некроз (стрелка, б) вещества ГМ встречаются после перенесенной тяжелой гипоксии и всегда сопровождаются неврологическим дефицитом (рис. 1.6). Очаги мальции обычно бывают небольших размеров. Через 3–4 месяца мелкие кисты могут резорбираться, а развившийся глиоз эхографически не дифференцируется.

Рис. 1.6.

Перинтравентрикулярные кровоизлияния чаще встречаются у недоношенных.
Перинтравентрикулярное кровоизлияние I степени определяется как эхогенное включение в проекции герминального матрикса (стрелка), не сопровождается расширением бокового желудочка (рис. 1.7) за исключением минимальной дилатации переднего рога на стороне поражения.

Рис. 1.7.
Глава 1. Нейросонография

Перинтравентрикулярное кровоизлияние II степени (стрелки) также выглядит как эхогенное включение в проекции геминального матрикса (область каудо-таламической вырезки), но сопровождается умеренным расширением всех фрагментов (кроме височного рога) бокового желудочка на стороне поражения (рис. 1.8). Возможно также повышение эхогенности, неровность контуров, фрагментация сосудистого сплетения.

Рис. 1.8.

После таких кровоизлияний (I–II степеней) формируются перинтравентрикулярные кисты, эхографически не отличимые от субэндимальных кист другой этиологии (рис. 1.9). У недоношенных детей субэндимальные кисты (стрелки, б) часто бывают многокамерными, смешены несколько кпереди и являются следствием как перенесенных кровоизлияний, так и инфекции или геминолизиса. Кисты рассяваются в течение нескольких месяцев, массивные могут сопровождаться невыраженной вентрикулодегией.

Рис. 1.9.
Во фронтальной плоскости субэпендимальные кисты определяются в просвете передних рогов боковых желудочков (стрелки), но визуализируются хуже, чем в парасагittalных плоскостях (рис. 1.10). Для достоверной оценки наличия кист необходимо помнить, что они всегда визуализируются и во фронтальной, и в сагittalной плоскостях.

Рис. 1.10.

Периинтравентрикулярное кровоизлияние III степени характеризуется наличием тромба (обведены пунктирной линией) в просвете бокового желудочка, всегда сопровождается выраженным его расширением (рис. 1.11). В динамике тромб рассасывается, изменяя свою структуру: центральная часть становится низкоэхогенной, а наружный контур кажется подчеркнутым. Затем тромб фрагментируется и лизируется, вентрикуломегалия часто прогрессирует.

Рис. 1.11.
Периинтравентрикулярное кровоизлияние IV степени (пунктир) характеризуется, кроме вышеперечисленного, еще и паренхиматозным компонентом. После его рассасывания формируются порэнцефалические кисты (рис. 1.12). Встречается у недоношенных детей, всегда приводит к тяжелому неврологическому дефициту.

Рис. 1.12.

После перенесенных периинтравентрикулярных кровоизлияний, а также после гипоксии, нейроинфекции, внутриутробных инфекций и пр. возможно возникновение вентрикуломегалии (рис. 1.13). Измерения фрагментов боковых желудочков показаны стрелками. Затылочный рог измеряется с захватом сосудистого сплетения и (если есть) тромбов в просвете (пунктир, б). Отверстие Монро показано стрелкой. На фоне дилатации III желудочка прослеживается межталамическое сращение (двойная стрелка).

Рис. 1.13.
При выраженной вентрикуломегалии измерение передних рогов боковых желудочков проводится не в области их "таллии" на уровне мозолистого тела, а в горизонтальном направлении (1), рассчитывается индекс передних рогов, или индекс Эванса:
\[(\frac{1}{2})(\frac{1}{2})\] (рис. 1.14). В норме его величина 0,27—0,3 независимо от возраста ребенка.

Рис. 1.14.

При прогрессирующей вентрикуломегалии с расширением всех фрагментов боковых желудочков и III желудочка (1 — передние рога; 2 — тело; 3 — III желудочек; 4 — височные рога, стрелка — межталамическое сращение) и отсутствием визуализации нижележащих фрагментов ликворных путей можно высказать предположение о блоке ликворных путей на уровне Сильвиевого водопровода (рис. 1.15). При блоке отверстия Монро боковой желудочек расширен с одной стороны.

Рис. 1.15.
Значительные диффузные изменения вещества ГМ в виде неравномерного повышения экогенности и утраты четкости структур могут наблюдатьсь после тяжелой гипоксии (рис. 1.16). Поражение может затрагивать как ткань больших полушарий, так и подкорковые ганглии. Часто имеется также неравномерное повышение экогенности подкорковых ядер (постгипоксические изменения). Состояние прогностически очень серьезно и требует пристального эхографического контроля.

![Рис. 1.16.](image)

После перенесенной гипоксии с выраженными изменениями ГМ (см. предыдущий рисунок) может развиться кистозная дегенерация вещества ГМ с поражением практически всех его отделов (рис. 1.17). Она часто сочетается с вентрикуломегалией, которая в таких случаях носит неоклюзионный, заместительный характер.

![Рис. 1.17.](image)
Паренхиматозные кровоизлияния любого генеза визуализируются в виде неправильной формы очага повышения эхогенности с неровными контурами, при значительных размерах могут вызывать смещение срединных структур (рис. 1.18). Часто сочетаются с геморрагическими поражениями ГМ другой локализации.

Рис. 1.18.

Кровоизлияния в базальные ганглии визуализируются как неправильной формы участки повышенной эхогенности соответствующей локализации (пунктир, рис. 1.19). Часто сочетаются с ишемическими и геморрагическими поражениями ГМ другой локализации.

Рис. 1.19.
Наружные гидроцефалические изменения встречаются очень часто, оптимально визуализируются при использовании линейного датчика 7-8 МГц. При расширении субарахноидального пространства наружные контуры ГМ неровные, в соответствии с рисунком борозд и извилин, стенки межполушиарной щели параллельные. При расширении субдурального пространства поверхность ГМ слажена за счет прилежащей к мозгу арахноидальной оболочки, межполушиарная щель конусовидна (рис. 1.20). Чаше имеет место прогностически благоприятное изолированное расширение субарахноидального пространства. Толщина субарахноидального пространства измеряется по линии (1), межполушарной щели — по линии (2).

![Рис. 1.20.](image1)

При расширении обоих пространств (прогностически более серьёзно) четко прослеживается отслоенная арахноидальная оболочка (3), под ней — субдуральное пространство (1), под ней — субарахноидальное (2) (рис. 1.21). Между полушариями — серп большого мозга (4).

![Рис. 1.21.](image2)
Субарахноидальные кровоизлияния при НСГ диагностируются далеко не всегда, в частности, не видны кровоизлияния в цистерны основания мозга. В типичных случаях характерно повышение экогенности содержимого расширенной Сильвиевой борозды (а), асимметрия Сильвиевых борозд. Еще больший объем (б) характеризуется скоплением крови в субарахноидальном пространстве (пунктир) и компрессией бокового желудочка на стороне поражения (стрелка), смещением срединных структур ГМ в контралатеральную сторону (рис. 1.22).

Эпидуральное кровоизлияние развивается при травме, имеет вид линзы (стрелки), при значительном объеме вызывает смещение срединных структур. Оптимально визуализируется из доступа через контралатеральную чешую височной кости в аксиальной плоскости сканирования (рис. 1.23). Такой доступ позволяет осмотреть изнутри контралатеральную теменную область.

Рис. 1.22.

Рис. 1.23.
Глава 1. Нейросонография

Субдуральное кровоизлияние может быть любого генеза (травматического, гипоксического, геморрагического, иногда генез неясен), эхографически имеет серповидную форму. В ранние сроки обычно средней эхогенности, позднее — анэхогенное, не отличимое от гидрофами (рис. 1.24). Оптимально визуализируется с применением линейных датчиков.

Рис. 1.24.

Минимальные подоболочечные кровоизлияния визуализируются через линию перелома кости черепа (чаще всего повреждаются теменные кости) при расхождении отломков (рис. 1.25). Теменная кость обозначена (1), твердая мозговая оболочка (2). Также возможно четко определить величину расхождения отломков кости. Оптимально визуализируются линейными датчиками.

Рис. 1.25.
При сканировании через большой родничок теневые области оказываются вне скана (пунктир), следовательно, необходимо сканирование через височную кость (а, рис. 1.26, см. также рис. 1.23). При сканировании через область перелома теневой кости и, как следствие, через кефалогематому (стрелка) возможно получение изображения «псевдогематомы» (двойная стрелка) за счет зеркального артефакта (б). При получении такой эхографической картины перепроверьте себя сканированием через контралатеральную височную область.

Рис. 1.26.

Редким вариантом перелома костей черепа, характерным только для новорожденных, является вдавленный перелом (или перелом по типу целлулоидного мячика, рис. 1.27). При УЗИ через большой родничок и контралатеральную височную кость можно достроить действующий контур поврежденной кости (пунктир) и измерить глубину вдавления (между стрелками).

Рис. 1.27.
ВОСПАЛИТЕЛЬНЫЕ ЗАБОЛЕВАНИЯ ГОЛОВНОГО МОЗГА

Менингиты в ранние сроки специфического эхографического представительства не имеют, возможно минимальное расширение субарахноидального пространства. Исключить менингит на УЗИ нельзя! При развитии гнойного менингита иногда определяется повышение эхогенности содержимого субарахноидального пространства и межполушарной щели, сохраняющееся даже после санации ликвора (рис. 1.28). В отдаленные сроки возможно формирование вентрикуломегалии.

![Image](attachment:Image0128.png)

Рис. 1.28.

Энцефалиты в ранние сроки не имеют специфической УЗ-симптоматики, может определяться отек ГМ. Инфильтраты ГМ (пунктир) определяются в виде неправильной формы участков повышения эхогенности, позднее там формируются псевдокисты (рис. 1.29). При возможности для оценки структуры очаговых изменений ГМ при энцефалите используйте линейный датчик.

![Image](attachment:Image0129.png)

Рис. 1.29.
Вентрикулиты чаще развиваются как осложнение периинтравентрикулярных кровоизлияний высоких степеней, но могут встречаться как самостоятельная патология (бактериальной, вирусной этиологии). Характерны вентрикуломегалия, повышение эхогенности стенок боковых желудочков и большое количество мелкодисперсной взвеси, осадка, густков (пунктир) в просвете боковых желудочков (рис. 1.30).

Рис. 1.30.

Абсцессы мозга встречаются очень редко, эхографически выглядят как неправильно округлой формы образования (обведено пунктирной линией) с гетерогенным содержимым (рис. 1.31). Возможен прорыв абсцесса мозга в полость бокового желудочка с развитием эхографической картины вентрикулита. После стихания воспалительного процесса формируется вентрикуломегалия.

Рис. 1.31.
Лентикулюстричная минерализующая ангиопатия проявляется при УЗИ в виде уплотненных стенок стиариных сосудов линейной или «ветвистой» формы. Иногда является маркером внутриутробной инфекции (рис. 1.32). При невыраженных проявлениях и отсутствии других изменений ГМ самостоятельного клинического значения обычно не имеет.

![Рис. 1.32.](image)

Еще одним маркером внутриутробной инфекции может служить обнаружение кист сосудистых сплетений (рис. 1.33). Также они могут возникать после кровоизлияний (в сочетании с вентрикуломегалией). У части детей кисты сосудистых сплетений имеют ретенционный характер. При невыраженных проявлениях и отсутствии других изменений ГМ самостоятельного клинического значения обычно не имеют и специфической терапии не требуют, рассасываются в течение нескольких недель/месяцев.

![Рис. 1.33.](image)
Также характерными признаками перенесенной внутриутробной инфекции являются мелкие кальцификаты, которые чаще локализуются перивентрикулярно (стрелки), но могут располагаться и в других областях ГМ (рис. 1.34). Обычно они встречаются на поздних стадиях инфекционного поражения, когда процесс уже неактивен.

Аномалии развития ГМ встречаются чаще, чем это представляется, и в большинстве случаев выявляются у детей раннего возраста во время профилактических осмотров. Самостоятельной специфической клинической картины не имеют.

При агенезии мозолистого тела определяется широкое стояние передних рогов боковых желудочков (пунктир), при этом они «развернуты» выпуклостью кнаружи; веерообразное расхождение борозд от крыши III желудочка (стрелки), часто — вентрикулолегиальная (рис. 1.35).
Агенезия степок полости прозрачной перегородки приводит к слиянию передних рогов боковых желудочков в единую, характерной формы, полость (а). При сочетании агенезии стенок полости прозрачной перегородки с агенезией мозолистого тела УЗ-картина носит название «головы быка» (б, рис. 1.36).

Рис. 1.36.

При синдроме Денди—Уокера эхографическая картина очень характерна и включает в себя гипоплазию червя мозжечка (практически не дифференцируется при УЗИ), вентрикуломегалию и кисту задней черепной ямки (рис. 1.37).

Рис. 1.37.
Как вариант аномалий развития расцениваются различной локализации и размеров арахноидальные кисты, которые имеют вид тонкостенных жидкостных включений округлой, реже — неправильной формы (рис. 1.38). Наиболее часто они локализуются в проекции Сильвиевой борозды (а, стрелка) и супратенториально (б, стрелка). Также они могут располагаться в селлярной вырезе, по конвекситальной поверхности ГМ. В редких случаях арахноидальные кисты достигают больших размеров. Даже в таких ситуациях общемозговой и очаговой неврологической симптоматики может не наблюдаться, и обнаружение кисты будет «эхографической находкой».

Рис. 1.38.

ОБРАЗЦЫ ПРОТОКОЛИРОВАНИЯ НЕЙРОСОНОГРАФИИ:

Указание размеров структур ГМ целесообразно только при наличии их отклонений от нормы.

Норма

Структуры головного мозга дифференцированы, симметричны. Межполушарная щель, субарахноидальное пространство и ликворные пути не дилатированы. Пульсация мозовых сосудов не изменена. Сосудистые сплетения не расширены, симметричны, контуры ровные, четкие. Изменения структуры перивентрикулярных тканей не определяются. Патологические включения не дифференцируются.

Заключение: без эхопризнаков структурных изменений головного мозга на момент осмотра.
Глава 1. Нейросонография

Перивентрикулярный отек
Структуры головного мозга нечетко дифференцированы. Межполушарная щель не деформирована, не расширена. Дилатация субарахноидальных пространств и ликворных путей не определяется. Ликворная часть боковых желудочков достоверно не прослеживается. Перивентрикулярные ткани повышенной эхогенности. Пульсация сосудов визуально сохранена. Достоверные эхопризнаки организованных патологических включений в паренхиме мозга не определяются.
Заключение: эхопризнаки отека головного мозга с максимальными проявлениями в перивентрикулярных областях.

Перивентрикулярная лейкомаляция
Справа в теменной области перивентрикулярно определяется зона нарушений структуры вещества головного мозга с неровными, нечеткими контурами, общими размерами около 45 × 18 мм, состоящая из множества анэхогенных участков неправильной формы по 2–4 мм в диаметре с тонкими септами между ними. Слева в теменной области определяется аналогичная область общими размерами около 38 × 14 мм.
Заключение: эхопризнаки перивентрикулярной лейкомаляции с обеих сторон.

Наружные гидроцефалические изменения
Субарахн. пр-во справа — 5 мм, слева — 6 мм.
Межполушарная щель — 6 мм.
Рисунок борозд по конвекситальной поверхности подчеркнут. Межполушарная щель и субарахноидальные пространства расширены. Ликворные пути проходимы, размеры их в пределах возрастной нормы. ...
Заключение: эхопризнаки гидроцефалических изменений (наружный тип).

Внутренние гидроцефалические изменения
Передний рог пр. бок. жел. — 11 мм.
Передний рог лев. бок. жел. — 10 мм.
Тело пр. бок. жел. — 9 мм. Тело лев. бок. жел. — 7 мм.
Ш желудочек (пирена) — 7 мм. Большая цистерна — 11 мм.
Структуры головного мозга симметричны, рисунок их четкий. Межполушарная щель и субарахноидальное пространство не деформированы, не расширены. Сосудистые сплетения с ровными, четкими контурами, несколько повышенной эхогенности. Отмечается расши-
рение ликворных путей, проходимость их сохранена. Пульсация сосудов визуально сохранена. Достоверные экопризнаки организованных патологических включений не определяются.

Заключение: экопризнаки гидроцефалических изменений (внутренний тип).

Субэпендимальная киста
... Слева в проекции каудоталамической вырезки определяется тонкостенное жидкостное включение размерами 11×5 мм, расцениваемое как субэпендимальная киста. Ликворные пути проходимы, не расширены. Пульсация сосудов визуально сохранена. Достоверные экопризнаки других организованных патологических включений не определяются.

Заключение: экопризнаки субэпендимальной кисты слева.

Кисты сосудистого сплетения
... Сосудистые сплетения с ровными, четкими контурами. В проекции средней трети левого сосудистого сплетения определяются отдельные (3) жидкостные включения диаметром до 4 мм. ...

Заключение: экопризнаки кистозной трансформации сосудистого сплетения слева.

Малое акустическое окно
Из-за малых размеров большого родничка визуализации доступны только срединные структуры головного мозга. Исследование проведено с использованием полипозиционного сканирования. Визуализированные структуры головного мозга дифференцированы, симметричны. Межполушарная щель, субарахноидальное пространство и ликворные пути не дилатированы. Пульсация мозговых сосудов не изменена. Сосудистые сплетения не расширены, симметричны, контуры ровные, четкие. Изменения структуры перивентрикулярных тканей не определяются. Патологические включения в визуализированных отделах головного мозга не дифференцируются.

Заключение: без экопризнаков структурных изменений визуализированных фрагментов головного мозга на момент осмотра.

Супрапонтендеальная арахноидальная киста
... Срединные структуры головного мозга симметричны, не смещены. Несколько ниже таламусов, немного правее средней линии определяется анэхогенное фиксированное включение без признаков кровотока в просвете, округлой формы, размерами около 8×7 мм.
Ликвонные пути проходимы, размеры их — в пределах возрастной нормы. Достоверные эхопризнаки других организованных патологических включений в паренхиме головного мозга на момент осмотра не дифференцируются.

Заключение: эхопризнаки супратенториальной арахноидальной кисты.

Лентикулостриарная минерализирующая ангиопатия (васкулит)

... В проекции таламусов, больше справа определяются линейной и «ветвистой» формы тонкие эхогенные включения (уплотненные стенки стриарных сосудов). Ликвонные пути проходимы, не расширены. Пульсация сосудов визуально сохранена. Достоверные эхопризнаки других организованных патологических включений не определяются.

Заключение: эхопризнаки лентикулостриарной минерализирующей ангиопатии.

Вдавленный перелом черепа

... Ликвонные пути проходимы, размеры их в пределах возрастной нормы. Определяется деформация костей черепа справа в теменно-затылочной области по типу вдавления на глубину 12 мм. Патологическое содержимое в подоболочечных пространствах не определяется.

Заключение: эхопризнаки деформации костей черепа (вдавленный перелом).

Постгипоксические изменения, незрелость

Структуры увализованы, нечетко дифференцированы. Рисунок борозд и извилин несколько обеднен. Межполушарная щель не деформирована, не расширена. Дилатация субарахноидальных пространств, межполушарной щели и ликвонных путей не определяется. Размеры фрагментов боковых желудочков — в пределах верхней границы нормы. Ширина полости прозрачной перегородки — 8 мм. Перивентрикулярные ткани повышенной эхогенности на протяжении в полном протяжении. Пульсация сосудов визуально сохранена. Достоверные эхопризнаки организованных патологических включений не определяются.

Заключение: диффузные изменения головного мозга, расцениваемые как состояние после перенесенной острой асфиксии на фоне незрелости структур головного мозга.
Массивное субарахноидальное кровоизлияние
Определяются смещение срединных структур головного мозга слева направо, расширение и повышение эхогенности содержимого Сильвиевой борозды. Дифференцировка структур головного мозга сохранена. Определяются компрессия левого бокового желудочка и умеренное расширение фрагментов правого бокового желудочка. Нижележащие фрагменты ликворных путей проходимы, не дилатированы. В просвете ликворных путей − без эхопризнаков патологического содержимого. Слева определяется подоболочечное (предположительно − субарахноидальное) скопление содержимого средней эхогенности толщиной слоя до 5 мм вокруг левого полушария и, предположительно, на основании мозга. Большая цистерна не изменена, патологических включений не выявлено.
Заключение: эхопризнаки массивного субарахноидального кровоизлияния слева, смещения срединных структур головного мозга слева направо, компрессии левого бокового желудочка.
Перелом теменной кости
Структуры вуализированы, четкодифференцированы. Рисунок борозды извилины сохранен. Срединные структуры не смещены. Межполушарная щель не деформирована, не расширена. Дилатация субарахноидальных пространств, межполушарной щели и ликворных путей не определяется. При сканировании через левую височную кость в теменной области справа определяется подоболочечное скопление содержимого средней эхогенности (кровь?) толщиной до 4 мм. При сканировании области перелома правой теменной кости определяются расхождение фрагментов на 4 мм и субдуральное скопление содержимого средней эхогенности (предположительно − свежая кровь) толщиной до 4 мм. Определяется кефалогематома с гетерогенным содержимым, включая жидкостной компонент, толщиной до 9 мм.
Заключение: эхопризнаки субдурального кровоизлияния в правой теменной области, перелома правой теменной кости, кефалогематомы.
Глава 2
УЗИ мягких тканей шеи

Щитовидная железа у детей исследуется по тем же принципам, что и у взрослых пациентов. Максимально информативным является суммарный тиреоидный объем:

\[V = (A_1 \times B_1 \times C_1 + A_2 \times B_2 \times C_2) \times 0,479, \]

где A, B, C — ширина, толщина и длина каждой доли.

Объем железы варьируется очень значительно, у здоровых детей со сходным somатическим статусом он может отличаться в 2–3 раза. Ориентировочно, в зависимости от росто-весовых показателей детей, можно использовать следующие данные: новорожденные — 0,5–1,0 мл; 1–6 лет — 1–4 мл; 7–9 лет — 1–6 мл; 13–15 лет — 2–10 мл (упрошенно, по М.И. Пыкову).

Наиболее часто в детской практике встречается тиреоидит, реже — угловидный зоб. В эндемичных районах — диффузный зоб. В редких случаях — гипоплазия щитовидной железы.

Технические сложности могут возникать при проведении исследования щитовидной железы у детей раннего возраста, когда на короткой шееckе ребенка линейным датчиком очень сложно получить продольный скан. Также дети не любят положения с запрокинутой головой: вместо ванну под шейку малыша лучше положить руку матери ребенка.

Подчелюстные лимфоузлы исследуются линейным датчиком (рис. 2.1). При воспалении они увеличиваются в размерах, сохраняют четкие контуры. Форма узлов овальная или приближается к округлой (\(\odot \), стрелки). Характерно снижение экогенности ткани лимфоузла.

![Рис. 2.1.](http://example.com/image.png)
Возможно невыраженное утолщение и повышение эхогенности окружающих мягких тканей. Воспаление лимфоузлов, расположенных под кивательными мышцами, клинически симулирует кривошею (б. стрелка).

Гнойное расплавление лимфоузла характеризуется неровными контурами, нарушением структуры его ткани, часто — повышением эхогенности окружающих тканей (рис. 2.2). Узел может с трудом дифференцироваться от окружающих тканей.

Гортань визуализируется линейным датчиком 7 МГц. Во фронтальной плоскости достоверно оцениваются вестибулярные (а) и голосовые (б) складки, их симметричность, подвижность, проходимость просвета гортани (рис. 2.3). Достоверно виден прикрывающий гортань спереди щитовидный хрящ. Толщина его у подростков достигает 3—4 мм.
Достоверной эхографической диагностике подлежат объемные образования гортани (пунктир, a), спайки в передних отделах (стрелка, b), при УЗИ в режиме реального времени — парезы и параличи гортани (рис. 2.4). Папилломатоз с размерами папиллом до 2 мм эхографически достоверно не определяется. У детей раннего возраста оценка подвижности связок проводится просто на фоне дыхания.

Рис. 2.4.

Среди заболеваний слюнных желез наиболее часто встречается сиалоэдемит, чаще поражаются подчелюстные слюнные железы. Характерны увеличение размеров, неровность контуров, понижение однородности за счет отека, незначительное расширение протоков (стрелка) (рис. 2.5, a — норма, b — сиалоэдемит). Параорганые мягкие ткани в большинстве случаев эхографически не изменены.

Рис. 2.5.
Клиническим симулятором сиалoadенита часто является воспаление интрагородных лимфоузлов: в ткани слюнной железы определяется округлой формы гипоэхогенный лимфоузел (б, стрелка, рис. 2.6, а — неизмененная контралатеральная железа). Размеры воспаленных интрагородных лимфоузлов редко превышают 15 мм. Окружающая ткань слюнной железы может иметь повышенную эхогенность. Часто развивается подчелюстной лимфаденит на стороне поражения.

Рис. 2.6.

Слюннокаменная болезнь у детей встречается редко. При УЗИ определяются увеличение размеров железы, преимущественно — в толщину, неровность ее контуров, диффузные изменения паренхимы в виде «зернистости», неравномерное повышение эхогенности. Характерны дилатация протоков (двойная стрелка) и конкретмент (стрелка) с акустической тенью (рис. 2.7, а — норма, б — слюннокаменная болезнь).

Рис. 2.7.
Хронический сиалоаденит у детей встречается редко, имеет характерную эхографическую картину в виде мозаичности структуры желез, иногда — неравномерной фрагментарной дилатации протоков (рис. 2.8). Оптимально использование линейных датчиков. В сомнительных случаях необходима онкологическая настороженность.

Рис. 2.8.

УЗИ кивательных мышц (линейный датчик, 7 МГц) проводится у новорожденных с клиникой мышечной кривошеи. Датчик располагается непосредственно над мышцей. Для мышечной кривошеи (2-4 недели жизни ребенка) характерно веретенообразное утолщение кивательной мышцы с нарушением четкости структуры мышечных волокон, неравномерным повышением эхогенности утолщенной части мышцы (рис. 2.9, б). Целесообразно сравнение с контралатеральной неизмененной стороной (а): в норме толщина кивательной

Рис. 2.9.
мыщцы у новорожденного достигает 5–7 мм в зависимости от размеров тела ребенка. Диагностика очень проста и в 100% случаев высокоинформативна.

УЗИ вилочковой железы возможно у детей первых месяцев жизни. Позднее происходит окостенение грудины, а латеральные отделы железы прикрываются воздушной легочной тканью, что делает невозможным достоверное определение ее размеров. Датчик располагается поперечно над грудиною в месте сочленения рукоятки и тела – получается поперечный скан тимуса. Продольные сканы получаются при продольном парастернальном расположении датчика справа и слева. Обычно железа имеет двудолевое строение. Расчет ее объема проводится аналогично объему щитовидной железы, но используется коэффициент 0,526 (а – поперечное сканирование, б – продольное, рис. 2.10). Граница между долами у вилочковой железы выражена нечетко и может быть выбрана во время исследования в самом тонком месте паренхимы при поперечном сканировании органа. При однодолевом строении тимуса (вариант нормы) расчет проводится по формуле:

\[A \times B \times C \times 0.526, \text{где A, B, C – три измерения органа.} \]

При однодолевом строении железы, так же, как и при типичном двудолевом, возможно как симметричное, так и асимметричное расположение органа. Асимметрия размеров долей железы при нормальном суммарном объеме органа не имеет принципиального значения.

В норме объем железы (условно плотность ткани равна 1,0) составляет до 0,3% от веса ребенка, в 3–4 месяца – максимально до 0,4%.

Рис. 2.10.
У детей раннего возраста, особенно при крике, верхняя часть ткани тимуса может через яремную вырезку смешаться на шею, достигая нижнего края щитовидной железы. Это является вариантом возрастной нормы и, при отсутствии других изменений, не должно расцениваться как патология. У здоровых детей второго полугодия жизни структура железы достаточно часто не гомогенна, а с мелкоточечными эхогенными включениями. Причина этого изменения неясна, самостоятельного клинического значения не имеет.

Наиболее частой патологией является тимометалия без структурных изменений ткани железы. Увеличение объема железы часто встречается у детей с измененным аллергическим фоном, часто причина тимометалии неясна. В некоторых случаях определяется необычный рисунок паренхимы (рис. 2.11). Клиническое значение тимомегалии состоит в повышенной настороженности относительно проведения плановых прививок и плановых оперативных вмешательств этим детям.

Рис. 2.11.

Уменьшение размеров вилочковой железы наблюдается при гипопластии или акцидентальной инволюции железы (после перенесенных тяжелых инфекций), что требует специального обследования (рис. 2.12). В последнем случае ткань железы может иметь атипичную структуру, повышенную эхогенность, нечеткие контуры. Железа может быть с трудом дифференцирована от окружающих тканей. Объем железы может уменьшаться до 1 мл и менее. Эхографически невозможно дифференцировать гипоплазию и инволюцию тимуса невозможно.
ОБРАЗЦЫ ПРОТОКОЛИРОВАНИЯ УЗИ ОРГАНОВ ШЕИ И ТИМУСА

Острый подчелюстной лимфаденит

В проекции подчелюстной области справа определяется конгломерат лимфоузлов округлой и овальной формы, самый крупный из которых — до 24 мм в диаметре. ПARENХИМА лимфоузлов пониженной экогенности, без признаков деструктивных изменений. Окружающие ткани несколько утолщены, повышенной экогенности. Слева в подчелюстной области определяются 2 лимфоузла средней экогенности овальной формы размерами 14×8 и 14×10 мм, без изменения окружающих тканей.

Заключение: эхопризнаки лимфаденита без деструктивных изменений на момент осмотра.

Гортань — норма

Структуры гортани визуализированы отчетливо. Голосовая щель, вестибулярные и голосовые складки симметричны. Движения складок гортани симметричные, прослеживаются достоверно. Структура щитовидного хряща не изменена. Без достоверных эхопризнаков патологических включений в проекции гортани на момент осмотра.

Заключение: без эхопризнаков структурных изменений гортани на момент осмотра.
Глава 2. УЗИ мягких тканей шеи

Вилочковая железа — норма

Правая доля (ширина×толщина×длина) — 23×17×44 мм.
Левая доля (ширина×толщина×длина) — 25×14×41 мм.
Суммарный объем — 16,6 мл. Вес ребенка — 7200 г.
Отношение к весу ребенка — 0,23% (норма — до 0,3%).

Тимус: расположен типично, строение двухдольное, суммарный объем и отношение к весу тела ребенка — в пределах возрастной нормы. Паренхима гомогенна, без организованных патологических включений.

Заключение: без эхопризнаков структурных изменений вилочковой железы на момент осмотра.

Тимомегалия

Правая доля (ширина×толщина×длина) — 29×26×49 мм.
Левая доля (ширина×толщина×длина) — 32×28×53 мм.
Суммарный объем — 44,4 мл. Вес ребенка — 6550 г.
Отношение к весу ребенка — 0,68% (норма — до 0,3%).

Тимус: расположен типично, строение двухдольное. Паренхима гомогенна, без организованных патологических включений. Суммарный объем и отношение к весу тела ребенка — выше возрастной нормы.

Заключение: эхопризнаки тимомегалии.
Глава 3
УЗИ легких и плевральных полостей

Очень легко диагностируется плевральный выпот: в виде жидкостного содержимого, в первую очередь — в плевральных синусах (стрелки). Исследование можно проводить как в положении ребенка лежа на спине из эпигастрального и латеральных доступов, так и в положении ребенка сидя — со спины (рис. 3.1). Толщина слоя выпота в синусе свыше 5 мм достоверно определяется при УЗИ, рентгенологически такое количество обычно не выявляется.

Рис. 3.1.

Собственно пневмонический очаг может быть визуализирован, только если он расположен поверхностно, то есть не прикрыт воздушной легочной тканью. Соответственно, прикорневые пневмонии на УЗИ не видны (рис. 3.2, эпигастральный доступ). Эхогенность бессознанной легочной ткани средняя, сопоставима с эхогенностью печени.

Рис. 3.2.
При сканировании по межреберным промежуткам пневмони́ческий участок часто имеет форму неправильного треугольника. Мелкие эхогенные точки, выстраивавшиеся в линии и «веточки» — это пузырьки газа в просвете бронхов. Они свидетельствуют о сохраненной бронхиальной проводимости. В динамика заболевания этот рисунок «воздушной бронхограммы» становится интенсивнее, что является прогностически благоприятным признаком (рис. 3.3).

Рис. 3.3.

Постепенно безвоздушный участок легкого уменьшается в размерах (пунктир), остаточные мелкие очаги треугольной формы могут не дифференцироваться рентгенологически (рис. 3.4).

Рис. 3.4.
При тяжелых пневмонах гнойный выпот может окружать все легкое, иметь вид мелкодисперсной взвеси, прослеживаться в междолевой щели (рис. 3.5, сканирование по межреберным доступам). Обычно при таком течении заболевания имеется массивный, полисегментарный пневмонический очаг, лобит.

Рис. 3.5.

На фоне значительного количества плеврального выпота, независимо от его причины, возможно появление краевых компрессионных ателектазов неправильной треугольной или вытянутой формы (пунктир, рис. 3.6, осмотр синуса). Размеры их редко превышают 5×2 см.

Рис. 3.6.
При УЗИ на фоне пневмоначеских очагов (пунктир) четко визуализируются мелкие субкортикальные очаги деструкции легочной ткани, не дифференцируемые рентгенологически (стрелки), которые могут быть как одно-, так и мультифокальными (рис. 3.7). В большинстве случаев они встречаются у детей до 3—4-летнего возраста.

Рис. 3.7.
После спонтанной или бронхоскопической чрезбронхиальной санации микроабсцессов в их проекции определяются мелкие включения газа (стрелки), что говорит об их чрезбронхиальным дренировании (рис. 3.8). Целесообразно использование линейных датчиков, особенно у маленьких детей. Дренированный субкортикальный микроабсцесс у маленького ребенка — это фактор риска развития пневмоторакса.

Рис. 3.8.
Крупные абсцессы легких определяются достоверно, чрезбронхиальное дренирование с попаданием воздуха (стрелка) в полость абсцесса ухудшает УЗ-визуализацию (рис. 3.9). Также практически неинформативно использование УЗИ при наличии пневмоторакса.

Рис. 3.9.
Плевральный выпот за время болезни значительно меняет характер: выпадение нитей фибрина приводит к формированию фибриноторакса с типичной «сетчатой» структурой (рис. 3.10). Пункционный метод лечения фибриноторакса неэффективен, что определяет важность его диагностики. Целесообразно применение линейных датчиков.

Рис. 3.10.
Глава 3. УЗИ легких и плевральных полостей

Остаточные проявления фибриноторакса также легко визуализировать при УЗИ (рис. 3.11, продольное паравертебральное сканирование). Одиночной стрелкой показаны ребра, двойной — воздушная поверхность легкого. Такие изменения после тяжелых пневмоний могут оставаться несколько недель при клиническом выздоровлении ребенка.

Рис. 3.11.

Возможна УЗ-диагностика поверхностно расположенных кистозных образований легких и средостения (рис. 3.12, а — целомическая киста перикарда (пунктир, рядом расположено сердце, б — эхинококковая киста легкого). Содержимое кист может быть различным — как жидкостным (а), так и со вззвесь (б). Необходимо использование всех возможных доступов сканирования, включая субксифоидный, паракардиальные, межреберные и пр. Исключить кистозное образование в грудной полости на УЗИ нельзя, поскольку не все области доступны УЗ-визуализации.

Рис. 3.12.
Опухоли легких в детской практике казуистически редки. Преобладают опухоли средостения, которые могут протекать бессимптомно и достигать гигантских размеров (рис. 3.13). Опухоль может оттеснять и деформировать окружающие органы.

Рис. 3.13.

Опухоли средостения часто сопровождаются наличием значительного плеврального выпота. При этом собственно опухоль может иметь различную эхоструктуру, как солидную, так и включающую в себя кистозный компонент (рис. 3.14). Для обнаружения собственно ткани опухоли эффективны паракостальные доступы к переднему средостению. Также возможен югулярный доступ. Локализация и качество плеврального выпота определяются при полипозиционном сканировании по межреберным промежуткам и из эпигастральной.

Рис. 3.14.
У новорожденных легко дифференцировать ателектазы легких. Ателектазированное легкое выглядит как ткань несколько повышенной эхогенности (относительно паренхимы печени), без включений (рис. 3.15). Возможно наличие жидкости в плевральной полости.

Рис. 3.15.

Не представляет технических сложностей эхографическая диагностика жидкостного содержимого в полости перикарда (а, 1), что может встречаться как при перикардитах, так и при общем отечном синдроме любого генеза (рис. 3.16). Можно использовать как конвексный, так и векторный датчик, простейший доступ — по межреберному промежутку в проекции верхушечного сердечного толчка. Линейным датчиком можно точнее оценить качество выпота, наличие взвеси, нитей фибрина и пр. Возможно сочетанное обнаружение выпота (б) в полости перикарда (1) и в плевральной полости (2).

Рис. 3.16.
ОБРАЗЦЫ ПРОТОКОЛИРОВАНИЯ УЗИ ЛЕГКИХ И ПЛЕВРАЛЬНЫХ ПОЛОСТЕЙ

Норма
Поверхностные слои легочной ткани воздушны, достоверная эхографическая оценка глубже расположенных фрагментов легочной паренхимы невозможна. Без экопризнаков жидкостного содержимого в плевральных синусах на момент осмотра.

Заключение: без экопризнаков структурных изменений на момент осмотра.

Плевральный выпот. Краевой компрессионный ателектаз
Справа в плевральной полости определяется значительное количество жидкостного содержимого толщиной слоя в плевральном синусе до 42 мм, вокруг правого легкого по реберной поверхности снизу до уровня соска — до 12 мм (в положении ребенка лежа на спине). Определяется краевой компрессионный ателектаз правого легкого в проекции 10 сегмента размерами около 4×2 см без признаков деструктивных изменений легочной ткани на момент осмотра. Остальные отделы легочной ткани воздушны.

Заключение: экопризнаки значительного количества жидкостного содержимого в плевральной полости справа, краевого компрессионного ателектаза правого легкого малых размеров.

Пневмония — вариант
... При полипозиционном сканировании в заднебоковых отделах правого легкого на уровне соска определяется участок безвоздушной легочной ткани размерами 5×4 см с выраженной воздушной бронхограммой... Без экопризнаков жидкостного содержимого в плевральной полости на момент осмотра.

Заключение: экопризнаки правосторонней пневмонии.

Пневмония — вариант
... При полипозиционном сканировании в заднебоковых отделах правого легкого от уровня соска и ниже определяется участок безвоздушной легочной ткани размерами около 10×6×7 см. В центральной части безвоздушного участка паренхима легкого повышенной эхогенности, без воздушной бронхограммы, в периферических отделах безвоздушного участка воздушная бронхограмма сохранена. Определяется утолщенная междолевая плевра ...

Заключение: экопризнаки правосторонней пневмонии.
Глава 3. УЗИ легких и плевральных полостей

Пневмония — вариант

... При полипозиционном сканировании в переднебоковых отделах левого легкого от уровня соска и выше определяется участок безвоздушной легочной ткани размерами около 9×6×6 см. В центральной части безвоздушного участка паренхима легкого повышенной эхогенности, без воздушной бронхограммы. В этой области определяются субкортикально расположенные мелкие, до 1 см, сливные зоны понижения эхогенности (мелкоочаговые деструктивные изменения). В периферических отделах безвоздушного участка воздушная бронхограмма сохранена. Без экопризнаков других деструктивных изменений безвоздушного фрагмента легочной ткани на момент осмотра.

Определяется наличие жидкостного содержимого с мелкодисперсной взвесью в плевральной полости. Толщина слоя содержимого — до 35 мм в синусе и до 17 мм по латеральной поверхности легкого.

Заключение: экопризнаки левосторонней верхнедолевой деструктивной пневмонии, гнойного плеврита.

Пневмония — вариант

... При полипозиционном сканировании в подлопаточной области справа определяется участок безвоздушной легочной ткани размерами около 8×6×7 см. В структуре этого участка имеется поверхностно расположенный очаг деструкции легочной ткани около 21 мм в диаметре с гипоанэхогенным бессструктурным содержимым. В остальных отделах безвоздушного участка воздушная бронхограмма сохранена. Без экопризнаков других деструктивных изменений безвоздушного фрагмента легочной ткани на момент осмотра...

... Определяется жидкостное содержимое с подвижными линейными структурами средней эхогенности (нити фибрина) в плевральной полости. Толщина слоя содержимого — до 32 мм в синусе и до 14 мм по латеральной поверхности легкого.

Заключение: экопризнаки правосторонней среднедолевой деструктивной пневмонии, абсцесса 6 сегмента малых размеров, плеврита.

Фибриноторакс — вариант

... Справа в плевральной полости определяется значительное количество фиксированного содержимого, которое покрывает легкое по всей внешней поверхности. Содержимое имеет жидкостной характер с множественными, линейной формы плотными включениями, образующими сетчатый рисунок. Толщина слоя содержимого по реберной поверхности легкого — до 32 мм, в синусе — до 56 мм ...

Заключение: экопризнаки фибриноторакса справа.
Фибриноторакс — вариант
... Справа в плевральной полости определяется незначительное количество фиксированного гетерогенного содержимого без жидкостного компонента. Толщина слоя по реберной поверхности в подлопаточной области — до 6 мм ...
... В этой же области определяется поверхностно расположенный участок безвоздушной легочной ткани размерами около 3×2 см с выраженной воздушной бронхограммой.

Заключение: экопризнаки фибриноторакса справа, остаточные эхографические проявления пневмонии справа.

Пневмония — вариант
... При полипозиционном сканировании в подмышечной области слева определяется участок безвоздушной легочной ткани размерами около 8×6×6 см. В структуре этого участка имеется очаг деструкции легочной ткани около 22 мм в диаметре с гипоанэхогенным бесструктурным содержимым и небольшим количеством газа в просвете. В остальных отделах безвоздушного участка воздушная бронхограмма сохранена. Без экопризнаков других деструктивных изменений безвоздушного фрагмента легочной ткани на момент осмотра...

Заключение: экопризнаки левосторонней деструктивной пневмонии, дренированного абсцесса легкого малых размеров.

Паразитарная киста легкого
Справа в нижнезадних отделах легкого определяется округлой формы фиксированное включение до 6 см в диаметре, с плотной стенкой около 3 мм толщиной, жидкостным содержимым с мелкодисперсной взвесью. Поверхностные слои легочной ткани в остальных отделах легких с обоих сторон воздушны, достоверная эхографическая оценка глубже расположенных фрагментов легочной паренхимы невозможна. Без экопризнаков жидкостного содержимого в обоих плевральных синусах на момент осмотра.

Заключение: экопризнаки паразитарной кисты правого легкого.

Гиповентиляция легких
... При полипозиционном сканировании паравертебрально и в подлопаточных областях с обеих сторон определяются поверхностно расположенные участки пониженной пневматизации легочной ткани со значительно выраженной воздушной бронхограммой, без деструктивных изменений. Без экопризнаков жидкостного содержимого в плевральных полостях на момент осмотра. ...

Заключение: экопризнаки гиповентиляции задних отделов легких.
Ателектаз легкого

... При полипозиционном сканировании из эпигастрального доступа и межреберных доступов справа определяется: правое легкое безвоздушно, его паренхима — без деструктивных изменений. Воздушная бронхограмма не прослеживается. В плевральном синусе — небольшое количество жидкостного содержимого, толщина слоя — до 5 мм в синусе. Сердце смещено вправо. Поверхностные слои легочной ткани слева воздушны, достоверная эхографическая оценка глубже расположенных фрагментов легочной паренхимы невозможна. В левой плееральной полости — без эхопризнаков жидкостного содержимого на момент осмотра.

Заключение: эхопризнаки ателектаза правого легкого.

Объемное образование средостения

... Справа в плееральной полости определяется жидкостное содержимое без включений. Толщина слоя в плееральном синусе — до 62 мм, вокруг всего правого легкого по реберной поверхности — до 34 мм (в положении ребенка лежа на спине). Слева — аналогичное содержимое, толщина слоя в плееральном синусе — до 34 мм, вокруг левого легкого по реберной поверхности снизу до уровня соска — до 19 мм ...

... При паракостальном сканировании справа от грудины определяется непосредственно прилегающее к сердцу объемное образование с неровными нечеткими контурами, гетерогенное, включающее компонент средней эхогенности и жидкость. Общие размеры образования — не менее 8×6×5 см. Слева от грудины определяется аналогичное по структуре образование размерами около 5×4×4 см.

Заключение: эхопризнаки объемного образования переднего средостения, большого количества выпота в плееральных полостях с обеих сторон (больше — справа).

Выпот в перикарде

Поверхностные слои легочной ткани с обеих сторон воздушны, достоверная эхографическая оценка глубже расположенных фрагментов легочной паренхимы невозможна. ... Без эхопризнаков жидкостного содержимого в плееральных полостях на момент осмотра.... Сердце расположено в типичном месте. Определяется значительное количество жидкостного содержимого с мелкодисперсной взвесью и тонкими, линейной формы подвижными структурами в полости перикарда. Толщина слоя жидкости у верхушки сердца — до 26 мм, по задней поверхности сердца — до 16 мм, по передней — до 18 мм.

Заключение: эхопризнаки перикардита.
Глава 4

Гепатопанкреатобилиарная патология

Технические приемы визуализации органов живота у детей принципиально те же, что и во взрослой практике.

Умеренная гепатомегалия без очаговых изменений является неспецифической реакцией на самые разные патологические процессы, может встречаться как индивидуальная особенность.

Атипичное строение в виде добавочных долей встречается очень редко (рис. 4.1, б). Сложным для трактовки является наличие «языка» левой доли, огибающего селезенку (а). Такой анатомический вариант может эхографически симулировать подкапсульную гематому.

Рис. 4.1.

Диффузное повышение эхогенности печени, особенно заметное у детей в сравнении с правой почкой, встречается при жировом гепатозе (рис. 4.2), у младенцев — при фетальном гепатите. Сопровождается гепатомегалией.

Рис. 4.2.
В редких случаях в паренхиме печени определяются неправильной формы гиперэхогенные области без акустической тени и жидкостного компонента. Предположительно такие зоны расцениваются как очаговые проявления жирового гепатоза, хотя морфологической верификации этого нет (рис. 4.3). В большинстве случаев наблюдаются у детей с ожирением, чаще — у мальчиков. При наблюдении в динамике такие очаги могут исчезать.

![Иллюстрация 4.3](image1.png)

Принципиальное отношение к неясным очагам в паренхиме печени у детей такое же, как и во взрослой практике: используется термин «Очаговое поражение печени». В большинстве случаев очаги имеют небольшие размеры (до 3 см в диаметре), округлую форму, ровные контуры, несколько повышенную эхогенность. При УЗИ обнаруживаются случайно (рис. 4.4). При динамическом наблюдении обычно практически не меняются.

![Иллюстрация 4.4](image2.png)
Гемангиомы и гемангиоматоз печени у детей встречается нечасто и обычно выявляется случайно (рис. 4.5). Может наблюдаться при кожных гемангиомах. Гемангиоматозные очаги (стрелки) могут иметь различный размер, количество их также может быть различно (до десятков), их эхогенность, как правило, понижена. Достоверно судить о гиперваскуляризации можно только при допплеровском исследовании. В редких случаях очаги исчезают при динамическом наблюдении.

Рис. 4.5.

Нодулярная гиперплазия печени при УЗИ может быть заподозрена при обнаружении у ребенка изоэхогенного узла достаточно крупных размеров (пунктир). Эхографически дифференцируемой капсулы такие узлы не имеют, локализация их возможна любая. Крупные сосуды обычно огибают этот узел (рис. 4.6). Для диагностики важно допплеровское исследование кровотока, выявляющее гиперваскуляризацию узла.

Рис. 4.6.
Опухоли печени у детей встречаются редко, могут быть и солидные варианты, и очаговые, поражающие все отделы паренхимы органа (рис. 4.7). В любом случае, онкологическая настороженность должна иметь место при работе с детьми всех возрастных групп.

Рис. 4.7.

Относительно часто очаговые изменения печени встречаются при септических состояниях и/или специфических инфекциях (иерсиниоз, мононуклеоз и т.п.). Далеко не всегда формируются абсцессы печени. В подавляющем большинстве случаев возникают единичные или множественные септические очаги, имеющие вид некрупных гипоэхогенных включений неправильно округлой формы (рис. 4.8). Диаметр их обычно составляет 508 мм. На фоне консервативной терапии септические очаги в подавляющем большинстве случаев исчезают бессследно, изредка формируются кальцификаты.

Рис. 4.8.
Острый гепатит эхографически примечателен тем, что максимальные структурные изменения отмечаются не со стороны печени, а со стороны стенок желчного пузыря (они становятся резко отечными, достигая в толщину 20 мм и более, стрелка, а). Также всегда определяются лимфоузлы в воротах печени (стрелка, б), в проекции головки и тела поджелудочной железы (рис. 4.9). Возможно обеднение сосудистого рисунка паренхимы печени на фоне ее отека.

Рис. 4.9.

Неспецифическими являются диффузные изменения рисунка паренхимы печени в виде множественных линейной и кольцевидной формы плотных структур (стрелки), представляющих собой уплотненные стенки сосудов портальной системы (рис. 4.10). Такие изменения встречаются при гипертермии и интоксикации любого генеза. Дифференциальным эхографическим критерием реактивного характера диффузных изменений является их исчезновение при излечении основного заболевания.

Рис. 4.10.
Фиброз печени характеризуется стойкими значительными изменениями структуры органа в виде неравномерного повышения эхогенности, особенно в периферических отделах (они отчетливо визуализируются при использовании линейного датчика) и значительным повышением эхогенности перипортальных тканей за счет фиброза (рис. 4.11, стрелки). Паренхима приобретает грубоотяжистую, ячеистую структуру.

Цирроз печени у детей встречается нечасто, принципы его эхографической оценки принципиально те же, что и у взрослых. Крупные узлы регенерации развиваются реже, визуализируются они в первую очередь по вентральной поверхности печени и имеют небольшой диаметр — по 10–14 мм (рис. 4.12). Контуры печени, по которым прослеживаются узлы регенерации, показаны пунктиром. Типично скругление контура края печени.
Как признаки перенесенного инфекционного процесса трактуются кальцификаты в паренхиме печени. Они чаще бывают малых размеров, нередко формируются рядом с крупными внутрипеченочными сосудами. Акустическая тень четкая. Кальцификаты (стрелки) редко бывают множественными, обнаружаются обычно случайно (рис. 4.13). Встречаются даже у новорожденных после перенесенной тяжелой внутриутробной инфекции (в частности, сифилиса).

Кисты печени, как правило, имеют небольшие или средние размеры, различную локализацию, со всех сторон бывают окружены паренхимой печени. Форма кист обычно округлая, часто — полицикличная, иногда с фестончатыми контурами. В просвете кист часто визуализируются тонкие септы, стенки кисты очень тонкие, отчетливо не дифференцируются. Содержимое кист анэхогенное (рис. 4.14), в единичных случаях включает в себя мелкодисперсную взвесь. Эхографически со 100% уверенностью исключить паразитарное происхождение кисты невозможно.

Рис. 4.13.

Рис. 4.14.
Очень похожий вид имеют кисты диафрагмы, которые в большинстве случаев ошибочно принимаются за кисты печени. Типичной локализацией кист диафрагмы является реберно-диафрагмальный угол, при сканировании из правого подреберья они проецируются на 8 сегмент печени. Информативным является сканирование со спины, при котором более отчетливо видно, что киста расположена вне органа и деформирует контур печени (рис. 4.15). Кисты редко достигают значительных размеров, мелкие обычно не увеличиваются, а иногда и уменьшаются в динамике (годы).

Отличительной особенностью паразитарных (чаще — эхинококковых) кист является наличие в их просвете взвеси, хитиновых оболочек в виде линейных структур (а), гетерогенных включений (фрагменты паразита). Капсула бывает четким, при кальцификации (б) — гиперэхогенной, с нечеткой акустической тенью (рис. 4.16).
Среди эхографически диагностируемых заболеваний сосудов печени следует отметить тромбоз портальной вены. Обычно после манипуляций на сосудах пуповины, на фоне гнойного омфалита развиваются пилефлебит и восходящий портальный тромбоз. В первую очередь поражается левая ветвь портальной вены: она расширяется до 7–9 мм, в ее просвете наблюдается гетерогенное содержимое (двойная стрелка см. рис. 4.17), правая ветвь сохранена (стрелка). В остром периоде заболевания (недели) возможна транзиторная портальная гипертензия, которая на УЗИ проявляется спленомегалией.

Рис. 4.17.

При тотальном портальном тромбозе обе ветви и ствол портальной вены заполнены содержимым средней эхогенности (стрелка). Вокруг ствола быстро (за несколько недель) развивается сеть коллатеральных сосудов (двойные стрелки) с возникновением эхографической картины кавернозы (рис. 4.18) и портальной гипертензией.

Рис. 4.18.
Кавернозная трансформация воротной вены, являющаяся одной из наиболее частых причин портальной гипертензии в детском возрасте, экографически определяется как конгломерат неправильной формы анэхогенных включений малого диаметра в проекции ворот печени, головки поджелудочной железы (рис. 4.19, пунктир). Также характерны спленомегалия, иногда — извитость селезеночной вены, значительное утолщение стенок желчного пузыря (стрелка).

Рис. 4.19.

Редкими эхографическими находками, которые сложно оценить без использования допплеровских технологий, являются крупные внутрипеченочные сосудистые шунты, развивающиеся чаще на фоне цирроза печени при портальной гипертензии (а). Такие шунты могут иметь и характер врожденных (рис. 4.20, б). Визуализируются они в виде анэхогенных структур линейной или неправильной линейной формы диаметром 4—7 мм.

Рис. 4.20.
Патология желчевыводящих путей у детей разнообразна и встречается очень часто. Чаше всего при УЗИ можно обнаружить различные деформации желчного пузыря. Клиническое значение имеют только стойкие деформации, не исчезающие при перемене положения тела (рис. 4.21). Легкие изгибы пузыря в шейчном отделе не следует расценивать как патологию. Обязательным условием корректного исследования желчного пузыря является состояние ребенка строго натощак (6 часов — для детей 1—3 лет, более 8 часов — для детей старше 3 лет).

Рис. 4.21.

Конкроменты в просвете желчного пузыря у детей перестали быть редкостью и встречаются даже у новорожденных. Принципы эхографической оценки конкроментов в желчном пузыре и в холедохе те же, что и во взрослой практике. Отличительной особенностью детского возраста является частое сочетание желчнокаменной болезни с аномалиями желчного пузыря, перетяжками в его просвете (рис. 4.22).

Рис. 4.22.
Относительно частой аномалией желчевыводящих путей в детском возрасте является кистозная трансформация холедоха. В большинстве случаев при первичном УЗ-осмотре эти кисты ошибочно принимают за кисты печени. Кисты холедоха могут иметь различную форму (чаще — округлую) и достигать крупных размеров (10 и более см в диаметре). Они локализуются в проекции ворот печени, в проекции головки поджелудочной железы и деформируют ее (рис. 4.23).

Визуализировать кисту холедоха и желчный пузырь в одном скане удается редко. Часто желчный пузырь имеет неправильную, подчас причудливую форму, множественные деформации, перегибы (рис. 4.24). В просвете кисты могут содержаться дисперсная взвесь, мелкие конкременты, густки. Обязательно использование полипозиционного сканирования как собственно кисты, так и фрагментов желчного пузыря для дифференцировки их от внутрипечеченных желчных ходов.

Рис. 4.23.

Рис. 4.24.
Часто кистозная трансформация холедоха сопровождается клиническими и лабораторными проявлениями частичной билиарной обструкции с дилатацией фрагментов внутрипеченочных желчных протоков (рис. 4.25, стрелки). Максимальной дилатации обычно подвергается левый долевой проток. Обострение воспалительного процесса в большинстве случаев является причиной развития острой билиарной обструкции и клинической манифестации заболевания.

Рис. 4.25.

После оперативного излечения (холедохоцистэктомия, наложение биелеодигестивного анастомоза на отключенной петле по Ру) часто наблюдается остаточная дилатация левого долевого протока (а, стрелка). Также возможен заброс воздуха из кишечной петли в желчевыводящие пути, возникновение аэробилии с типичным акустическим феноменом «хвоста кометы» (рис. 4.26, б, стрелка). Специфических субъективных жалоб при этом дети не предъявляют.

Рис. 4.26.
Травматические повреждения печени у детей диагностируются при УЗИ с высокой достоверностью. Наиболее частый механизм — кататравма (падение с высоты) или автотравма. Прежде всего следует оценить наличие или отсутствие гемоперитонеума. При положении ребенка на спине кровь скапливается в отлогих местах брюшной полости: в латеральных каналах, около печени (рис. 4.27). При положении ребенка на правом боку кровь скапливается в правом латеральном канале.

В первую очередь кровь скапливается в полости малого таза, ретропузырно (у девочек — ретроматочно), при этом в зависимости от частоты сканирования она выглядит либо как жидкость (4 МГц, а), либо как мелкодисперсная взвесь (7 МГц, б, рис. 4.28). В редких случаях визуализируются сгустки крови в виде неправильной формы включений средней эхогенности.
Обязательным условием проведения УЗИ у ребенка с абдоминальной травмой является наполнение мочевого пузыря, иначе кровь в полости малого таза может симулировать мочевой пузырь (а), и гемоперитонеум не будет диагностирован. Вспомогательное значение у девочек имеет визуализация яичников: в норме они определяются за пределами мочевого пузыря (б), при гемоперитонеуме — внутри жидкостного объема (в, рис. 4.29). Если кровь определяется только в полости малого таза, ее количество менее до 8 мл/кг веса ребенка, если в полости малого таза и в латеральных каналах — 8—24 мл/кг, если же во всех отделах живота — более 24 мл/кг.

![Рис. 4.29.](image)

Для повреждения паренхиматозного органа характерен гиперэхогенный паттерн, когда в ранние сроки собственно дефект паренхимы не виден, а определяется нечетко ограниченный очаг повышения эхогенности за счет имбибиции кровью поврежденного участка паренхимы печени (а). Через 6—9 суток по мере ретракции кровяного сгустка отчетливо виден гипоанэхогенный дефект, окруженный гиперэхогенной зоной ушиба паренхимы (рис. 4.30, б).

![Рис. 4.30.](image)
Подкапсульные разрывы печени в ранние сроки выглядят так же, характерно отсутствие гемоперитонеума (а). Через 8—10 суток внутриорганный дефект паренхимы может достигать значительных размеров (б), т.к. кровь не вытекает в брюшную полость (рис. 4.31). Клиническая картина обычно нечеткая, геморрагический шок не выражен, симптомов раздражения брюшины нет, так как нет гемоперитонеума. На фоне консервативного лечения эхографические изменения печени полностью исчезают через 2—3 месяца.

Рис. 4.31.

Крупные подкапсульные гематомы образуются очень редко, могут достигать огромных размеров. Они характеризуются относительно благоприятной клинической картиной, рассасываются в течение многих месяцев (рис. 4.32 — динамика за 4 месяца). В динамике заболевания в структуре гематомы становится меньше жидкостного компонента, преобладает содержимое средней эхогенности.

Рис. 4.32.
Среди эхографических изменений поджелудочной железы с очень большой частотой встречаются ее реактивные изменения: повышение эхогенности и "зернистость" паренхимы, иногда на фоне увеличения размеров органа. Может повышаться эхогенность стенок Вирсунгова протока, наблюдаться минимальная дилатация холедоха (стрелка). Эти изменения являются неспецифическими (на фоне пищевых отравлений, гастритов, аллергии, вирусных инфекций и пр.) и не соответствуют клиническому диагнозу «панкреатит» (рис. 4.33).

Деструктивный панкреатит у детей встречается редко, и принципы его эхографической диагностики те же, что и в взрослой практике. Железа гетерогенная, резко увеличенная в размерах (пунктир, а), имеется параорганичное скопление жидкости (стрелки, а). По мере стихания воспаления определяются дилатация и, иногда, извитость Вирсунгова протока (стрелка, б, рис. 4.34), выраженная "зернистость" паренхимы. В большинстве случаев деструктивный панкреатит развивается при аномалиях желчного пузыря и протоковой системы.

Рис. 4.33.

Рис. 4.34.
Глава 4. Гепатопанкреатобилиарная патология

При травме поджелудочной железы в ранние сроки характерен тот же «гиперэхогенный паттерн»: железа гетерогенная, увеличенная в размерах, ее контуры нечеткие. Имеется отек параорганных тканей, собственно дефекта паренхимы не видно (а). Лабораторно уже на этой стадии заболевания определяется гиперферментемия. Через 3—4 суток появляются и в дальнейшем нарастают деструктивные изменения паренхимы как за счет лизиса сгустка крови в очаге кровоизлияния, так и за счет аутолиза органа (рис. 4.35, б — динамика за 3 суток).

Рис. 4.35.

Скопления жидкости в полости малого сальника могут достигать значительных размеров с формированием псевдокист. Четкая стенка псевдокисты формируется обычно не ранее чем через 4 недели после травмы. Кисты можно визуализировать как из эпигастрія (а), так и доступом из левого подреберья через паренхиму селезенки (б, рис. 4.36).

Рис. 4.36.
При УЗИ селезенки относительно часто обнаруживаются кисты. Они могут встречаться даже у новорожденных. Кисты редко достигают больших размеров, могут иметь как ровные, так и фестончатые контуры, содержимое — чисто жидкостное, в редких случаях — с мелкодисперсной взвесью (рис. 4.37). Мелкие кисты у маленьких детей в ряде случаев исчезают. Клинические проявления в виде тяжести в левом подреберье появляются только при гигантских размерах кисты.

Рис. 4.37.

Неспецифическим признаком токсикозов различного генеза может быть спленит. Селезенка увеличена в размерах, при сканировании линейным датчиком 7–8 МГц в ее паренхиме определяются множественные, без счета, мелкие (2–3 мм в диаметре) гипоэхогенные очаги (рис. 4.38). Для специфических инфекций (иерсиниоз, мононуклеоз и т.п.) более характерны единичные гипоэхогенные очаги по 4–5 мм в диаметре, которые могут сохраняться несколько недель.

Рис. 4.38.
После септических состояний очаги могут подвергаться кальцификации, и в паренхиме селезенки обнаруживаются единичные (редко – множественные) кальцификаты произвольной локализации по 4–5 мм в диаметре с акустическими тенями (рис. 4.39).

Рис. 4.39.

Для травмы селезенки также характерен «гиперэхогенный паттерн», когда в первые часы и сутки после повреждения дефект не виден. Эхографическая диагностика травмы селезенки затруднена и основана на изменении структуры паренхимы (пунктир, а). На 6–9-е сутки дефект максимально визуализируется (б). Чаше он представляет собой несколько очагов неправильной формы, с неровными контурами — по типу «тающего сахара» (рис. 4.40). После заживления (1–2 месяца консервативного лечения) следов перенесенной травмы обычно не обнаруживается, в единичных случаях остаются деформирующие втянутые рубцы.

Рис. 4.40.
Некоторые данные о возрастных нормативах размеров внутренних органов брюшной полости представлены ниже.

Размеры печени: правая доля новорожденного — около 50–55 мм, в 1 год — около 75 мм, к 5 годам — 100 мм. Левая доля немного больше половины правой.

Размеры желчного пузыря в детском возрасте очень вариабельны. Ориентировочно можно пользоваться следующими данными:
• новорожденный — длина 22–35 мм, ширина — 8–15 мм;
• грудной возраст — длина 30–50 мм, ширина — 10–20 мм;
• 1–3 года — длина 35–60 мм, ширина 10–15 мм;
• 4–7 лет — длина 40–80 мм, ширина — 15–25 мм;
• 8–13 лет — длина 50–90 мм, ширина — 15–25 мм.

Таблица 4.1. Размеры поджелудочной железы у детей*:

<table>
<thead>
<tr>
<th>Возраст/размеры</th>
<th>Головка (мм)</th>
<th>Тело (мм)</th>
<th>Хвост (мм)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Новорожденный</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1 год</td>
<td>9</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>3 года</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>5 лет</td>
<td>11</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>7 лет</td>
<td>12</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>10 лет</td>
<td>14</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>14 лет</td>
<td>18</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

Таблица 4.2. Размеры селезенки у детей*:

<table>
<thead>
<tr>
<th>Возраст/размеры</th>
<th>Длина (мм)</th>
<th>Толщина (мм)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Новорожденный</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>1 год</td>
<td>52</td>
<td>25</td>
</tr>
<tr>
<td>3 года</td>
<td>65</td>
<td>30</td>
</tr>
<tr>
<td>5 лет</td>
<td>75</td>
<td>35</td>
</tr>
<tr>
<td>7 лет</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>10 лет</td>
<td>105</td>
<td>50</td>
</tr>
<tr>
<td>14 лет</td>
<td>130</td>
<td>55</td>
</tr>
</tbody>
</table>

Примечание: * — индивидуальные колебания допустимы в пределах 10% от возрастной нормы.
Если размеры ребенка резко выше или ниже возрастной нормы, внутренние органы могут иметь размеры, соответствующие реальному весу ребенка независимо от его возраста. Пример: вес ребенка в 2 года составляет 20 кг (норма на 5–6 лет) — размеры внутренних органов также могут (не обязательно!) достигать размеров органов 5–6-летнего ребенка. Или: если в 1 год ребенок весит 6 кг (норма 3-месячного младенца), то и размеры внутренних органов могут соответствовать не размерам годовалого ребенка, а размерам органов младенца 3 месяцев жизни.

ОБРАЗЦЫ ПРОТОКОЛИРОВАНИЯ УЗИ ГЕПАТОПАНКРЕАТОБИЛИАРНОЙ СИСТЕМЫ

Норма (5 лет 3 месяца)
Правая доля печени — 103 мм. Левая доля печени — 57 мм.
Желчный пузырь — 56×21 мм. Форма — грушевидная.
Холедох — 2,2 мм. Портальная вена — 6 мм.
Поджелудочная железа (головка×тело×хвост) — 13×8×12 мм.
Селезенка — 88×34 мм. Селезеночная вена — 4,6 мм.

Печень: размеры долей не изменены. Контуры ровные, четкие. Структуры хорошо дифференцированы, без признаков изменений и дилатации визуализируемых фрагментов внутрипеченочных желчных протоков и сосудов. Паренхима сохранена. Патологические включения в ней и околоселезеночных пространствах не выявлены.

Желчный пузырь: расположен в типичном месте, форма его не изменина, размеры в пределах возрастной нормы, стенки без признаков структурных изменений. Содержимое гомогенное. Признаки патологических включений в его просвете и околоселезеночном пространстве не выявлены. Общий желчный проток — визуализируемые фрагменты без структурных изменений, без патологических включений.

Поджелудочная железа: топография сегментов не изменена, размеры их в пределах возрастной нормы. Контуры ровные, четкие, сохранены. Паренхима гомогенна. Визуализируемые фрагменты Вирсунгова протока не дилатированы. Стенки его без признаков структурных изменений. Патологические структуры в проекции железы и параортоганном пространстве в настоящее время не выявлены.

Селезенка: топография не изменена, размеры в пределах возрастной нормы. Контуры ровные, четкие, сохранены. Паренхима гомоген-
ная. Селезеночная вена не дилатирована. Патологические структуры в проекции органа и параорганном пространстве не выявлены.

Заключение: без экопризнаков структурных изменений в исследованных органах на момент осмотра.

Кальцификаты селезенки, добавочная долька
Селезенка — 109×46 мм.
Селезенка: ... В воротах органа определяется округлой формы образование размерами около 21×19 мм, по структуре идентичное паренхиме селезенки. В паренхиме нижнего фрагмента селезенки определяются 4 включения до 5 мм в диаметре, плотные, с акустическими тенями. Другие фрагменты паренхимы селезенки эхографически не изменены.
Заключение: экопризнаки кальцификатов селезенки, дополнительной дольки селезенки.

Деформация желчного пузыря
... Определяется выраженная S-образная деформация желчного пузыря в области шеечного отдела без патологических включений в просвете органа на момент осмотра.

Кистозная трансформация холедоха
Желчный пузырь — 54×14 мм. Форма — неправильная.
Поджелудочная железа (головка×тело×хвост) — 7×8×12 мм.
Печень: ... внутрипеченочные желчные ходы не расширены ...

Желчный пузырь: в типичном месте, резко деформирован, стенки его утолщены до 2—3 мм, уплотнены. В проекции холедоха, в воротах печени определяется тонкостенное, неправильно округлой формы фиксированное образование размерами около 54×43 мм, с жидкостным содержимым в просвете.

Поджелудочная железа: в типичном месте, головка достоверно не прослеживается: резко оттеснена кистозным образованием в воротах печени. Тело и хвост железы сохранены, паренхима с диффузными изменениями в виде неравномерного повышения эхогенности. Вирсунгов проток не расширен.

Селезенка: ...
Заключение: экопризнаки кистозной трансформации холедоха, деформации желчного пузыря, реактивных изменений паренхимы поджелудочной железы.

Кавернозная трансформация воротной вены (4 года)
Правая доля печени — 102 мм. Левая доля печени — 54 мм.
Глава 4. Гепатопанкреатобилиарная патология

Желчный пузырь — 56×21 мм. Холедох — 2,2 мм.
Поджелудочная железа (головка×тело×хвост) — 14×11×15 мм.
Селезенка — 122×54 мм. Селезеночная вена — 6 мм.

Печень: ... размеры долей в пределах возрастной нормы,... в проекции ворот печени определяется конгломерат извитых жидкостных структур до 5 мм в диаметре, общими размерами около 43×19 мм. Ствол портальной вены и главные ветви не определяются....

Желчный пузырь: ... стенки утолщены до 5—6 мм, повышенной эхогенности, деформирован ... В просвете пузыря — без патологических включений на момент осмотра...

Поджелудочная железа: несколько увеличена в размерах, паренхима с диффузными изменениями...
Селезенка: ... значительно увеличена в размерах, паренхима умеренно повышенной эхогенности, селезеночная вена прослеживается достоверно, умеренно извитая.
Заключение: эхопризнаки портальной гипертензии на фоне кавернозной трансформации воротной вены.

Острый гепатит (ребенок 6 лет)
Правая доля печени — 126 мм. Левая доля печени — 68 мм.
Желчный пузырь — 56×21 мм. Форма — овальная.
Толщина стенки желчного пузыря — 9—14 мм.
Холедох — 2,2 мм. Портальная вена — 7 мм.
Поджелудочная железа (головка×тело×хвост) — 16×12×18 мм.
Печень: ... размеры несколько увеличены. Паренхима гомогенная, сосудистый рисунок умеренно обеднен, внутрепеченочные желчные ходы не дилатированы...

Желчный пузырь: ... стенки резко (!) утолщены, «слоистые», в просвете — минимальное количество жидкостного содержимого без организованных патологических включений ...

Поджелудочная железа: несколько увеличена в размерах, паренхима с диффузными изменениями, Вирсунгов проток не дилатирован. В проекции ворот печени, около головки и тела поджелудочной железы определяются два лимфоузла овальной формы средней эхогенности размерами 18×11 и 14×9 мм.
Селезенка: ... минимальная спленомегалия без структурных изменений паренхимы органа на момент осмотра...
Заключение: косвенные эхопризнаки острого гепатита.
Спленит (ребенок 7 лет)
Селезенка: расположена в типичном месте, размеры увеличены, контуры ровные, четкие. В паренхиме всех отделов органа — множественные, без счета, гипоэхогенные очаги по 1—2 мм в диаметре. ...

Киста диафрагмы
... в проекции 8 сегмента правой доли печени, в реберно-диафрагмальном углу определяется поверхность расположенного фиксированное образование, тонкостенное, овальной формы, размерами около 34×18 мм, с жидкостным содержимым, расцениваемое как киста диафрагмы...

Киста печени, врожденная (6 лет)
Правая доля печени — 106 мм. Левая доля печени — 61 мм.
Печень: топография не изменена, размеры в пределах возрастной нормы. Контуры ровные, четкие. В проекции 5 сегмента определяется тонкостенное жидкостное включение неправильно округлой формы размерами около 32×19 мм с «фестончатыми» краями.
Заключение: экопризнаки кисты печени.

Калькулез желчного пузыря
Желчный пузырь — 65×22 мм.
Желчный пузырь: ..., в просвете определяются 2 подвижных эхоплотных структуры с акустическими тенями размерами около 11 и 6 мм в диаметре ... Внутрипечечноные желчные ходы не дилатированы. В проекции холедоха — без организованных патологических включений на момент осмотра....

Острый холецистит
Желчный пузырь — 55×25 мм.
Желчный пузырь: в типичном месте, стенки его утолщены до 4—6 мм. Около пузыря определяется перифокальная зона понижения эхогенности до 6 мм шириной. В просвете пузыря — жидкостное содержимое с мелкодисперсной взвесью. В проекции холедоха — без экопризнаков организованных патологических включений на момент осмотра.

Тромбоз левой ветви портальной вены (возраст 6 суток)
Правая доля печени — 66 мм. Левая доля печени — 41 мм.
Портальная вена (ствол) — 3,9 мм.
Глава 4. Гепатопанкреатобилиарная патология

Печенъ: топография не изменена, размеры несколько выше возрастной нормы. Контуры ровные, четкие. Внутрипеченочные желчные протоки не дилатированы. Холедох эхографически не изменен. Ствол портальной вены и правая ветвь прослеживаются достоверно, просвет жидкостный. Левая ветвь портальной вены дилатирована до 7,8 мм, просвет ее заполнен гетерогенным содержимым неравномерно сниженной эхогенности. Стенки умеренно утолщены. Пупочная вена — до 6 мм в диаметре, просвет заполнен гипоэхогенным содержимым, стенки значительно утолщены.

Заключение: экопризнаки тромбоза левой ветви портальной вены, тромбоза и флебита (?) пупочной вены.

Тотальный портальный тромбоз (возраст 8 суток)
Правая доля печени — 71 мм. Левая доля печени — 41 мм.
Портальная вена (ствол) — 5,4 мм. Селезенка — 64×35 мм.

Печенъ: топография не изменена, размеры несколько выше возрастной нормы. Контуры ровные, четкие. Внутрипеченочные желчные протоки не дилатированы. Холедох эхографически не изменен. Ствол портальной вены и основные ветви прослеживаются, немного дилатированы (левая ветвь до 6,8 мм, правая — до 5,5 мм), просвет заполнен гетерогенным содержимым неравномерно сниженной эхогенности...

Селезенка: ... размеры значительно увеличены.

Заключение: экопризнаки тотального тромбоза портальной вены, портальной гипертензии.

Особенностями проведения УЗИ и протоколирования его результатов при травме живота является обязательный осмотр и описание ВСЕХ доступных визуализации органов.

Обязательное условие корректного проведения УЗИ ребенку с подозрением на повреждение внутренних органов — наполненный мочевою пузырь пациента (при необходимости — наполнить по катетеру физраствором в возрастной дозировке).

Тупая травма живота, разрыв селезенки (возраст 12 лет):
Через 4 часа после травмы:
Селезенка (длина×толщина) — 109×33 мм.
Печенъ: ..., желчный пузырь: ..., поджелудочная железа: ...
Селезенка: топография не изменена, размеры в пределах возрастной нормы. Патенхима не изменена. В проекции верхнего и среднего фраг-
ментов определяется нечетко ограниченная, неправильной формы зона нарушения структуры паренхимы размером до 66×50 мм без достоверных эхопризнаков дефекта паренхимы на момент осмотра.

Почки: ..., мочевой пузырь: ...

Брюшная полость: отмечается экстраорганные скопление нефиксируемого жидкостного компонента в значительном количестве в области малого таза и умеренное — в латеральных каналах... Визуализируемые фрагменты кишечника — без признаков структурных изменений. Перистальтика вялая, сохранена.

Заключение: эхопризнаки чрезкапсульного разрыва верхнего фрагмента селезенки без достоверной визуализации дефекта паренхимы на момент осмотра, гемоперитонеум.

Тот же ребенок, на 14-е сутки пребывания в стационаре.

Селезенка: топография не изменена, размеры — в пределах возрастной нормы. На границе среднего и верхнего фрагментов определяется нечетко ограниченная, неправильной формы зона нарушения структуры паренхимы (дефект) размером до 47×36 мм с жидкостным содержимым и гипоэхогенными включениями линеейной формы, образующими сетчатый рисунок. Остальные фрагменты паренхимы селезенки эхографически не изменены.

Брюшная полость: отмечается экстраорганные скопление нефиксируемого жидкостного компонента в незначительном количестве в области малого таза.

Заключение:
• эхопризнаки организующегося дефекта селезенки,
• остаточные эхопризнаки гемоперитонеума.

Тупая травма живота, разрыв печени

Осмот через 10 часов после травмы (возраст 3 года).

Правая доля печени — 90 мм. Левая доля печени — 49 мм.

Печень: размеры долей не изменены. Структуры хорошо дифференцированы, без признаков изменений и дилатации визуализируемых фрагментов внутрипечечночных желчных протоков и сосудов. В паренхиме правой доли, в проекции 6-го и 8-го сегментов определяется нечетко ограниченная зона неравномерного повышения эхогенности общими размерами около 77×43 мм с гипоэхогенными очагами до 12 мм в диаметре. Паренхима других участков печени эхографически не изменена. Организованные патологические включения в ней и ожкампеченочных пространствах в настоящее время не выявлены.
Желчный пузырь: ..., поджелудочная железа: ...
Селезенка: ..., почки: ..., мочевой пузырь: ...
Брюшная полость: отмечается экстроганное скопление нефиксированных и жидкостных содержимого с мелкодисперсной взвесью (кровь) в незначительном количестве в области малого таза и следы жидкостного содержимого в правом латеральном канале....
Заключение: экопризнаки повреждения правой доли печени (6–8-й сегменты), предположительно — разрыв, без достоверной визуализации дефекта паренхимы на момент осмотра;
• экопризнаки невыраженного гемоперитонеума.
Тот же ребенок, осмотр на 9-е сутки пребывания в стационаре.
• сохраняются экопризнаки нарушения структуры печени в проекции 6-го и 8-го сегментов печени общей диаметром около 6 см с четкой визуализацией дефекта паренхимы в ткани органа, неправильной формы, около 2 см в диаметре. По латеральной поверхности печени подкапсульно определяется организующееся включение размерами около 31×12 мм (подкапсульная гематома), сообщающееся с полостью дефекта паренхимы;
• справа в плевральной полости определяется значительное количество содержимого (жидкостное с мелкодисперсной взвесью) толщиной слоя до 31 мм по всей латеральной поверхности легкого (осмотр в положении лежа). Определяется краевой компрессионный ателектаз (участок около 55×29 мм) в нижнем фрагменте правого легкого. Без экопризнаков организованных патологических включений в плевральной полости на момент осмотра;
• без экопризнаков жидкостного содержимого в брюшной полости на момент осмотра.
Заключение: экопризнаки травматического повреждения (разрыв) правой доли печени (6–8-й сегменты) — динамика, подкапсулярной гематомы печени, реактивного (?) выпота в плевральной полости справа, краевого компрессионного ателектаза правого легкого.
Тупая травма живота, повреждение поджелудочной железы
(возраст 12 лет)
Осмотр через 16 часов после травмы.
Панкреас (толщ. головка×тело×хвост) — 23×16×20 мм.
Печень: ... определяется повышение эхогенности стенок сосудов портальной системы (реактивного? характера). Организованные
патологические включения в ней и околопеченочных пространствах в настоящее время не выявлены.

Желчный пузырь: ... отмечается S-образная деформация в шеечном отделе, стенки пузыря уплотнены...

Брюшная полость: отмечается экстраорганные скопление нефиксированного жидкостного компонента в умеренном количестве в области малого таза....

Селезенка: ..., почки: ...

Поджелудочная железа: определяется значительное увеличение размеров железы, контуры ее неровные, нечеткие. Эхогенность паренхимы неравномерно значительно повышена. Достоверные эхопризнаки нарушения целостности контуров органа на момент осмотра не определены. Отмечаются выраженное повышение эхогенности и утолщение тканей вокруг железы, следы жидкостного компонента параорганно.

Заключение: эхопризнаки разрыва поджелудочной железы без достоверной визуализации дефекта паренхимы органа на момент осмотра.

Тот же ребенок, осмотр на 4 сутки пребывания в стационаре

Pancreas (толщ. головка×тело×хвост) – 27×15×28 мм:
- определяется значительное увеличение размеров поджелудочной железы, Вирсунгов проток – 2 мм в диаметре;
- на границе головка – тело определяется неправильной формы разрыв паренхимы органа, размерами дефекта паренхимы не менее 14×6 мм;
- параорганно в проекции сальниковой сумки определяется фрагментированное жидкостное включение размером фрагментов около 15 мм (около дефекта паренхимы), около 22 мм (в проекции тела железы) и до 5 см в диаметре (у хвоста железы);
- в полости малого таза — минимальное количество жидкостного содержимого.

Желчный пузырь: без признаков отека стенок, дисперсной вззвеси и включений в просвете, определяется S-образная деформация в шеечном отделе...

Печень: сохраняется повышение экогенности стенок сосудов портальной системы реактивного характера...

Заключение: эхопризнаки разрыва поджелудочной железы — динамика травматического панкреатита.
Глава 5

УЗИ органов брюшной полости (желудок, кишечник)

Самым коварным среди заболеваний органов брюшной полости в детской практике является острый аппендицит. Как говорят хирурги, «...дети болеют аппендицитом, аппендицитом и еще раз аппендицитом...». Неизмененный аппендикс (7) визуализируется редко, имеет диаметр до 8 мм (чаще — 4—5 мм), гиперэхогенный центр, компрессируется при надавливании датчиком. Над отростком расположены кожа и подкожная клетчатка (1), мышцы передней брюшной стенки (2). В типичном случае отросток лежит медиальнее подвздошной мышцы (3), над подвздошными артерией (4) и веной (5). Проследить место отхождения отростка (7) от слепой кишки (6) удается редко (б, рис. 5.1).

Рис. 5.1.

Воспалительно измененный червеобразный отросток (стрелки, а — поперечный скан, б — продольный) не компрессируется, в диаметре более 8 мм, имеет анэхогенное содержимое (рис. 5.2).
Достаточно часто червеобразный отросток при воспалительной трансформации имеет неправильную, изогнутую форму, при этом получить в одном скане изображение всех его фрагментов удается редко (а). Иногда, при поперечном сечении отростка удается увидеть 2 отдельных его фрагмента (б). В любом случае, для максимально точной оценки локализации, формы и размеров отростка необходимо применение полипозиционного сканирования, использование линейных датчиков частотой 6–8 МГц (рис. 5.3). Оптимальна апертура датчика 4–5 см.
Глава 5. УЗИ органов брюшной полости (желудок, кишечник) 87

Относительно часто червеобразный отросток может иметь атипичную локализацию (а — под печенью, б — в латеральном канале), что значительно осложняет и клиническую, и эхографическую диагностику аппендицита. Вообще, при проведении УЗИ ребенку с подозрением на острый аппендицит необходимо помнить, что отросток может находиться где угодно и выглядеть как угодно (рис. 5.4).

![Рис. 5.4.](image)

Необходимое условие корректного проведения УЗИ у ребенка с подозрением на острый аппендицит — наполненный мочевой пузырь. Только это позволяет оценить наличие выпота в полости малого таза и визуализировать аппендикс (стрелки) при его нисходящем (а, около стенки мочевого пузыря) или тазовом (б) расположении (рис. 5.5). В экстренной ситуации целесообразно наполнить ребенку мочевой пузырь по катетеру (физиологическим раствором в объеме 100—300 мл в зависимости от возраста): оральная гидратация ребенку с подозрением на острый аппендицит противопоказана.

![Рис. 5.5.](image)
Частой эхографической находкой является обнаружение в просвете червеобразного отростка копролитов (единичные стрелки, рис. 5.6). Они располагаются в просвете отростка, часто — у его основания и имеют четкую акустическую тень (парные стрелки).

В некоторых случаях копролитов в просвете отростка может быть несколько (стрелки, а) со сливающимися акустическими тенями (парные стрелки). Более редким случаем является обнаружение мелких пузырьков газа пристеночно в просвете отростка (тройная стрелка, б). Это является безусловным признаком его гангренозного воспаления (рис. 5.7).
Глава 5. УЗИ органов брюшной полости (желудок, кишечник)

Очень часто течение острого аппендицита сопровождается воспалительной реакцией со стороны большого сальника, который смешается к червеобразному отростку и оккутывает его, локализуя тем самым воспалительный процесс в брюшной полости (рис. 5.8). Ткань воспаленного сальника выглядит гиперэхогенной (пунктир вокруг аппендикса). Выраженные явления оментита ухудшают визуализацию отростка, поскольку жировая ткань сальника поглощает УЗ-волны.

Рис. 5.8.

Распространение воспалительного процесса на прилежащие петли кишечника приводит к формированию аппендикулярного инфильтрата (рис. 5.9). Он визуализируется как нечетко ограниченная, с неровными контурами аперистальтическая структура с гетерогенным содержимым, без жидкостного компонента (пунктир), в составе которой определяется фрагмент червеобразного отростка (стрелка). Границы инфильтрата часто определяются приблизительно: не вовлеченные в него петли кишечника перистальтируют и компримируются датчиком.

Рис. 5.9.
Часто осложненные формы аппендицита развиваются при клинически сложной для диагностики ретроцекальной локализации отростка (стрелка, рис. 5.10). Эхографически визуализировать такой отросток также удается не всегда. В любом случае следует помнить: исключить острый аппендицит по данным УЗИ нельзя! Даже у самых опытных специалистов, работающих на самой совершенной УЗ-аппаратуру, точность диагностики острого аппендицита не превышает 95%.

Рис. 5.10.

Аппендикулярные абсцессы часто формируются в полости малого таза (осмотр с наполненным мочевым пузырем!). В полости абсцесса могут быть жидкостное, пониженной экогенности или гетерогенное содержимое, включения газа, иногда — фрагмент отростка (рис. 5.11). Сформированный абсцесс деформирует соседние органы, в первую очередь — мочевой пузырь. Достоверно дифференцировать абсцесс от инфильтрата бывает сложно: гной в абсцессе может иметь экоструктуру, схожую с кишечным содержимым в просвете петель, вовлеченных в воспалительный процесс.

Рис. 5.11.
Значительное количество выпота в брюшной полости при аппендиците встречается нечасто (б) и свидетельствует о наличии перитонита (рис. 5.12). Обычно развивается при осложненных формах аппендицита (а: копролит в просвете отростка (стрелка) с акустической тенью (двойная стрелка), оментит). Выпот при аппендиците в первую очередь определяется в полости малого таза (стрелки — яичники, б), эхографически дифференцируемая мелкодисперсная взвесь бывает при гнойном выпоте.

Рис. 5.12.

Отграниченная жидкость ретропузурно встречается как при поздней диагностике острого аппендицита, так и при осложненном послеоперационном течении и определяется в виде фиксированного, отграниченного жидкостного включения (а), в случае организации — с гетерогенным содержимым (б, рис. 5.13).

Рис. 5.13.
Очень частой причиной болевого абдоминального синдрома, в частности, на фоне вирусных инфекций, является мезаденит — воспаление мезентериальных лимфоузлов (рис. 5.14). В норме они могут быть визуализированы у многих детей (особенно у худеньких), имеют вытянутую, овальную форму, среднюю эхогенность, размеры около 10×5 мм. При воспалении лимфоузлы увеличиваются, приобретают более округлую форму, эхогенность их снижается. Часто в правой подвздошной области определяются конгломераты лимфоузлов.

Гастриты могут быть косвенно заподозрены при УЗИ и характеризуются утолщением стенки желудка (между стрелками), при этом диаметр поперечного среза сокнутого пилорического отдела желудка обычно превышает 10 мм (рис. 5.15).
Глава 5. УЗИ органов брюшной полости (желудок, кишечник) 93

Неотложной абдоминальной патологией у детей преимущественно ясельного возраста является кишечная инвагинация, практически со 100% достоверностью диагностируемая при УЗИ (рис. 5.16). Чаще в подпеченоочном пространстве определяется аперистальгическая структура цилиндрической формы, состоящая из концентрических слоев кишечной стенки. Сканы структуры в разных плоскостях имеют названия: в поперечном сечении—«мишень» (а), в продольном—«слоеный пирог» (б). Диаметр «мишени» в типичном случае около 4 см, протяженность «слоеного пирога»—до 8—10 см.

Рис. 5.16.

Возникновение кишечной инвагинации может быть обусловлено многими причинами, в том числе — мезаденитом. В таких случаях в структуре инвагината (пунктир), в его центральной части определяются единичные или множественные лимфоузлы (стрелки). Они лучше визуализируются в поперечном сечении инвагината (в «мишени») при проведении УЗИ линейным датчиком (рис. 5.17).

Рис. 5.17.
Кишечная инфекция у детей встречается очень часто, может протекать с выраженным абдоминальным болевым синдромом, что требует проведения УЗИ. Также надо помнить, что возможна сочетанная патология: острый аппендицит + кишечная инфекция или кишечный синдром при аппендиците. В типичном случае визуализируются умеренно дилатированные петли кишечника с большим количеством преимущественно жидкостного содержимого (рис. 5.18). Перистальтика может быть усиlena, а может быть по типу маятникообразной, то есть иногда кишечная инфекция и кишечная непроходимость могут эхографически выглядеть одинаково. Достоверно диагностировать или исключить кишечную инфекцию по данным УЗИ нельзя.

Рис. 5.18.

В редких случаях тяжёлое инфекционное поражение кишечника вызывает резкое утолщение стенки фрагмента кишки, спазм просвета (рис. 5.19). Толщина стенки кишки может превышать 20 мм. Клиническое проявление такой патологии, как правило, очень тяжёлое — геморрагический колит. Возможны такие изменения фрагментов кишки у детей с колитами на фоне системных заболеваний. Должна быть проявлена онкологическая настороженность.

Рис. 5.19.
При тяжелом поражении ректосигмоидного отдела данный отдел кишечника эхографически выглядит как объемное образование в полости малого таза (толщина стенки кишки — между стрелками, рис. 5.20). При благоприятном течении заболевания на неосложненном преморбидном фоне эхографическое восстановление нормальной структуры кишки происходит за 15—20 суток.

Рис. 5.20.

Хронические запоры сами по себе не подлежат эхографической оценке, однако заподозрить проблемы в этой области можно при визуализации расширенной (иногда до 8 см и более) прямой и сигмовидной кишки, большого количества газа в просвете кишечных петель (рис. 5.21). Целесообразно уточнить, когда у ребенка был стул, и/или повторить исследование после очистительной клизмы (клизма ставится вечером накануне УЗИ).

Рис. 5.21.
Достаточно часто в просвете фрагментов толстой кишки можно визуализировать копролиты — каловые камни (рис. 5.22). Их диаметр обычно не превышает 2 см, но в редких случаях может достигать 5 см и более. Визуализируются копролиты как экзоплохтые включения с неровными (при больших размерах) контурами и четкой акустической тенью. Относительно часто встречаются при хронических запорах, болезни Гиршпрунга, долихосигме.

Рис. 5.22.

Нечастым эхографическим симптомом в неонатологической практике является «синдром гиперэхогенного кишечника», который описан даже у плодов. При этом синдроме содержимое всех или некоторых кишечных петель выглядит гиперэхогенным, возможна (не обязательно!) дилатация фрагментов кишечника (рис. 5.23). Клиническое значение синдрома не вполне ясно: может наблюдаться как транзиторное состояние у незрелых детей с отягощенным акушерским анамнезом, при динамической кишечной непроходимости, при муковисцидозе, энтероколите.

Рис. 5.23.
Глава 5. УЗИ органов брюшной полости (желудок, кишечник)

Сама по себе кишечная непроходимость у детей любого возраста охрографически представлена дилатированными кишечными петлями, отсутствием направленной перистальтики при наблюдении в режиме реального времени, минимальным количеством выпота между кишечными петлями (рис. 5.24). Точно установить уровень непроходимости и ее причину при УЗИ возможно далеко не всегда.

![Рис. 5.24.](image)

Наиболее частой причиной частичной высокой кишечной непроходимости у детей 1–2 месяцев жизни является гипертрофический пилоростеноз. В норме толщина мышечного слоя (между стрелками, а) пилорического отдела желудка составляет 0,8–1,5 мм, редко — до 2 мм, длина — до 15 мм, просвет раскрывается при перистальтических движениях. При гипертрофическом пилоростенозе толщина мышечного слоя привратника — более 4 мм (между стрелками, б), длина — более 20–25 мм, просвет остается сомкнутым при перистальтике желудка (рис. 5.25).

![Рис. 5.25.](image)
При поперечном сканировании гипертрофированный мышечный слой привратника образует характерное гипохогенное кольцо (стрелки), особенно четко дифференцируемое линейным датчиком (б, рис. 5.26).

В некоторых случаях пилорический отдел желудка может быть отклонен и «загнут», располагаясь под желудком, дорзальнее него, что наблюдается чаще при наполненном желудке младенца. Эта особенность расположения привратника не имеет дополнительного клинического значения, но определяет технические сложности сканирования (рис. 5.27). Просвет привратника остается сомкнутым (стрелки, а), толщина мышечного слоя значительно превышает норму (между стрелками, б).
Причиной полной высокой кишечной непроходимости у младенцев в раннем неонатальном периоде относительно часто является атрезия двенадцатиперстной кишки (рис. 5.28). Дилатированная до 2—3 см двенадцатиперстная кишка выглядит по-разному в зависимости от ее содержимого (жидкостное — а, газ — б). Желчный пузырь (стрелка, б) располагается в непосредственной близости от кишки.

Рис. 5.28.

При синдроме Ледда у младенцев в эпигастрии может быть визуализирован собственном заворот брыжейки вокруг верхней брыжеечной артерии (стрелка, а) в виде аперистальтической структуры диаметром около 2 см (пунктир), в составе которой определяются анэхогенные изогнутые тубулярные структуры — фрагменты застойных вен (рис. 5.29).

Рис. 5.29.
Атрезия анального отверстия диагностируется при внешнем осмотре ребенка. Максимально информативно УЗИ трансперинеальным доступом: младенец в положении на спине, ножки прижаты к животу, линейный датчик расположен на промежности в проекции ануса. В поперечном скане четко визуализируются седалищные бугры (стрелки, а). В продольном направлении определяется высота атрезии: расстояние от кожи до слепого конца прямой кишки (б, рис. 5.30). Малое расстояние между седалищными буграми (до 2 см) чаще встречается при высокой атрезии ануса, когда расстояние от кожи до кишки превышает 25 мм.

Рис. 5.30.

При язвенно-некротическом энтероколите (ЯНЭК) стадийность заболевания может быть прослежена при УЗИ. На относительно ранних этапах определяется утолщение кишечной стенки за счет ее отека, ослабление или отсутствие направленной перистальтики, минимальное количество выпота между кишечными петлями (рис. 5.31). Кишечные петли могут быть умеренно неравномерно дилатированы.

Рис. 5.31.
Возможна визуализация «пенистого кишечного содержимого», когда в пораженном фрагменте кишечника (обведены пунктирной линией) определяется содержимое с мелкоточечными эхогенными включениями (пузырьки газа). Феномена «хвостов кометы» обычно нет (рис. 5.32). Также прослеживаются фрагменты кишечных петель с утолщенной стенкой, нарушения перистальтики, следы выпота между кишечными петлями. Клинически эта эхографическая находка обычно соответствует разжиженному пенистому стулу.

Рис. 5.32.

При тяжелом течении ЯНЭК определяется пневматоз кишечной стенки — скопление мелких пузырьков газа в толще пораженного участка стенки кишки субсерозно или в подслизистом слое (рис. 5.33). Мелкие пузырьки газа могут прослеживаться по всей окружности кишечной петли либо только фрагментарно.

Рис. 5.33.
В наиболее тяжелых случаях пневматоз стенки кишки может быть резко выражен по всей окружности пораженного фрагмента кишечника (рис. 5.34). Всегда сопровождается неравномерной дилатацией фрагментов кишечника, эхографическими признаками непроходимости. Клинически — признаки непроходимости, контактного перитонита, тяжелый инфекционный токсикоз. Не следует путать эхографические проявления пневматоза кишечной стенки с метеоризмом! Используйте линейный датчик, полипозиционное сканирование, оценивайте все эхографические симптомы в совокупности.

Перфорация полого органа у новорожденных чаще всего возникает на фоне тяжелого течения ЯНЭК, но может быть обусловлена острой гипоксией или аномалией развития фрагмента кишечной стенки (рис. 5.35). Чтобы было проще дифференцировать газ в брюшной полости от газа в просвете кишки, придавайте младенцу несколько возвышенное положение: газ скопится над тканью печени (стрелки, выражен артефакт в виде «хвоста кометы»).
Энтерокисты встречаются у детей нечасто, специфической клиники может не быть. Определяется энтерокиста в виде включения округлой или неправильной формы, малосмещаемого, различного диаметра, с жидкостным содержимым и тонкой стенкой, сходной по эхоструктуре со стенкой кишки (рис. 5.36). При воспалении энтерокиста увеличивается, содержимое становится гетерогенным, стенка утолщается.

Рис. 5.36.

Относительно часто встречаются лимфангioms брыжейки кишки. Эхографически лимфангiom выглядит как совокупность фиксированных жидкостных образований с тонкими стенками и тонкими септами в просвете (рис. 5.37). Форма лимфангiom обычно неправильная, контуры сложно проследить на фоне расположенных рядом кишечных петель. Могут очень значительно изменяться размеры; увеличиваться при воспалении и уменьшаться при стихании процесса.

Рис. 5.37.
Внутрибрюшные объемные образования также могут встречаться при наличии тератом крестцово-копчиковой области в форме песочных часов. Внутрибрюшная часть тератомы (пунктир, поперечное сечение — а, продольное — б) может занимать значительный объем живота, распространяясь от полости малого таза до эпигастрия, иметь произвольную форму и гетерогенное содержимое, соответствующее структуре внешней части тератомы (рис. 5.38).

Рис. 5.38.

Редкой причиной синдрома пальпируемой опухоли в животе новорожденного является кровоизлияние в подвздошно-поясничную мышцу или гнойный псеит. При этом мышца увеличивается в размерах, становится гипоанэхогенной (рис. 5.39). Возможна дилатация ЧЛС почки на стороне поражения из-за сдавления мочеточника. Часто имеет место болевая контрактура бедра за счет вовлечения в процесс подвздошной части мышицы (продольный скан над тазобедренным суставом, б).

Рис. 5.39.
Злокачественные опухоли брюшной полости встречаются в детском возрасте нечасто, например — лимфосаркомы кишечника (рис. 5.40). Они эхографически имеют вид гипоэхогенных масс, поражающих фрагмент кишки с резким утолщением кишечной стенки, сдавлением его просвета (а). Возможно метастатическое поражение паренхиматозных органов (печень, б).

Рис. 5.40.

ОБРАЗЦЫ ПРОТОКОЛИРОВАНИЯ УЗИ ОРГАНОВ БРЮШНОЙ ПОЛОСТИ У ДЕТЕЙ

Внимание!

Необходимое условие адекватной оценки состояния брюшной полости у ребенка с подозрением на острый аппендицит или другое острое хирургическое заболевание органов живота — наполненный мочевой пузырь пациента. Только при этом условии проведение УЗИ будет корректным.

Острый аппендицит — вариант

... в проекции правой подвздошной области определяется фиксированная аперистальтическая структура овальной формы размерами около 32×9 мм, расцениваемая как фрагмент червеобразного отростка с воспалительной трансформацией. Около отростка — ткань повышенной эхогенности (сальник). ...

Заключение: эхопризнаки воспалительной трансформации червеобразного отростка, оментита.
Острый аппендицит — вариант

... в проекции правого латерального канала определяется распространяющаяся к краю печени фиксированная аперистальтическая структура вытянутой формы размерами около 52×9—14 мм, расценива-емая как фрагмент червеобразного отростка с воспалительной трансформацией. В просвете отростка определяется плотное включение до 7 мм в диаметре с акустической тенью (копролит). ... Минимальное количество жидкостного содержимого ретропузырно.

Заключение: эхопризнаки воспалительной трансформации червеобразного отростка (атипичное положение), копролита в просвете отростка.

Острый аппендицит — вариант

... в правой подвздошной области определяется распространяющаяся в полость малого таза аперистальтическая структура обширными размерами около 10×7 см, гетерогенная, без жидкостного содержимого, с дифференцируемым фрагментом червеобразного отростка размерами около 30×11 мм. ... Окружающие фрагменты кишечника эхографически сохранены, перистальтика прослеживается.... Без эхопризнаков жидкостного содержимого ретроматочно на момент осмотра.

Матка и левый яичник: визуализируются достоверно, эхографически не изменены.

Правый яичник: достоверно не визуализирован....

Заключение: эхопризнаки аппендикулярного инфильтрата. Эхографически нельзя исключить воспалительную трансформацию правого яичника с вовлечением его в инфильтрат.

Острый аппендицит — вариант

... в правой подвздошной области определяется ограниченная, распространяющаяся в полость малого таза аперистальтическая структура размерами около 12×9 см с гомогенным содержимым пониженной эхо-генности. Основание червеобразного отростка в правой подвздошной области определяется, дальнейший его ход не прослеживается. Кишечные петли в левой половине живота неравномерно дилатированы до 4,5 см, в правой — до 5 см, перистальтика в виде единичных проявлений, мятникообразного характера. Минимальное количество жидкостного содержимого ретропузырно и между фрагментами кишечника...

Заключение: эхопризнаки аппендикулярного абсцесса, кишечной непроходимости.
Глава 5. УЗИ органов брюшной полости (желудок, кишечник)
107

Острый аппендицит — вариант (газовый)
... ретропузурно, в полости малого таза определяется фиксированная аперистальтическая структура овальной формы размерами около 29×9 мм, расцениваемая как фрагмент червяобразного отростка с воспалительной трансформацией. Минимальное количество жидкостного содержимого ретропузурно.

Заключение: эхопризнаки воспалительной трансформации червяобразного отростка (газовое расположение).

Острый мезаденит
... в проекции правой подвздошной области определяется конгломерат овальной формы гипоэхогенных включений, самое крупное из которых размерами примерно 18×16 мм (лимфоузлы с воспалительной трансформацией). Аналогичные включения определяется парааортально (до 12 мм в диаметре) и паракавально (до 10—14 мм в диаметре).

Заключение: выраженные эхопризнаки мезаденита.

Кишечная инвагинация
... в проекции подпеченочного пространства определяется фиксированная аперистальтическая структура цилиндрической формы, с дифференцируемыми концентрически расположенными фрагментами кишечной стенки (инвагинат). Диаметр структуры — 29 мм, протяженность — 86 мм. В центральной части инвагината прослеживаются 3 лимфоузла диаметром 8,9 и 14 мм.... Выраженные эхопризнаки метеоризма. Перистальтика кишечных перьев прослеживается достоверно...

Заключение: эхопризнаки кишечной инвагинации.

Пилоростеноз
... при сканировании в эпигастральной области определяется цилиндрической формы аперистальтическая структура (привратник). Толщина мышечного слоя привратника — 4,7 мм, диаметр — 12,7 мм, длина — 26 мм. Просвет привратника за все время исследования (8 минут) сомкнут. В желудке — большое количество жидкостного содержимого, при перистальтических движениях желудка привратник остается сомкнутым...

Желчный пузырь..., поджелудочная железа:....
Петли кишечника: выраженные эхопризнаки метеоризма, перистальтика сохранена. Без эхопризнаков патологических включений в брюшной полости на момент осмотра.

Заключение: эхопризнаки гипертрофического пилоростеноза.
Атрезия двенадцатиперстной кишки

... Желудок, двенадцатиперстная кишка: визуализируемые фрагменты стенок — без особенностей. Большое количество содержимого (жидкостно-го и газа) в просвете, диаметр двенадцатиперстной кишки — около 21 мм, перистальтика желудка и двенадцатиперстной кишки не прослеживается.

Заключение: экзопризнаки высокой кишечной непроходимости, предположительно — атрезия двенадцатиперстной кишки.

Атрезия анального отверстия

... брюшная полость: дистальные фрагменты кишечника дилатированы, прямая кишка — до 36 мм, в ее просвете — большое количество содержимого средней эхогенности с минимальными включениями жидкостного компонента, перистальтика не прослеживается. Без экзопризнаков свободной жидкостной компонента и организованных парарганых патолого-аналитических включений на момент осмотра.

При трансперинеально сканировании: расстояние между центрами седалищных бугров — 26 мм. Расстояние от кожи в проекции анального отверстия до атрезированного конца прямой кишки — 5 мм.

Заключение: экзопризнаки атрезии анального отверстия, низкая форма.

Энтерокиста

... брюшная полость: в гипогастрии правее и ниже пупка визуализируется аперистальтическая неправильной формы объемная структура размерами 20×26×16 мм, отграниченная, с неравномерно утолщенной стенкой, с гетерогенным содержимым, включающим жидкостной компонент, достоверная морфологическая характеристика которого в настоящее время затруднена (ентерокиста?). Визуализируемые петли кишечника не расширены, перистальтика сохранена...

Лимфангioms брюшной полости

Брюшная полость: визуализируемые фрагменты кишечника умеренно дилатированы (до 23 мм), с жидкостным содержимым в просвете. Перистальтика не прослеживается. Следы жидкостного компонента между петлями кишечника. Без экзопризнаков свободной жидкости ретропузырно. Кзади от мочевого пузыря правее средней линии живота определяется нечтого ограниченное образование размерами около 6×6×4 см, доходящее почти до нижнего края печени. Оно состоит из совокупности тонкостенных полостей с жидкостным
содержимым, размерами от 2 до 16 мм, точные границы которого определить невозможно.

Заключение: — эхопризнаки кишечной непроходимости,
— эхопризнаки объемного образования в нижней части правой половины живота, предположительно лимфангиома.

Язвенно-некротический энтероколит
Правая доля печени — 73 мм. Левая доля печени — 44 мм.
Диаметр v. porta в обл. ГПДС — 4 мм. Желчный пузырь — 40×4 мм.
Печень: размеры долей увеличены..., структуры нечетко дифференцированы, рисунок их нечеткий. Паренхима с диффузным неравномерным умеренно выраженным повышением эхогенности...
Желчный пузырь: очень плохо дифференцируется от ткани печени, резко выраженный отек стенок и гетерогенное содержимое в просвете...
... почки: ... структуры плохо дифференцированы. Контуры неровные, нечеткие, сохранены. Паренхима с неравномерно выраженным повышением эхогенности..., мочевой пузырь: ...

Брюшная полость: перистальтика не прослеживается, единичные перемещения химуса. Визуализируемые стенки кишечных петель утолщены, отечны (больше — в правой половине живота, слева — петли кишечника более четкие). Значительная дилатация петель кишечника не определяется, диаметр в правой половине живота — до 18 мм, слева — 8—10 мм. Определяется гетерогенное кишечное содержимое с примесью мелких пузырьков газа, больше в правой половине живота. Также справа — фрагмент кишки с явлениями пневматороза кишечной стенки в виде мелких пузырьков газа. В брюшной полости определяется свободное жидкостное содержимое с мелкодисперсной взвесью в левом латеральном канале в умеренном количестве и гетерогенное содержимое в правом латеральном канале и между кишечными петлями справа. Ниже края печени в брюшной полости — включение организующегося жидкостного компонента (жидкость с тонкими септами) размерами около 2×1 см.

Заключение: эхопризнаки энтероколита, перитонита, полиорганной изменений (септический? гепатит, реактивные изменения в почках).
Глава 6
УЗИ опорно-двигательного аппарата и мягких тканей у детей

У детей возможности УЗИ опорно-двигательного аппарата выше, чем у взрослых, поскольку значительная часть будущей костной ткани имеет еще хрящевое строение: у новорожденных хрящевая головка бедра определяет достоверность УЗИ в диагностике врожденного вывиха. Нормальная эхонатомия тазобедренного сустава новорожденного представлена на рис. 6.1. Удобно проводить УЗИ в провокационной позе: приведение и внутренняя ротация бедра младенца в положении на контралатеральном боку.

Рис. 6.1.

Для количественной оценки анатомии сустава проводится ось по подвздошной кости и линии от промонториума через Y-образный хрящ и хрящевую крышку сустава (рис. 6.2: a — норма, b — незрелость).

Рис. 6.2.
Глава 6. УЗИ опорно-двигательного аппарата и мягких тканей...

При дисплазии тазобедренного сустава полость его значительно уплощена, промонториум скруглен, головка бедра находится в полости сустава (a). При подвывихе изменения более выраженные, суставная впадина резко недоразвита, головка бедра смещена кнаружи (рис. 6.3, b). Следите, чтобы подвздошная кость была выведена строго горизонтально!

Рис. 6.3.

При вывихе бедра головка бедра смещена кнаружи и вверх, анатомия сустава бывает резко нарушена и все составные части сустава сложно идентифицировать (рис. 6.4). Исследование целесообразно сразу проводить в провокационной позе: на противоположном боку, исследуемый сустав находится в положении внутренней ротации и сгибания.

Рис. 6.4.
Для эхографической оценки коксита датчик (оптимально — линейный) располагается по передней поверхности сустава продольно, в проекции паховой складки. В норме капсула сустава повторяет профиль шейки бедра, шеечно-капсульное расстояние (между стрелками) не превышает 5 мм у детей 1—6 лет, 8 мм — у школьников. При коксите капсула сустава «отходит» кпереди, шеечно-капсульное расстояние увеличивается, в полости сустава может определяться жидкость, синовиальная оболочка утолщается (рис. 6.5). Целесообразно сравнение с контралатеральным непораженным суставом! При длительно текущем процессе содержимое сустава может быть гетерогенным.

![Рис. 6.5.](image)

Учитывая относительно частое поражение метафизарных зон остеомиелитическим процессом, УЗИ этих областей имеет большое значение. Так, в отличие от рентгеновского метода, при УЗИ достоверно оценивается состояние головки бедра после метаэпифизарного остеомиелита проксимального отдела бедренной кости у детей раннего возраста (рис. 6.6), зоны деструктивного поражения обведены.

![Рис. 6.6.](image)
Ранними эхографическими признаками остеомиелита можно считать утолщение и отслойку надкостницы (а, пунктир), параоссальные жидкостные скопления (а, стрелки), позднее появляются поднадкостничные флегмоны (б, пунктир, рис. 6.7). Также возможны изменения мягких тканей по типу флегмоны подкожной клетчатки над областью костного процесса (а). Наиболее эффективно использование линейных датчиков. Однако, в целом, не стоит преувеличивать возможнос-ть УЗИ в ранней диагностике остеомиелита.

Рис. 6.7.

УЗИ при переломах костей у детей применяется редко, однако и несращающиеся переломы (а, стрелка), и костные мозоли (б) могут быть четко визуализированы (рис. 6.8). Целесообразно проводить сканирование линейным датчиком как в продольном, так и в поперечном направлении.

Рис. 6.8.
Ультразвуковая анатомия коленного сустава у детей раннего возраста имеет ряд особенностей, связанных с хрящевыми структурами: полностью хрящевой надколенник и толстый слой хряща дистального эпифиза бедра выглядят анэхогенными и могут симулировать жидкостные включения (рис. 6.9, эхограмма и ее схема).

Рис. 6.9.

При гонитах жидкостное содержимое скапливается, в первую очередь, в верхнем заворote и оптимально визуализируется при продольном расположении датчика выше надколенника. Определяются утолщение синовиальной оболочки, выпот в полости сустава (рис. 6.10, а). При длительном процессе возможны фибринозные включения в полости синовиальных сумок, разрастания синовиальной оболочки (б). Также следует исключить кисту Беккера в подколенной ямке (осмотр в положении ребенка на животе).

Рис. 6.10.
Глава 6. УЗИ опорно-двигательного аппарата и мягких тканей...

Ультразвуковая диагностика повреждений менисков очень сложна. Максимальное значение имеет утолщение связок и повышение эхогенности тканей в проекции мениска. Иногда удаётся зафиксировать нарушение правильности контура мениска, увеличение его размера и повышение эхогенности (б). Очень редко виден дефект ткани мениска. Всегда необходимо сопоставление с неповрежденным контралатеральным мениском (рис. 6.11, а).

![Рис. 6.11.](image1)

УЗИ является высокоинформационным методом в оценке воспалительных изменений мягких тканей (рис. 6.12). Инфильтрат (а) выглядит как нечетко ограниченная область повышения эхогенности. Кровоизлияния (б) в подкожную клетчатку визуализируются в виде неправильной формы гипоэхогенных зон с содержимым пониженной эхогенности на фоне гиперэхогенной окружающей клетчатки.

![Рис. 6.12.](image2)
Флегмону эхографически достоверно дифференцировать непросто. В большинстве случаев подкожная клетчатка значительно утолщена, имеет повышенную эхогенность и содержит тонкие, нитевидные жидкостные прослойки (стрелки, рис. 6.13). Обязательно использование линейного датчика и сравнение с неповрежденной контралатеральной областью.

![Рис. 6.13.](image)

У детей раннего возраста могут возникать постинъекционные гематомы, особенно после инъекций в мышцы передней поверхности бедер. Они эхографически выглядят как локальные булавовидные гипоэхогенные утолщения мышцы и не распространяются за пределы мышечной фасции (a). Абсцессы обычно локализуются в толще подкожной клетчатки (b). Они могут иметь причудливую форму, эхогенность содержимого возможна любая в зависимости от его структуры: густой гной не выглядит эхографически как жидкость и обычно имеет среднюю или повышенную эхогенность (рис. 6.14).

![Рис. 6.14.](image)
Инородные тела мягких тканей эхографически выглядят как включения повышенной эхогенности. Всегда хорошо видны текстильные, деревянные (стрелки), металлические включения (рис. 6.15). В большинстве случаев они дают акустическую тень (двойные стрелки). Стеклянные и пластмассовые инородные тела видны не всегда, что связано с различным химическим составом этих веществ.

Рис. 6.15.

Тендовагиниты у детей встречаются нечасто, но эхографически дифференцируются достоверно (рис. 6.16). Оптимально использование линейного датчика высокой частоты (7–8 МГц). Вокруг сухожилий (стрелки) определяется утолщенное влагалище с минимальным количеством жидкостного содержимого (двойная стрелка). Обязательны полипозиционное сканирование и оценка наличия воспалительных изменений в подлежащих суставах (прицельно искать жидкостное содержимое в суставах).

Рис. 6.16.
Глава 7
УЗИ мошонки и внутренних гениталий у детей

Наиболее частой причиной синдрома отечной и гиперемированной мошонки является перекрут и некроз гидатиды (рис. 7.1). Неизмененные гидатиды видны редко и только на фоне водянки оболочек яичка. Они представляют из себя образование 2–3 мм в диаметре, средней эхогенности, фиксированное к яичку или придатку. При перекруте и некрозе гидатида увеличивается до 5–6, иногда — до 10 мм в диаметре (пунктир), часто ее структура становится ячеистой. Характерны наличие жидкостного содержимого в оболочках яичка (б), утолщение оболочек и увеличение придатка (реактивный эпидидимит).

Рис. 7.1.

Перекрут яичка эхографически характеризуется увеличением его в толщину (б, а — контралатеральное неизмененное, рис. 7.2). Без допплера диагностика сложна. Выраженные диффузные изменения паренхимы перекрученного яичка прогностически неблагоприятны.

Рис. 7.2.
Водянка оболочек яичка при УЗИ диагностируется очень легко (рис. 7.3). При скоплении в оболочках значительного количества жидкости яички выглядят гиперэхогенными за счет эффекта дистального усиления при прохождении УЗ-луча через слой жидкости (б).

Рис. 7.3.

Киста семенного канатика, особенно остро возникающая или инфицированная, имеет острую клиническую картину, схожую с ущемленной паховой грыжей, и УЗИ является высокоинформативным методом дифференцировки этих состояний (рис. 7.4). Киста (4) визуализируется в виде отдельно расположенного в проекции семенного канатика тонкостенного образования овальной формы с жидкостным содержимым (а). При инфицировании содержимое кисты становится гетерогенным, возможно — с септами, стенка кисты и оболочки яичка утолщаются (б). Необходимо четко дифференцировать яичко (1), придаток (2), если есть — жидкость в оболочках (3).

Рис. 7.4.
При паховых и пахово-малошоночных грыжах визуализировать содержимое паховой области и мошонки при УЗИ очень легко (линейный датчик, продольное, реже — поперечное сканирование). Эхографическое представительство кишечных петель весьма вариабельно в зависимости от их содержимого: газ (а), жидкий химус, плотные каловые массы (б) и т. п. В режиме реального времени оцениваются перистальтика кишечных петель в грыжевом мешке, состояние яичка, наличие или отсутствие выпота (рис. 7.5).

Рис. 7.5.

Травма мошонки у детей встречается относительно часто. Всегда необходимо документировать целостность яичка (сохранность контуров, отсутствие очаговых изменений паренхимы). Разрывы яичка встречаются редко, чаще — ушибы в виде участка повышения эхогенности (пунктир, а). Относительно часто возникают гематомы в оболочках яичка, различные по эхоструктуре в зависимости от стадии рассасывания и организации структуры (рис. 7.6). Напряженные гематомы могут деформировать яичко (его контур показан пунктиром, б). Характерно утолщение поверхностных тканей мошонки.

Рис. 7.6.
Варикоцеле диагностируется обычно клинически, при УЗИ даже без допплеровских технологий диагноз легко подтверждается. Необходимо УЗИ в ортостазе для получения наиболее четкой картины (рис. 7.7: а — норма, б — варикоцеле). Расширенные вены определяются как извитые тубуллярные структуры с жидкостным содержимым. Следует точно измерить размеры яичек на пораженной и контралатеральной стороне: разница в длину на 5 мм и в толщину на 2—3 мм (меньше на стороне поражения) у подростка должна вызвать настороженность по поводу формирования орхопатии.

Рис. 7.7.

Тестикулярный микролитиаз встречается редко, не имеет специфической клиники, обычно выявляется как «случайная находка», значение его в детском возрасте неясно. У взрослых расценивается как маркер тестикулярной онкопатологии, чаще встречается при нарушениях фертильности. Поражение двустороннее. Возможны генерализованная (а) и локальная (б) формы. В последнем случае в 1 скане имеется менее 5 мелкоточечных плотных включений без акустической тени (рис. 7.8). Целесообразно наблюдение в динамике.

Рис. 7.8.
Внутренние гениталии у детей визуализируются трансабдоминально (при наполненном мочевом пузыре), у новорожденных матка относительно крупная, выражено М-эхо (а). Яичники также часто крупные, достигают размеров 2×3 см, с множественными фолликулами, размеры единичных фолликулов могут достигать 8 мм (гиперстимулированные за счет материнского гормонального фона, б). Характерно высокое расположение яичников (вплоть до подвздошных областей). Осмотр проводится конвексным или линейным датчиком (рис. 7.9).

Рис. 7.9.

У девочек до 7 лет в т.н. индифферентном возрасте матка малых размеров, шеечно-маточный угол не выражен, М-эхо не прослеживается, шейка матки относительно длинная (а, б). Яичники расположены высоко и часто не выводятся в одном скане с маткой (стрелки, в). Диаметр отдельных фолликулов — до 2—3 мм (рис. 7.10). Визуализировать внутренние гениталии в этом возрасте у девочек бывает сложно из-за их малых размеров, особенно при явлениях метеоризма. После 7—8 лет структуры внутренних гениталий постепенно приобретают взрослый тип.

Рис. 7.10.
В неонатальном периоде относительно часто встречаются кисты яичников, которые зачастую диагностируются еще антенатально. Неосложненные кисты являются тонкостенными, содержимое чисто жидкостное (рис. 7.11). Патогномоничным эхосимптомом кист яичника является наличие мелких внутрипросветных пристеночных кист (стрелки). Неосложненные кисты менее 4 см в диаметре имеют тенденцию к спонтанному рассасыванию в 50% случаев.

![Рис. 7.11.](image)

Осложненные кисты яичника (внутриутробный перекрут, некроз кисты, кровоизлияние в стенку и/или полость кисты) эхографически характеризуются гетерогенностью содержимого кисты с наличием как взвеси, так и разнородного, иногда сетчатого содержимого. Стенки осложненных кист утолщенные, размеры обычно более 5 см, форма округлая или неправильная (рис. 7.12). Такие кисты не имеют тенденции к рассасыванию, излечиваются хирургически.

![Рис. 7.12.](image)
Наиболее грозной острой патологией придатков у девочек всех возрастных групп является перекрут придатков (рис. 7.13). Яичник при этом резко увеличен в размерах (до 5×6 см у девочек 2–3 лет, до 12×10 см у подростков, пунктир), повышенной эхогенности, в его структуре определяются единичные, овальной формы жидкостные включения — фолликулы. Часто определяется небольшое количество жидкостного содержимого в полости малого таза.

![Рис. 7.13.](image)

Неперфорированная девственная плева у новорожденной может служить причиной развития гидрометрокольпос (рис. 7.14). Иногда патология диагностируется при УЗИ антенатально. Матка может достигать очень больших размеров, занимая практически весь животик ребенка (a). В полости матки определяется жидкостное или мелкодисперсное содержимое. Характерно оттеснение и сдавление мочевого пузыря, что оптимально визуализируется в сагittalном скане (b).

![Рис. 7.14.](image)
Глава 7. УЗИ мошонки и внутренних гениталий у детей

Резко выраженная гидрометрокольпос может вызывать обструкцию мочевыводящих путей (а) с дилатацией ЧЛС почек (а). В сомнительных случаях показано трансперинеальное сканирование (б). Прямо под датчиком (лучше использовать линейный датчик) определяется полость, распространяющаяся в малый таз, — дилатированные влагалище, шейка и матка, не дифференцируемые между собой при УЗИ (рис. 7.15).

Рис. 7.15.

Чаше, однако, неперфорированная девственная плева клинически проявляется уже в пубертатном периоде, с началом менструальных кровотечений, когда кровь не может эвакуироваться и развивается гематокольпос (а) или гематометра (б). Обычно девочки обращаются в стационар с абдоминальным болевым синдромом. Объем гематометры может достигать 1 литра. Эхографическая диагностика этих заболеваний очень проста и достоверна (рис. 7.16).

Рис. 7.16.
ОБРАЗЦЫ ПРОТОКОЛИРОВАНИЯ РЕЗУЛЬТАТОВ УЗИ

УЗИ тазобедренных суставов, возраст 16 суток
Угол α справа — 67° Угол α слева — 55°.
Угол β справа — 45° Угол β слева — 64°.

Тазобедренный сустав справа: сформирован правильно, промон-ториум выражен достаточно, впадина сустава глубокая, хрящевая крыша не расширена, достаточно покрывает головку берда. Головка бедра центрирована. Ядро окостенения в проксимальном эпифизе бедра не определяется. Провокационная проба отрицательная.

Тазобедренный сустав слева: сформирован правильно, промонториум несколько скурглен, впадина сустава недостаточно глубокая, хрящевая крыша немного расширена, покрывает головку берда. Головка бедра центрирована. Ядро окостенения в проксимальном эпифизе бедра не определяется. Провокационная проба отрицательная.

Заключение: эхопризнаки зрелого тазобедренного сустава справа, физиологической (?) незрелости тазобедренного сустава слева.

УЗИ тазобедренных суставов, возраст 26 суток
Угол α справа — 49° Угол α слева — 67°.
Угол β справа — 41° Угол β слева — 92°.

Тазобедренный сустав справа: визуализирован достоверно, промонториум скурглен, впадина сустава недостаточно глубокая, хрящевая крыша расширена, едва покрывает головку берда. Головка бедра центрирована. Ядро окостенения в проксимальном эпифизе бедра не определяется. Провокационная проба отрицательная.

Тазобедренный сустав слева: визуализирован достоверно, впадина сустава резко недоразвита, значительно уплощена, хрящевая крыша деформирована, повышенной экогенности, не покрывает головку берда. Головка бедра децентрирована. Ядро окостенения в проксимальном эпифизе бедра не определяется. Провокационная проба положительная.

Заключение: эхопризнаки дисплазии тазобедренного сустава справа, вывиха бедра слева.

Коксит
Справа: структуры тазобедренного сустава дифференцированы достоверно, степень окостенения эпифиза бедра — в пределах возрастной
нормы. Определяется увеличение шеечно-капсульного расстояния до 13,6 мм (на контрадиагональной стороне — 6,8 мм) с наличием небольшого количества жидкостного содержимого в полости сустава и утолщением синовиальной оболочки до 3—4 мм. Без эхопризнаков деструктивных изменений костных фрагментов сустава на момент осмотра.

Заключение: эхопризнаки коксита справа.

Гонит

... определяется значительное количество жидкостного содержимого в супра- и парапателлярных синовиальных сумках без дисперсной взвеси и включений. Неравномерное утолщение синовиальной оболочки в области верхнего заворота до 3—6 мм...

НЕКОТОРЫЕ ДАННЫЕ О ВОЗРАСТНЫХ НОРМАТИВАХ РАЗМЕРОВ ВНУТРЕННИХ ГЕНИТАЛИЙ И ЯЙЦЕК У ДЕТЕЙ:

В норме у новорожденной девочки шеечно-маточный угол не выражен, толщина тела и шейки матки практически одинакова и граница между ними видна нечетко, соотношение длины тела матки к шейке — около 1:2. «Гипертрофированная» матка новорожденной в течение 1—3 месяцев подвергается инволюции и в дальнейшем выглядит примерно одинаково как в 1 год, так и в 3, и в 6 лет. В этом возрасте суммарная длина матки с шейкой составляет около 3 см, ширина — около 1,5 см. Размеры матки у девочки только к 6—8 годам достигают размеров матки новорожденной. Постепенно изменяется и соотношение длины тела матки к шейке: к 4 годам оно достигает 1:1,7, к 7 годам 1:1,4, к 9 годам 1:1. Последняя цифра не точна: у некоторых девочек менархе наступает уже к 9 годам, внутренние гениталии уже имеют «взрослый» тип строения, и это не считается патологией. Только к 8—9 годам начинает четко прослеживаться шеечно-маточный угол, который становится окончательно сформированным уже в пубертатном периоде. Примерно за полгода до наступления менархе матка начинает быстро увеличиваться в размерах, соотношение длины тела к шейке достигает 2:1.

Размеры яичников у девочек нейтрального периода небольшие, составляют около 15×10 мм, могут дифференцироваться отдельные мелкие (до 3—4 мм) фолликулы. К 7—8 годам в яичниках увеличивается количество фолликулов, размеры яичников достигают 20—25 мм в длину, 15 мм в ширину. Отдельные фолликулы могут достигать 7—10 мм.
в диаметре, число фолликулов может превышать 10 в каждом яичнике. Меняется топография яичников: они располагаются около углов матки.

Размеры яичек:
Новорожденные и до 1 года — около 10–12×5–6 мм;
к 3–5 годам — около 15–17×7–8 мм;
к 7–10 годам — около 18–22×10–12 мм;
в период полового созревания (12–16 лет в зависимости от индивидуальных особенностей ребенка) яички быстро увеличиваются в размерах, достигая 40–45×20–26 мм.

Для детей раннего возраста характерно наличие небольшого количества жидкостного содержимого в оболочках яичек, в других возрастных группах могут прослеживаться в норме только следы жидкостного содержимого в оболочках.

Киста яичника — вариант, девочка 6 суток жизни
...в правой половине живота определяется малоподвижное тонкостенное образование размерами 48×58 мм, с жидкостным содержимым без взвеси и включений. Имеются 2 мелкие пристеночные внутрโปรецветные кисты 6 и 4 мм в диаметре. Матка эхографически не изменена, контралатеральный яичник достоверно не визуализирован.

Заключение: эхопризнаки кисты правого яичника.

Киста яичника — вариант, девочка 6 суток жизни
...в левой половине живота на уровне пупка определяется фиксированное образование неправильно овальной формы, размерами около 62×46 мм, с толстой стенкой (3–5 мм), гетерогенным содержимым средней эхогенности и небольшим количеством жидкости. Матка эхографически не изменена. Контралатеральный яичник — 22×15 мм, фолликулы — до 5 мм в диаметре.

Заключение: эхопризнаки осложненной кисты левого яичника, предположительно — перекрут кисты.

Перекрут яичника, девочка 7 лет
Матка и левый яичник: эхографически не изменены.

Правый яичник: в типичном месте, резко увеличен в размерах: 76×55 мм, паренхима повышенной эхогенности, содержит жидкостные включения овальной формы размерами около 10×7 мм. Минимальное количество жидкостного содержимого ретроматочно.

Заключение: эхопризнаки перекрутта правого яичника.
Глава 7. УЗИ мочонки и внутренних гениталий у детей

Гематокольпос (возраст 14 лет)
матка: тело (длина×ширина×толщина) — 55×27×22 мм;
шейка (длина×толщина) — 22×15 мм;
правый яичник — 36×22 мм; фолликулы — до 8 мм;
левый яичник — 33×23 мм; фолликулы — до 7 мм.
Матка: в типичном месте, эхографически сохранена, М-эхо — до 7 мм. Яичники — эхографически не изменены. Определяется: резко дилатированное влагалище (86×58 мм) с большим количеством содержимого (жидкость с мелкодисперсной взвесью) в просвете. Без эхопризнаков организованных патологических включений в положении малого таза. Небольшое количество жидкостного содержимого ретроматочно.
Заключение: эхопризнаки гематокольпос.

Трансформация гидатиды
Слева: ... около верхнего полюса яичка определяется неправильно округлой формы включение размерами около 9×8 мм, неравномерно пониженной эхогенности. Минимальное количество неорганизованного жидкостного содержимого в оболочках яичка. Другие организованные структуры и включения в оболочках, проекции семенных протоков и сосудов не выявлены.
Заключение: эхопризнаки трансформации гидатиды слева.

Киста семенного канатика
Правое яичко: в мошонке, смешено книзу мошонки, размеры, структуры яичка и придатка эхографически не изменены... В проекции семенного канатика и в правой половине мошонки определяется тонкостенное образование овальной формы размерами около 66×23 мм с жидкостным содержимым в просвете.
Заключение: эхопризнаки кисты семенного канатика.

Гематома оболочек яичка
Левое яичко: топография не изменена, размеры симметричны с контралатеральным, структура паренхимы в верхнем фрагменте яичка не изменена, в нижнем — зона повышения эхогенности. Придаток эхографически не изменен. В оболочках яичка — гетерогенное включение неравномерной эхогенности размерами около 38×20 мм.
Заключение: эхопризнаки гематомы оболочек яичка слева.
Пахово-мошоночная грыжа
... в оболочках яичка слева определяется распространяющееся в паховую область гетерогенное образование, с жидкостным содержимым и газом в просвете. Оно сообщается с брюшной полостью, увеличивается при натуживании ребенка (пахово-мошоночная грыжа).

Варикоцеле
Правое яичко: 41×22 мм. Левое яичко: 31×19 мм.
Левое яичко: в мошонке, размеры несколько меньше контралатерального, паренхима — без структурных изменений. Около яичка и по ходу семенного канатика определяется конгломерат извитых сосудов с венозным типом кровотока, диаметром в клиноостазе — до 3 мм, в ортостазе — до 4,3 мм.
Заключение: эхопризнаки варикоцеле слева, орхопатии слева.

Тестикулярный микролитиаз
... В паренхиме обоих яичек, во всех отделах, определяются множественные (без счета) мелкоточечные эхогенные включения без акустической тени...
Заключение: эхопризнаки тестикулярного микролитиаза.
Глава 8
УЗИ почек у детей

Условием корректного выполнения УЗИ почек и МВП у детей является состояние достаточно наполненного мочевого пузыря ребенка. У младенцев, когда сознательная задержка мочеиспускания невозможна, УЗИ начинается с установки датчика на область мочевого пузыря: негативная реакция на осмотр обычно сопровождается мочеиспусканием и визуализация пузыря будет невозможной. Особенностью эхоструктуры почек у детей является четкая визуализация гипоэхогенных пирамид, которые образованы собирательными тубулами (рис. 8.1). Эхогенность кортекса у младенцев выше эхогенности паренхимы печени (а).

Рис. 8.1.

Дольчатость (а) и соединительнотканные втяжения (б) у детей встречаются часто и расцениваются как вариант строения почки (рис. 8.2). Дольчатость характерна для маленьких детей, после 1 года наблюдается редко. При наличии втяжений часто имеется пиелоэкстазия.

Рис. 8.2.
Частым вариантом строения почек являются
бертиниевые колонны:
фрагменты кортикального вещества, смешенные в медуллярный слой (пунктир, рис. 8.3). Они имеют эхоструктуру подобно кортикально-
му слою паренхимы почки (а), в редких случаях в составе крупной
Бертиниевой колонны может быть сформирована пирамида (б). ЧЛС
при наличии Бертиниевой колонны выглядит разделенной.

Рис. 8.3.

Аномалии количества и положения почек у детей наблюдаются часто
и, в большинстве случаев, протекают бессимптомно (рис. 8.4). При
аплазии почки надпочечник может быть сохранен, но имеет атипич-
ную, вытянутую форму (пунктир, а). При отсутствии почки в типичном
месте всегда следует помнить о возможной ее дистопии и прицельно
осматривать все возможные места ее локализации, включая малый таз
(б). Достоверно оценить размер дистопированной почки не всегда воз-
можно: она может быть частично прикрыта петлями кишечника.

Рис. 8.4.
Различные варианты обструктивных уропатий встречаются у значительного числа урологических пациентов детского возраста (рис. 8.5). Принципы эхографической оценки этих заболеваний те же, что и во взрослой практике. Относительно часто наблюдается синдром Фрейли (a, дилатация верхней чашечки указана стрелкой), пиелокскатазии фрагментов удвоенной почки (стрелки, б).

Рис. 8.5.

В раннем детском возрасте степень выраженности пороков значительно выше, чем во взрослой практике (рис. 8.6). Так, при мегауретерах может наблюдаться резкая извитость мочеточника (a) с формированием колен, особенно в прилоханочном отделе (стрелка, б). При этом такие колена мочеточника сложно дифференцировать от кист или чашечек, рекомендуется полипозиционное сканирование. При выраженной дилатации мочевыводящих путей паренхима почки бывает истончена, резкое повышение ее эхогенности прогностически серьезно (дисплазия).

Рис. 8.6.
Аномалии взаиморасположения почек также требуют полипозиционного сканирования (рис. 8.7). Наиболее часто встречается подковообразная почка. При сканировании со спины нижние полюса почек четко не прослеживаются и смешены в вентро-медиальном направлении (а), а из эпигастрального доступа прослеживается перешеек подковы, лежащий поперек позвоночного столба (б). Именно визуализация перешейка является бесспорным эхопризнаком данного порока.

Рис. 8.7.

Обструктивные уропатии у детей относительно часто ассоциируются с аномалиями количества и/или положения почек (рис. 8.8). Так, например, при гидroneфрозе верхнего фрагмента удвоенной почки (а) или половины подковообразной почки (б) типичной ошибкой является трактовка выявленной патологии как кистозной дисплазии почки. Необходимо все время помнить о возможности удвоения почки — это облегчает оценку патологии.

Рис. 8.8.
Мегауретеры также относительно часто ассоциируются с аномалиями почек (рис. 8.9). Типичным примером такой комбинированной патологии является мегауретер верхнего фрагмента удвоенной почки (а, лоханка нижнего фрагмента — стрелка, верхнего — двойная стрелка). При обструктивном характере мегауретера часто имеет место уретероцеле, которое выглядит как тонкостенное кистозного вида образование округлой или неправильной формы у проекции устья мочеточника (б).

Рис. 8.9.

Для экстренного решения вопроса о наличии или отсутствии рефлюкса при мегауретере возможно введение по катетеру в мочевой пузырь физраствора комнатной температуры (рис. 8.10). Количество физраствора равно возрастному объему мочевого пузыря. Если спонтанно контрастированная мелкими пузырьками газа жидкость не проходит в дилатированный дистальный отдел мочеточника (стрелка), можно говорить об обструктивном характере мегауретера.

Рис. 8.10.
В отличие от взрослых пациентов, у детей острый пиелонефрит достоверно виден на УЗИ. В банаальных случаях определяется утолщение стенок лоханки за счет отека (пилеит, толщина стенки — между стрелками) на фоне нечеткости или утраты кортико-медуллярной дифференцировки в виде нечеткости или отсутствия рисунка пирамид (рис. 8.11). Эхопризнаки пилеита даже на фоне лечения могут прослеживаться 7–10 суток и более.

Формирование инфильтрата в почке (пунктир, а) является редкостью и всегда сопровождается тяжелым инфекционным токсикозом (рис. 8.12). Также возможно развитие апостематозного пиелонефрита (б) с визуализацией мелких гипоэхогенных очагов (стрелки) на фоне выраженного повышения эхогенности окружающего участка паренхимы (пунктир). Почка при этом всегда значительно увеличена в размерах, клиническое течение тяжелое и длительное.
Формирование крупных абсцессов в почках у детей встречается редко и обычно не ранее чем на 8—10-е сутки от начала заболевания (рис. 8.13). Абсцесс выглядит как крупная зона деструкции неправильно округлой формы, с неровными нечеткими контурами, гипоанэхогенным центром (а). При прорыве абсцесса в паранефральную клетчатку определяется нарушение целостности контура почки и патологическое содержимое паранефрально (б).

Рис. 8.13.

При пиелонефрите на фоне обструктивных уропатий эхографически характерны другие изменения: пиелит не прослеживается, но определяется нарастание дилатации МВП, взвесь в просвете МВП и повышение эхогенности истонченной паренхимы почки (пунктир, б). Варианты пиелонефрита на фоне гидронефроза (а) и мегауретера (б) представлены на рис. 8.14: 1 — лоханка; 2 — чашечки; 3 — колена извитого мочеточника.

Рис. 8.14.
При значительном количестве взвеси в просвете МВП у детей с обструктивными уропатиями возможно образование осадка в просве-
те дилатированных МВП — как в лоханке (а), так и в мочеточнике (б).
Это состояние является угрожающим. При этом возможно развитие
частичной или полной обструкции МВП, которое сопровождается
значительным нарастанием дилатации МВП (рис. 8.15).

Некротический напиэлит у детей встречается редко при различ-
ных состояниях, сопровождающих тяжелым токсикозом, гипоксий,
инфекцией почек. Характерны повышение эхогенности и увеличение
размеров почечных сосочков (стрелки), их сепарация с формированием
кальцификатов в местах их отторжения, снижение эхогенности и увели-
чение размеров пирамид (пунктир), дренирующихся через пораженные
сосочки за счет нарушения оттока мочи (рис. 8.16). В отдаленные сроки
возможна деформация формиков.

Хронический атрофический пиелонефрит, в том числе рефлюкс-
нефропатия, экографически представлены фрагментарным истон-
чением паренхимы, уменьшением размеров почки, незначительной
дилатацией и деформацией ЧЛС с исчезновением или огрублением
формиков (рис. 8.17, а). Паренхима в полюсах почек поражается в
большей степени, в центральной части — остается более сохранной.
Контуры почек становятся неровными, могут формироваться втя-
жения соответственно рубцовым изменениям паренхимы. Возможно
поражение всей почки или ее фрагмента, например, на фоне рефлюк-
са в половину удвоенной почки (б).

Нефросклероз как терминальная стадия диффузного поражения
почки может развиваться в исходе любого заболевания и уже не имеет
специфических отличий (рис. 8.18). Почка уменьшена в размерах,
эхогенность паренхимы повышена, пирамиды не прослеживаются
(а), возможна дилатация МВП (в исходе урологической патологии).
При длительном течении заболевания формируются аксентиальный-
ные кисты (б). Они обычно имеют небольшие размеры, очень медленно
увеличиваются и не требуют специального лечения.
Дисметаболические нефропатии в детском возрасте наблюдаются часто (рис. 8.19). У детей первых дней жизни это проявляется в виде синдрома гиперэхогенных пирамид (а), который проходит за несколько суток при адекватной энтеральной гидратации младенца. Эхографическому синдрому гиперэхогенных пирамид соответствует клинический диагноз «мочеиспускальной инфаркт почек». У детей более старшего возраста в проекции ЧЛС определяются скопления включений повышенной экогенности без акустических теней (б).

Рис. 8.19.

Повышение экогенности пирамид после 1 месяца жизни должно настораживать в плане наличия тубулярных нарушений, дисплазии почечной ткани по типу медуллярной губчатой почки с угрозой развития медуллярного кальцинуоза (рис. 8.20). При этом возможно повышение экогенности как всей пирамиды (а), так и избирательно в ее периферической части с формированием кольцевидных структур в медуллярном слое почки (б). На рисунке представлены варианты синдрома Фанкони. В последующем возможно формирование конкрементов.

Рис. 8.20.
Глава 8. УЗИ почек у детей

Эхографическим критерием отличия конкреments от сгустка является наличие от него акустической тени (рис. 8.21). Формирование конкреments в почках встречается даже у грудных детей (а). Камнеобразование является также неприятным осложнением обструктивных уропатий. При этом возможно формирование литатурных конкреments: мелких кальцификатов литатур в зонах проведения оперативного вмешательства, в частности, в проекции пельвиоуретерального сочленения (стрелка, б).

Рис. 8.21.

Как и во взрослой практике, наиболее частой локализацией конкреments у детей являются, помимо пельвиоуретерального сочленения, предпузурный или интрамуральный отделы мочеточника (стрелка, а, рис. 8.22). У детей, перенесших уретероцистоинтраплантацию, возможно образование литатурных конкреments, расположенных в просвете мочевого пузыря, в проекции вновь сформированного устья мочеточника (стрелки, б). Такие конкреments всегда мелкие, фиксированные.

Рис. 8.22.
Конкременты в средних отделах мочеточника встречаются редко (стрелка, а, рис. 8.23). В основном такая локализация конкрементов характерна для сложных урологических пациентов, у которых происходит образование камня в отключенном колене мочеточника после закрытия кутанеостом (стрелка, б). Такие конкременты могут существовать бессимптомно.

Рис. 8.23.

Кисты почек у детей бывают самые разнообразные, и их эхографическая оценка не отличается от такой у взрослых пациентов (рис. 8.24). Солитарные кисты (а) имеют клиническое значение только при больших размерах, когда ставится вопрос об их склерозировании (более 3 см в диаметре). Мелкие множественные кисты могут быть проявлением полицистоза «взрослого» типа (б) или входить в состав различной синдromальной патологии (синдром Патау и пр.). Заболевания имеют склонность к медленному прогрессированию с исходом в почечную недостаточность. Мелкие кисты, преимущественно подкапсулярной локализации, встречаются при обструктивных уропатиях и свидетельствуют о сочетанной дисплазии почечной ткани, что существенно утяжеляет долгосрочный прогноз.

Рис. 8.24.
Глава 8. УЗИ почек у детей

Типичным для младенцев является ювенильный поликистоз, когда вся паренхима резко увеличенных в размерах почек представлена совокупностью мелких кистозных включений с формированием «губчатой» структуры (a, рис. 8.25). Заболевание всегда двустороннее. Пирамиды не прослеживаются. Для детальной визуализации структуры паренхимы целесообразно использование линейных датчиков с частотой 7–8 МГц (b). Аналогичное избирательное поражение медуллярного слоя паренхимы наблюдается при медуллярной губчатой почке.

Рис. 8.25.

При мультикистозной дисплазии (одностороннее поражение) почка представлена совокупностью кист и эхографически выглядит как «гроздь винограда» (рис. 8.26). Паренхима не определяется. Количество и размеры кист, размеры всей почки могут быть самыми разнообразными. Возможны аномалии контралатеральной почки (наиболее часто — пузырно-мочеточниковый рефлюкс и удвоение).

Наиболее частой причиной острой почечной недостаточности у детей является гемолитико-уремический синдром (ГУС), часто развивающийся на фоне кишечной инфекции. В начале заболевания в В-режиме почка выглядит вполне обычно (а) и только в динамике увеличивается в размерах, значительно повышается эхогенность паренхимы (б). Эти изменения прогностически благоприятны (рис. 8.27). При легком течении ГУС, а также при ОПН на фоне нефрритов, острого гемолиза и системных заболеваний почка сразу имеет вид «большой и белой».

Рис. 8.27.

При кортикальном некрозе на фоне ГУС (рис. 8.28) почка не увеличена, кортикальный слой имеет пониженную эхогенность, в зоне сохраненного юкста-медуллярного кровотока у основания пирамид видны гиперэхогенные ободки. Аналогичные «ободки» могут наблюдаться при дисплазии почечной ткани, при тяжелом диабете с явлениями полиорганной микроангиопатии (при анализе УЗИ важен анамнез пациента).

Рис. 8.28.
Глава 8. УЗИ почек у детей

Острый гломерулонефрит эхографически характеризуется увеличением почки в размерах, повышением экогенности паренхимы, нечеткостью рисунка пирамид (а, рис. 8.29). Субклинические формы с невыраженной протеин- и эритроцитурией могут не проявляться эхографически. Исклю́чить гломерулонефрит на УЗИ нельзя! Значительное повышение экогенности почек, а также нетипичное строение паренхимы, в частности — подчеркнутые контуры пирамид наблюдаются при нефритах на фоне дисплазии почечной ткани (б).

Рис. 8.29.

Для морфологической верификации заболевания с целью определения тактики ведения пациента детям с нефритами проводится пункционная биопсия почек (рис. 8.30). После биопсии относительно часто наблюдаются мелкие кровоизлияния в паренхиму почки (пунктир, а) и отек паранефрия (стрелки, а). Паравезикальные гематомы у таких пациентов часто протекают бессимптомно, при повторных эпизодах кровотечения имеют «слоистую» структуру (пунктир, б).

Рис. 8.30.
Травматические повреждения почек у детей обычно возникают вследствие тупой травмы поясничной области (рис. 8.31). Часто встречаются паренхимальные жидкостные скопления (двойная стрелка, \(a\)). Небольшие разрывы определяются как гипо-анэхогенные области (стрелка) на фоне участка повышенной эхогенности паренхимы, соответствующего зоне ушиба. После заживления в зоне разрыва почки формируется втянутый рубец (стрелка, \(b\)).

![Рис. 8.31.](image1)

Более тяжелые повреждения сопровождаются массивным паранефральным скоплением гетерогенного содержимого (стрелки, \(a\)), при этом четко дифференцировать урину, урогематому и гематому невозможно (рис. 8.32). В зоне повреждения почки ее контур не прослеживается (punktир, \(a\)). Дефект паренхимы определяется как гипо-анэхогенная область (двойная стрелка) на фоне гиперэхогенной зоны ушиба почки. В зоне повреждения почки всегда утрачивается кортико-медуллярная диффе-

![Рис. 8.32.](image2)
ренцировка. Возможно консервативное лечение, после которого формируется втянутый рубец (стрелка, б). Если размеры пораженной почки после травмы не уменьшились и в отдаленные сроки (3 месяца и более) наблюдается только формирование рубца, то функция почки восстанавливается полностью, артериальной гипертензии не наблюдается.

При тяжелых повреждениях почки ее контуры могут не прослеживаться на значительном протяжении (а), и всегда определяется массивная паранефральная гематома (стрелки, рис. 8.33). Когда контур почки не дифференцируется на значительном протяжении, а структура пораженного фрагмента резко изменена, можно предположить размозжение фрагмента почки (б).

![Рис. 8.33.](image_url1)

При полном разрыве органа с отрывом фрагмента происходит отделение оторванного фрагмента от основного объема почки с разделением органа на 2 или большее количество фрагментов (рис. 8.34). Всегда образуются массивная паренхимальная и интраренальная гематомы, разделяются фрагменты органа. Целесообразно использовать полипозиционное сканирование: полный отрыв фрагмента определяется из всех доступов.

![Рис. 8.34.](image_url2)
(а — латеральный доступ, б — дорзальный), если тканевой «мостик» между фрагментами почки сохранен, в каком-нибудь скане он будет виден.

При травматических повреждениях почек часто образуются сгустки крови в мочевом пузыре, которые могут иметь причудливую форму, произвольные размеры и различную эхоструктуру (рис. 8.35). Если сгусток занимает почти весь объем мочевого пузыря, можно предположить его тампонаду.

Рис. 8.35.

Острый цистит у детей эхографически выглядит, как у взрослых: утолщение стенок и взвесь в просвете пузыря. Изолированное утолщение стенок характерно для нейрогенного мочевого пузыря, клинически проявляющегося любыми вариантами, самым частым из которых является энурез (а). Резко выраженное утолщение стенок, «изрытость» их контура, мелкодисперсная взвесь в просвете часто наблюдаются у детей с тяжелыми двусторонними мегауретерами, trabекулярными цистами, тяжелой нейрогенной дисфункцией мочевого пузыря (б, рис. 8.36).

Рис. 8.36.
Глава 8. УЗИ почек у детей

После коллагенизации устьев (метод лечения пузырно-мочеточникового рефлюкса) в проекции устьев мочеточников видны гипоэхогенные включения неправильно округлой или овальной формы (стрелки), сохраняющиеся, в зависимости от разновидности использованного препарата, несколько дней или недель (рис. 8.37).

Рис. 8.37.

Характерной для новорожденных патологией является кровоизлияние в надпочечник. Возможно бессимптомное течение (особенно при одностороннем процессе). Гематома надпочечника может иметь произвольные размеры, иногда сопоставимые с размерами самой почки, и различную эхогенность в зависимости от стадии ретракции и организации кровоизлияния (рис. 8.38). Обязательным является динамическое УЗ-наблюдение до полного рассасывания кровоизлияния, поскольку необходимо помнить о возможных даже в младенческом возрасте опухолях надпочечников. Также необходима дифференцировка от порока верхнего фрагмента удвоенной почки.

Рис. 8.38.
Кровоизлияние в надпочечник (пунктир) у детей старшего возраста при тупой травме живота встречается редко (рис. 8.39). Эхографическая картина становится более четкой в динамике заболевания на 4—6 сутки, когда объем надпочечника наибольший. При правостороннем поражении возможна бессимптомная компрессия нижней полой вены (стрелки). Крупное правостороннее кровоизлияние может эхографически симулировать картину разрыва печени. Обязательно динамическое наблюдение до полного рассасывания кровоизлияния.

Рис. 8.39.

Опухоли почек (a) и надпочечников (b) у детей редко, но встречаются (рис. 8.40). Из-за отсутствия специфических клинических проявлений и регулярного 100% УЗ-скрининга детского населения опухоль часто обнаруживается только тогда, когда она достигает гигантских размеров и бывает сложно определиться с ее органной принадлежностью. Эхоструктура опухолей может быть самой разнообразной.

Рис. 8.40.
НЕКОТОРЫЕ ДАННЫЕ О ВОЗРАСТНЫХ НОРМАТИВАХ РАЗМЕРОВ ПОЧЕК У ДЕТЕЙ

Наиболее стабильным и «нормируемым» размером почки является ее длина. Толщина в зависимости от индивидуальных особенностей строения органа составляет 0,4—0,5 от длины, хотя возможны индивидуальные варианты формы почек (длинные — вытянутые или короткие — утолщенные).

Нормативные показатели длины парной почки:
недоношенный 1500 г весом — около 36—38 мм;
доношенный новорожденный — 45—50 мм;
1 год — около 62 мм;
далее — прирост около 3 мм в год.
Длина почки вычисляется по формуле:
\[62 + 3 \times (n - 1)\], где \(n\) — возраст в годах, т.е. в 8 лет длина почки:
\[62 + 3 \times (8 - 1) = 62 + 3 \times 7 = 62 + 21 = 83\ mm\].
— индивидуальные колебания допустимы в пределах 10% от возрастной нормы.

Если размеры ребенка резко выше или ниже возрастной нормы, почки могут иметь размеры, соответствующие реальному весу ребенка независимо от его возраста. Пример: вес ребенка в 2 года составляет 20 кг (норма на 5—6 лет) — размеры почек также могут (не обязательно!) достигать размеров почек 5—6-летнего ребенка. Или: если в 8 лет ребенок веет 15 кг (норма 3—4-летнего ребенка), то и размеры почек могут соответствовать не 8—, а 3—4-летнему нормативу.

В сомнительных случаях может быть вычислен суммарный объем почек, составляющей в норме 0,4—0,5% от веса тела ребенка:
\[\text{суммарный объем} = ((A1 \times B1 \times C1) + (A2 \times B2 \times C2)) \times 0,5,\]
где \(A, B\) и \(C\) — длина, ширина и толщина каждой почки.

Линейные размеры непораженной единственноной почки примерно на 20—30% больше, чем норма для парного органа, при этом объем единственноной почки составляет примерно 160—180% от парной почки, не достигая, соответственно, суммарного размера обеих почек.

Подвижность почек у детей определяется при проведении ортостатической пробы: после отметки положения верхнего полюса почки в положении лежа ребенок должен встать, немного попрыгать или пройтись. Затем в положении стоя определяют месторасположение почки и делают отметку на спине ребенка (обычно ориентируются по верхнему краю почки). Измеряют расстояние между отметками и рассчитывают его отношение к росту ребенка; в норме смещение почки не превышает 1,8% от роста ребенка: 1,8—3,0% свидетельствуют о повышенной подвижности почки; более 3% — о недропозе. Чаще повышенная подвижность почек определяется у детей школьного возраста с астеническим типом телосложения, в основном — у девочек.
ОБРАЗЦЫ ПРОТОКОЛИРОВАНИЯ РЕЗУЛЬТАТОВ УЗИ

Подвздошная дистопия почки
Правая почка: в типичном месте не определяется. В подвздошной области справа определяется образование размерами ...×... мм, структура которого соответствует фрагменту почки. ЧЛС не дилатирована. Паренхима почки сохранена.
Заключение: эхопризнаки подвздошной дистопии правой почки.

Подковообразная почка (ребенок 6 лет)
Правая почка — 74×28 мм. Левая почка — 78×29 мм.
Паренхима прав. почки — 12 мм. Паренхима лев. почки — 12 мм.
Почки: в типичном месте, физиологическая подвижность сохранена, нижние контуры достоверно не прослеживаются, размеры определены условно. Паренхима сохранена, ЧЛС не дилатированы. При сканировании в эпигастральной области определяется расположенная над позвоночником структура толщиной до 14 мм, протяженностью (кранио-каудальный размер) до 34 мм, соединяющая нижние полюса почек, расцениваемая как перешек подковообразной почки.
Заключение: эхопризнаки аномалии взаиморасположенния почек (т.н. подковообразная почка).

Мегауретер верхнего фрагмента удвоенной почки
Правая почка — 64×26 мм. Паренхима прав. почки — 12 мм.
Чашечки лев. почки — в. фр. — 8 мм. Мочеточник слева в/3 — 10 мм.
Мочеточник слева н/3 — 14 мм.
Правая почка: ...
Левая почка: в типичном месте, увеличена в длину. Определяется разделение ЧЛС с дилатацией МВП верхнего фрагмента почки. Паренхима верхнего фрагмента почки истончена, нижнего фрагмента — сохранена. Мочеточник умеренно извитой, перегиб в прилоханочном отделе.
Мочевой пузырь в типичном месте, стенки ровные, неутолщены. Определяется дилатация дистального отдела левого мочеточника. В проекции устья левого мочеточника в просвете пузыря определяется тонкостенное включение овальной формы 17×16 мм с жидкостным содержимым. В просвете — без эхопризнаков других организованных патологических включений на момент осмотра.
Заключение: эхопризнаки обструктивного (?) мегауретера верхнего фрагмента удвоенной левой почки, уретероцеле слева.
Глава 8. УЗИ почек у детей

Синдром гиперэхогенных пирамид (ребенок 2 суток жизни)

Правая почка — 54×22 мм. Левая почка — 51×23 мм.
Паренхима прав. почки — 11 мм. Паренхима лев. почки — 11 мм.
Почки: ... с обеих сторон определяется повышение экогенности пирамид. Кортикальный слой паренхимы почек сохранен. Без экопризнаков дилатации МВП, интра- и параконусальных организованных патологических включений на момент осмотра.

Заключение: экопризнаки синдрома гиперэхогенных пирамид.

Нейрогенный мочевой пузырь (5 лет)

Почки: ...

Мочевой пузырь: ..., внутренние контуры неровные, слизистая мочевого пузыря утолщена до 4—5 мм. В просвете — без эхопризнаков взвеси и включений. Без экопризнаков дилатации дистальных отделов мочеточников на момент осмотра.

После мицции: остаточная моча в количестве около 36 мл, дилатация ЧЛС не выявлена.

Заключение: эхографически нельзя исключить нейрогенный мочевой пузырь.

Гематома надпочечника (ребенок 11 суток жизни)

... в проекции правого надпочечника определяется фиксированное, неправильной формы образование, размерами около 45×22 мм, гетерогенное, с минимальным количеством жидкостного компонента.

Заключение: экопризнаки гематомы надпочечника.

Разрыв почки (ребенок 10 лет)

Правая почка — 91×36 мм. Паренхима прав. почки — 16 мм.
Левая почка — 104×42 мм. Паренхима лев. почки — 19 мм.

Правая почка: ...

Левая почка: в типичном месте, размеры увеличены. Контуры на границе среднего и нижнего фрагментов не прослеживаются. Паренхима среднего и нижнего фрагментов диффузно изменена: определяется выражение неравномерное повышение экогенности и дефект паренхимы на границе среднего и нижнего фрагментов глубиной до 13 мм, шириной не менее 8 мм. Определяется паренхимальное скопление содержимого средней экогенности по дорзальной поверхности почки размерами не менее 75×19 мм.

Мочевой пузырь: ..., в просвете — подвижное включение пониженной экогенности неправильной формы, с неровными контурами размерами около 38×36 мм (сгусток крови).

Заключение: экопризнаки разрыва левой почки.
Пиелит, цистоуретерит
Правая почка — 64×27 мм. Паренхима прав. почки — 12 мм.
Левая почка — 67×25 мм. Паренхима лев. почки — 11 мм.
Лоханка лев. почки — 8 мм. Мочеточник слева дист/3 — 6 мм.
Правая почка: ...
Левая почка: топография не изменена, размеры в пределах возрастной нормы. Паренхима нечетко дифференцирована. Определяется незначительная дилатация ЧЛС с выраженными эхопризнаками отека ее слизистой. Без эхопризнаков организованных патологических включений интра- и параrenalно на момент осмотра.
Мочевой пузырь: ..., внутренние контуры неровные, слизистая мочевого пузыря утолщена до 4–5 мм. В просвете — умеренное количество мелкодисперсной взвеси. Определяется невыраженная дилатация дистального отдела мочеточника справа с утолщением (отеком) его слизистой, без патологических включений в просвете.
Заключение: эхопризнаки пиелита слева, цистита, уретерита слева. Эндо-выводно-мочеточниковый рефлюкс слева.

Ювенильный поликистоз (ребенок 20 суток жизни)
Правая почка — 84×36 мм. Паренхима прав. почки — 17 мм.
Левая почка — 81×40 мм. Паренхима лев. почки — 18 мм.
Почки: в типичном месте, размеры резко увеличены, определены приблизительно. Занимают почти весь объем живота ребенка. Контуры ровные, четкие. Структура атипичная, кортика-миедулярная дифференцировка не прослеживается. Вся паренхима почек представлена совокупностью мелких кистозных включений по 1–3 мм, образующих рисунок «губки». ЧЛС не дилатирована. Без эхопризнаков интра- и параrenalных организованных патологических включений на момент осмотра.
Заключение: эхопризнаки поликистоза почек (ювенильный тип).

Мультикистоз (ребенок 2 месяцев жизни)
Правая почка — 56×27 мм. Паренхима прав. почки — 12 мм.
Левая почка — 67×36 мм. Паренхима лев. почки — нет.
Правая почка: ... размеры увеличены, ...
Левая почка: в проекции органа определяется фиксированная структура, представляющая собой конгломерат кистозных включений диаметром от 3 до 26 мм (не менее 10 кист). Почечная паренхима не прослеживается. ЧЛС не дилатирована.
Заключение: эхопризнаки кистозной дисплазии левой почки (т.н. мультикистоз), викарной гипертрофии правой почки.
ВОПРОСЫ ТЕСТОВОГО КОНТРОЛЯ
(правильные ответы выделены)

1. Показаниями к нейросонографии являются:
 А — недоношенность, незрелость, антенатальные проблемы;
 Б — наличие неврологической симптоматики, травма головы;
 В — скрининг и/или желание родителей;
 Г — все перечисленные показания.

2. Нейросонография может быть выполнена:
 А — детям от 0 до 1 месяца жизни;
 Б — детям от 0 до 3 месяцев жизни;
 В — детям от 6 до 12 месяцев жизни;
 Г — детям от 0 до закрытия родничков.

3. Нейросонография детям с травмой головы выполняется:
 А — только в положении ребенка стоя;
 Б — обязательно через большой родничок и височные доступы;
 В — не ранее чем через 3 суток после травмы;
 Г — не проводится детям ранее 6 месяцев жизни.

4. При внутриутробной инфекции нейросонография может выявить:
 А — лентикулостриарную минерализирующую ангиопатию;
 Б — субэпендимальные кисты;
 В — кальцификаты в перивентрикулярных областях;
 Г — все перечисленные изменения.

5. Внутричерепная гипертензия при нейросонографии проявляется:
 А — в виде вентрикуломегалии;
 Б — в виде расширения наружных ликворных пространств;
 В — может не проявляться эхографически;
 Г — возможен любой из перечисленных вариантов.

6. Признаками незрелости структур головного мозга являются:
 А — обеднение рисунка борозд и извилин;
 Б — часто — расширение полости прозрачной перегородки;
 В — повышение эхогенности перивентрикулярных тканей;
 Г — характерно сочетание всех перечисленных признаков.

7. Вилочковая железа эхографически:
 А — может быть оценена у детей первых месяцев жизни;
 Б — не визуализируется;
 В — определяется только у детей старше 3 лет;
 Г — экранирована шитовидной железой.
8. Подчелюстной лимфаденит эхографически выглядит как:
 А — конгломерат округлых гипоэхогенных лимфоузлов;
 Б — увеличение размеров лимфоузлов;
 В — частое — повышение эхогенности окружающих тканей;
 Г — характерно сочетание перечисленных изменений.

9. Мышечная кривощея эхографически выглядит как:
 А — истончение кивательной мышцы;
 Б — веретенообразное утолщение кивательной мышцы;
 В — отсутствие кивательной мышцы в типичном месте;
 Г — возможен любой из представленных вариантов.

10. Нормальные параметры зрелого тазобедренного сустава:
 А — угол α — более 60°, угол β — менее 55°;
 Б — угол α — более 50°, угол β — менее 65°;
 В — угол α — более 43°, угол β — менее 90°;
 Г — возможен любой из перечисленных вариантов.

11. При врожденном вывихе бедра эхографически характерно:
 А — уплощение вертлужной впадины;
 Б — расширение хрящевой крыши;
 В — смещение головки бедра латерально и вверх;
 Г — совокупность всех перечисленных изменений.

12. Если на УЗИ кровь в малом тазу и в латеральных каналах, ее количество:
 А — до 8 мл/кг веса ребенка;
 Б — от 8 до 24 мл/кг веса ребенка;
 В — более 24 мл/кг веса ребенка;
 Г — более 0.3% от веса ребенка.

13. Необходимое условие адекватной оценки состояния брюшной
 полости у ребенка с подозрением на травму внутренних органов:
 А — наполненный желудок;
 Б — наполненный мочевой пузырь;
 В — уровень артериального давления выше 70/40 мм рт. ст.;
 Г — уровень рО2 крови выше 80%.

14. В ранние сроки после травмы паренхиматозных органов характерен:
 А — гиперэхогенный паттерн;
 Б — to-and-from- паттерн;
 В — мерцающий артефакт;
 Г — mirror-артефакт.
15. Максимальный размер дефекта органа при травме определяется в сроки:
 А — 2–6 часов после повреждения;
 Б — 12–48 часов после повреждения;
 В — 8–10 суток после повреждения;
 Г — 3–4 недели после повреждения.
16. В ранние сроки после травмы параренальная гематома от урогематомы:
 А — отличается размерами (урогематома больше);
 Б — отличается экогенностью (урогематома более экогенна);
 В — отличается сроками возникновения (урогематома раньше);
 Г — достоверно не отличается.
17. Ушиб почки в режиме серой шкалы выглядит как:
 А — очаг понижения экогенности паренхимы;
 Б — очаг повышения экогенности паренхимы;
 В — параренальное скопление жидкостного компонента;
 Г — в режиме серой шкалы не дифференцируется.
18. В ранние сроки после травмы поджелудочной железы характерно:
 А — немного жидкостного содержимого в полости малого таза;
 Б — увеличение размеров поджелудочной железы, нечеткость контуров и понижение экогенности ее паренхимы;
 В — незначительное скопление жидкости параорганно;
 Г — все перечисленные эхографические признаки.
19. В динамике заболевания при травме поджелудочной железы:
 А — появляется и увеличивается анэхогенный дефект паренхимы органа;
 Б — появляется и чаще увеличивается скопление жидкости параорганно и/или в проекции сальниковой сумки;
 В — сохраняется жидкостное содержимое в полости малого таза;
 Г — все перечисленные эхографические признаки.
20. УЗИ плевральной полости у ребенка возможно:
 А — из субкостофидального доступа;
 Б — из межреберных доступов;
 В — из паравертебральных доступов;
 Г — из всех перечисленных доступов.
21. Пневмонический очаг без деструкции ткани при УЗИ выглядит как:
 А — очаг средней экогенности с «воздушной бронхограммой»;
 Б — округлой формы тонкостенное включение с жидкостью;
 В — совокупность мелких плотных включений с акустической тенью;
 Г — возможен любой из представленных вариантов.
22. Достоверно исключить пневмонию и/или кисту легкого при УЗИ:
 А — можно только у детей старше 3 лет;
 Б — можно только у детей младше 3 лет;
 В — можно только на фоне высокой гипертермии;
 Г — невозможно.

23. Лабильный перегиб в шеечном отделе желчного пузыря является:
 А — вариантом нормы;
 Б — пороком развития желчного пузыря;
 В — следствием перенесенного остrego холецистита;
 Г — маркером печеночного заболевания.

24. Эхографически гастрит:
 А — не может быть диагностирован никогда;
 Б — могут выявляться косвенные признаки;
 В — всегда диагностируется достоверно;
 Г — возможен любой из перечисленных вариантов.

25. Кишечная инвагинация эхографически представлена симптомами:
 А — «мишки» и «слоенного пирога» в подпеченочном пространстве;
 Б — «головы быка» и «тюльпана»;
 В — «большой белой почки»;
 Г — возможен любой из перечисленных вариантов.

26. Исключить острый аппендицит при УЗИ:
 А — возможно со 100% точностью;
 Б — достоверно невозможно;
 В — острый аппендицит при УЗИ не диагностируется;
 Г — УЗИ детям с абдоминальным болевым синдромом не проводится.

27. Обязательным условием корректного проведения УЗИ у детей с
 острым абдоминальным болевым синдромом является:
 А — наполненный желудок;
 Б — наполненный мочевой пузырь;
 В — уровень артериального давления выше 70/40 мм рт. ст. ;
 Г — уровень рО₂ крови выше 80%.

28. Воспаленный червеобразный отросток при УЗИ:
 А — имеет диаметр более 8 мм;
 Б — не компримируется датчиком, не перистальтирует;
 В — может быть окружен гиперэхогенной тканью (сальником);
 Г — характерно сочетание всех перечисленных изменений.

29. Фолликулы в яичниках у девочек-подростков:
 А — являются нормой;
 Б — в норме не определяются;
В — являются следствием поликистоза яичников;
Г — возможно любое из перечисленных изменений.

30. Обязательным условием корректного проведения УЗИ почек и мочевыводящих путей является:
А — наполненный желудок;
Б — наполненный мочевой пузырь;
В — уровень артериального давления выше 70/40 мм рт. ст.;
Г — уровень рО₂ крови выше 80%.

31. Пирамиды в почках у детей являются:
А — следствием внутриутробной гипоксии;
Б — вариантом нормы;
В — вариантом кистозной дисплазии;
Г — вариантом обструктивной уропатии.

32. При бактериальных пиелонефритах у детей определяется:
А — минимальное расширение лоханки;
Б — отек стенки лоханки;
В — нечеткость кортика-медullлярной дифференцировки;
Г — совокупность всех перечисленных изменений.

33. Свежее кровоизлияние в надпочечник у новорожденного на УЗИ:
А — имеет вид кистозного включения;
Б — гетерогенное, с неровными контурами;
В — выглядит как совокупность жидкостных полостей;
Г — возможен любой из перечисленных вариантов.

34. Нейрогенный мочевой пузырь эхографически:
А — никогда не имеет специфической картины;
Б — характерно умеренное утолщение стенки мочевого пузыря;
В — характерна взвесь в просвете мочевого пузыря;
Г — совокупность всех перечисленных изменений.

35. При мультикистозе почка выглядит как:
А — «мишень»;
Б — «слюзный пирог»;
В — «гроздь винограда»;
Г — «голова быка».

36. Синдром гиперэхогенных пирамид у младенца 2 суток жизни является:
А — проявлением внутриутробной инфекции;
Б — проявлением перенесенной острой гипоксии;
В — проявлением мочекаменной болезни;
Г — парафизиологическим состоянием.