Ю. П. Пивоваров

РУКОВОДСТВО К ЛАБОРАТОРНЫМ ЗАНЯТИЯМ ПО ГИГИЕНЕ И ОСНОВАМ ЭКОЛОГИИ ЧЕЛОВЕКА

Допущено
Департаментом образовательных медицинских учреждений и кадровой политики Министерства здравоохранения Российской Федерации для медицинских и фармацевтических ВУЗов Российской Федерации

Издание третье исправленное и дополненное

Москва
ГОУ ВУНЦ МЗ РФ
2001
Руководство подготовлено коллективом кафедры гигиены и основ экологии человека Российского Государственного медицинского университета и Московского института медико-социальной реабилитологии под общей редакцией Заслуженного деятеля науки РФ, академика Международной академии наук Экологии и Безопасности жизнедеятельности (МАНЭБ), член-корр. РАМН, профессора Ю. П. Пивоварова.

Рецензенты:
Кафедра общей гигиены Московской медико-стоматологической академии (зав. кафедрой академик РАН, профессор А.М.Лакин).
Кафедра общей гигиены Санкт-Петербургской государственной педиатрической медицинской академии (зав. кафедрой профессор В.И.Баев).

Руководство содержит описание методов исследования различных факторов окружающей среды и реакций организма на их воздействие. Наличие значительного количества ситуационных задач позволит студентам овладеть практическими навыками, необходимыми при проведении гигиенической экспертизы пищевых продуктов, оценке питьевой воды, условий труда на различных производствах. Подробно изложены вопросы гигиены труда, гигиены детей и подростков, гигиены лечебно-профилактических учреждений.

Методические разработки составлены с учетом официальных материалов (СанПиНы, ГОСТы, правила, нормы, инструкции), введенных в действие в период подготовки третьего издания руководства.

Руководство написано в соответствии с программой, утвержденной Министерством здравоохранения в 1992 году для студентов лечебных, педагогических, стоматологических факультетов и «Программой по гигиене с основами экологии человека и гигиене детей и подростков» (для педиатрических факультетов), утвержденной Министерством здравоохранения.

ISBN 5-89004-139-8

© Ю.П.Пивоваров, 2001
© ГОУ ВУНМИЦ МЗ РФ, 2001
ПРЕДИСЛОВИЕ

Многолетняя практика здравоохранения нашей страны, признанная в настоящее время всем международным медицинским сообществом, свидетельствует о целесообразности приоритета профилактической работы в деятельности врача любого профиля. Важность профилактической направленности здравоохранения нашей страны нашла отражение в Федеральном законе "О санитарно-эпидемиологическом благополучии населения № 52-ФЗ от 30.3.99 г."

Практической реализацией профилактического направления в системе высшего медицинского образования в начале 90-х годов явилось включение в учебные планы факультетов Российского государственного медицинского университета, а затем и ряда других вузов России и стран СНГ, междисциплинарного государственного экзамена по профилактической медицине. Такой экзамен является проверкой знаний выпускников в области многих гуманитарных, социально-экономических, естественно-научных, математических, медико-биологических, медико-профилактических и клинических дисциплин, изучающих возможность неблагоприятного воздействия ряда факторов, включая экологические, на здоровье человека и разработку мероприятий по предупреждению этого воздействия.

В этом плане потребовалась корректировка содержания преподавания ряда дисциплин, и прежде всего гигиены и экологии человека, а также ряда других профилактических дисциплин. Была разработана межкафедральная программа по преподаванию вопросов профилактической медицины, перестроено преподавание в части освоения будущими врачами принципов оценки конкретных ситуаций и умения их правильной коррекции.

Настоящее руководство составлено с учетом всего сказанного выше. В нем нашли отражение многолетний опыт работы кафедры гигиены и основ экологии человека Российского государственного медицинского университета, а также новые подходы к преподаванию, основанные на умении студентов ориентироваться в разнообразных ситуациях их будущей практической деятельности. В руко-
вводство включены новые нормативные документы и рекомендации, если они введены в действие к моменту издания руководства, по использованию современных методов и соответствующей аппаратуры при решении практических задач в деятельности врача в области профилактических направлений здравоохранения, входящих в компетенцию врача любого профиля.
Раздел 1.
ВЛИЯНИЕ ФАКТОРОВ ОКРУЖАЮЩЕЙ СРЕДЫ НА ЖИЗНЕДЕЯТЕЛЬНОСТЬ НАСЕЛЕНИЯ

Существование человечества возможно лишь при взаимодействии его с объектами окружающей природной среды. Состояние природных факторов среды, входящее в понятие экологической обстановки, оказывает существенное влияние на состояние здоровья людей. При определенном сочетании этих факторов человек чувствует себя комфортно, они оказывают на него оздоровливающее влияние, при других сочетаниях могут оказывать неблагоприятное влияние, нарушать течение нормальных физиологических процессов в организме, содействуя возникновению патологических процессов.

В результате интенсификации производственной деятельности человечества, в особенности развития физики, а также химической промышленности, в настоящее время значительно увеличилось количество факторов окружающей среды, оказывающих на организм человека неблагоприятное воздействие. Значительно усилилось действие факторов, ранее не имевших существенного значения (интенсивный шум, вибрация, токсические выбросы в атмосферу и другие), появились новые, представляющие большую опасность для здоровья населения (ионизирующая радиация, электромагнитные волны, пестициды и др.).

Интенсивное развитие промышленности, транспорта, а также сельского хозяйства сопровождается резким увеличением загрязнения объектов окружающей среды, создающим неблагоприятную экологическую обстановку. Процессы самоочищения объектов окружающей среды, обеспечивающие в прошлом круговорот веществ в природе, теперь оказываются недостаточными для обезвреживания поступающего в них огромного количества всевозможных отбросов производства и другой жизнедеятельности населения.

Воздушная среда, с которой человек входит в самый непосредственный контакт и от состояния которой в значительной степени зависит здоровье людей, подвергается в настоящее время существенному испытанию. С течением времени все больше увеличивается интенсивность окислительных процессов, сопровождающихся поглощением кислорода из воздуха и выделением в него промежуточных и конечных продуктов окисления. Главным образом это продукты горения топлива, поступающие в воздух из различного рода энергетических установок, среди которых значительную роль иг-
рают промышленные предприятия и автомобильный транспорт. Основными загрязняющими компонентами выбросов этих устано
вок в воздух являются двуокись углерода (CO₂), окислы серы (SO₂), разнообразные окислы азота, продукты неполного сгорания топлива (CO, сажа, недосгоревшие углеводороды и т.д.). Кроме того, в воздух могут поступать и другие, специфические продукты производственной деятельности – свинец, цемент, фреоны и мно
жество других токсических соединений, характерных для того или иного производства. Многие из этих веществ и соединений способ
ны оказывать на организм человека токсическое действие, приводя к росту неспецифической заболеваемости, особенно у детей.

В результате глобального загрязнения воздушной среды посте
пенно снижается прозрачность атмосферы, что приводит к сниже
нию интенсивности интегрального потока солнечной энергии, посту
пающего на землю, и особенно наиболее биологически ценной его части – ультрафиолетовой радиации. Кроме того, в результате изменения газового состава воздушной среды, весьма вероятно воз
никновение, так называемого, "парникового эффекта" с весьма не
благоприятными экологически последствиями, а также источне
ние озонового слоя в атмосфере, обеспечивающего защиту живых организмов от повреждающего действия коротких лучей солнечной радиации.

Экологическая обстановка на земном шаре в значительной степе
ни зависит также от состояния гидро- и литосферы. В связи с увеличением численности населения на планете и интенсификаци
и его деятельности в последние годы ощущается недостаток пресной воды, а имеющаяся под час не отвечает требованиям безопасности населения. Вода играет большую роль в эпидемиологических про
цессах. Водные эпидемии характеризуются массовостью охвата на
селения и, следовательно, высокой степенью опасности. Кроме то
го, в силу случайно сложившихся природных условий, в почве не
которых регионов, а следовательно и в водоисточниках, располо
женных на этих территориях, могут отсутствовать или, наоборот, находиться в избыточном количестве некоторые химические элемен
ты, играющие существенную роль в обменных процессах в орга
низме человека, что может привести к развитию в нем патологиче
ских процессов. Такие изменения в лито- и гидросфере могут соозна
даться в результате деятельности человека, приводя к возник
новению искусственных биогеохимических провинций, на террито
рных которых могут накапливаться токсические вещества в опасных для организма человека количествах.
Всевозможные отходы деятельности людей, поступающие в почву и водоемы в возрастающем количестве, все более осложняют экологическую обстановку. Внедряющиеся в обиход человечества в последнее время в большом количестве полимерные материалы, не поддающиеся традиционным способам обезвреживания, создают для природы, а следовательно, и для человечества, дополнительные трудности.

Большие проблемы возникают также в результате интенсивного использования в народном хозяйстве радиоактивных материалов и других источников ионизирующей радиации. Возможность вредного влияния последней на организм существенно усилилась вследствие произошедших в последние десятилетия аварий на АЭС и реакторных двигательных установках морских судов. Остро встала в наши дни и проблема захоронения отработанного реакторного топлива и других материалов.

Много неприятностей для населения земли в экологическом смысле может принести широчайшее распространение генераторов радиоволн всевозможнейших диапазонов. Особенно опасны для здоровья людей считаются короткие волны дециметрового и сантиметрового диапазонов, используемых в телевидении и радиовещании. Особую заботу составляет всеобщая в последние годы компьютеризация, так как экраны дисплеев являются источником воздействия на операторов электромагнитного излучения, последствия воздействия которого на организм человека только начали изучаться.

Задачей гигиенической науки является изучение всех факторов окружающей среды, которые могут оказывать влияние на организм человека, и разработка мероприятий с целью максимального использования благоприятных природных ресурсов и исключения или снижения влияния вредных факторов. Определенные практические навыки в этом плане могут быть получены студентами-медиками в процессе изучения настоящего раздела.

1.1. Гигиеническая оценка среды обитания человека

Цель занятия: ознакомить студентов с воздействием на организм человека воздушной среды и принципами нормирования отдельных ее параметров.

Практические навыки: научить студентов определять основные параметры состояния воздушной среды и давать гигиениическую оценку комплексного влияния их на человека.

Задание студентам:
1. Определить атмосферное давление.
2. Определить среднюю температуру воздуха в помещении и перепады её по горизонтали и вертикали.

3. Определить относительную влажность воздуха в помещении.

4. Определить скорость движения воздуха:
 а) в помещении (на рабочем месте)
 б) в вентиляционном отверстии (в форточке).

5. Составить санитарное заключение о состоянии воздушной среды в данном помещении и теплоощущениях находящихся в нём людей. Дать рекомендации по улучшению микроклиматических условий в данном помещении.

6. Решить ситуационные задачи с различными сочетаниями параметров воздушной среды.

Состояние воздушной среды обитания человека оказывает существенное влияние на самочувствие, настроение, работоспособность и здоровье его в зависимости от физического состояния её и наличия в ней тех или иных механических или биологических примесей.

Физическое состояние воздушной среды, известное под названием микроклимата, характеризуется величиной атмосферного давления, температурой, влажностью, скоростью движения воздуха и мощностью тепловых излучений. Гигиеническое значение этих показателей заключается в основном в их влиянии на теплое равновесие организма. Отдача тепла организмом в обычных условиях происходит за счет теплоизлучения, теплопроведения и испарения с поверхности кожи. Высокая температура воздуха в сочетании с повышенной относительной влажностью затрудняет отдачу тепла способом проведения и испарения, вследствие чего может произойти перегревание организма. При низкой температуре влажность воздуха, наоборот, способствует охлаждению организма, так как увеличивается отдача тепла способом проведения (по сравнению с сухим воздухом вода имеет значительно большую теплопроводность и теплоемкость). Увеличение скорости движения воздуха, как правило, способствует теплоотдаче способами проведения и испарения за исключением случаев, когда воздух насыщен водяными парами и имеет температуру выше температуры поверхности тела.

Следует отметить, что при небольших отклонениях физических факторов воздушной среды от зоны комфорта самочувствие здоровых людей может не измениться, тогда как у больных людей часто возникают, так называемые, метеотропные реакции. Особенно чувствительны к изменению метеорологических факторов внешней сре-
ды люди, страдающие сердечно-сосудистыми, нервно-психическими и простудными заболеваниями.

При гигиенической оценке влияния физических факторов воздушной среды на организм человека необходимо учитывать весь комплекс их: атмосферное давление, температуру воздуха, влажность и скорость движения.

Для создания комфортных условий самочувствия людей рекомендуются следующие параметры этих факторов в помещениях (микроклимат помещений):

а) средняя температура воздуха 18-20°С (для детей 20-22°С), в палатах для недоношенных детей – 25°С, в перевязочных и процедурных кабинетах – 22°С, операционных – 21°С, родовых – 25°С. Перепады температуры воздуха в горизонтальном направлении от наружной стены до внутренней не должны превышать 2°С, в вертикальном – 2,5°С на каждый метр высоты. В течение суток колебания температуры воздуха в помещении при центральном отоплении не должны превышать 3°С;

б) величина относительной влажности воздуха при указанных температурах может колебаться в пределах 40-60% (зимой – 30-50%);

в) скорость движения воздуха в помещениях должна быть 0,2-0,4 м/с, на выходе из приточных отверстий вентиляционных каналов больничных палат – не более 1 м/с, а в ванных, душевых, физиотерапевтических кабинетах – 0,7 м/с. Особенно важно соблюдение этих условий в больницах.

Определение атмосферного давления. Атмосферное давление может быть измерено ртутными барометрами или барометрами-анероидами. Для непрерывной регистрации атмосферного давления используют барографы (барометры-анероиды с записывающим устройством и лентопротяжным механизмом). Величина давления выражается в миллиметрах ртутного столба (или в гектапаскалях – гПа). Обычные колебания атмосферного давления находятся в пределах 760±20 мм рт.ст. или 1013±26,5 гПа (1 гПа равен 0,7501 мм рт.ст.).

Определение атмосферного давления производят барометром-анероидом. Для этого перед отсчетом показаний прибора следует постучать пальцем по его стеклу для преодоления инерции стрелки.

Определение температуры воздуха. Температуру воздуха в помещениях обычно измеряют ртутными или спиртовыми термометрами. Термометр оставляют в месте измерения на 5 мин, чтобы жидкость в резервуаре его приобрела температуру окружающего воздуха, после чего производят регистрацию температуры.
Для этой цели можно использовать аспирационный психрометр, суходой термометр которого более точно регистрирует температуру воздуха, так как резервуар его защищен от воздействия лучистого тепла.

С целью длительной регистрации температуры воздуха (в течение суток, недели) применяют термографы, состоящие из воспринимающего элемента (изогнутая полая металлическая, наполненная толуолом, или биметаллическая пластинка), связанного с записывающим устройством, и лентопротяжного механизма.

Для определения средней температуры воздуха в помещении производят три измерения по горизонтали на высоте 1,5 м от пола (в середине комнаты, в 10 см от наружной стены и у внутренней стены) и вычисляют среднее значение. По этим же данным судят о равномерности температуры в горизонтальном направлении. Для определения перепадов температуры по вертикали измерение производят у пола (на высоте 10 см) и на высоте 1,1 м.

Определение влажности воздуха. Для характеристики влажности воздуха используют следующие величины: абсолютную, максимальную и относительную влажности, дефицит насыщения и точку росы.

Абсолютной влажностью называется количество водяных паров в граммах, содержащееся в данное время в 1 м³ воздуха. Максимальной влажностью называется количество водяных паров в граммах, которое содержится в 1 м³ воздуха в момент насыщения. Относительной влажностью называется отношение абсолютной влажности к максимальной, выраженное в процентах.

Дефицитом насыщения называется разность между максимальной и абсолютной влажностью.

Точка росы — температура, при которой величина абсолютной влажности равна максимальной.

При гигиенической оценке микроклимата наибольшее значение имеет величина относительной влажности.

Для определения влажности воздуха используют психрометры и гигрометры. Аспирационный психрометр (рис. 1) состоит из двух термометров, воспринимающие части которых заключены в металлические трубки, через которые просасывают воздух с помощью вентилятора. Такое устройство прибора обеспечивает защиту термометров от лучистой энергии и постоянную скорость движения воздуха, что делает возможным проведение исследования при постоянных условиях. Конец одного из термометров обернут тонкой матерней и перед каждым наблюдением его смачивают дистиллированной водой при помощи специальной пипетки. Вентилятор за-
водят ключом и отсчет показаний производят через 3-4 мин от начала работы вентилятора после установления постоянной скорости просасывания воздуха.

Расчет абсолютной влажности производят по формуле:

$$K = F - 0.5(t - t_f) \cdot \frac{B}{755},$$

где K — искомая абсолютная влажность, г/м; F — максимальная влажность при температуре влажного термометра (определяется по таблице); t — температура сухого термометра; t_f — температура влажного термометра; B — барометрическое давление в момент исследования, мм рт.ст.; 755 — среднее барометрическое давление, мм рт.ст.

Перевод найденной абсолютной влажности в относительную производят по формуле:

$$R = \frac{K}{F_f} \cdot 100.$$

где R — искомая относительная влажность, %; K — абсолютная влажность, г/м; F_f — максимальная влажность при температуре сухого термометра (определяется по таблице 1).

Кроме расчета по формулам, относительную влажность по показаниям аспирационного психрометра можно определить, пользуясь специальными таблицами (психрометрические таблицы приведены в приложении).

Приборы регистрируют непосредственно относительную влажность воздуха. Они состоят из восприимающего элемента (пучок обезжиренных волос), связанного механически с регистрирующей частью (стрелкой). Постоянная регистрация относительной влажности воздуха может быть осуществлена гигрометром, представляющим собой комбинацию психрометра с записывающим устройством и лентопротяжным механизмом.

Определение скорости движения воздуха. Для определения малых скоростей движения воздуха в помещениях (до 1-2 м/с) применяют кататермометры, а для больших скоростей (до 50 м/с) — анемометры.
Таблица 1
Максимальное напряжение водяных паров при разных температурах
в миллиметрах ртутного столба

<table>
<thead>
<tr>
<th>Целые градусы</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>3.16</td>
<td>3.13</td>
<td>3.11</td>
<td>3.09</td>
<td>3.06</td>
<td>3.04</td>
<td>3.02</td>
<td>2.99</td>
<td>2.97</td>
<td>2.95</td>
</tr>
<tr>
<td>-4</td>
<td>3.40</td>
<td>3.38</td>
<td>3.35</td>
<td>3.33</td>
<td>3.30</td>
<td>3.28</td>
<td>3.25</td>
<td>3.23</td>
<td>3.21</td>
<td>3.18</td>
</tr>
<tr>
<td>-3</td>
<td>3.67</td>
<td>3.64</td>
<td>3.62</td>
<td>3.59</td>
<td>3.56</td>
<td>3.53</td>
<td>3.51</td>
<td>3.48</td>
<td>3.46</td>
<td>3.43</td>
</tr>
<tr>
<td>-2</td>
<td>3.95</td>
<td>3.92</td>
<td>3.89</td>
<td>3.86</td>
<td>3.84</td>
<td>3.81</td>
<td>3.78</td>
<td>3.75</td>
<td>3.72</td>
<td>3.70</td>
</tr>
<tr>
<td>0</td>
<td>4.58</td>
<td>4.61</td>
<td>4.65</td>
<td>4.68</td>
<td>4.72</td>
<td>4.75</td>
<td>4.78</td>
<td>4.82</td>
<td>4.86</td>
<td>4.89</td>
</tr>
<tr>
<td>1</td>
<td>4.93</td>
<td>4.96</td>
<td>5.00</td>
<td>5.03</td>
<td>5.07</td>
<td>5.11</td>
<td>5.14</td>
<td>5.18</td>
<td>5.22</td>
<td>5.26</td>
</tr>
<tr>
<td>2</td>
<td>5.29</td>
<td>5.23</td>
<td>5.37</td>
<td>5.41</td>
<td>5.45</td>
<td>5.49</td>
<td>5.52</td>
<td>5.56</td>
<td>5.60</td>
<td>5.64</td>
</tr>
<tr>
<td>3</td>
<td>5.68</td>
<td>5.72</td>
<td>5.77</td>
<td>5.81</td>
<td>5.85</td>
<td>5.89</td>
<td>5.93</td>
<td>5.97</td>
<td>6.02</td>
<td>6.06</td>
</tr>
<tr>
<td>5</td>
<td>6.54</td>
<td>6.59</td>
<td>6.64</td>
<td>6.68</td>
<td>6.73</td>
<td>6.78</td>
<td>6.82</td>
<td>6.87</td>
<td>6.92</td>
<td>6.96</td>
</tr>
<tr>
<td>6</td>
<td>7.01</td>
<td>7.06</td>
<td>7.11</td>
<td>7.16</td>
<td>7.21</td>
<td>7.26</td>
<td>7.31</td>
<td>7.36</td>
<td>7.41</td>
<td>7.46</td>
</tr>
<tr>
<td>7</td>
<td>7.51</td>
<td>7.56</td>
<td>7.62</td>
<td>7.67</td>
<td>7.72</td>
<td>7.78</td>
<td>7.83</td>
<td>7.88</td>
<td>7.94</td>
<td>7.99</td>
</tr>
<tr>
<td>8</td>
<td>8.04</td>
<td>8.10</td>
<td>8.16</td>
<td>8.21</td>
<td>8.27</td>
<td>8.32</td>
<td>8.38</td>
<td>8.44</td>
<td>8.49</td>
<td>8.55</td>
</tr>
<tr>
<td>9</td>
<td>8.61</td>
<td>8.67</td>
<td>8.73</td>
<td>8.79</td>
<td>8.84</td>
<td>8.90</td>
<td>8.96</td>
<td>9.02</td>
<td>9.09</td>
<td>9.15</td>
</tr>
<tr>
<td>12</td>
<td>10.52</td>
<td>10.59</td>
<td>10.66</td>
<td>10.73</td>
<td>10.80</td>
<td>10.87</td>
<td>10.94</td>
<td>11.01</td>
<td>11.08</td>
<td>11.15</td>
</tr>
<tr>
<td>13</td>
<td>11.23</td>
<td>11.30</td>
<td>11.38</td>
<td>11.45</td>
<td>11.53</td>
<td>11.60</td>
<td>11.68</td>
<td>11.76</td>
<td>11.83</td>
<td>11.91</td>
</tr>
<tr>
<td>18</td>
<td>15.48</td>
<td>15.58</td>
<td>15.67</td>
<td>15.77</td>
<td>15.87</td>
<td>15.97</td>
<td>16.07</td>
<td>16.17</td>
<td>16.27</td>
<td>16.37</td>
</tr>
<tr>
<td>19</td>
<td>16.48</td>
<td>16.58</td>
<td>16.67</td>
<td>16.79</td>
<td>16.90</td>
<td>17.00</td>
<td>17.10</td>
<td>17.21</td>
<td>17.32</td>
<td>17.43</td>
</tr>
<tr>
<td>20</td>
<td>17.54</td>
<td>17.64</td>
<td>17.75</td>
<td>17.86</td>
<td>17.97</td>
<td>18.08</td>
<td>18.20</td>
<td>18.31</td>
<td>18.42</td>
<td>18.54</td>
</tr>
<tr>
<td>22</td>
<td>19.83</td>
<td>19.95</td>
<td>20.07</td>
<td>20.19</td>
<td>20.32</td>
<td>20.44</td>
<td>20.56</td>
<td>20.69</td>
<td>20.82</td>
<td>20.94</td>
</tr>
<tr>
<td>24</td>
<td>22.38</td>
<td>22.51</td>
<td>22.65</td>
<td>22.78</td>
<td>22.92</td>
<td>23.06</td>
<td>23.20</td>
<td>23.34</td>
<td>23.48</td>
<td>23.62</td>
</tr>
<tr>
<td>27</td>
<td>26.74</td>
<td>26.90</td>
<td>27.06</td>
<td>27.21</td>
<td>27.37</td>
<td>27.54</td>
<td>27.70</td>
<td>27.86</td>
<td>28.02</td>
<td>28.18</td>
</tr>
<tr>
<td>28</td>
<td>28.35</td>
<td>28.51</td>
<td>28.68</td>
<td>28.85</td>
<td>29.02</td>
<td>29.19</td>
<td>29.35</td>
<td>29.52</td>
<td>29.70</td>
<td>29.87</td>
</tr>
<tr>
<td>29</td>
<td>30.04</td>
<td>30.22</td>
<td>30.39</td>
<td>30.57</td>
<td>30.74</td>
<td>30.92</td>
<td>31.10</td>
<td>31.28</td>
<td>31.46</td>
<td>31.64</td>
</tr>
<tr>
<td>30</td>
<td>31.82</td>
<td>32.01</td>
<td>32.19</td>
<td>32.38</td>
<td>32.56</td>
<td>32.75</td>
<td>32.93</td>
<td>33.12</td>
<td>33.31</td>
<td>33.50</td>
</tr>
<tr>
<td>31</td>
<td>33.70</td>
<td>33.89</td>
<td>34.08</td>
<td>34.28</td>
<td>34.47</td>
<td>34.67</td>
<td>34.86</td>
<td>35.06</td>
<td>35.26</td>
<td>35.46</td>
</tr>
<tr>
<td>32</td>
<td>35.66</td>
<td>35.86</td>
<td>36.07</td>
<td>36.27</td>
<td>36.48</td>
<td>36.68</td>
<td>36.89</td>
<td>37.10</td>
<td>37.31</td>
<td>37.52</td>
</tr>
<tr>
<td>33</td>
<td>37.73</td>
<td>37.94</td>
<td>38.16</td>
<td>38.37</td>
<td>38.58</td>
<td>38.80</td>
<td>39.02</td>
<td>39.24</td>
<td>39.46</td>
<td>39.68</td>
</tr>
<tr>
<td>34</td>
<td>39.90</td>
<td>40.12</td>
<td>40.34</td>
<td>40.57</td>
<td>40.80</td>
<td>41.02</td>
<td>41.25</td>
<td>41.48</td>
<td>41.71</td>
<td>41.94</td>
</tr>
</tbody>
</table>
Кататермометры (рис. 2) могут быть с цилиндрическим или шаровидным резервуаром, заполненным подкрашенным спиртом. У цилиндрического кататермометра на шкалу нанесены деления от 35°С до 38°С. Если нагреть кататермометр до температуры более высокой, чем температура окружающего воздуха, то при охлаждении он потеряет некоторое количество калорий, причем при охлаждении с 38°С до 35°С это количество калорий будет постоянно для прибора. Эту потерю тепла с 1 см² поверхности резервуара определяют лабораторным путем и обозначают на каждом кататермометре в мкал/см².

Для определения охлаждающей способности воздуха кататермометр нагревают в водяной бане до тех пор, пока спирт не заполнит на 1/2 - 2/3 верхнее расширение резервуара, затем кататермометр вытирают насухо, вешают на штатив в месте, где необходимо определить скорость движения воздуха, и по секундомеру отмечают время, за которое столбик спирта спустится с 38°С до 35°С. Величину охлаждения кататермометра \(H \), характеризующую охлаждающую способность воздуха, находят по формуле:

\[
H = \frac{F}{a},
\]

где \(F \) — фактор кататермометра, мкал/см²; \(a \) — время в секундах, за которое столбик спирта опустится с 38°С до 35°С.

Шаровой кататермометр, в отличие от цилиндрического, имеет температурную шкалу от 33°С до 40°С. Работу с ним производят так же, как с цилиндрическим. При наблюдении за охлаждением кататермометра, в пределах различных интервалов температуры, необходимо соблюдать следующие условия: среднее арифметическое высшей (\(T \)) и низшей (\(T_1 \)) температуры должно равняться 36,5°С, т.е. можно выбирать интервалы от 40°С до 33°С, от 39°С до 34°С и от 38°С до 35°С.

Для вычисления величины \(H \) в этом случае применяют формулу:

\[
H = \frac{\Phi \cdot (T_1 - T_2)}{a},
\]

13
где Φ — константа кататермометра, измеряемая в мкал/(см град); a — время, за которое кататермометр охлаждится от температуры T_1 до T_2.

Зная величину охлаждения сухого кататермометра (H) и температуру окружающего воздуха, можно вычислить скорость движения воздуха по формулам:

$$V = \left(\frac{H - 0.20}{0.40} \right)^2$$ — для скорости воздуха менее 1 м/с,

$$V = \left(\frac{H - 0.13}{0.47} \right)^2$$ — для скорости воздуха более 1 м/с.

В формулах приняты следующие значения: V — искомая скорость движения воздуха, м/с; H — величина охлаждения сухого кататермометра, мкал/(см град); Q — разность между средней температурой тела 36,5°С и температурой окружающего воздуха в градусах; 0,20; 0,40; 0,13; 0,47 — эмпирические коэффициенты.

Для определения больших скоростей движения воздуха используют два вида анометров: чашечный и крыльчатый (рис. 3). Первым измеряют скорости движения воздуха в пределах от 1 до 50 м/с, вторым — от 0,5 до 15 м/с.

Рис. 3. Анометры: а — крыльчатый; б — чашечный.
При работе с анемометром следует дать его лопастям вращаться 1-2 минуты вхолостую, чтобы они приняли постоянную скорость вращения. При этом необходимо следить за тем, чтобы направление воздушных течений было перпендикулярным к плоскости вращения лопастей прибора. Затем включают счетчик при помощи рычага, находящегося сбоку циферблата. Большая стрелка циферблата показывает единицы и десятки условных делений, а малые стрелки — сотни и тысячи. Время наблюдений отмечают по секундомеру с одновременным включением и выключением анемометра и секундомера. По разнице в показаниях счетчика до и в конце наблюдения (через 5-10 минут) определяют число делений в 1 с, определяют скорость движения воздуха, пользуясь сертификатом, прилагаемым к часочному анемометру, или графиком, прилагаемым к крыльчательному анемометру. Приводим пример:

<table>
<thead>
<tr>
<th>Показания стрелок</th>
<th>До наблюдения</th>
<th>Через 10 мин наблюдения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Большая стрелка</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Первая малая стрелка</td>
<td>3 (×100)</td>
<td>1 (×100)</td>
</tr>
<tr>
<td>Вторая малая стрелка</td>
<td>1 (×1000)</td>
<td>5 (×1000)</td>
</tr>
<tr>
<td></td>
<td>1340</td>
<td>5100</td>
</tr>
</tbody>
</table>

Разница в показаниях 5100-1340=3760. Количество делений в 1 с 3760 : 600=6,27. Скорость движения воздуха, определенная по сертификату: 6,27 × 1,02 = 6,4 м/с (1,02 — сертификат).

Пример санитарного заключения
Установленные показатели микроклимата:
1. Барометрическое давление: 750 мм рт.ст. (1000 гПа).
2. Температура помещения: средняя 24°С; колебания по горизонтали 1,5°С; колебания по вертикали 2°С на 1 м высоты; суточные колебания (разница между минимальной и максимальной температурой) 1,5°С (отопление центральное).
3. Относительная влажность — 17%.
4. Скорость движения воздуха в помещении — 0,1 м/с.

Установленные показатели не соответствуют гигиеническим нормативам: повышенная средняя температура воздуха (24°С) и низкая относительная влажность (17%) будут способствовать обезвоживанию организма в результате усиления теплоотдачи способом испарения. У людей, находящихся в таких условиях, будет ощущаться повышенная жажда и сухость слизистых оболочек, малая скорость движения воздуха (0,1 м/с) свидетельствует о недоста-
точном воздухообмене в данном помещении и будет способствовать уменьшению теплоотдачи способом проведения (конвекции). Перепады температуры по горизонтали и вертикали, а также суточные колебания температуры в пределах допустимых.

Для улучшения состояния воздушной среды в данном помещении рекомендуется усилить интенсивность проветривания помещения и поставить увлажнители воздуха.

1.2. Гигиеническая оценка инсоляционного режима, естественного и искусственного освещения (на примере помещений лечебно-профилактических и учебных учреждений)

Цель занятия: ознакомить студентов с гигиеническими требованиями к естественному и искусственному освещению помещений лечебно-профилактических учреждений, показателями для их оценки и нормированием.

Практические навыки: научить студентов оценивать инсоляционный режим, состояние естественного и искусственного освещения в помещениях.

Задание студентам:
1. Ознакомиться с работой люксметра и определить коэффициент естественной освещенности (КЕО) и искусственную освещенность на рабочем месте.
2. Решить ситуационные задачи: а) определить световой коэффициент (СК) и коэффициент заглубления помещения по чертежам здания; б) определить нормированный КЕО для помещений с учетом характера зрительной работы и светового климата; в) рассчитать по удельной мощности необходимое количество светильников для создания нормируемого уровня искусственного освещения.

Видимая часть солнечного спектра имеет большое биологическое значение. Дневной свет оказывает благоприятное влияние на психическое состояние человека, особенно больного. Под его воздействием усиливается обмен веществ в организме, осуществляется синтез некоторых витаминов, улучшаются процессы кроветворения, работа эндокринных желез и т.д. Режим освещенности играет существенную роль в регуляции биологических ритмов. В условиях интенсивной освещенности улучшается рост и развитие организма.

Интенсивность освещенности рабочего места имеет большое значение для профилактики нарушений зрения, особенно при работах, требующих зрительного напряжения. Нерациональное освеще-
ние способствует развитию близорукости. При плохом или непра- вильном освещении снижается умственная работоспособность, быстрее наступает утомление, ухудшается координация движений.

Вследствие большого физиологического значения видимой час- ти солнечного спектра, влияния его на работоспособность, состоя- ния органа зрения и т.д. все помещения лечебно-профилактических учреждений, предназначенные для длительного пребывания боль- ных, все основные помещения, здания детских дошкольных учреж- дений, все учебные помещения общеобразовательных зданий долж- ны иметь естественное освещение.

1.2.1. Естественное освещение

Естественное освещение помещений зависит от светового кли- мата, который складывается из общих климатических условий ме- стности, степени прозрачности атмосферы, а также отражающих способностей окружающей среды.

Важное значение имеет также ориентация окон по сторонам света, определяющая инсоляционный режим помещений. В зависимости от ориентации различают три типа инсоляционного режима (табл. 2).

Таблица 2

<table>
<thead>
<tr>
<th>Инсоляционный режим</th>
<th>Ориентация по сторонам света</th>
<th>Время инсоляции, ч</th>
<th>Процент инсолируемой площади пола помещений</th>
<th>Количество тепла за счет солнечной радиации, кДж/м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Максимальный</td>
<td>ЮВ, ЮЗ</td>
<td>5-6</td>
<td>80</td>
<td>Свыше 3300</td>
</tr>
<tr>
<td>Умеренный</td>
<td>Ю, В</td>
<td>3-5</td>
<td>40-50</td>
<td>2100-3300</td>
</tr>
<tr>
<td>Минимальный</td>
<td>СВ, СЗ</td>
<td>Менее 3</td>
<td>Менее 30</td>
<td>Менее 2100</td>
</tr>
</tbody>
</table>

При западной ориентации создается смешанный инсоляционный режим. По продолжительности он соответствует умеренному, по нагреванию воздуха — максимальному инсоляционному режиму. Инсоляционный режим помещений следует учитывать при распределении больных по палатам.

В средних и южных широтах для больничных палат, комнат дневного пребывания, медицинских и общеобразовательных

17
достаточную освещенность и инсоляцию помещений без перегрева, является южная и юго-восточная.

Для обеспечения оптимальной ориентации в указанных помещениях главный фасад зданий больниц обращают на южную сторону. Небольшой поворот палатного фронта к востоку не ухудшает инсоляцию палат, тогда как поворот к западу влечет за собой продолжительное глубокое проникновение солнечных лучей, перегрев помещения, необходимость предусматривать солнцезащитные устройства.

На север, северо-запад, северо-восток ориентируют операционные, реанимационные, перевязочные, процедурные кабинеты, что обеспечивает равномерное естественное освещение этих помещений рассеянным светом и исключает перегревание помещений, слепящее действие солнечных лучей и возникновение блестки от медицинских инструментов.

Строительные нормы и правила (СНиП 2.08.02-89) рекомендуют принимать следующую ориентацию окон помещений больницы (табл. 3).

Таблица 3
Ориентация окон больничных помещений в зависимости от географической широты

<table>
<thead>
<tr>
<th>Наименование организации</th>
<th>Географическая широта</th>
</tr>
</thead>
<tbody>
<tr>
<td>Палаты</td>
<td>Ю, ЮВ, В, C¹, CB¹, C3¹</td>
</tr>
<tr>
<td>Операционные, реанимационные, секционные</td>
<td>C, C3, CB</td>
</tr>
</tbody>
</table>

¹ Допускается для палат, общее количество коек в которых не более 10% общего количества коек отделения.

Состояние естественного освещения зависит от расстояния между зданиями, высоты их и близости зеленых насаждений.

Для гигиенической оценки достаточности естественного освещения помещений служат геометрический и светотехнический методы исследований.

Существенным фактором, влияющим на интенсивность и продолжительность естественного освещения помещений, является величина, форма и расположение окон, что и учитывается в таких геометрических показателях, как световой коэффициент и коэффициент заглубления.

Световой коэффициент (СК) — это отношение площади застекленной части окон к площади пола данного помещения. Вычисля-
еся СК путем деления величины застекленной поверхности на площадь поля, при этом числитель дроби приводится к 1, для чего и числитель, и знаменатель делят на величину числителя. Для операционных, родовых палат, смотровых, перевязочных, лабораторий и ассистентских в аптеках этот коэффициент должен быть 1:4-1:5. В палатах (кроме родовых), кабинетах врачей, манипуляционных, стерилизационных, помещениях для дневного пребывания больных он составляет 1:5-1:6.

СК в детских дошкольных учреждениях 1:5-1:6, в учебных помещениях 1:4-1:5.

Коэффициент заглубления (КЗ) — отношение расстояния от поля до верхнего края окна к глубине помещения, т.е. к расстоянию от светонесущей до противоположной стены. При вычислении КЗ и числитель, и знаменатель тоже делят на величину числителя. КЗ не должен превышать 2,5, что обеспечивается шириной притолоки (20-30 см) и глубиной помещения (6 м).

Однако ни СК, ни КЗ не учитывают затемнение окон противостоящими зданиями, поэтому дополнительно определяют угол падения и угол отражения.

Угол падения показывает, под каким углом лучи света падают на горизонтальную рабочую поверхность. Он должен быть равен не менее 27°. Угол падения образуется исходящими из точки измерения (рабочее место) двумя линиями, одна из которых направлена к окну вдоль горизонтальной рабочей поверхности, другая — к верхнему краю окна.

Угол отверстия даёт представление о величине видимой части небосвода, освещающего рабочее место. Он должен быть равен не менее 5°. Угол отверстия образуется исходящими из точки измерения двумя линиями, одна из которых направлена к верхнему краю окна, другая — к верхнему краю противостоящего здания.

Оценка углов падения и отверстия должна проводиться по отношению к самым удаленным от окна рабочим местам.

При светотехническом методе оценки освещения определяют коэффициент естественной освещенности (КЭО). КЭО — это выражение в процентах отношение величины естественной освещенности горизонтальной рабочей поверхности внутри помещения к определенной в тот же самый момент освещенности под открытым небосводом при рассеянном освещении. Освещенность определяется с помощью люксметра (люксметр Ю 116).
Рис. 4. Схематическая карта СНГ для определения поясов светового климата.

Таблица 4
Значение коэффициента естественной освещенности (ε) для лечебно-профилактических учреждений

<table>
<thead>
<tr>
<th>Характеристика зрительной работы</th>
<th>Наименьший размер объекта различения, мм</th>
<th>Разряд зрительной работы</th>
<th>ε при боковом естественном освещении, %</th>
<th>Помещения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Очень высокой точности</td>
<td>0,15-0,3</td>
<td>II</td>
<td>2,5</td>
<td>Операционные операционный блок (кроме операционных)</td>
</tr>
<tr>
<td>Средней точности</td>
<td>0,5-1,0</td>
<td>IV</td>
<td>1,5</td>
<td>Процедурные, боксы и изоляторы, палаты, кабинеты врачей</td>
</tr>
<tr>
<td>Малой точности</td>
<td>1,0-5,0</td>
<td>V</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>Грубая</td>
<td>Более 5,0</td>
<td>VI</td>
<td>0,5</td>
<td>Регистратура</td>
</tr>
</tbody>
</table>

1 Всего предусматривается 8 разрядов точности зрительной работы.

В России в ряде пунктов ведутся систематические измерения наружной освещенности и на основании многолетних наблюдений
составлены таблицы светового климата для различных светоклиматических районов.

Расчет КЕО для различных точек помещения ведется в стадии проектирования. Нормированное значение КЕО (E) с учетом характера зрительной работы и светового климата следует определять по формуле:

$$E_n = e \cdot m \cdot C,$$

где e — значение КЕО в процентах при рассеянном свете от неба; определяемое с учётом характера зрительной работы; m — коэффициент светового климата (без учета прямого солнечного света), определяемых в зависимости от района расположения здания; C — коэффициент солнечного климата (с учетом прямого солнечного света), определяемый в зависимости от района расположения здания.

Пример. Расчет нормированного КЕО (E_n) для операционной в больнице города К., расположенного в 1-м поясе светового климата. Операционная ориентирована на север.

Величину коэффициента e для операционной с учетом характера зрительной работы находим по табл. 4 (e=2,5). Коэффициенты m и C определяем с учетом светового климата по табл. 5. Для 1-го пояса светового климата m = 1,2. Ориентацию выражаем в градусах (рис.5). При отсчете азимутов от севера она составит 315-45. Коэффициент C для 1-го пояса светового климата с азимутом 315-45 равен 1 (см. табл.4).

$$E_n = 2,5 \cdot 1,2 \cdot 1 = 3,0\%$$

Таблица 5

<table>
<thead>
<tr>
<th>Пояс светового климата</th>
<th>С при световых промежутках, ориентированных по странам света (при отсчете азимутов от севера в градусах)</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>135-225</td>
<td>225-315 и 45-135</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Севернее 50° с.ш.</td>
<td>0,95</td>
<td>0,9</td>
</tr>
<tr>
<td>Южнее 50° с.ш.</td>
<td>0,9</td>
<td>0,85</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Севернее 40° с.ш.</td>
<td>0,85</td>
<td>0,8</td>
</tr>
<tr>
<td>Южнее 40° с.ш.</td>
<td>0,75</td>
<td>0,7</td>
</tr>
</tbody>
</table>
Рис. 5. Схема ориентации по странам света (при отсчете азимутов от севера).

Освещенность помещений зависит от окраски потолка, пола, стен, мебели в самом помещении. Темные цвета поглощают большее количество световых лучей, поэтому окраска помещений и мебели в школах, детских дошкольных и лечебно-профилактических учреждениях должна быть светлой. Белый цвет и светлые тона обеспечивают отражение световых лучей на 70-90%, желтый цвет — на 50%, цвет натурального дерева — на 40%, голубой — на 25%, светло-коричневый — на 15%, синий и фиолетовый — на 10-11%.

На состояние естественного освещения влияют качество и чистота стекол, затенённость окон шторами, наличие высоких цветов на подоконниках.

1.2.2. Искусственное освещение

Недостаточное естественное освещение должно быть восполнено искусственным, поэтому основным требованием к нему является достаточная интенсивность и равномерность создаваемого освещения. Кроме того, используемые источники искусственного освещения не должны оказывать слепящего действия, не должны создавать резких теней, должны обеспечивать правильную цветопередачу, создаваемый ими спектр должен быть приближен к естественному солнечному спектру, светение источников света должно быть постоянным во времени. Помимо этого, источники искусственного освещения во время работы не должны изменять физико-химичес-
кие свойства воздуха помещений, должны быть взрыво- и пожаро-
безопасны.

Искусственное освещение осуществляется светильниками обще-
го и местного освещения. Светильник состоит из источника искус-
ственного освещения (лампы) и осветительной арматуры.

В качестве источников искусственного электрического освеще-
ния помещений в настоящее время применяются лампы накали-
вания и люминесцентные лампы.

Существует несколько типов люминесцентных ламп в зависи-
мости от состава люминофора: лампы дневного света (ДС), бело-
го света (ВС), холодно-белого света (ХБС), тепло-белого света
(ТБС), а также лампы с улучшенной цветопередачей (ЛДЦ, ЛТБЦ,
ЛХБЦ).

В настоящее время для освещения помещений нашли широкое
применение люминесцентные лампы. По сравнению с лампами на-
калывания люминесцентные лампы имеют ряд преимуществ: созда-
ют рассеянный свет, не дающий резких теней; характеризуются
малой яркостью; не обладают слепящим действием. Вместе с тем
люминесцентные лампы обладают рядом недостатков (нарушение
цветопередачи, создание ощущения смерченности при низкой осве-
щенности, появление морозообразного шума во время их работы),
самым серьёзным из которых является периодичность светового по-
тока (пульсация). Это приводит к появлению стробоскопического
эффекта (по-гречески стробос — кружение, верчение, скопео —
смотреть) — искажению зрительного восприятия направления и ско-
рости движения вращающихся, движущихся или сменяющихся
объектов.

При использовании ламп накаливания рекомендуется устанав-
ливать их в светильники рассеивающего типа (молочный шар, лю-
цета цельного стекла и др.).

При освещении люминесцентными лампами используют обыч-
но светильники общего освещения на 2 лампы по 40 Вт (ШОД —
2 × 40 или ШОД — 2 × 80), а также светильники типа ШЛП, ШЭП-1
(комбинированный с эретмными лампами).

Количество светильников и мощность ламп выбирают так, что-
бы уровни освещенности на рабочих местах в помещении соответ-
ствовали установленным гигиеническим нормативам (табл. 6,7).

Светильники обычно подвешивают на потолке равномерно по
всему помещению.
Нормы искусственной освещенности лечебно-профилактических учреждений

<table>
<thead>
<tr>
<th>Наименование помещений</th>
<th>Наименьшая освещенность, лк</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>При люминесцентных лампах</td>
</tr>
<tr>
<td>Операционные</td>
<td>–</td>
</tr>
<tr>
<td>Перевязочные, предоперационные, реанимационные, наркозные, протившоковые палаты</td>
<td>–</td>
</tr>
<tr>
<td>Кабинеты хирургов, стоматологов, травматологов, педиатров, дерматовенерологов, инфекционистов, врачей-лаборантов</td>
<td>300</td>
</tr>
<tr>
<td>Кабинеты терапевтов, гинекологов, других врачей, смотровые, фильтры</td>
<td>200</td>
</tr>
<tr>
<td>Помещения для дневного пребывания больных, ожидальных, комнаты для кормления грудных детей</td>
<td>150</td>
</tr>
<tr>
<td>Палаты для новорожденных, послеоперационные детского отделения, боксы, полубоксы, палаты интенсивной терапии</td>
<td>–</td>
</tr>
<tr>
<td>Палаты, кроме указанных выше</td>
<td>–</td>
</tr>
</tbody>
</table>

Нормы искусственной освещенности школьных помещений (СП 2.4.2.782-99)

<table>
<thead>
<tr>
<th>Наименование помещений</th>
<th>Наименьшая освещенность, лк</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>При люминесцентных лампах</td>
</tr>
<tr>
<td>Классные комнаты:</td>
<td></td>
</tr>
<tr>
<td>- на рабочих столах</td>
<td>300</td>
</tr>
<tr>
<td>- на классной доске</td>
<td>500</td>
</tr>
<tr>
<td>Кабинет черчения и рисования</td>
<td>500</td>
</tr>
<tr>
<td>Дисплейные классы</td>
<td>300-500</td>
</tr>
<tr>
<td>Кабинет технических средств обучения</td>
<td>300-500</td>
</tr>
<tr>
<td>Спортивный и актовый залы</td>
<td>200</td>
</tr>
<tr>
<td>Рекреации</td>
<td>150</td>
</tr>
</tbody>
</table>

Определение освещенности на рабочем месте. Оценку искусственного освещения производят по уровню освещенности...
горизонтальной поверхности на рабочем месте с помощью объектирового люксметра. Воспринимающей частью прибора является фотоэлемент, преобразующий световую энергию в электрическую. Регистрирующей частью является чувствительный гальванометр, отградуированный непосредственно в люксях (рис. 6). Полученные результаты сравнивают с установленными нормами (см. табл. 6, 7).

Рис. 6. Люксметр Ю-116.

Если определение производится днем, то вначале следует определить освещенность, создаваемую смешанным освещением (естественным и искусственным), а затем при выключенном искусственном освещении. Разность между полученными данными составит величину освещенности, создаваемую искусственным освещением.

Расчет необходимого количества светильников. Определение необходимого количества светильников для создания заданного уровня искусственной освещенности в помещении можно произвести расчетным путем, пользуясь таблицами удельной мощности (удельная мощность — отношение общей мощности ламп к единице площади пола, Вт/м²).

При решении задач следует пользоваться таблицами удельной мощности, составленными для соответствующих светильников и соответствующих коэффициентов отражения потолка, пола и стен (Рн, Рс, Рп). Так, например, для окраски, принятой в школьных помещениях (потолок — белый, стены — светло-бежевый, пол — коричневый) коэффициенты отражения равны 70%, 50% и 10%.

Величина удельной мощности зависит от высоты подвеса светильника, площади помещения и уровня освещенности, который необходимо создать в данном помещении.
Для определения необходимого количества светильников найденную величину удельной мощности (на пересечении горизонтальных и вертикальных строк в таблице 8) нужно умножить на площадь помещения и разделить на мощность одной лампы (300 Вт – в светильнике СК-300, 160 Вт – в светильнике ШОД-2 × 80, 80 Вт – в светильнике ШОД-2 × 40).

Искусственное освещение может быть общим, при котором светильники размещаются в верхней зоне помещения равномерно (общее равномерное освещение) или применительно к расположению оборудования (общее локальное освещение) и местным – с концентрацией светового потока непосредственно на рабочее место. В ряде случаев целесообразно устанавливать комбинированное освещение (например, школьные мастерские), при котором к общему освещению добавляется местное.

Таблица 8

Удельная мощность (Вт/м²) общего равномерного освещения

(при Р = 70%, Р = 50%, Р = 10%)

<table>
<thead>
<tr>
<th>Высота подвеса светильника, м</th>
<th>Площадь помещения, м²</th>
<th>Необходимый уровень освещенности (Е), лк</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 50 75 100 150 200 300 400 500</td>
<td></td>
</tr>
<tr>
<td>Светильники ШОД (люминесцентные лампы)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td>8,6 11,5 17,3 23 35 46 58</td>
</tr>
<tr>
<td>15-25</td>
<td></td>
<td>7,3 9,7 14,4 19,4 29 39 49</td>
</tr>
<tr>
<td>25-50</td>
<td></td>
<td>6,0 8,0 12,0 16 24 32 40</td>
</tr>
<tr>
<td>50-150</td>
<td></td>
<td>5,0 6,7 10,0 13,4 20 27 34</td>
</tr>
<tr>
<td>150-300</td>
<td></td>
<td>4,4 5,9 8,9 11,8 17,7 24 30</td>
</tr>
<tr>
<td>более 300</td>
<td></td>
<td>4,1 5,5 8,3 11 16,5 22 27</td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td>12,5 16,8 25 33 50 67 84</td>
</tr>
<tr>
<td>10-15</td>
<td></td>
<td>10,3 13,8 20,7 27,6 41 55 69</td>
</tr>
<tr>
<td>15-20</td>
<td></td>
<td>8,3 11,5 17,2 23 35 46 58</td>
</tr>
<tr>
<td>20-30</td>
<td></td>
<td>7,3 9,7 14,5 19,4 29 39 49</td>
</tr>
<tr>
<td>30-50</td>
<td></td>
<td>5,9 7,8 11,7 15,6 23 31 39</td>
</tr>
<tr>
<td>50-120</td>
<td></td>
<td>5,0 6,6 9,9 13,2 19,8 26 33</td>
</tr>
<tr>
<td>120-300</td>
<td></td>
<td>4,4 5,8 8,7 11,6 17,4 23 29</td>
</tr>
<tr>
<td>более 300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Кольцевые светильники

<table>
<thead>
<tr>
<th></th>
<th>10-15</th>
<th>15-25</th>
<th>25-50</th>
<th>50-150</th>
<th>150-300</th>
<th>более 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>24 36</td>
<td>20 29</td>
<td>15,5 23</td>
<td>13 19,5</td>
<td>11 16,5</td>
<td>9,5 14 19</td>
</tr>
<tr>
<td>15-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>более 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Высота подвеса светильника, м</td>
<td>Площадь помещения, м²</td>
<td>Необходимый уровень освещенности (Е), лк</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>3-4</td>
<td>10-15</td>
<td>20</td>
<td>33</td>
<td>49</td>
<td>66</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>17</td>
<td>28</td>
<td>42</td>
<td>56</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>20-30</td>
<td>14</td>
<td>24</td>
<td>35</td>
<td>47</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>30-50</td>
<td>11,4</td>
<td>19</td>
<td>28</td>
<td>38</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>50-120</td>
<td>9,3</td>
<td>15,5</td>
<td>23</td>
<td>31</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>120-300</td>
<td>7,2</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>более 300</td>
<td>6,3</td>
<td>10,5</td>
<td>16</td>
<td>21</td>
<td>32</td>
</tr>
</tbody>
</table>

1.3. Гигиеническая оценка питьевой воды и источников водоснабжения

Цель занятия: ознакомить студентов с влиянием качества воды на здоровье населения, гигиеническими принципами нормирования качества питьевой воды, правилами выбора источников водоснабжения.

Практические навыки: научить студентов давать заключение о качестве питьевой воды и условиях использования источников водоснабжения по результатам анализов воды и данным обследования водоисточников.

Задание студентам:
1. Ознакомиться с нормативными законодательными документами в области гигиены водоснабжения.
2. Решить ситуационные задачи:
 а) по оценке качества питьевой воды;
 б) по выбору источника водоснабжения.

Употребление недоброкачественной питьевой воды может быть причиной:
1) инфекционных и паразитарных заболеваний, связанных с загрязнением водоисточников хозяйственно-фекальными сточными водами или нечистотами из выгребов;
2) заболеваний неинфекционной природы, связанных с особенностями природного химического состава воды;
3) заболеваний неинфекциоционной природы, связанных с загрязнением воды химическими веществами в результате промышленного, сельскохозяйственного, бытового и иного загрязнения, добавляемыми в воду в виде реагентов или образующимися в качестве
побочных продуктов в процессе обработки воды на водопроводных станциях.

Водный путь передачи характерен для таких инфекционных заболеваний, как холера, брюшной тиф, паратифы, амебная и бактериальная дизентерия, амебиаз, энтеровирусные заболевания, инфекционные гепатиты A и E, лептоспироз, туляремия, лямблиоз, балантидияз, гельминтозы (аскаридоз, трихоцефалез, дракункулез и др.), некоторые энтеро-, рота- и аденовирусные заболевания и др.

Большинство этих патогенных агентов широко распространены во всем мире, холера и дракункулез — региональны.

Употребление воды с несоответствующим нормативам солевым составом может быть причиной развития флюороза, водо-нитратной метгемоглобинемии, нарушений водо-солевого обмена, диспептических расстройств и т. д.

1.3.1. Гигиеническая оценка питьевой воды

Основными нормативными документами в области централизованного хозяйственно-питьевого водоснабжения являются:

1) Санитарные правила и нормы "Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества" СанПиН 2.1.4.559-96 (введен вместо ГОСТ 2874-82 "Вода питьевая. Гигиенические требования и контроль за качеством").

2) ГОСТ 2761-84 "Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические и технические требования и правила выбора".

3) Санитарные правила и нормы: "Требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников" СанПиН 2.1.4.544-96.

4) Санитарные правила и нормы: "Зоны санитарной охраны источников водоснабжения и водопроводов хозяйственно-питьевого назначения" СанПиН 2.1.4.027-95.

5) Гигиенические нормативы "Нормы радиационной безопасности (НРБ-99)" ГН 2.6.1.054-96.

В ранее действовавшем ГОСТе 2874-82 "Вода питьевая" были приведены нормативные показатели органолептических, физических свойств, бактериального состава 19-ти химических веществ, встречающихся в природных водах или добавляемых в воду в процессе её обработки, а санитарные правила и нормы: "Требования к качеству воды нецентрализованного водоснабжения. Санитарная
охрана источников" СанПиН 2.1.4.544-96 содержат нормативы более 1500 химических веществ, которые могут попадать в воду в результате промышленного, сельскохозяйственного, бытового или иного загрязнения. Этим нормативам должна удовлетворять любая водопроводная вода, используемая населением для питьевых и бытовых нужд вне зависимости от вида водоисточника или способа обработки воды.

ГОСТ 2761-84 "Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические и технические требования и правила выбора" определяют принципы, которыми следует руководствоваться при выборе водоисточников для централизованного водоснабжения, при нормировании физических, органолептических, химических и бактериологических показателей воды водоисточника, а также методы обработки воды в зависимости от качества водоисточника. Вода водоисточника не должна обладать таким составом и свойствами, которые не могут быть в должной мере изменены имеющимися способами обработки.

Содержание химических веществ в воде водных объектов хозяйственно-питьевого водопользования нормируется, исходя из следующих принципов:

1) химические вещества не должны придавать воде посторонних запахов и привкусов, изменять окраску воды, вызывать появление пены, т.е. ухудшать её органолептические свойства и потребительские качества;

2) оказывать неблагоприятное воздействие на организм человека;

3) оказывать неблагоприятное воздействие на процессы самоочищения (санитарный режим) водоемов.

Нормирование содержания химических и радиоактивных веществ в окружающей среде, в том числе и в воде, базируется на понятии "принципа пороговости", а именно, наличия определенных доз (концентраций), в пределах которых присутствие этих веществ может рассматриваться как безопасное (безвредное) для организма, при этом в обязательном порядке должны учитываться возможные отдаленные последствия.

Таким образом, гигиеническая ПДК химического вещества в воде — это максимальная концентрация, которая не оказывает прямого или опосредованного (выявляемого современными методами исследований) влияния на состояние здоровья настоящего и последующего поколений при воздействии на человека в течение всей жизни и не ухудшает гигиенические условия водопользования населения.
Установление ПДК содержания химических веществ в воде водных объектов осуществляется на основании трех критериев (признаков) вредности:

- органоплетичного (орг.) — способности ухудшать органоплетичные свойства воды;
- санитарно-токсикологического (сан.-токс.) — оказывать вредное действие на организм человека, в том числе, вызывать отдаленные последствия;
- общесанитарного (общ.) — оказывать неблагоприятное воздействие на санитарный режим водоёмов.

Исследование каждого химического вещества обязательно включает установление предельно допустимых концентраций по всем трем указанным признакам в отдельности с последующим выделением из них наименьшей величины (концентрации). Эта концентрация и принимается как ПДК содержания химического вещества в воде водного объекта, при этом признак, по которому устанавливается ПДК, называется лимитирующим (т.е. ограничивающим).

В зависимости от степени опасности для человека химических соединений, загрязняющих воду: токсичности, кумулятивности, способности вызывать отдаленные эффекты, лимитирующего показателя вредности, все нормированные в воде химические вещества (а их более 1500) подразделены на 4 класса опасности:

I класс — чрезвычайно опасные;
II класс — высокоопасные;
III класс — опасные;
IV класс — умеренно опасные.

Санитарные нормы предельного содержания в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования более 1500 химических веществ с указанием лимитирующего признака вредности и класса опасности представлены в "Санитарных правилах и нормах охраны поверхностных вод от загрязнения" СанПиН 2.1.4.544-96. Некоторые из них приведены в таблице 9.

Таблица 9

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Лимитирующий показатель вредности</th>
<th>ПДК, мг/л</th>
<th>Класс опасности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Алюминий</td>
<td>сан.-токс.</td>
<td>0,2 (0,5)*</td>
<td>2</td>
</tr>
<tr>
<td>Аммиак (по азоту)</td>
<td>сан.-токс.</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

30
<table>
<thead>
<tr>
<th>Вещество</th>
<th>Лимитирующий показатель вредности</th>
<th>ПДК, мг/л</th>
<th>Класс опасности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Барий</td>
<td>сан.-токс.</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Бензин</td>
<td>орг. (запах)</td>
<td>0,1</td>
<td>3</td>
</tr>
<tr>
<td>Бензол</td>
<td>сан.-токс.</td>
<td>0,5</td>
<td>2</td>
</tr>
<tr>
<td>Бор</td>
<td>сан.-токс.</td>
<td>0,5</td>
<td>2</td>
</tr>
<tr>
<td>Бром</td>
<td>сан.-токс.</td>
<td>0,2</td>
<td>2</td>
</tr>
<tr>
<td>Гексахлоран</td>
<td>орг. (запах)</td>
<td>0,02</td>
<td>4</td>
</tr>
<tr>
<td>ДДТ (сумма изомеров)</td>
<td>сан.-токс.</td>
<td>0,002***</td>
<td>2</td>
</tr>
<tr>
<td>Кадмий</td>
<td>сан.-токс.</td>
<td>0,001</td>
<td>2</td>
</tr>
<tr>
<td>Капролактам</td>
<td>общ.</td>
<td>1,0</td>
<td>4</td>
</tr>
<tr>
<td>Метафос</td>
<td>орг. (запах)</td>
<td>0,02</td>
<td>4</td>
</tr>
<tr>
<td>Молибден</td>
<td>сан.-токс.</td>
<td>0,25</td>
<td>2</td>
</tr>
<tr>
<td>Мышьяк</td>
<td>сан.-токс.</td>
<td>0,05</td>
<td>2</td>
</tr>
<tr>
<td>Нефть многосернистая</td>
<td>орг. (пленка)</td>
<td>0,1</td>
<td>4</td>
</tr>
<tr>
<td>Никель</td>
<td>сан.-токс.</td>
<td>0,1</td>
<td>3</td>
</tr>
<tr>
<td>Нитраты</td>
<td>сан.-токс.</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>Нитриты</td>
<td>сан.-токс.</td>
<td>3,3</td>
<td>2</td>
</tr>
<tr>
<td>Ртуть</td>
<td>сан.-токс.</td>
<td>0,005</td>
<td>1</td>
</tr>
<tr>
<td>Свинец</td>
<td>сан.-токс.</td>
<td>0,03</td>
<td>2</td>
</tr>
<tr>
<td>Селен</td>
<td>сан.-токс.</td>
<td>0,01</td>
<td>2</td>
</tr>
<tr>
<td>Сульфаты</td>
<td>орг. (вкус)</td>
<td>500***</td>
<td>4</td>
</tr>
<tr>
<td>Сульфонол</td>
<td>орг. (пена)</td>
<td>0,05</td>
<td>3</td>
</tr>
<tr>
<td>Стронций</td>
<td>сан.-токс.</td>
<td>7,0***</td>
<td>2</td>
</tr>
<tr>
<td>Тетраэтилсвинец</td>
<td>сан.-токс.</td>
<td>Отсутствие</td>
<td>1</td>
</tr>
<tr>
<td>Тиофос</td>
<td>орг. (запах)</td>
<td>0,003</td>
<td>4</td>
</tr>
<tr>
<td>Толуол</td>
<td>орг. (запах)</td>
<td>0,5</td>
<td>4</td>
</tr>
<tr>
<td>Трихлорбензол</td>
<td>орг. (запах)</td>
<td>0,03</td>
<td>3</td>
</tr>
<tr>
<td>Фенол</td>
<td>орг. (запах)</td>
<td>0,001**</td>
<td>4</td>
</tr>
<tr>
<td>Фториды</td>
<td>сан.-токс.</td>
<td>0,7-1,5</td>
<td>2</td>
</tr>
<tr>
<td>Хлорбензол</td>
<td>сан.-токс.</td>
<td>0,02</td>
<td>3</td>
</tr>
<tr>
<td>Хлорфенол</td>
<td>орг. (запах)</td>
<td>0,001</td>
<td>4</td>
</tr>
<tr>
<td>Хлориды</td>
<td>орг. (вкус)</td>
<td>350***</td>
<td>4</td>
</tr>
<tr>
<td>Хром</td>
<td>сан.-токс.</td>
<td>0,05***</td>
<td>3</td>
</tr>
<tr>
<td>Циклогексан</td>
<td>сан.-токс.</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Цианид</td>
<td>сан.-токс.</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Цинк</td>
<td>орг. (мутность)</td>
<td>0,3</td>
<td>3</td>
</tr>
<tr>
<td>Цинк</td>
<td>орг.</td>
<td>5,0***</td>
<td>3</td>
</tr>
<tr>
<td>γ-ГХЦГ (линдан)</td>
<td>сан.-токс.</td>
<td>0,002***</td>
<td>1</td>
</tr>
</tbody>
</table>

Примечание:
* При обработке воды реагентами, содержащими алюминий.
** При хлорировании питьевой воды на водопроводных сооружениях.
В иных случаях допускается концентрация 0,1 мг/л.
*** Введены в СанПиН 2.1.4.544-96
При одновременном содержании в воде 1 мг/л нескольких веществ с одинаковыми признаками вредности и лимитирующим показателем сумма отношений \((C_1, C_2, C_3)\) каждого из веществ к соответствующей ПДК (суммарный комплексный показатель) не должна превышать 1.

\[
\frac{C_1}{ПДК_1} + \frac{C_2}{ПДК_2} + \frac{C_3}{ПДК_3} \ldots \leq 1
\]

Помимо максимальных (предельно допустимых) концентраций содержания химических веществ, для некоторых из них установлены минимальные уровни содержания в питьевой воде, необходимые для поддержания водно-солевого гомеостаза организма человека.

Так, гигиенически обоснован минимальный уровень содержания минеральных солей в воде (общее солесодержание) = 100 мг/л (оптимальный уровень = 200-400 мг/л), при этом минимальное содержание кальция не должно быть менее 30 мг/л, магния = 10 мг/л.

Разработаны такие гигиенические рекомендации по оптимальному содержанию в питьевой воде фтора, т.к. известно, что недостаток фтора приводит к повышению заболеваемости карIEScом зубов. Оптимальными концентрациями фтора в питьевой воде являются 0,7-1,5 мг/л в зависимости от климатического района местности и сезона года, при этом, чем севернее расположена климатическая зона, тем выше должна быть концентрация фтора.

1.3.2. Выбор источников водоснабжения

Выбор источника водоснабжения является основополагающим моментом в обеспечении надлежащего качества питьевой воды при организации систем питьевого водоснабжения населенных мест.

Выбор источников централизованного водоснабжения должен осуществляться в соответствии с ГОСТом 2761-84 "Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические и технические требования и правила выбора".

В качестве основного критерия при выборе источников водоснабжения ГОСТ 2761-84 указывает их санитарную надежность, под которым понимается защищенность от загрязнений. В соответствии с этим критерием в первую очередь должны использоваться:

а) межпластовые напорные (артезианские) воды, как наиболее надежно защищенные с поверхности, только в случае их отсутствия или недостаточности запасов рекомендуется переходить к другим источникам в порядке снижения их санитарной надежности;
б) межпластовым безнапорным водам;
в) грунтовым водам, в том числе, искусственно наполняемым и подрусловым;
г) поверхностным водоемам (реки, водохранилища, озера, каналы).

Грунтовыми водами называются подземные воды, скапливающиеся на первом от поверхности водоупорном слое. Они не защищены с поверхности, вследствие чего легко могут подвергаться разного рода загрязнениям, и отличаются разнообразием и непостоянством состава. В зависимости от наличия или отсутствия источников загрязнения санитарное состояние грунтовых вод может быть различным. Если грунтовые воды не загрязнены и степень их минерализации не превышает допустимых уровней, то они вполне пригодны для питьевого водоснабжения. При наличии же массивного загрязнения почвы населенного места и близком залегании грунтовых вод к поверхности велика опасность их массивного загрязнения и заражения. Грунтовые воды используются, главным образом, в сельской местности.

Межпластовые воды залегают между двумя водоупорными пластами, изолированные от атмосферных осадков и поверхностных грунтовых вод водонепроницаемой кровлей, в силу чего обладают наибольшей санитарной надежностью. Они, как правило, имеют низкое бактериальное загрязнение и относительно постоянный химический состав. Недостатком их часто является высокое содержание гидрокарбонатов и, в ряде случаев, повышенное содержание аммиака, селена, фтора, бора, брома, стронция и др. В зависимости от условий залегания межпластовые воды могут быть напорными и безнапорными.

Напорные межпластовые воды называются артезианскими. Они отличаются наибольшей глубиной залегания и наивысшей санитарной надежностью. Вследствие защищенности от загрязнения и постоянства состава при выборе водоисточника межпластовые подземные воды должны выбираться в первую очередь. В большом числе случаев межпластовые воды соответствуют нормативам на качество питьевой воды и могут использоваться для питьевых целей без предварительной обработки. Добыча межпластовых вод осуществляется через буровые скважины.

Однако из-за недостаточности запасов подземных вод в практике водоснабжения весьма часто используют поверхностные водоисточники (реки, водохранилища, озера, каналы), которые подвергаются загрязнению за счет спуска хозяйственных, фекальных и промышленных сточных вод, судоходства, лесосплава, массового

2 Зак. 5064
купания и т.д. Отличиями качества поверхностных водоисточников является более низкий, по сравнению с подземными, уровень минерализации, большее количество взвешенных веществ, высокая цветность и высокий уровень микробного загрязнения. Вода этих источников не отвечает тем высоким требованиям, которые предъявляются к питьевой воде, и поэтому перед подачей в водопроводную сеть её необходимо подвергать очистке и обеззараживанию. Однако в связи с тем, что возможности обработки воды ограничены, ГОСТ 2761-84 определяет требования, которым должна соответствовать вода источников питьевого водоснабжения до начала обработки на водопроводных станциях. Вода источников должна обладать такими свойствами, которые могут быть в должной мере изменены современными способами очистки.

Минеральный состав воды пресноводных подземных и поверхностных источников водоснабжения должен соответствовать следующим требованиям:

- сухой остаток не более 1000 мг/л (по согласованию с органами санэпиднадзора допускается до 1500 мг-экв/л);
- концентрация хлоридов не более 350 мг/л;
- сульфатов не более 500 мг/л;
- общая жесткость не более 7 мг-экв/л (по согласованию с органами санэпиднадзора допускается до 10 мг-экв/л).

При выборе источника водоснабжения важное значение имеет выяснение степени его загрязнения. Так, содержание органических веществ определяется по показателям окисляемости, биологической потребности воды в кислороде (БПК), показателям нитрификации (табл. 10).

В источнике водоснабжения нормируется также предельное бактериологическое загрязнение, поскольку хорошие бактериологические показатели в обработанной воде при обычных способах водоподготовки могут быть получены, только когда бактериальное загрязнение воды до очистки и обеззараживания не превышает определенных пределов.

Концентрация химических веществ (кроме указанных в табл. 8), которые могут попадать в воду в результате промышленного, сельскохозяйственного, бытового или иного загрязнения, не должны превышать установленных на них ПДК, список которых приведен в "Санитарных правилах и нормах" СнПодН 2.1.4.559-96.
<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Показатели качества воды источника по классам</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 класс</td>
</tr>
<tr>
<td>Подземные воды</td>
<td></td>
</tr>
<tr>
<td>Мутность, мг/л, не более</td>
<td>1,5</td>
</tr>
<tr>
<td>Цветность, градусы, не более</td>
<td>20</td>
</tr>
<tr>
<td>Водородный показатель (рН)</td>
<td>6-9</td>
</tr>
<tr>
<td>Железо (Fe), мг/л, не более</td>
<td>0,3</td>
</tr>
<tr>
<td>Марганец (Mn) мг/л, не более</td>
<td>0,1</td>
</tr>
<tr>
<td>Сероводород (H S) мг/л, не более</td>
<td>Отсутствие</td>
</tr>
<tr>
<td>Фтор (F) мг/л, не более</td>
<td>1,5-0,7*</td>
</tr>
<tr>
<td>Окисляемость перманганатная мгO/л, не более</td>
<td>2</td>
</tr>
<tr>
<td>Число бактерий группы кишечных палочек (ВГКП) в 1 л, не более</td>
<td>3</td>
</tr>
<tr>
<td>Поверхностные воды</td>
<td></td>
</tr>
<tr>
<td>Мутность мг/л, не более</td>
<td>20</td>
</tr>
<tr>
<td>Цветность, градусы, не более</td>
<td>35</td>
</tr>
<tr>
<td>Запах при 20 и 60°C, баллы, не более</td>
<td>2</td>
</tr>
<tr>
<td>Водородный показатель (рН)</td>
<td>6,5-8,5</td>
</tr>
<tr>
<td>Железо (Fe), мг/л, не более</td>
<td>1</td>
</tr>
<tr>
<td>Марганец (Mn)мг/л, не более</td>
<td>0,1</td>
</tr>
<tr>
<td>Фитопланктон, мг/л, не более</td>
<td>1</td>
</tr>
<tr>
<td>Кл/см, не более</td>
<td>1000</td>
</tr>
<tr>
<td>Окисляемость перманганатная, мгO/л, не более</td>
<td>7</td>
</tr>
<tr>
<td>БПК мгO/л, не более</td>
<td>3</td>
</tr>
<tr>
<td>Число лактозоположительных кишечных палочек в 1 л воды (ЛКП), не более</td>
<td>1000</td>
</tr>
</tbody>
</table>

* В зависимости от климатического района.

При обнаружении в воде источников водоснабжения химических веществ, относящихся к 1-му и 2-му классам опасности с однанаковым лимитирующим показателем вредности сумма отношений концентраций каждого из веществ в воде к ПДК не должна быть более 1. Расчет ведется по формуле:

\[
\frac{C_1}{ПДК_1} + \frac{C_2}{ПДК_2} + \frac{C_3}{ПДК_3} + \frac{C_4}{ПДК_4} = \leq 1, \]

где \(C_1, C_2, C_3, \ldots, C_4\) - обнаруженные концентрации, мг/л.
Помимо этого, вода водоисточников должна также соответствовать нормам радиационной безопасности.

По результатам всех выполненных анализов определяется пригодность выбранного водного объекта для использования в качестве источника питьевого водоснабжения и определяется его класс.

В зависимости от качества воды водные объекты, пригодные в качестве источников питьевого водоснабжения (поверхностные и подземные) делятся на 3 класса (табл.11). Для каждого класса источников ГОСТом 2167-84 определены методы обработки, которые необходимо применять для доведения их воды до питьевого качества (соответствии требованиям СанПиН 2.1.4.559-96) ("Питьевая вода").

| Таблица 11 |
|---|---|---|---|
| **Вид источника** | **Класс источника** | **Характеристика качества воды** | **Методы обработки** |
| Подземные | 1 | Вода удовлетворяет требованиям СанПиН 2.1.4.559-96 | Обработка не требуется |
| | 2 | Имеются отклонения по отдельным показателям | Аэрирование, фильтрация, обеззараживание |
| | 3 | Имеются существенные отклонения | Аэрирование, отстаивание, фильтрация, использование реагентов и др. |
| Поверхностные | 1 | Слабое микробное и органическое загрязнение | Фильтрование с коагуляцией или без неё, обеззараживание |
| | 2 | Среднее загрязнение | Коагулирование, отстаивание, фильтрование, обеззараживание |
| | 3 | Сильное загрязнение, требующее дополнительных методов обработки | Как и для 2-го класса с применением дополнительной ступени осветления, сорбционных методов, более эффективных методов обеззараживания |

При наличии нескольких источников и равной возможности обеспечения требуемого качества и количества воды выбор должен осуществляться путем технико-экономического сравнения вариантов
сchem обработки воды с учетом санитарной надежности водоисточников.

Источник водоснабжения и водозаборные сооружения водопровода должны быть защищены от загрязнения путем организации зоны санитарной охраны (ЗСО).

Из имеющихся источников водоснабжения выбирают лишь те, для которых возможна организация зоны санитарной охраны и соблюдение соответствующего режима в пределах её поясов.

1.3.3. Гигиенические требования к качеству воды централизованного водоснабжения

Требования к качеству воды централизованного хозяйственно-питьевого водоснабжения определяются СанПин 2.1.4.559-96 "Питьевая вода и водоснабжение населенных мест. Контроль качества", согласно которому питьевая вода должна быть:
- безопасной в эпидемическом отношении,
- безвредной по химическому составу,
- иметь благоприятные органолептические свойства.

1. Показатели безопасности воды в эпидемическом отношении.

Согласно имевшемуся ранее нормативному документу для оценки эпидемической безопасности воды использовались показатели общего числа сапрофитных бактерий в 1 мл (ОМЧ – общее микробное число) и количество бактерий группы кишечных палочек (БГКП) в 1 л воды (коли-индекс). Во вновь введенном вместо данного нормативного документа СанПинНе 2.1.4.559-96 перечень показателей существенно расширился.

По микробиологическим показателям питьевая вода должна соответствовать требованиям, указанным в таблице 12.

Показатель общего микробного числа позволяет получить представление о массивности бактериального загрязнения воды, а количество бактерий группы кишечных палочек (БГКП) является индикаторным показателем наличия в ней фекального загрязнения. Выбор БГКП в качестве индикаторного показателя фекального загрязнения воды основан на положении, что они попадают в воду только из кишечника человека и животных.
<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Единицы измерения</th>
<th>Нормативы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Термотолерантные ко-</td>
<td>Число бактерий в</td>
<td>Отсутствуют</td>
</tr>
<tr>
<td>лиформные бактерии</td>
<td>100 мл 1)</td>
<td></td>
</tr>
<tr>
<td>Общие коиформные</td>
<td>Число бактерий в</td>
<td>Отсутствуют</td>
</tr>
<tr>
<td>бактерии 2)</td>
<td>100 мл 1)</td>
<td></td>
</tr>
<tr>
<td>Коли-индекс</td>
<td>Число бактерий группы кишечных палочек в 1 л воды</td>
<td></td>
</tr>
<tr>
<td>Общее микробное число</td>
<td>Число образующих колоний бактерий в 1 мл</td>
<td>Отсутствие</td>
</tr>
<tr>
<td>2)</td>
<td></td>
<td>Не более 50</td>
</tr>
<tr>
<td>Колифаги 3)</td>
<td>Число бляшкообразующих единиц (50Е) в 100 мл</td>
<td>Отсутствие</td>
</tr>
<tr>
<td>Споры сульфитредуци-</td>
<td>Число спор в 20 мл</td>
<td>Отсутствие</td>
</tr>
<tr>
<td>рующих кло斯特ридий</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Цисты лямблий 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Число цист в 50 л</td>
<td>Отсутствие</td>
</tr>
</tbody>
</table>

Примечания:
1) При определении проводится трехкратное исследование по 100 мл отобранной пробы воды.
2) Превышение норматива не допускается в 95% проб, отбираемых в точках водозабора наружной и внутренней водопроводной сети в течение 12 месяцев, при количестве исследуемых проб не менее 100 за год.
3) Определение проводится только в системах водоснабжения из поверхностных источников перед подачей воды в распределительную сеть.
4) Определение проводится при оценке эффективности технологии обработки воды.

При обнаружении микробного загрязнения выше указанных нормативов для выявления причин загрязнения должен проводиться повторный обзор проб с дополнительными исследованиями на наличие бактерий — показателей свежего фекального загрязнения и патогенных бактерий. Однако согласно современным представлениям бактериологические показатели не позволяют обеспечить эпидемиологическую безопасность воды в отношении вирусов, цист простейших и яиц гельминтов. Для их определения рекомендуется применение специальных методов, в частности, для оценки вирусного загрязнения используют показатель содержания в воде колифагов, требования СанПиН 2.1.4.559-96.
2. Токсикологические показатели питьевой воды.
Токсикологические показатели качества воды характеризуют безвредность её химического состава и включают нормативы для веществ:
- встречающихся в природных водах;
- добавляемых к воде в процессе обработки в виде реагентов;
- появляющихся в результате промышленного, сельскохозяйственного, бытового и иного загрязнения источников водоснабжения.
Концентрация химических веществ, встречающихся в природных водах или добавляемых к воде в процессе её обработки, не должна превышать нормативов, указанных в табл. 13.

Таблица 13

Пределы допустимые концентрации, нормированные по токсикологическому признаку вредности
(СанПиН 2.1.4.559-96 "Питьевая вода")

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Норматив</th>
</tr>
</thead>
<tbody>
<tr>
<td>Алюминий остаточный (Al) мг/л, не более</td>
<td>0,5</td>
</tr>
<tr>
<td>Берилий (Be) мг/л, не более</td>
<td>0,0002</td>
</tr>
<tr>
<td>Молибден (Mo) мг/л, не более</td>
<td>0,25</td>
</tr>
<tr>
<td>Мышьяк (As) мг/л, не более</td>
<td>0,05</td>
</tr>
<tr>
<td>Нитраты (NO) мг/л, не более</td>
<td>45,0</td>
</tr>
<tr>
<td>Поликариламид остаточный мг/л, не более</td>
<td>2,0</td>
</tr>
<tr>
<td>Свинец (Pb) мг/л, не более</td>
<td>0,03</td>
</tr>
<tr>
<td>Селен (Se) мг/л, не более</td>
<td>0,001</td>
</tr>
<tr>
<td>Стронций (Sr) мг/л, не более</td>
<td>7,0</td>
</tr>
<tr>
<td>Фтор (F) мг/л, не более для климатических районов:</td>
<td></td>
</tr>
<tr>
<td>I и II</td>
<td>1,5</td>
</tr>
<tr>
<td>III</td>
<td>1,2</td>
</tr>
<tr>
<td>IV</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Концентрации химических веществ, нормированных по токсикологическому показателю вредности, не указанных в таблице 13, но присутствующих в воде в результате промышленного, сельскохозяйственного, бытового или иного загрязнения, не должны превышать ПДК, указанных в "Санитарных правилах и нормах" (СанПиН 2.1.4.544-96).
При одновременном обнаружении в воде нескольких веществ с одинаковыми лимитирующими признаками вредности, относящихся к 1-му и 2-му классам опасности, сумма отношений концен-
траций \((C_1, C_2, C_3) \) каждого из веществ к соответствующей ПДК (суммарный комплексный показатель) не должна превышать 1.

\[
\frac{C_1}{\text{ПДК}_1} + \frac{C_2}{\text{ПДК}_2} + \frac{C_3}{\text{ПДК}_3} \ldots \leq 1
\]

3. Показатели, обеспечивающие благоприятные органолептические свойства воды.

Органолептические свойства питьевой воды должны соответствовать требованиям, указанным в таблице 14.

Таблица 14

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Норматив</th>
</tr>
</thead>
<tbody>
<tr>
<td>Запах при 20°С и при нагревании до 60°, баллы, не более</td>
<td>2</td>
</tr>
<tr>
<td>Вкус и привкус при 20°С, баллы, не более</td>
<td>2</td>
</tr>
<tr>
<td>Цветность, градусы, не более</td>
<td>20</td>
</tr>
<tr>
<td>Мутность по стандартной шкале, мг/л, не более</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Примечание. По согласованию с органами санитарно-эпидемиологической службы допускается увеличение цветности воды до 30 градусов мутности (в паводковый период) до 2 мг/л.

Питьевая вода не должна содержать видимые невооруженным глазом водные организмы и иметь на поверхности пену или пленку.

Причинами, способными придавать воде неблагоприятные органолептические свойства, могут являться повышенное содержание в воде минеральных солей (привкус), присутствие в воде гумусовых веществ почвенного, растительного и планктонного происхождения (цветность), загрязнение промышленными, сельскохозяйственными, бытовыми или иными стоками и другие.

Предельно допустимые концентрации химических веществ по органолептическому признаку вредности устанавливаются по способности веществ ухудшать потребительские качества воды, изменять запах (зап.), влиять на окраску (окр.), придавать привкус (привк.), вызывать образование пены (пен.), образовывать на поверхности воды пленку (пл.) и др.

Концентрации химических веществ, влияющих на органолептические свойства воды, встречающихся в природных водах или добавляемых к воде в процессе её обработки, не должны превышать нормативов, указанных в табл.15.
Допустимые концентрации химических веществ в питьевой воде, влияющих на органолептические свойства
(СанПиН 2.1.4.559-96 "Питьевая вода")

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Норматив</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водородный показатель, pH</td>
<td>6,0-9,0</td>
</tr>
<tr>
<td>Железо (Fe), мг/л, не более</td>
<td>0,3</td>
</tr>
<tr>
<td>Жесткость общая, мг-экв/л, не более</td>
<td>7,0</td>
</tr>
<tr>
<td>Марганец (Mn), мг/л, не более</td>
<td>0,1</td>
</tr>
<tr>
<td>Медь (Cu), мг/л, не более</td>
<td>1,0</td>
</tr>
<tr>
<td>Полифосфаты остаточные (PO), мг/л, не более</td>
<td>3,5</td>
</tr>
<tr>
<td>Сульфаты (S), мг/л, не более</td>
<td>500</td>
</tr>
<tr>
<td>Сухой остаток, мг/л, не более</td>
<td>1000</td>
</tr>
<tr>
<td>Хлориды (Cl), мг/л, не более</td>
<td>350</td>
</tr>
<tr>
<td>Цинк (Zn), мг/л, не более</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Для водопроводов, подающих воду без специальной обработки по согласованию с органами санитарно-эпидемической службы, допускается: сухой остаток до 1500 мг/л; общая жидкость до 10 мг-экв/л; железо до 1 мг/л; марганец до 0,5 мг/л.

Сумма концентраций хлоридов и сульфатов, придающих воде привкус, выраженная в долях от ПДК не должна быть более 1.

Допустимые концентрации веществ, димитируемых по органолептическому признаку вредности, поступающих в водоемы с промышленными, сельскохозяйственными, бытовыми или иными стоками, представлены в "Санитарных правилах и нормах" (СанПиН 2.1.4.544-96).

1.3.4. Гигиенические требования к децентрализованному
(местному) водоснабжению

Децентрализованным (местным) водоснабжением называется использование населением воды подземных источников для питьевых и хозяйственных нужд при помощи водоразборных систем — колодцев, квартажей (камер накопления воды ключей и родников) без системы разводящей сети.

Требования к качеству воды и эксплуатации источников децентрализованного водоснабжения изложены в "Санитарных правилах по устройству и содержанию колодцев и квартажей родников, используемых для децентрализованного хозяйственно-питьевого водоснабжения" № 1226-75.
Для устройства колодцев и каптажей, как правило, должны использоваться водонесные горизонты, защищенные с поверхности водонепроницаемыми породами. Использование верхнего, недостаточно защищенного горизонта допускается только в виде исключения, при этом вода в колодце (каптаже) должна постоянно обеззараживаться хлорсодержащими реагентами путем засыпки и погружения их в воду в керамических патронах или полиэтиленовых мешочках.

Все источники децентрализованного водоснабжения должны находиться на учете в местных центрах санэпиднадзора, на каждый из них должен быть составлен санитарный паспорт, отражающий его гидрогеологическую характеристику, санитарно-топографические условия, санитарно-техническое устройство.

Вода источников децентрализованного водоснабжения употребляется населением без предварительной обработки, следовательно, она должна
- быть безопасной в эпидемическом отношении,
- безвредной по химическому составу,
- иметь благоприятные органолептические свойства.

Однако поскольку предъявлять к воде колодцев и родников такие же высокие требования, как к воде централизованного водоснабжения, прошедшей обработку на водопроводных станциях (Санитарные правила и нормы СанПиН 2.1.4.559-96 "Питьевая вода"), нереально, при санитарном надзоре за источниками децентрализованного водоснабжения используется ограниченный перечень показателей (табл. 16), установленный СанПиН 2.1.4.544-96.

Таблица 16

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Единицы измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прозрачность (мутность)</td>
<td>См (мг/л)</td>
</tr>
<tr>
<td>Цветность</td>
<td>Град</td>
</tr>
<tr>
<td>Запах</td>
<td>Баллы</td>
</tr>
<tr>
<td>Привкус</td>
<td>Баллы</td>
</tr>
<tr>
<td>Содержание нитратов (по азоту)</td>
<td>Мг/л</td>
</tr>
<tr>
<td>Содержание кишечных палочек в 1 литре</td>
<td>Коли-индекс</td>
</tr>
</tbody>
</table>

Требования к режиму воды колодцев и каптажей, используемых для питьевых целей

42
В зависимости от местных условий и санитарной ситуации перечень контролируемых показателей дополняется по усмотрению органов госсанэпиднадзора.

Санитарное состояние прилегающей к колодцам и каптажам территории является одним из решающих факторов, обуславливающих качество воды, поэтому место для их устройства должно располагаться на незагрязненном возвышенном участке, выше (по потоку грунтовых вод) от существующих и возможных источников загрязнения, удаленным не менее чем на 50 м от уборных, выгребных ям, сети канализации, скотных дворов, мест захоронения людей и животных, складов удобрений и ядохимикатов.

Показателем поступления в воду органических загрязнений может служить увеличение содержания по сравнению с результатами предыдущих исследований для одного и того же сезона хлоридов, аммиака, нитратов и окисляемости.

Аммиак является начальным продуктом разложения органических азотосодержащих (в том числе белковых) веществ. Поэтому наличие аммиака в воде во многих случаях может расцениваться как показатель опасного в эпидемическом отношении свежего загрязнения воды органическими веществами животного происхождения. Однако иногда, особенно в глубоких подземных водах, возможно присутствие аммиака, образовавшегося за счет восстановления нитратов при отсутствии кислорода. В этом случае аммиак не указывает на недоброкачественность воды. Не является показателем эпидемически опасного загрязнения повышенное содержание аммиака в болотистых и торфяных водах (аммиак растительного происхождения).

Соли азотной кислоты (нитриты) представляют собой продукты окисления аммиака под влиянием микроорганизмов в процессе нитрификации. Наличие нитритов также свидетельствует о возможном загрязнении воды органическими азотосодержащими веществами, однако нитриты указывают на известную давность загрязнения.

Соли азотной кислоты (нитраты) — конечные продукты минерализации органических азотосодержащих веществ. Присутствие в воде нитратов без аммиака и солей азотистой кислоты указывает на завершение процесса минерализации.

Одновременное содержание в воде аммиака, нитритов и нитратов свидетельствует о незавершенности этого процесса и продолжающемся, опасном в эпидемическом отношении, загрязнении воды. Однако повышенное содержание нитратов в воде может также иметь минеральное происхождение за счет растворения почвенных
солей, минеральных удобрений, например, селитры. Высокое содержание нитратов в питьевой воде независимо от их происхождения может вызвать в организме явление мегемоглобинемии.

Следует помнить, что возникновение водно-натратных метемоглобинемий из-за высокого содержания нитратов наиболее часто возникает при употреблении воды колодцев, что связано с отсутствием в них водорослей, в результате чего не происходит активного потребления ими нитратов, как в поверхностных водоемах.

Помимо влияния азотсодержащих веществ на возникновение водно-натратной метемоглобинемии, установлена их роль как предшественников образования канцерогенных веществ — нитрозаминов, особенно в присутствии некоторых пестицидов, а также влияние на снижение резистентности организма к воздействию мутагенных и канцерогенных факторов.

Допустимое содержание нитратов в питьевой воде — не более 10 мг/л, считая по азоту.

Хлориды в воде водоисточников рассматриваются как ценные показатели бытового загрязнения. Содержание хлоридов в воде поверхностных незагрязненных водоисточников обычно не превышает 20-30 мг/л. В местах с солончаковой почвой в подземных водах часто присутствуют хлориды солевого происхождения в более высоких концентрациях, и, в этом случае, они не указывают на загрязнение воды. Увеличение хлоридов по сравнению с обычным для данного водоисточника содержанием их говорит об опасном загрязнении воды продуктами жизнедеятельности человека (фекалиями, мочой). При этом главное значение имеет не столько концентрация хлоридов (нормированных по вкусовому порогу на уровне 350 мг/л), сколько её изменение во времени.

Представление о содержании органических веществ в воде дает показатель окисляемости (количества мг кислорода, израсходованного на химическое окисление органических веществ, содержащихся в 1 л воды).

Однако присутствие в воде органических веществ не всегда может служить характерным признаком загрязнения, опасного в эпидемическом отношении, т.е. может быть обусловлено присутствием в воде остатков растительного происхождения и т.д. Например, непоказательна в отношении опасного загрязнения воды окисляемость при высокой цветности, так как в этом случае она обусловлена присутствием в воде гумусовых веществ, или окисляемость, связанная с содержанием в воде легкоокисляющихся соединений железа и марганца, поэтому для гигиенической оценки окисляемости необходимо знание её происхождения.
Таким образом, все перечисленные показатели (хлориды, азотсодержащие соединения, окисляемость) необходимо оценивать в комплексе и сопоставлять с результатами предыдущих исследований и данными санитарно-топографического обследования водойточников.

Увеличение коли-индекса свыше предельно-допустимого (10) с одновременным изменением химического состава и органолептических свойств воды указывает на необходимость проведения чистки и профилактической дезинфекции колодца.

Загрязнение воды в колодцах и квадрах предупреждается устройством их в соответствии с санитарными требованиями.

К ним относятся прежде всего: облицовка стенок шахты колодца водонепроницаемыми креплениями; ограждение шахты в её верхней части глиняным замком глубиной 2 м и шириной 1 м; устройство каменной, бетонированной или асфальтированной отмостки шириной 2 м уклоном 0,1 м от колодца; обеспечение навесом, крышки и общественным ведром. Верх колодца должен быть не менее чем на 0,8 м выше поверхности земли.

Всё это важно предотвращения попадания в колодец грунтовых, ливневых, талых вод и других загрязнений.

Для предупреждения возникновения в воде мути и облегчения чистки на дне колодца должен находиться фильтрующий слой из гравия толщиной 20-30 см.

Не разрешается поднимать воду из колодца личными ведрами, а также черпать воду из общественного ведра своими черпаками. Для подъема воды из шахты вместо общественных ведер предпочтительнее использовать насосы.

Ёмкости каптажей (камеры накопления воды ключей и родников) также должны иметь водонепроницаемые стенки и отмостку, закрыть крышкой, дно засыпано гравием. В стенке камеры устанавливают трубу для слива воды и забора её ведрами. На земле у конца трубы должен быть замошенный лоток для отвода излишков воды в канаву.

В радиусе 20 м от колодца не допускается полоскание и стирка белья, водопой животных и мытье разного рода предметов.

Территория вокруг каптажей и колодцев должна содержаться в чистоте и быть огорожена.

Не реже одного раза в год должна проводиться чистка колодца (каптажа) от заливания и намывания породы с одновременным текущим ремонтом крепления и оборудования и профилактической дезинфекцией хлорсодержащими реагентами.
Чистка колодца (каптажа) должна проводиться также по пер-
вому требованию органов госсанэпиднадзора.
Если чистка, промывка и профилактическая дезинфекция ко-
лодца или каптажа не дали улучшения качества воды до показате-
лей, указанных в табл. 15, то использование её для питьевых целей
запрещается и на колодце вывешивается табличка "Вода для питья
не пригодна".
Колодцы с водой, не пригодной для питьевых целей, а также
не используемые для полива и противопожарных целей, должны
быть ликвидированы.

1.4. Методы улучшения качества питьевой воды

Цель занятия: ознакомить студентов с основными методами
улучшения качества питьевой воды.
Практические навыки: обучить студентов методике обезза-
раживания воды в полевых условиях методом хлорирования.
Задание студентам:
1. Приготовить 1% раствор хлорной извести и определить в
ней содержание активного хлора.
2. Установить нормальную дозу хлора для обеззараживания
питьевой воды путем пробного хлорирования.
3. Провести гиперхлорирование с расчетом дозы тиосульфата
натрия для дехлорирования воды.
4. Определить остаточный хлор в водопроводной воде.

Методы обработки воды, с помощью которых достигается до-
ведление качества воды источников водоснабжения до требований и
СанПиН 2.1.4.544-96 "Питьевая вода", зависят от качества исход-
ной воды водоисточников и подразделяются на основные и специ-
альные.
Основными способами являются:
– осветление;
– обесцвечивание;
– обеззараживание.
Пол данных средств и обесцвечивании покидаются устранение из
воды взвешенных веществ и окрашенных коллоидов (в основном,
гумусовых веществ). Путем обеззараживания устраняют содержа-
щиеся в воде водоисточника инфекционные агенты – бактерии, ви-
rusы и др.
В тех случаях, когда применение только основных способов
недостаточно, используют специальные методы очистки (обезже-
зование, обесфторивание, обессоливание и др.), а также введение некоторых необходимых для организма человека веществ: фторирование, минерализация обессоленных и маломинерализованных вод.

В отношении удаления химических веществ наиболее эффективным является метод сорбционной очистки на активных углях, сорбционная очистка также значительно улучшает органопелитические свойства воды.

Методы обеззараживания воды подразделяются на:
1. Химические (реагентные), к которым относятся:
 - хлорирование;
 - озонирование;
 - использование олигидинамического действия серебра.
2. Физические (безреагентные):
 - кипячение;
 - ультрафиолетовое облучение;
 - облучение г-лучами и др.

В настоящее время основным методом, используемым для обеззараживания воды на водопроводных станциях в силу технико-экономических причин, является метод хлорирования, однако всё большее внедрение получает метод озонирования и его применение, в том числе, в комбинации с хлорированием имеет преимущества в плане улучшения качества получаемой воды.

Наиболее часто для хлорирования воды на водопроводах используют газообразный хлор, однако применяют и другие хлоросодержащие реагенты. В порядке возрастания окислительно-восстановительного потенциала они располагаются в следующем порядке: хлорамины (RNHCl₂ и RNH₂Cl), гипохлориты кальция и натрия [Ca(OCl)₂] и NaOCl хлорная известь (3CaOCl₂·CaO·5H₂O), газообразный хлор, двуокись хлора ClO₂.

Бактерицидный эффект хлорирования объясняется, в основном, воздействием на протоплазму бактерий недиссоциированной молекулы хлорноватистой кислоты, которая образуется при введении хлора в воду:

\[\text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{HOCI} + \text{HCl} \]

Бактерицидным свойством обладает также гипохлорит-ион и хлор-ион, которые образуются при диссоциации хлорноватистой кислоты:

\[\text{HOCI} \rightarrow \text{OCl}^- + \text{H}^+ \]
\[\text{OCl}^- \rightarrow \text{Cl}^- + \text{O} \]
Степень диссоциации НОCl возрастает при повышении активной реакции воды, таким образом, с повышением рН бактерицидный эффект хлорирования снижается.

Действующим началом при хлорировании хлорамином и гипохлоритами является гипохлорит-ион, а двуокисью хлора HClO₂ — хлористая кислота, которая имеет наиболее высокий окислительно-восстановительный потенциал, в силу чего при использовании двуокиси хлора достигается наиболее полное и глубокое окисление и обеззараживание.

При введении хлорсодержащего реагента в воду основное его количество — более 95% расходуется на окисление органических и легкоокисляющихся (соли двухвалентного железа и марганца) неорганических веществ, содержащихся в воде, на соединение с протоплазмой бактериальных клеток расходуется всего 2-3% общего количества хлора.

Количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 минут, называется хлоропоглощаемостью воды. Хлоропоглощаемость определяется экспериментально, путем проведения пробного хлорирования.

По окончании процесса связывания хлора содержащимися в воде веществами и бактериями в воде начинает появляться остаточный активный хлор. Его появление, определяемое титриметрически, является свидетельством завершения процесса хлорирования.

СанПиН 2.1.4.544-9 указывает на необходимость обязательного присутствия в воде, подаваемой в водопроводную сеть, остаточного активного хлора в концентрациях 0,3-0,5 мг/л, что является гарантией эффективности обеззараживания. Кроме того, наличие активного остаточного хлора необходимо для предотвращения вторичного загрязнения воды в разводящей сети. Таким образом, наличие остаточного хлора является косвенным показателем безопасности воды в эпидемиологическом отношении.

Общее количество хлора, необходимое для удовлетворения хлоропоглощаемости воды и обеспечения наличия необходимого количества (0,3-0,5 мг/л свободного активного хлора при нормальном хлорировании и 0,8-1,2 мг/л связанного активного хлора при хлорировании с аммонизацией) остаточного хлора называется хлоропотребностью воды. В практике водоподготовки используются несколько способов хлорирования воды:

1. Хлорирование нормальными дозами (по хлоропотребности).
2. Хлорирование с преаммонизацией и др.
3. Гиперхлорирование (доза хлора заведомо превышает хлоропотребность)

Процесс обеззараживания обычно является последней ступенью схем обработки воды на водопроводных станциях, однако в ряде случаев при значительном загрязнении исходных вод применяется двойное хлорирование — до и после осветления и обесцвечивания, также, для снижения дозы хлора при заключительном хлорировании, весьма перспективным является комбинирование хлорирования с озонированием.

Хлорирование нормальными дозами. Доза хлора устанавливается экспериментально по сумме величин хлорпоглощаемости и санитарной нормы остаточного хлора (хлопотребности воды) путем проведения пробного хлорирования.

Хлорирование нормальными дозами является наиболее часто применяемым методом на водопроводных станциях. Минимальное время контакта воды с хлором при хлорировании нормальными дозами составляет летом не менее 30 минут, зимой — 1 час.

Хлорирование с преаммонизацией. При этом способе в воду помимо хлора вводится также аммиак, в результате чего происходит образование хлораминов. Этот метод употребляется для улучшения процесса хлорирования:

- при необходимости транспортировки воды по трубопроводам на большие расстояния, т.к. остаточный связанный (хлораминный) хлор обеспечивает более длительный бактерицидный эффект, чем свободный;

- при содержании в исходной воде фенолов, которые при взаимодействии с свободным хлором образуют хлорфенольные соединения, придающие воде резкий аптечный запах. Хлорирование с преаммонизацией приводит к образованию хлораминов, которые из-за более низкого окислительно-восстановительного потенциала в реакцию с фенолами не вступают, поэтому посторонние запахи и не возникают.

Однако в силу более слабого действия хлораминного хлора его остаточное количество в воде должно быть выше, чем свободного и составлять не менее 0,8-1,2 мг/л.

Гиперхлорирование воды — хлорирование избыточными дозами, заведомо превышающими хлоропотребность воды. Гиперхлорирование является способом, используемым в неблагоприятной эпидемиологической обстановке, при отсутствии или неэффективной работе водоочистных сооружений, в полевых условиях, при отсутствии возможности проведения пробного хлорирования для определения хлоропотребности. Введение избыточных доз хлора:
- создает возможность надежного обеззараживания мутных, цветных, сильно загрязненных и зараженных вод;
- сокращает время обеззараживания до 10-15 минут.

При этом упрощается техника хлорирования, т.к. вместо проведения пробного хлорирования доза хлора определяется ориентировочно в зависимости от вида водоисточника, качества воды (мутности, цветности), степени её загрязнения и опасности в эпидемическом отношении.

При гиперхлорировании воды обычно используют следующие дозы хлора: для воды хорошо оборудованных срубовых колодцев, при хороших органолептических свойствах воды — 10 мг/л активного хлора, при пониженной прозрачности колодезной воды, а также для воды рек или озер (прозрачной и бесцветной) — 15-20 мг/л, при сильном загрязнении воды любого водоисточника, а также при использовании воды из источников непитьевого назначения (вода искусственных прудов и запруда) — 25-30 мг/л. В случае опасности применения бактериологического оружия используют массивные дозы хлора — до 100 мг/л.

По истечении необходимого времени контакта избыточное количество остаточного хлора удаляют путем дехлорирования воды тиосульфатом натрия или фильтрацией её через активированный уголь (с помощью табельных или импровизированных фильтров).

Приготовление 1% раствора хлорной извести и определение содержания активного хлора. При проведении хлорирования в качестве источника активного хлора часто используют 1% раствор хлорной извести.

Хлорная известь является нестойким соединением, быстро теряющим хлор, поэтому необходимо предварительно определить содержание в ней активного хлора.

Для приготовления 1% раствора хлорной извести берут навеску в 1 г хлорной извести, размельчают её в фарфоровой ступке с помощью пестика и прибавляют дистиллированную воду до образования кашицы. Затем кашицу разводят дистиллированной водой и переливают содержимое чашки в мерный цилиндр, доводя количество раствора до метки 100. Тщательно перемешивают и оставляют раствор на 10 минут для осветления.

Определение активного хлора в хлорной извести в полевых условиях производят капельным способом. В стакан (или колбу) наливают 100 мл дистиллированной воды, добавляют 0,4 мл свежеприготовленного 1% раствора хлорной извести, 1 мл разбавленной хлористо-водородной кислоты (1:5), 1 мл 5% раствора йодида калия и 1 мл 1% свежеприготовленного раствора крахмала. Перемешивая содержимое, прибавляют по каплям тиосульфат натрия до полного исчезновения жёлтого цвета раствора. Определение считается положительным, если в растворе появляется жёлтый цвет.
щивают и титруют по каплям специально подобранный пипеткой (1 мл которой соответствует 25 каплям) 0,7% раствором тиосульфата натрия до обесцвечивания. Содержание активного хлора в хлорной извести в процентах равно количеству капель тиосульфата натрия, израсходованного на титрование (1 капля 0,7% тиосульфата натрия связывает 0,04 мг хлора, что составляет сотую часть взято- того для определения количества хлорной извести – 4 мг, т.е. 1%).

Хлорирование нормальными дозами. Как выше указывалось, для определения необходимой дозы хлора при хлорирова-нии нормальными дозами проводится пробное хлорирование воды. Упрощенно пробное хлорирование проводят в трех стаканах, в каж- дый из которых наливают по 200 мл исследуемой воды, вклады-вают стеклянные палочки и с помощью выверенной пипетки (25 капель равны 1 мл) добавляют 1% раствор хлорной извести: в первый – 1 каплю, во второй – 2 капли, в третий – 3 капли. Воду в стаканах хорошо перемешивают и через 30 минут определяют на-личие в ней остаточного хлора. Для этого в каждый стакан при-бавляют 2 мл 5% раствора йода калия, 2 мл хлористо-водородной кислоты (1:5), 1 мл 1% раствора крахмала и тщательно перемешивают. При наличии остаточного хлора вода окрашивается в синий цвет, тем более интенсивный, чем больше в ней содержится оста- точного хлора. Воду в стаканах, где появилось синее окрашивание, титруют по каплям 0,7% раствором тиосульфата натрия до обес-цевчивания, перемешивая её после добавления каждой капли.

Для расчета дозы выбирают тот стакан, где произошло обес-цевчивание от 2 капель тиосульфата натрия, так как содержание остаточного хлора в этом стакане составляет 0,4 мг/л (1 капля 0,7% раствора тиосульфата натрия связывает 0,04 мг хлора, что соответствует при пересчете на 1 л 0,04 \cdot 5 =0,2 мг/л), если обес-цвечивание произошло от 1 капли, содержание остаточного хлора недостаточно – 0,2 мг/л; при обесцвечивании от 3 капель содер-жание остаточного хлора избыточно – 0,6 мг/л.

В зависимости от результатов пробного хлорирования рассчи-тывают количество хлорной извести, необходимое для хлорирова-ния 1 л воды.

Пример: Для расчета дозы выбран 2-й стакан, где при опреде-лении остаточного хлора на титрование пошло 2 капли 0,7% рас-твора тиосульфата натрия. В этот стакан на 200 мл воды было прибавлено 2 капли 1% раствора хлорной извести; следовательно, на 1 л воды потребуется 2 \cdot 5 = 10 капель, или 0,4 мл 1% раствора хлорной извести, так как в 1 мл содержитя 25 капель.
Количество сухой хлорной извести, содержащейся в 0,4 мл 1% раствора, в 100 раз меньше (так как раствор однопроцентный) и составляет 0,4 : 100 = 0,004, или 4 мг сухой хлорной извести, т.е. доза хлора равна 4 мг/л хлорной извести.

Определение остаточного хлора в водопроводной воде. В коническую колбу ёмкостью 500 мл наливают 250 мл водопроводной воды (до отбора пробы воду из крана необходимо спустить), 10 мл буферного раствора с pH 4,61 и 5 мл 10% раствора йодида калия. Затем титруют выделившийся йод 0,005 н. раствором тиосульфата натрия до бледно-желтой окраски, приливают 1 мл 1% раствора крахмала и титруют раствор до исчезновения синей окраски.

Содержание остаточного хлора в воде (x) вычисляют по формуле:

\[x = \frac{n \cdot K \cdot 0.177 \cdot 1000}{V} \text{мг/л,} \]

где n — количество 0,005 н. раствора тиосульфата натрия, израсходованное на титрование, мл; K — поправочный коэффициент раствора тиосульфата; 0,177 — количество активного хлора, соответствующее 1 мл 0,005 н. раствора тиосульфата натрия, мг; V — объём воды, взятой для анализа, мл.

1.5. Применение искусственного ультрафиолетового излучения в профилактических целях

Цель занятия: ознакомить студентов с биологическим действием УФ-излучения.

Практические навыки: научить студентов способам расчета мощности облучательных установок и методам применения УФ-излучения для санации объектов внешней среды.

Задание студентам:
1. Длинноволновое ультрафиолетовое излучение:
 а) определить биодозу у здорового человека с помощью биодозиметра Горбачева-Дальфельда, используя излучение ртутно-кварцевой лампы (ПРК);
 б) ознакомиться с расчетом установки для профилактического облучения людей искусственными источниками ультрафиолетового излучения.

1 Для приготовления буферного раствора с pH 4,6 смешивают 102 мл 1 М раствора уксусной кислоты (60 г 100 % кислоты в 1 л воды) и 98 мл 1 М раствора ацетата натрия (136,1 г кристаллической соли в 1 л воды) и доводят объём до 1 л прокипяченной дистиллированной водой.

52
2. Коротковолновое ультрафиолетовое излучение:
 а) оценить бактерицидное действие излучения ламп;
 б) ознакомиться с симптомами фотоофтальмии у лабора-
 торных животных;
 в) ознакомиться с расчетом установок для санации воздуха
 помещений искусственными источниками ультрафиолетового излу-
 чения — лампами БУВ.

Лучистая энергия солнца, и в частности её наиболее биоло-
гически активная область — ультрафиолетовая радиация, является
постоянно действующим фактором внешней среды. Однако интен-
сивность и спектральный состав ультрафиолетового излучения
солнца постоянно меняются. Эти показатели зависят от сезона го-
да, состояния атмосферы, количества водяных паров, аэрозолей,
высоты стояния солнца над горизонтом, уровне запыления и годо-
вого загрязнения воздуха.

У населения, живущего в средних и северных широтах, осо-
бенно в зимнее время года, а также у лиц, работающих в шахтах
или помещениях, лишенных естественного освещения (метро, трю-
мы, машинные отделения и т.п.), недостаток солнечного света при-
водит к нарушению физиологического равновесия в организме.
Вследствие этого развивается патологическое состояние, которое
получило название "светового голодания" или "ультрафиолетовой
недостаточности".

Наиболее частым проявлением этой патологии является гипо-
витаминоз или авитаминоз D, который сопровождается ослаблени-
ем защитных сил организма, делая его предрасположенным к раз-
личным заболеваниям (например, простудного характера) и спо-
собствуя проявлению и обострению хронических заболеваний (ту-
беркулез, полиартрит, радикулит и т.п.).

Ультрафиолетовая недостаточность у детей в условиях норма-
льного питания ребенка является ведущим фактором экзогенного
рахита.

Борьбу с ультрафиолетовой недостаточностью следует вести
путем применения комплекса гигиенических мероприятий и, прежд
де всего, широкого использования облучения солнцем. Однако
пребывание на открытом воздухе, пользование солярями, пляжа
ми возможно не везде и не все сезоны года. Поэтому для компенса
ции недостатка солнечного света применяется искусственное ультра
фиолетовое облучение.

Противопоказаниями для облучения человека искусственным
ультрафиолетовым излучением являются заболевания активной
формой туберкулеза, щитовидной железы, резко выраженный ате-
росклероз, заболевания сердечно-сосудистой системы, печени, по-чек, малярия: злокачественные новообразования.

По характеру биологического действия ультрафиолетовую часть спектра условно разделяют на три области – А, В, С.

Длинноволновая область А (320-400 нм) обладает преимущест-венно загарным действием. Средневолновая область В (280-320 нм) – витаминообразующим действием, что позволяет применять этот вид излучения в качестве лечебного и профилактического средства. При действии ультрафиолетового излучения области В в коже че-ловека провитамин 7,8 дегидрохолестерин переходит в активную форму – витамин D.

Коротковолновая область С (200-280 нм) обладает преимуще-ственно бактерицидным действием. В основе механизма бактери-цидного действия лежит нарушение жизнедеятельности микробных клеток, возникающее благодаря фотохимическому расщеплению её белковых компонентов.

1.5.1. Краткая характеристика искусственных источников ультрафиолетового излучения

В настоящее время практически применяются три типа искус-ственных источников ультрафиолетового излучения.

1. Эритемные люминесцентные лампы (ЛЭ) ЭУВ – источники ультрафиолетового излучения в областях А и В. Максимум излу-чения лампы – область В (313 нм). Лампа применяется для про-филактического и лечебного облучения детей.

Изготавливается лампа ЭУВ из специального сорта стекла (увиолевого), хорошо пропускающего ультрафиолетовое излуче-ние. Изнутри трубка лампы покрыта люминором (фосфат каль-ция, активированный талием) и заполнена дозированным количе-ством ртути с инертным газом при давлении в несколько мм рт.ст.

Эритемные лампы включаются в электросеть при наличии спе-циальных приборов – дросселя и стартера.

Для ламп ЭУВ разработана специальная арматура двух типов: а) комбинированные светильники ШЭЛ-1 и ШЭЛ-2, в кото-рых, кроме ламп ЭУВ, имеются осветительные люминесцентные лампы. Включение эритемных и осветительных ламп может произ-водиться раздельно;

б) облучатели ОЭ-1-15 и ОЭО-2-30, которые предназначены только для ламп ЭУВ.
2. Прямые ртутно-кварцевые лампы ПРК (ДРТ — дуговые ртутно-кварцевые лампы) являются мощными источниками излучения в ультрафиолетовых областях А, В, С и видимой частях спектра.

Максимум излучения лампы ПРК находится в ультрафиолетовой части спектра в области В (25% всего излучения) и С (15% всего излучения). В связи с этим лампы ПРК применяются как для облучения людей профилактическими и лечебными дозами, так и для обеззараживания объектов внешней среды (воздуха, воды и т.д.)

Лампы ПРК для облучения людей применяются с особой осторожностью, так как значительные количества ультрафиолетового излучения области С могут приводить к поражению слизистой глаз (фотоофтальмия), изменению крови и т.п. Время облучения и расстояние до лампы строго дозируются, глаза облучаемых лиц и персонала защищаются темными стеклянными очками.

Лампа ПРК изготавливается из кварцевого стекла, заполняется дозированным количеством ртути и аргона.

В настоящее время применяются лампы ПРК 3-х типов: ПРК-2 (375 вт), ПРК-4 (220 вт), ПРК-7 (1000 вт), ПРК-10. Средний срок службы ПРК — 800 часов.

Для ламп ПРК разработаны 2 типа облучателей маячного типа:

а) облучатель ртутно-кварцевый, большой (для ламп ПРК-7, стойка которого имеет постоянную высоту);

б) облучатель ртутно-кварцевый, малый (для ламп ПРК-2 и ПРК-4, стойка которого может быть различной высоты).

3. Бактерицидные лампы из увиолевого стекла БУВ (ДБ) являются источниками ультрафиолетового излучения в области С. Максимум излучения ламп БУВ-254 нм. Лампы применяются только для обеззараживания объектов внешней среды: воздуха, воды, различных предметов (посуды, игрушек).

Дозирование излучения ламп БУВ особенно тщательно, так как коротковолновое ультрафиолетовое излучение обладает значительным абнотическим действием. Глаза необходимо защищать стеклянными очками для профилактики фотоофтальмии.

Лампы БУВ изготавливаются из увиолевого стекла и заполняются аргоном с дозированным количеством ртути при давлении 10 мм рт.ст.

Промышленность производит лампы номинальной мощностью 15 вт (БУВ-15), 30 вт (БУВ-30), 60 вт (БУВ-60) и 30 вт с повышенной плотностью тока (БУВ-30 П).
Для ламп БУВ разработана специальная экранирующая аппаратура, направляющая лучи так, чтобы включенная лампа не была видна стоящему человеку. Наличие арматуры сокращает бактерицидную облученность в зоне нахождения людей в помещении и предохраняет от прямого облучения глаз.

В настоящее время имеется экранирующая арматура двух видов:
a) облучатели НБО или ПБО;
b) комбинированные облучатели, предназначенные для осветительных люминесцентных ламп и ламп типа БУВ.

1.5.2. Практическое применение искусственного длинноволнового ультрафиолетового излучения для облучения людей

Светооблучательные установки
Существуют два вида облучательных установок: установки длительного действия и кратковременного действия.
Первый метод облучения состоит в том, что обычное (или улучшенное) искусственное освещение внутри помещения пассивируется ультрафиолетовыми лучами с помощью источников ультрафиолетового излучения. Все находящиеся в помещении люди облучаются в течение всего времени пребывания в нем УФ-потоком невысокой интенсивности (светооблучательные установки).

Эритемными светооблучательными установками называются осветительные установки, в которых помимо люминесцентных или обычных ламп накаливания вмонтированы ультрафиолетовые эритемные люминесцентные лампы ЭУВ (ЛЭ).
Устройство эритемных светооблучательных установок рекомендуется:
a) в детских учреждениях (ясли, детсады, школы, детдома);
b) в лечебно-профилактических учреждениях (больницах, санаториях, домах отдыха);
в) в жилых домах (общежитиях, интернатах) севернее 60° северной широты;
g) в спортивных залах;
d) в производственных помещениях, лишенных естественного света.
Устройство светооблучательных установок в цехах химической промышленности возможно только при отсутствии контакта рабочих с эозином, акридином, метиленовой синькой и другими веществами, обладающими фотосенсибилизирующим действием.
Светооблучательные установки во всех перечисленных объектах следует оборудовать лишь в помещениях с длительным пребыванием людей (классы, палаты, цеха и т.п.).

Длительность работы светооблучательной установки в продолжение сезона зависит от светового климата местности: для северных районов (севернее 60° с.ш.) с 1 октября по 1 апреля, для средних районов (50-60° северной широты) с 1 декабря по 1 апреля.

Метод применения эритемных светооблучательных установок является перспективным и более эффективным. Он позволяет создать в помещениях своего рода солнечный свет, причем люди находятся в помещениях в обычном платье, открытыми остаются лицо, шея и руки.

Облучатели располагаются на потолке или стене, на уровне 2,5 м от пола. Длительность облучения определяется временем использования данного помещения (например, в классах школ – 4-6 часов, в детских садах – 6-8 часов и т.п.). Дозирование ультрафиолетового облучения проводится в биодозах.

Определение биодозы взрослого человека. Пороговой эритемной дозой, или биодозой, называется количество эритемного облучения, которое вызывает едва заметное покраснение – эритему – на коже незагорелого человека спустя 6-10 часов после облучения. Эта пороговая эритемная доза непостоянна: она зависит от пола, возраста, состояния здоровья и других индивидуальных особенностей.

Биодоза устанавливается экспериментально у каждого или выборочно у наиболее ослабленных лиц, которые будут подвергаться облучению. Определение биодозы проводится с помощью биодозиметра тем же источником искусственного ультрафиолетового излучения, который будет применен для профилактического облучения (лампы ЭУВ или ПРК).

На сгибательной поверхности предплечья или на эпигастральной области укрепляется биодозиметр Горбачева-Дальфельда, представляющий собой пластинку из медицинской клеенки или картона с 8-10 отверстиями. Облучаемая поверхность должна находиться на расстоянии 1 м от источника. Закрывая последовательно отверстия биодозиметра (через 1-2 минуты), определяют минимальное время облучения, после которого через 6-10 часов появляется эритем.

Экспериментально установлено, что для профилактики ультрафиолетовой недостаточности здоровым людям необходимо ежедневно получать $\frac{1}{10} - \frac{3}{4}$ биодозы.
Расчет светооблучательных установок с эритемными люминесцентными лампами. Количеству эритемных люминесцентных ламп может определяться либо по графику (приближенный метод), либо по формуле, учитывающей ряд технических особенностей. Графиком можно пользоваться только в том случае, если профилактическая доза составляет $\frac{1}{10}$ биодозы. Если профилактическая доза более $\frac{1}{10}$ биодозы, количество ламп ЭУВ определяется по нижеприведенным формулам.

Вначале необходимо рассчитать эритемный поток всей установки в целом:

$$F_{уст} = 5,4 \cdot S \cdot \frac{H}{t} \text{мэр},$$

где F — общий эритемный поток всей установки (миллиар); $5,4$ — коэффициент запаса, учитывающий ряд технических показателей (старение ламп, неравномерность облучения); S — площадь помещений (м); t — время работы установки (мин.); H — доза профилактического ультрафиолетового облучения (МЭР/мин/м).

Перевод дозы профилактического ультрафиолетового облучения, выраженного в биодозах, в специальные единицы (МЭР/мин/м) производится, исходя из того, что биодоза равна 5000 МЭР/мин/м. Например, $1/4$ биодозы будет составлять 1250 МЭР/мин/м, $1/10$ — составит 500 МЭР/мин/м и т.д.

Время облучения (t) берется максимально длительным и назначается врачом с учетом длительности пребывания людей в помещении (не менее 4 и не более 8 часов).

Подставив в формулу (1) величину H (в МЭР/мин/м) и время в минутах, получим общий эритемный поток всей установки (F).

Количество эритемных ламп рассчитывают по формуле:

$$n = \frac{F_{уст}}{F_{лампы}},$$

где n — количество ламп, F — эритемный поток установки, $F_{лампы}$ — эритемный поток одной лампы ЭУВ.

Эритемный поток лампы ЭУВ-15 составляет 340 МЭР, лампы ЭУВ-30 — 530 МЭР.

Пример. Для облучения здоровых школьников с целью профилактики ультрафиолетовой недостаточности нужно обеспечить при ежедневном облучении $1/2$ биодозы. Площадь класса 48 м, время облучения 4 часа (240 минут). Сколько для этого нужно ламп ЭУВ-15?
Решение:

\[F_{усм} = 5.4 \cdot 48 \text{м}^2 \cdot \frac{2500(м\text{ер} \cdot \text{мин})}{240 \text{мин}} = 2698 \text{мэр}, \]

\[[H - 0.5 \text{бидозы} = 2500(м\text{ер} \cdot \text{мин})/м^2]. \]

Так как известно, что каждая лампа ЭУВ-15 дает 340 МЭР, то количество ламп ЭУВ-15, необходимых для создания 2698 МЭР, будет:

\[n = \frac{F_{усм}}{F_{усм15}} = \frac{2698 \text{мэр}}{340 \text{мэр}} = 7.9 \]

То есть примерно 8 ламп ЭУВ-15.

1.5.3. Облучательные установки — фотарии

Облучательные установки кратковременного действия (фотарии) устраиваются для тех контингентов людей, которые не имеют постоянного рабочего места или работают под землёй.

В фотариях люди облучаются интенсивным потоком УФ-излучения в течение времени, нечисляемого минутами.

Фотарии предусматриваются для мужчин и женщин раздельно и могут быть различными по своему устройству.

Наиболее совершенными в настоящее время считаются фотарии кабинного и проходного (лабиринтного) типов.

Фотарии кабинного типа состоят из 2-х или 4-х одноместных смежных кабин, стенками которых служат вертикально расположенные лампы ЭУВ-30. Размер кабин 0,9 х 0,7 м при высоте 1,5 м. Фотарии из 4-х смежных кабин оборудуются лампами ЭУВ-30 (рис. 7).

Лампы монтируются вертикально на расстоянии 160 мм друг от друга. Нижний край кабины — на высоте 0,5 м от пола.

Количество кабин мужских и женских определяется по формуле:

\[n = \frac{N}{m \cdot \eta}, \]

где \(N \) — количество людей, подлежащих облучению; \(m \) — пропускная способность кабины (20-22 чел./час); \(\eta \) — коэффициент, учитывающий время работы фотария (0,5).
Рис. 7. Фотарий кабинного типа с лампами ЭУВ.

При необходимости повысить пропускную способность фотарий большое преимущество имеет фотарий проходного типа: прямолинейный или с поворотами (лабиринт) длиной до 30 м, шириной 1,2-1,5 м.

Лампы ЭУВ (ЛЭ-30) крепятся вертикально на расстоянии 250 мм друг от друга на высоте 0,5 м от пола.

Пропускная способность определяется по формуле:

\[m = \frac{60 \cdot L}{d \cdot t} \text{ чел/ч}, \]

где \(L \) — длина пути в фотарии (м); \(d \) — расстояние между облучаемыми (1 м—0,8 м); \(t \) — продолжительность облучения (мин.).

В кабинных и проходных фотариях облучение проводится по 2-3 минуты ежедневно в указанные ранее периоды года.
Фотарии маячного типа с ртутно-кварцевыми лампами. Для оборудования такого фотария обычно используется лампа ПРК-7, (рис.8) располагающаяся в центре помещения. Облучаемые располагаются по кругу на расстоянии не менее 3 м от лампы ПРК-7. Расстояние между ними должно быть 30-40 см.

Аналогичные фотарии маячного типа могут быть оборудованы лампами ПРК-2 или ПРК-4, расстояние от лампы до облучаемых также меньше 1-2 м. Соответственно снижается и пропускная способность фотария.

Облучение в фотариях проводится в осенне-зимний сезон. Обычно проводят 16-20 сеансов облучения с последующим 2-месячным перерывом, после которого цикл облучений повторяют. Облучение можно проводить ежедневно или через день.

Дозы облучения постепенно повышают, обычно начальная доза составляет 1/2 биодозы.

Схема облучения определяется по таблице 18.

Площадь, необходимую для устройства фотария маячного типа, расстояние до источника, время ежедневного облучения рассчитывают в каждом конкретном случае, пользуясь данными таблицы 17.

Таблица 17
Время получения одной биодозы от различных источников излучения

<table>
<thead>
<tr>
<th>Наименование источника излучения</th>
<th>Мощность в ц.т.</th>
<th>Время одной биодозы при расстоянии</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 м от лампы</td>
</tr>
<tr>
<td>Лампа ПРК-4</td>
<td>220</td>
<td>6 минут</td>
</tr>
<tr>
<td>Лампа ПРК-2</td>
<td>375</td>
<td>3,5 минуты</td>
</tr>
<tr>
<td>Лампа ПРК-7</td>
<td>1000</td>
<td>0,5 минуты</td>
</tr>
<tr>
<td>Контингент облучения</td>
<td>Цель облучения</td>
<td>Схема облучения, биодозы в днях:</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1д. 2д. 3д. 4д. 5д. 6д. 7д. 8д. 9д. 10д.</td>
</tr>
<tr>
<td>Шахтеры</td>
<td>Закаливание</td>
<td>0,5 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5</td>
</tr>
<tr>
<td>Школьники</td>
<td>Закаливание</td>
<td>0,5 0,5 0,5 0,75 1,0 2,0 2,75 3,5 3,5 3,5</td>
</tr>
<tr>
<td>Школьники (ослабленные)</td>
<td>Профилактика</td>
<td>0,5 0,5 0,5 0,75 0,75 1,25 1,25 2,0 2,0 2,0</td>
</tr>
<tr>
<td></td>
<td>УФ-недостаточности</td>
<td></td>
</tr>
<tr>
<td>Дети дошкольного возраста (здоровые)</td>
<td>Закаливание</td>
<td>0,5 0,5 0,5 0,75 1,0 1,25 1,25 1,74 2,0 2,5</td>
</tr>
<tr>
<td>Дети дошкольного возраста (ослабленные)</td>
<td>Профилактика</td>
<td>0,5 0,5 0,5 0,8 0,9 1,0 1,0 1,25 1,25 1,25</td>
</tr>
<tr>
<td></td>
<td>УФ-недостаточности и рахита</td>
<td></td>
</tr>
</tbody>
</table>
Пример. Для профилактического облучения группы здоровых школьников необходимо оборудовать фотарий. В качестве источника излучения будет применена лампа ПРК-2. Каковы должны быть: площадь помещения для фотария, расстояние между детьми и лампой, ежедневное время облучения?

Решение: Первоначальная ежедневная доза облучения (см. табл.15) должна составлять $\frac{1}{2}$ биодозы. Расстояние между детьми и лампой ПРК-2 должно быть равно 1 м, время облучения для получения $\frac{1}{2}$ биодозы растягивает 1,7 минуты (табл. 16). Для расчета площади фотария принимаем во внимание расстояние между лампой и детьми, детьми и стеной помещение, последнее равно 1 м (при меньшем расстоянии может возникнуть передозировка за счет отражения от стен); следовательно, общий размер помещения во взаимоперпендикулярных линиях равен 4 м, а площадь — 16 м. Вычислив длину окружности по формуле $2R$, определяют, сколько детей можно облучать одновременно.

1.5.4. Практическое применение искусственных источников коротковолнового ультрафиолетового излучения

Применение ламп БУВ для целей обеззараживания объектов внешней среды является наиболее экономичным и удобным.

1. Оценка бактерицидного действия излучения ламп БУВ:

а) посев воздуха учебной лаборатории производится на 3 чашки Петри с плотной питательной средой. Метод посева может быть различным: с помощью аппарата Кротова или путем естественного осаждения микрофлоры воздуха на поверхность питательной среды.

б) две чашки Петри облучаются в боксе лампой БУВ: одна в течение 5 минут, а другая — 10 минут. Третья чашка не облучается, является контрольной. Облученные чашки и контрольная подписываются и помещаются в терmostat при температуре 37°С на 24 часа.

Для подсчета выросших колоний используются чашки, облученные студентами предыдущей группы.

2. Расчет установок для дезинфекции воздуха помещений.

Наибольшее практическое значение имеет применение ламп БУВ для дезинфекции или санации воздуха закрытых помещений с большим скоплением людей: ожидальные поликлиники, групповые комнаты детских садов, помещения для рекреаций в школах и т.д.
Существует 2 метода санации воздуха помещений лампами БУВ: в присутствии людей в помещении и в их отсутствии.

Наиболее эффективно проведение санации воздуха в присутствии людей, так как люди являются основным источником загрязнения воздуха помещения. Для этого воздух помещений санируют облучением верхней зоны помещений экранированными снизу лампами БУВ. Экранированные лампы размещают по всему помещению, не ниже 2,5 м от пола в местах наиболее интенсивных конвекционных токов воздуха (над отопительными приборами, дверью и т.д.).

Мощность бактерицидного облучения ламп БУВ зависит от мощности, потребляемой лампой из сети. При расчете бактерицидной установки необходимо, чтобы на 1 м объема данного помещения приходилось 0,75-1 вт мощности, потребляемой лампой из сети.

Пример. Для санации воздуха помещения объемом 250 м необходимо оборудовать его установкой с лампами БУВ-15. Санация воздуха будет проводиться в присутствии людей. Сколько ламп БУВ-15 для этого необходимо? Где и как они должны размещаться?

Время облучения воздуха в закрытых помещениях не должно превышать 8 часов в сутки. Лучше всего производить облучение 3-4 раза в день с перерывами для проветривания помещения, так как образуются озон и окислы азота, ощущаемые как посторонний запах.

Санация воздуха помещений в отсутствии людей применяется обычно в помещениях бактериологических лабораторий, в операционных, перевязочных и других после влажной уборки.

Открытые лампы размещаются равномерно по всему помещению, либо преимущественно над рабочими столами. Как правило, над дверью также помещается лампа, создающая "завесу" из бактерицидных лучей.

Количество ламп и время санации зависят от режима данного помещения. Минимальное количество ламп должно быть таким, чтобы на 1 м объема помещения приходилось не менее 1,5 вт потребляемой из сети мощности. Минимальное время облучения 15-20 минут.
Санация воздуха помещений излучением ламп ПРК может проводиться в присутствии или отсутствии людей. При необходимости санировать воздух в присутствии людей лампа устанавливается на высоте 1,7 м от пола с рефлектором, обращенным вверх к потолку. На 1 м объема помещения должно приходиться 2-3 вт потребляемой из сети мощности. Облучение воздуха при этом проводится по 30 минут несколько раз в день с интервалами, используемыми для проветривания помещения.

Санация воздуха лампами ПРК может осуществляться в перерывах между работой в учреждениях, при уходе детей на прогулку и т.д.

На 1 м объема помещения при санации воздуха в отсутствии людей может приходиться 5-10 вт потребляемой из сети мощности. Время облучения воздуха в отсутствии людей должно быть максимально длительным.

1.6. Санитарная экспертиза объектов окружающей среды на загрязнение радиоактивными веществами

Цель занятия: ознакомить студентов с методами определения степени радиоактивной загрязненности объектов окружающей среды.

Практические навыки: научить студентов давать оценку степени радиоактивной загрязненности объектов окружающей среды.

Задание студентам:
1. Ознакомиться с устройством и порядком работы установки типа Б-4.
2. Определить: а) радиоактивность воды; б) радиоактивность воздуха; в) радиоактивность продуктов питания.
3. Согласно условиям задач, прилагаемых к препаратам, дать гигиеническую оценку степени загрязнения исследуемых объектов.

Использование радиоактивных веществ связано с опасностью загрязнения ими объектов окружающей среды (воздуха, одежды, оборудования, воды), в результате чего радиоактивные вещества могут попасть в организм человека и явиться источниками дополнительного облучения. Однако наиболее важное значение загрязнение объектов окружающей среды приобретает в случаях возникновения разнообразных аварийных ситуаций на объектах использования радиоактивных веществ (АЭС, силовые установки реакто-
ров исследовательского и промышленного профиля, реакторы морских судов и т.д.).

Радиоактивные вещества, которые могут загрязнять окружающую среду, а следовательно, попадать внутрь организма человека и вызывать внутреннее облучение, называются открытыми (порошкообразные, жидкостные, газообразные, не находящиеся в герметической упаковке).

Для определения необходимости организации защиты и проведения мероприятий по дезактивации (деконтаминации) объектов последние должны подвергаться радиометрическому исследованию.

Мерой количества радиоактивного вещества является его активность, которая измеряется числом спонтанных ядерных превращений за единицу времени. Единицами активности является беккерель (Бк). Активность соответствующая 1 Бк — один распад в секунду. Ранее использовавшиеся единицы активности 1 Кн (кюри) составляет 3,7×10^{10} Бк., а мг.экв.Ра — 3,7×10^{7} Бк.

В настоящее время в нашей стране действуют нормы радиационной безопасности НРБ-99 (СП 2.6.1.758-99), введенные вместо действовавших ранее НРБ 76/87 и НРБ-96.

Санитарная оценка степени загрязнения внешней среды радиоактивными веществами производится с учетом их возможного поступления в организм с вдыхаемым воздухом, водой и пищей, определяемым двумя показателями — пределом годового поступления (ППП для персонала и населения) и допустимой среднегодовой объемной активностью (ДСОА для персонала и населения) (таблица 19).

При оценке реального загрязнения объектов окружающей среды (воздуха, воды, продуктов питания) отдельными радионуклидами для сопоставления их с ППП необходимо пересчитать их возможное поступление в организм в течение года.

Для целей нормирования поступления радионуклидов через органы дыхания в форме радиоактивных аэрозолей их химические соединения разделены на три группы в зависимости от скорости перехода радионуклида из легких в кровь:

- М — медленно растворимые соединения,
- П — соединения растворимые с промежуточной скоростью,
- Б — быстро растворимые соединения.
<table>
<thead>
<tr>
<th>Радионуклид</th>
<th>В воздухе рабочих помещений (для персонала)</th>
<th>В атмосферном воздухе (для населения)</th>
<th>В воде и пище (для населения)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ППП Бк в год</td>
<td>ДОА Бк/м³</td>
<td>ППП Бк в год</td>
</tr>
<tr>
<td>Натрий-22</td>
<td>1,5×10⁷</td>
<td>6,2×10⁴</td>
<td>1,4×10⁵</td>
</tr>
<tr>
<td>(группа Б)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фосфор-32</td>
<td>2,5×10⁷</td>
<td>1,0×10⁴</td>
<td>2,5×10⁵</td>
</tr>
<tr>
<td>(группа Б)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кобальт-60</td>
<td>2,1×10⁶</td>
<td>8,3×10²</td>
<td>8,3×10⁴</td>
</tr>
<tr>
<td>(группа П)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стронций-90</td>
<td>8,3×10⁵..</td>
<td>3,3×10²</td>
<td>2,0×10⁴</td>
</tr>
<tr>
<td>(группа Б)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Йод-131</td>
<td>2,6×10⁶</td>
<td>1,1×10³</td>
<td>1,4×10⁴</td>
</tr>
<tr>
<td>(группа Б)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Радий-226</td>
<td>6,3×10³</td>
<td>2,5</td>
<td>2,2×10²</td>
</tr>
<tr>
<td>(группа П)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Уран-232</td>
<td>5,0×10³</td>
<td>2,0</td>
<td>1,0×10²</td>
</tr>
<tr>
<td>(группа Б)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Уровень вмешательства (УВ) — уровень радиационного фактора, при превышении которого следует проводить определенные защитные мероприятия.

Для расчета годового поступления радионуклидов из воздуха могут быть использованы расчетные данные годового объема дышаемого воздуха для разных возрастных групп.

<table>
<thead>
<tr>
<th>Возраст, лет</th>
<th>до 1</th>
<th>1-2</th>
<th>2-7</th>
<th>7-12</th>
<th>12-17</th>
<th>Взрослые (старше 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>тыс. м³ в год</td>
<td>1,0</td>
<td>1,9</td>
<td>3,2</td>
<td>5,2</td>
<td>7,3</td>
<td>8,1</td>
</tr>
</tbody>
</table>

При расчете возможного поступления радионуклидов с водой пользуются величиной суточного потребления последней — 2 кг (л) при оценке по ППП или сравнивают полученные данные с уровнем вмешательства (УВ).

Расчет возможного поступления радионуклидов с пищей осуществляют исходя из местных статистических данных о годовом потреблении отдельных пищевых продуктов при оценке по ППП или сравнивают с уровнем вмешательства (УВ).
1.6.1. Определение радиоактивной загрязненности объектов окружающей среды

Радиоактивность препаратов измеряется с помощью специальных приборов: установки типа Б-4, РПС-03-А и др. Исследуемые пробы предварительно концентрируют (упаривают, высушивают, сжигают и т.д.) и на радиометрической установке определяют активность концентрата (сухого остатка, золы) с последующим пересчетом на единицу массы или объема.

Измерение радиоактивной загрязненности объектов окружающей среды. Для этого может быть использована установка Б-4. Прибор имеет воспринимающее и регистрирующее устройство. Воспринимающее устройство состоит из счетной трубки (газоразрядный счетчик), помещенной в свинцовый домик, и блока газоразрядного счетчика (БГС), к которому подключается трубка (счетчик). Регистрирующим устройством является пересчетный прибор ПП-16 с декартонами, из которых крайний правый регистрирует единицы импульсов, второй справа — десятки, третий — сотни и т.д.

Газоразрядный счетчик представляет собой ионизационную камеру, стенки которой заполняются газом (присоединяются к отрицательному полюсу), а к металлической нити, находящейся внутри камеры, подаётся электрическое напряжение.

При прохождении через счетчик β- или α-частиц образуются ионы, которые под влиянием сильного электрического поля начинают производить вторичную ионизацию газа, образующиеся отрицательные ионы движутся к положительному электроду, положительные — к отрицательному. В результате в счетчике создается импульс тока, который после его усиления в электронной схеме отсчитывается на декартонах. Таким образом, число импульсов, зарегистрированных установкой, пропорционально числу частиц, попавших в счетную трубку. Установка в состоянии регистрировать до 15 000 имп/с.

Порядок работы на установке. Рекомендуется следующая последовательность выполнения работы: 1) произвести проверку работы пересчетной системы установки Б-4; 2) определить скорость счета от фона; 3) определить эффективность счета установки; 4) определить абсолютную активность полученных препаратов; 5) рассчитать удельную активность исследуемых объектов; 6) произвести оценку результатов измерения; 7) дать письменное заключение на основании результатов исследования.

Проверка работы счетной установки Б-4 проводится в следующем порядке: 1) нажать и зафиксировать кнопку "Выкл.";
2) включить шнур установки в штепсельную розетку; 3) переключатель знака полярности поставить в положение "-"; 4) нажать и зафиксировать кнопку "Вход" 1:1; 5) нажать и зафиксировать кнопку "Стоп", при этом установка включается в сеть; 6) нажать кнопку "Сброс"; 7) одновременно с включением секундомера нажать кнопку "50 Гц"; 8) через 1 мин нажать кнопку "Стоп", подсчитать на декатронах количество импульсов и разделить на 60 (наибольший из декатронов считает единицы, второй - десятки импульсов, третий - сотни и т.д.). Результат должен быть равен 50±2 имп/с (частота колебаний тока в сети).

В дальнейшем установку до конца работы не выключать.

Определение скорости счета от фона осуществляется в следующей последовательности: 1) переключатель знака полярности поставить в положение "П"; 2) нажать кнопку "Сброс" (при этом все показания декатронов станут на "0"; 3) одновременно с включением секундомера нажать кнопку "Пуск"; 4) через 4 мин нажать кнопку "Стоп". Подсчитав показания декатронов и разделить на 4. Результат покажет скорость счета от фона в имп/мин; 5) нажать кнопку "Сброс".

Определить скорость счета от фона дважды (пункты 3, 4, 5) и вычислить среднюю скорость в имп/мин.

Определение эффективности счета установки. Газоразрядный счетчик не полностью сосчитывает испускаемые препаратом излучения, так как β-частицы и γ-квантцы рассеиваются и в счетчик попадает только та часть их, которая летит в его сторону. Величина счета зависит также от эффекта рассеивания, самопоглощения, энергии излучения, "мертвого времени" трубки и т.д. Чтобы устранить ошибку, определяют эффективность счета, т.е. экспериментально устанавливают, какой процент испускаемых препаратом частиц регистрируется установкой. Определение эффективности счета производят обычно с помощью эталонов, приготовленных из долгоживущих изотопов, активность которых и характер излучения известны. Для этого чаще всего применяют эталоны из хлорида калия или нитрата урана. При расчете эффективности счета установки необходимо знать, сколько частиц испускает этalon на самом деле (истинная активность эталона - Атр) и сколько их регистрирует установка (Нтр). Истинную активность эталона рассчитывают теоретически и принимают за 100%, а затем определяют скорость счета от эталона (Нтр) и рассчитывают эффективность счета установки в процентах.

Расчет истинной активности эталона (Атр) производят на основании следующих данных: хлорид калия (KCl) содержит около 0,0062% радиоактивного калия (40K). Активность 1 г 40K равна
2,32×10^5 Бк. Отсюда можно сосчитать активность эталона, приготовленного из KCl.

Пример. Для приготовления эталона взята навеска KCl 0,230 г. Содержание 40K в навеске находим из пропорции:
В 100 г KCl содержится 0,0062 г 40K
"0,230" " x " "
\[x = \frac{0,0062 \cdot 0,230}{100} = 1,43 \cdot 10^{-5} \text{г 40K} \]

Активность его составляет: 1,43×10^{-5} × 2,32·10^5= 3,32 Бк.
Для дальнейшего пересчета на распады в минуту необходимо полученный результат умножить на 60 (количество распадов в 1 мин препарата с активностью, равной 1 Бк).
3,32 × 60 = 198 расп./мин.
При распадах атомов 40K только 88% актов распада сопровождается вылетом β-частиц. Поэтому β-активность эталона будет равна 88% от 198 или 174,2 расп./мин.

Определение скорости счета от эталона производят в том же порядке, что и определение фона (2 раза по 4 мин), предварительно установив на подставку счетчика мишень с исследуемым эталоном.
Эффективность счета установки выражают в процентах. Расчет производят по формуле:
\[x = \frac{(N_{ zm} - N_{f}) \cdot 100}{A_{ zm}}, \]
где \(N_{ zm} \) — скорость счета от эталона, имп./мин; \(N_{f} \) — скорость счета от фона, имп./мин; \(A_{ zm} \) — истинная активность эталона, полученная расчетным путем, расп./мин.

Пример. Истинная активность эталона (\(A_{ zm} \)), рассчитанная выше, равна 174,2 расп./мин.; скорость счета от эталона (\(N_{ zm} \)), полученная на установке, равна 44 имп./мин.; скорость счета от фона (\(N_{f} \)), подсчитанная на установке, равна 21 имп./мин. Согласно приведенному расчету эффективность счета установки будет равна:
\[x = \frac{44 - 21}{174,2} \cdot 100 = 13,2\%. \]

Определение активности препаратов. Измерение активности препаратов производят в несколько этапов.
1. Определяют скорость счета от трех препаратов, подготовленных из проб воды, воздуха и смывов с поверхности, полученных у преподавателя вместе с условиями задачи. Измерения выполняют в том же порядке, что и определение фона (по 2 раза каждый препарат).

2. Рассчитывают общее количество распадов препаратов в 1 мин (абсолютную активность) с учетом эффективности счета (с) установки по формуле:

\[
A_{np} = \frac{N_{np} - N_f}{c} \cdot 100 \text{расп/мин}
\]

3. Для препаратов воздуха и воды необходимо выразить активность в Бк, для чего надо разделить полученный результат на 60.

Пример. Активность препарата равна 440 расп./мин., абсолютная активность в Бк равна:

\[
\frac{440}{60} = 7,0 \text{Бк}
\]

Для расчета удельной активности (Бк/м³ — для газов и жидкостей, Бк/кг — для твердых тел) полученную абсолютную активность препаратов относят к единице объема или массы.

Оценка результатов. Полученные данные удельной активности пересчитывают на возможное годовое поступление и сравнивают с соответствующими нормативами ПГП или сравнивают с уровнем вмещательства (для воды и пищи) (см. табл.19). Превышение активности исследованных объектов над допустимой указывает на неблагополучие радиационной обстановки и необходимость проведения мероприятий, предохраняющих внешнюю среду от загрязнения. В заключение следует также указать, во сколько раз радиоактивная загрязненность воды, воздуха, продуктов питания превышает гигиенический норматив.
Раздел 2.
ПИТАНИЕ КАК ФАКТОР СОХРАНЕНИЯ И УКРЕПЛЕНИЯ ЗДОРОВЬЯ

Питание – фактор окружающей среды, призванный обеспечить нормальный рост, развитие организма, высокий уровень его рабо-
tоспособности и, как следствие, оптимальную продолжительность жизни человека.

Основной наукой, изучающей проблемы питания человека, является гигиена питания. Это наука о рациональном, диетическом и лечебно-профилактическом питании, изучающая также возмож-
ные нарушения в питании и разрабатываящая мероприятия по обесцвечению безвредности пищевых продуктов.

Рациональное питание – это питание здорового человека, на-
правленное на профилактику алиментарных, сердечно-сосудистых, желудочно-кишечных, аллергических и других заболеваний.

Диетическое питание – это питание больного человека, на-
правленное на лечение острых заболеваний и профилактику реци-
дивов болезни или перехода их в хронические формы.

Лечебно-профилактическое питание направлено на профилак-
tику профессиональных заболеваний и уменьшение вредного дей-
ствия производственных факторов и неблагоприятного воздействия факторов окружающей среды на население, проживающее в эколо-
гически неблагополучных районах.

Задача врача-лечебника или педиатра изучить проблемы, свя-
занные с влиянием питания на здоровье отдельного человека и на-
селения в целом.

К числу таких проблем относятся: количественная и качест-
венная потребность в пище и питательных веществах, пищевая цен-
ность и доброкачественность пищевых продуктов и пищи, режим питания, организация полноценного питания в организованных коллективах (детских учреждениях, больницах, сельскохозяйствен-
нных коллективах, санаториях, воинских подразделениях и др.), обеспечение оптимальных санитарных режимов в производстве пи-
щевых продуктов и реализации их на предприятиях общественного питания; проведение текущего и предупредительного надзора за строительством и эксплуатацией пищевых объектов и предприятий, участие в планировании питания населения, проведение санитарно-
просветительной работы среди населения.

В последние годы в нашей стране появилось большое коли-
чество импортной продукции в большом ассортименте. На отечест-
венные и импортные пищевые продукты в упаковке нанесены штриховые коды. В настоящее время утверждилась Европейская система кодирования EAN. Согласно этой системе, каждому виду изделия присваивается свой номер, состоящий обычно из 13 цифр.

Пример: цифровой код: 544900000996. Первые две цифры (54) скрывают страну происхождения продукта («флаг» страны) (табл. 20.), следующие пять (49000) — предприятие-изготовитель, ещё пять (00099) — наименование товара, его потребительские свойства, размеры, массу, цвет. Последняя цифра (6) — контрольная, используемая для проверки правильности считывания штрихов сканером.

Возможен также вариант, когда для кода страны-изготовителя отводятся три знака, а для кода предприятия — четыре. Товары, имеющие небольшие размеры, могут иметь короткий код, состоящий из восьми цифр, — EAN-8.

<table>
<thead>
<tr>
<th>Страна</th>
<th>Код</th>
<th>Страна</th>
<th>Код</th>
</tr>
</thead>
<tbody>
<tr>
<td>США и Канада</td>
<td>-00,01,03,04,06</td>
<td>Франция</td>
<td>-30-37</td>
</tr>
<tr>
<td>ФРГ</td>
<td>-40-43</td>
<td>Япония</td>
<td>-49</td>
</tr>
<tr>
<td>Великобритания</td>
<td>-50</td>
<td>Северная Ирландия</td>
<td>-50</td>
</tr>
<tr>
<td>Греция</td>
<td>-52 (0)</td>
<td>Кипр</td>
<td>-52 (9)</td>
</tr>
<tr>
<td>Бельгия и Люксембург</td>
<td>-54</td>
<td>Португалия</td>
<td>-56 (0)</td>
</tr>
<tr>
<td>Исландия</td>
<td>-56 (9)</td>
<td>Дания</td>
<td>-57</td>
</tr>
<tr>
<td>ЮАР</td>
<td>-60 (0)-60 (1)</td>
<td>Финляндия</td>
<td>-64</td>
</tr>
<tr>
<td>Норвегия</td>
<td>-70</td>
<td>Израиль</td>
<td>-72 (9)</td>
</tr>
<tr>
<td>Швеция</td>
<td>-76</td>
<td>Швейцария</td>
<td>-76</td>
</tr>
<tr>
<td>Италия</td>
<td>-80-83</td>
<td>Испания</td>
<td>-84</td>
</tr>
<tr>
<td>Чехословакия</td>
<td>-85 (9)</td>
<td>Турция</td>
<td>-86 (9)</td>
</tr>
<tr>
<td>Нидерланды</td>
<td>-87</td>
<td>Австрия</td>
<td>-90-91</td>
</tr>
<tr>
<td>Австралия</td>
<td>-93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 20

Что касается бывшего СССР, то в 1987 г. Ассоциация EAN закрепила за тогдашним Союзом десять трехзначных кодов (префиксов) — с 460 по 469. Значит, если вам встретится, например, товар, имеющий код 469 125 10000 10, то перед вами десертный шоколад «Люкс» массой 100 г московской кондитерской фабрики «Красный Октябрь». Именно шоколад, а не фальшивка. Именно «Красного Октября», а не «Рот-Фronta».
В последние годы подавляющее большинство жителей стран – членов ЕС, избалованное ассортиментом продукции, более всего стало интересоваться безопасностью потребительских товаров. Идя навстречу желаниям потребителей, Сообщество приняло знак «CE», символизирующий соответствие европейских изделий нормам УЭС, в том числе требованиям безопасности, которые установлены для стран – членов ЕС.

В нашей стране принято Постановление № 5 от 6.09.94 года о введении в действие Правил по проведению сертификации отечественной и импортной продукции с выдачей гигиенического заключения (гигиенический сертификат).

Гигиенический сертификат выдается на конкретный вид пищевых продуктов или продовольственного сырья с указанием, что данные виды продукции соответствуют требованиям к данным продуктам в стране, где они производятся и разрешены к свободной продаже.

В сертификате должны быть приведены гигиеническая характеристика продукции, результаты анализа, где указаны конкретные цифры по результатам санитарно-химических и микробиологических исследований, информация, выносимая на этикетку и срок действия сертификата.

Предприятия торговли обязаны предъявить сертификат по первому требованию покупателя. Сертификат оформляется на вид продукции, а не на конкретную партию. Подтвердить соответствие партии производимой и поставляемой продукции установленным требованиям – обязанность производителя (поставщика).

2.1. Гигиеническая оценка полноценности питания

Цель занятия: ознакомить студентов с методикой оценки питания по данным меню-раскладки.

Практические навыки: научить студентов рассчитывать суточный рацион (с помощью таблиц и данных меню-раскладки), составлять заключение об адекватности питания и давать рекомендации по его коррекции с учетом "Норм физиологических потребностей в пищевых веществах и энергии различных групп населения".

Задание студентам:

1. Рассчитать энергетическую ценность и качественный состав рациона (белки, жиры, углеводы, кальций, фосфор, витамины A, B₁, B₂, C).
2. Рассчитать распределение энергетической ценности по отдельным приемам пищи.
3. Дать гигиеническую оценку полученным сведениям по энергетической ценности и качественному составу рациона.
4. Оценить режим питания.
5. Составить рекомендации к устранению выявленных недостатков в питании.

Питание является одним из факторов, в значительной степени определяющих состояние здоровья. Рациональное питание должно соответствовать энергетическим затратам организма (количественная сторона питания), восполнять его потребность в пищевых веществах — белках, жирах, углеводах, витаминах, минеральных солях и микроэлементах (качественная сторона питания). При этом пищевые вещества должны поступать в определенных, наиболее благоприятных соотношениях (сбалансированность питания). Рациональное питание обеспечивается использованием разнообразного набора пищевых продуктов, их правильной кулинарной обработкой, а также выполнением санитарных правил при их получении, хранении и обработке. Обязательным условием рационального питания является соблюдение режима питания, т.е. правильное распределение пищи между отдельными приемами и прием её в установленное время с соблюдением определенных интервалов. Объем пищи должен создавать ощущение насыщения.

Простейшим методом определения достаточности питания является наблюдение за динамикой массы тела человека. Установить соответствие питания потребностям организма по всем компонентам можно на основании лабораторного анализа рациона, когда определяется содержание в нем белков, жиров, углеводов, минеральных солей и витаминов. Другим методом оценки питания является определение качественного состава и энергетической ценности рациона с использованием таблиц химического состава продуктов. Для подсчета количественного состава рациона необходимо иметь перечень и количество продуктов, входящих в суточный рацион (меню-раскладка). Этот метод несколько уступает по точности первому, но является наиболее доступным.

При оценке питания следует руководствоваться "Нормами физиологических потребностей в пищевых веществах и энергии для различных групп населения", разработанными Институтом питания РАМН и утвержденными Министерством здравоохранения в 1991 году.

Нормы физиологических потребностей в пищевых веществах и энергии для различных групп населения являются государствен-
ным нормативным документом и служат критерием для оценки фактического питания различных контингентов населения.

При определении потребности в основных пищевых веществах и энергии ключевую роль играет точность рекомендуемого уровня потребления энергии, исключающая возникновение диспропорций между уровнями поступления энергии с пищей и её расходом. Вероятность возникновения такой диспропорции, в частности, связана с систематическим снижением энергоёмкости трудовой деятельности и расхода энергии в быту, которые опережают изменения в сложившемся типе питания и служат причиной распространенной избыточности массы тела.

Нормы физиологических потребностей в пищевых веществах и энергии трудоспособного населения дифференцированы в зависимости от характера деятельности на 5 групп для мужчин и 4 группы для женщин. При этом каждая группа объединяет лиц определенных профессий. Практика показала условность связи энерготрат с определением профессиональной принадлежности. Фиксированный список профессий, относимых к определенной группе энерготрат, не отражает изменений энергоемкости этих профессий в практической жизни. Потребовалось введение объективного физиологического критерия, определяющего адекватное количество энергии для конкретных групп. Таким критерием согласно рекомендациям Всемирной Организации Здравоохранения является соотношение общей энерготрат на все виды жизнедеятельности с величиной основного обмена. Интенсивность основного обмена зависит от пола, возраста и массы тела. Соотношение общей энерготрат с величиной основного обмена дает величину коэффициента физической активности (КФА). Например, коэффициент физической активности равен 2, если энерготраты на все виды жизнедеятельности в 2 раза выше величины основного обмена для соответствующей группы людей одного пола и возраста. При расчете величины коэффициентов физической активности использовалась масса тела мужчин, равная 70 кг, и для женщин — 60 кг, поэтому величина коэффициента физической активности одинакова для мужчин и женщин. Каждая из групп дифференцирована на 3 возрастные категории 18-29, 30-39 и 40-59 лет. Потребности лиц старше 59 лет дифференцированы по двум возрастным категориям: 60-74 и 75 лет и старше. Детское население и подростки разделены на 11 возрастных категорий. Дополнительно предусмотрены нормативы для беременных и кормящих матерей с дифференциацией возраста младенцев (1-6 месяцев и 7-12 месяцев).
Потребность в пищевых веществах и энергии для отдельных групп населения приведены в таблице 21 и 22.

Рекомендуемая потребность в белке определена на основании результатов исследований, установивших оптимальные белково-энергетические отношения в рационах для различных групп населения. Уровни потребностей в белке в среднем в 1,5 раза превышают нормы, необходимые для сохранения азотистого равновесия. Для взрослого населения животных белков необходимо — 55% от всего количества. Удельный вес жиров для всех групп взрослого населения определен в размере 30% калорийности рациона. Определена норма потребности в незаменимой линолевой кислоте, на долю которой в рационах взрослого населения, детей старше года и подростков должно приходиться 4-6% калорийности.

Потребность в витамине A выражена в мкт ретинолэквивалентах (1 мкт ретинолэквивалент = 1 мкт ретинола или 6 мкт бета-каротина). Потребность в витамине E выражена в мг токоферолэквивалентах (1 мг токоферолэквивалент = 1 мг альфа-токоферола). Потребность в витамине D выражена в мкт холекальциферола (10 мг холекальциферола = 400 И.Е. витамина D). Потребность в ниацине выражена в ниацинэквивалентах (ниацинэквивалент = 1 мг ниацина или 60 мг триптофана в рационе).

Для выполнения задания студент получает от преподавателя меню-раскладку суточного рациона с указанием количества пищевых продуктов, распределением их по приемам пищи (3-x или 4-x разовое питание) и произведенным подсчетом химического состава рациона. В задании приведены сведения о профессии, поле, возрасте и массе тела человека, чей рацион анализируется.

На основании полученных данных студент составляет заключение о полноценности питания с учетом "Норм физиологических потребностей в пищевых веществах и энергии различных групп населения" для соответствующей профессиональной и(или) возрастной группы (см. табл. 21, 22) и рекомендаций по организации режима питания (табл. 23).
<table>
<thead>
<tr>
<th>Возраст, пол</th>
<th>Энергия (ккал)</th>
<th>Белки (г)</th>
<th>Жиры (г)</th>
<th>Углеводы (г)</th>
<th>Минеральные вещества (мг)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Всего</td>
<td>В т.ч. животные</td>
<td></td>
<td></td>
<td>Кальций</td>
</tr>
<tr>
<td>0-3 месяца*</td>
<td>115</td>
<td>2,2</td>
<td>2,2</td>
<td>6,5 (0,7)</td>
<td>13</td>
</tr>
<tr>
<td>4-6 месяцев</td>
<td>115</td>
<td>2,6</td>
<td>2,5</td>
<td>6,0 (0,7)</td>
<td>13</td>
</tr>
<tr>
<td>7-12 месяцев</td>
<td>110</td>
<td>2,9</td>
<td>2,3</td>
<td>5,5 (0,7)</td>
<td>13</td>
</tr>
<tr>
<td>1-3 года</td>
<td>1540</td>
<td>53</td>
<td>37</td>
<td>53</td>
<td>212</td>
</tr>
<tr>
<td>4-6 лет</td>
<td>1970</td>
<td>68</td>
<td>44</td>
<td>68</td>
<td>272</td>
</tr>
<tr>
<td>6 лет (школьники)</td>
<td>2000</td>
<td>69</td>
<td>45</td>
<td>67</td>
<td>285</td>
</tr>
<tr>
<td>7-10 лет</td>
<td>2350</td>
<td>77</td>
<td>46</td>
<td>79</td>
<td>335</td>
</tr>
<tr>
<td>11-13 лет (мальчики)</td>
<td>2750</td>
<td>90</td>
<td>54</td>
<td>92</td>
<td>390</td>
</tr>
<tr>
<td>11-13 лет (девочки)</td>
<td>2500</td>
<td>82</td>
<td>49</td>
<td>84</td>
<td>355</td>
</tr>
<tr>
<td>14-17 лет (юноши)</td>
<td>3000</td>
<td>98</td>
<td>39</td>
<td>100</td>
<td>425</td>
</tr>
<tr>
<td>14-17 лет (девушки)</td>
<td>2600</td>
<td>90</td>
<td>54</td>
<td>90</td>
<td>360</td>
</tr>
</tbody>
</table>

* Потребности детей первого года жизни в энергии, белке, жире, углеводах даны в расчете г/кг массы тела.

В скобках указана потребность в линолевой кислоте (г/кг массы тела). Величины потребности в белке даны для вскармливания детей материнским молоком или заменителем женского молока с биологической ценностью (БЦ) белкового компонента более 80%; при вскармливании молочными продуктами с БЦ менее 80% указанные величины необходимо увеличить на 20-25%.
<table>
<thead>
<tr>
<th>Cинк</th>
<th>Йод</th>
<th>С</th>
<th>A, кг</th>
<th>E, мг ток. экв.</th>
<th>D, мкг</th>
<th>B₁, мг</th>
<th>B₂, мг</th>
<th>B₆, мг</th>
<th>Ниацин, мг ниацин. экв.</th>
<th>Фолат, мкг</th>
<th>B₁₂, мкг</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0,04</td>
<td>30</td>
<td>400</td>
<td>3</td>
<td>10</td>
<td>0,3</td>
<td>0,4</td>
<td>0,4</td>
<td>5</td>
<td>40</td>
<td>0,3</td>
</tr>
<tr>
<td>3</td>
<td>0,04</td>
<td>35</td>
<td>400</td>
<td>3</td>
<td>10</td>
<td>0,4</td>
<td>0,5</td>
<td>0,5</td>
<td>6</td>
<td>40</td>
<td>0,4</td>
</tr>
<tr>
<td>4</td>
<td>0,05</td>
<td>40</td>
<td>400</td>
<td>4</td>
<td>10</td>
<td>0,5</td>
<td>0,6</td>
<td>0,6</td>
<td>7</td>
<td>60</td>
<td>0,5</td>
</tr>
<tr>
<td>5</td>
<td>0,06</td>
<td>45</td>
<td>450</td>
<td>5</td>
<td>10</td>
<td>0,8</td>
<td>0,9</td>
<td>0,9</td>
<td>10</td>
<td>100</td>
<td>1,0</td>
</tr>
<tr>
<td>8</td>
<td>0,07</td>
<td>50</td>
<td>500</td>
<td>7</td>
<td>2,5</td>
<td>0,9</td>
<td>1,0</td>
<td>1,3</td>
<td>11</td>
<td>200</td>
<td>1,5</td>
</tr>
<tr>
<td>10</td>
<td>0,08</td>
<td>60</td>
<td>500</td>
<td>10</td>
<td>2,5</td>
<td>1,0</td>
<td>1,2</td>
<td>1,3</td>
<td>13</td>
<td>200</td>
<td>1,5</td>
</tr>
<tr>
<td>10</td>
<td>0,10</td>
<td>60</td>
<td>700</td>
<td>10</td>
<td>2,5</td>
<td>1,2</td>
<td>1,4</td>
<td>1,6</td>
<td>15</td>
<td>200</td>
<td>2,0</td>
</tr>
<tr>
<td>15</td>
<td>0,10</td>
<td>70</td>
<td>1000</td>
<td>12</td>
<td>2,5</td>
<td>1,4</td>
<td>1,7</td>
<td>1,8</td>
<td>18</td>
<td>200</td>
<td>3,0</td>
</tr>
<tr>
<td>12</td>
<td>0,10</td>
<td>70</td>
<td>800</td>
<td>10</td>
<td>2,5</td>
<td>1,3</td>
<td>1,5</td>
<td>1,6</td>
<td>17</td>
<td>200</td>
<td>3,0</td>
</tr>
<tr>
<td>15</td>
<td>0,13</td>
<td>70</td>
<td>1000</td>
<td>15</td>
<td>2,5</td>
<td>1,5</td>
<td>1,8</td>
<td>2,0</td>
<td>20</td>
<td>200</td>
<td>3,0</td>
</tr>
<tr>
<td>12</td>
<td>0,13</td>
<td>70</td>
<td>800</td>
<td>12</td>
<td>2,5</td>
<td>1,3</td>
<td>1,5</td>
<td>1,6</td>
<td>17</td>
<td>200</td>
<td>3,0</td>
</tr>
</tbody>
</table>
Суточная потребность в веществах и энергии взрослого

<table>
<thead>
<tr>
<th>Группа</th>
<th>Коеф. физ. акт.</th>
<th>Возраст</th>
<th>Энергия (ккал)</th>
<th>Белки (г)</th>
<th>Жиры (г)</th>
<th>Углеводы (г)</th>
<th>Минеральные вещества</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Всего</td>
<td>В т.ч. животные</td>
<td></td>
<td>Кальций</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Мужчины</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1,4</td>
<td>18-29</td>
<td>2450</td>
<td>72</td>
<td>40</td>
<td>81</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>2300</td>
<td>68</td>
<td>37</td>
<td>77</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-59</td>
<td>2100</td>
<td>65</td>
<td>36</td>
<td>70</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1,6</td>
<td>18-29</td>
<td>2800</td>
<td>80</td>
<td>44</td>
<td>93</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>2650</td>
<td>77</td>
<td>42</td>
<td>88</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-59</td>
<td>2500</td>
<td>72</td>
<td>40</td>
<td>83</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1,9</td>
<td>18-29</td>
<td>3300</td>
<td>94</td>
<td>52</td>
<td>110</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>3150</td>
<td>89</td>
<td>49</td>
<td>105</td>
<td>462</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-59</td>
<td>2950</td>
<td>84</td>
<td>46</td>
<td>98</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>2,2</td>
<td>18-29</td>
<td>3850</td>
<td>108</td>
<td>59</td>
<td>128</td>
<td>566</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>3600</td>
<td>102</td>
<td>56</td>
<td>120</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-59</td>
<td>3400</td>
<td>96</td>
<td>53</td>
<td>113</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2,5</td>
<td>18-29</td>
<td>4200</td>
<td>117</td>
<td>64</td>
<td>154</td>
<td>586</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>3950</td>
<td>11</td>
<td>61</td>
<td>144</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-59</td>
<td>3750</td>
<td>104</td>
<td>57</td>
<td>137</td>
<td>524</td>
<td></td>
</tr>
<tr>
<td>Железо</td>
<td>Цинк</td>
<td>Йод</td>
<td>C, мг</td>
<td>A, мкг</td>
<td>E, мг</td>
<td>D, мкг</td>
<td>B1, мг</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>0,15</td>
<td>70</td>
<td>1000</td>
<td>10</td>
<td>2,5</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>0,15</td>
<td>70</td>
<td>1000</td>
<td>10</td>
<td>2,5</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>0,15</td>
<td>80</td>
<td>1000</td>
<td>10</td>
<td>2,5</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>0,15</td>
<td>80</td>
<td>1000</td>
<td>10</td>
<td>2,5</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>0,15</td>
<td>100</td>
<td>1000</td>
<td>10</td>
<td>2,5</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>1,4</td>
<td>1,6</td>
<td>1,9</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-29</td>
<td>2000</td>
<td>2200</td>
<td>2600</td>
<td>3050</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>1900</td>
<td>2150</td>
<td>2550</td>
<td>2950</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-59</td>
<td>1800</td>
<td>2100</td>
<td>2500</td>
<td>2850</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>66</td>
<td>76</td>
<td>87</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
<td>73</td>
<td>42</td>
<td>87</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>289</td>
<td>318</td>
<td>378</td>
<td>462</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Дополнительно к норме, соответствующей физической активности и возрасту

<table>
<thead>
<tr>
<th>Беременные</th>
<th>+350</th>
<th>30</th>
<th>20</th>
<th>12</th>
<th>30</th>
<th>300</th>
<th>450</th>
<th>50</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коромящие</td>
<td>+500</td>
<td>40</td>
<td>26</td>
<td>15</td>
<td>40</td>
<td>400</td>
<td>600</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>(1-6 мес.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Коромящие</td>
<td>+450</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>30</td>
<td>400</td>
<td>600</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>(7-12 мес.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Нормы для лиц престарелого и старческого возраста

<table>
<thead>
<tr>
<th>Мужчины</th>
<th>60-74</th>
<th>2300</th>
<th>68</th>
<th>37</th>
<th>77</th>
<th>335</th>
<th>1000</th>
<th>1200</th>
<th>400</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75 и выше</td>
<td>1950</td>
<td>61</td>
<td>33</td>
<td>65</td>
<td>280</td>
<td>1000</td>
<td>1200</td>
<td>400</td>
<td>10</td>
</tr>
<tr>
<td>Женщины</td>
<td>60-74</td>
<td>1975</td>
<td>61</td>
<td>33</td>
<td>66</td>
<td>284</td>
<td>1000</td>
<td>1200</td>
<td>400</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>75 и выше</td>
<td>1700</td>
<td>55</td>
<td>30</td>
<td>57</td>
<td>242</td>
<td>1000</td>
<td>1200</td>
<td>400</td>
<td>10</td>
</tr>
</tbody>
</table>

* Для женщин старше 50 лет во всех группах кальций - 1000 мг/сут.
<table>
<thead>
<tr>
<th></th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0,15</td>
<td>70</td>
<td>800</td>
<td>8</td>
<td>2,5</td>
<td>1,1</td>
<td>1,3</td>
<td>1,8</td>
<td>14</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,15</td>
<td>70</td>
<td>800</td>
<td>8</td>
<td>2,5</td>
<td>1,1</td>
<td>1,3</td>
<td>1,8</td>
<td>14</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,15</td>
<td>80</td>
<td>1000</td>
<td>8</td>
<td>2,5</td>
<td>1,3</td>
<td>1,5</td>
<td>1,8</td>
<td>17</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,15</td>
<td>80</td>
<td>1000</td>
<td>8</td>
<td>2,5</td>
<td>1,5</td>
<td>1,8</td>
<td>1,8</td>
<td>20</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,03</td>
<td>20</td>
<td>200</td>
<td>2</td>
<td>10</td>
<td>0,4</td>
<td>0,3</td>
<td>0,3</td>
<td>2</td>
<td>200</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,05</td>
<td>40</td>
<td>400</td>
<td>4</td>
<td>10</td>
<td>0,6</td>
<td>0,5</td>
<td>0,5</td>
<td>5</td>
<td>100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,05</td>
<td>40</td>
<td>400</td>
<td>4</td>
<td>10</td>
<td>0,6</td>
<td>0,5</td>
<td>0,5</td>
<td>5</td>
<td>100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,15</td>
<td>80</td>
<td>1000</td>
<td>15</td>
<td>2,5</td>
<td>1,4</td>
<td>1,6</td>
<td>2,2</td>
<td>18</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,15</td>
<td>80</td>
<td>1000</td>
<td>15</td>
<td>2,5</td>
<td>1,2</td>
<td>1,4</td>
<td>2,2</td>
<td>15</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,15</td>
<td>80</td>
<td>800</td>
<td>12</td>
<td>2,5</td>
<td>1,3</td>
<td>1,5</td>
<td>2</td>
<td>16</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,15</td>
<td>80</td>
<td>800</td>
<td>12</td>
<td>2,5</td>
<td>1,1</td>
<td>1,3</td>
<td>2</td>
<td>13</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 23
Распределение энергетической ценности суточного рациона по отдельным приемам (в процентах от общей калорийности)

<table>
<thead>
<tr>
<th>Прием пищи</th>
<th>Энергетическая ценность суточного рациона при питании в %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Трехразовым</td>
</tr>
<tr>
<td>Первый завтрак</td>
<td>30</td>
</tr>
<tr>
<td>Второй завтрак</td>
<td>-</td>
</tr>
<tr>
<td>Обед</td>
<td>45-50</td>
</tr>
<tr>
<td>Ужин</td>
<td>20-25</td>
</tr>
</tbody>
</table>

В заключение должны быть отражены следующие вопросы.
1. Энергетическая ценность рациона и её соответствие энерготратам.
2. Качественный состав рациона:
 a) общее количество белков, их соответствие нормам. Количество белков животного происхождения, выраженное в процентах к общему количеству белка (рекомендуемая норма - 55%, для детей - 60-80%);
 b) общее количество жиров, их соответствие нормам. Количество жиров растительного происхождения в процентах к общему количеству жиров (рекомендуемое количество для взрослых 25-30%);
 в) количество углеводов, их соответствие нормам;
 г) соотношение жиров, белков и углеводов;
 д) количество солей кальция и фосфора, соответствие нормам и их соотношение (оптимальное соотношение 1:1-1:1,5 для разных возрастных групп);
 е) содержание витаминов А, В и С, их соответствие нормам.
При оценке С-витаминной обеспеченности рациона следует учитывать только 50% полученного при расчете количества витамина С, так как он разрушается при кулинарной обработке пищи. При оценке обеспеченности рациона витамином А принимают во внимание, что суточная потребность организма в этом витамине должна на 1/3 покрываться за счет ретинола и на 2/3 — за счет каротина. При этом следует учитывать, что витаминная активность каротина в продуктах практически в 3 раза меньше активности ретинола. В связи с этим для покрытия суточной потребности в витамине А взрослого человека (1000 мкг рет.экв.) необходимо 300 мкг рет.экв. и 2100 мкг рет.экв. (700 × 3) каротина.
3. Режим питания: а) кратность приемов пищи; б) распределение энергетической ценности по отдельным приемам пищи.
4. Для проведения коррекции рациона следует руководствоваться рекомендациями института питания РАМН, представленными в таблице 24.

Таблица 24

Удельный вес продуктов питания по калорийности
в суточном рационе (в %)

<table>
<thead>
<tr>
<th>Продукт</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мясо и мясопродукты</td>
<td>14</td>
</tr>
<tr>
<td>Молоко и молочные продукты</td>
<td>14</td>
</tr>
<tr>
<td>Рыба и рыбопродукты</td>
<td>1,5</td>
</tr>
<tr>
<td>Яйца</td>
<td>1,5</td>
</tr>
<tr>
<td>Хлеб и хлебопродукты (зерн.)</td>
<td>32</td>
</tr>
<tr>
<td>Картофель</td>
<td>6</td>
</tr>
<tr>
<td>Овощи</td>
<td>3</td>
</tr>
<tr>
<td>Фрукты, ягоды</td>
<td>4</td>
</tr>
<tr>
<td>Масло растительное</td>
<td>10</td>
</tr>
<tr>
<td>Сахар</td>
<td>14</td>
</tr>
</tbody>
</table>

Пример решения типовой задачи:

Гигиеническая оценка питания ребенка в возрасте 8 лет по данному меню-раскладки (табл. 25).

1. Энергетическая ценность рациона 1937,1 ккал недостаточна для покрытия энерготрат, так как "Нормами физиологических потребностей в пищевых веществах" для детей указанного возраста предусматривается энергетическая ценность пищи, равная 2350 ккал.

2. Качественный состав рациона:
 а) общее количество белков в рационе 54,9 г значительно ниже рекомендуемой потребности (77 г), при этом особенно недостаточно белков животного происхождения – 22,6 г (29,3 %) вместо 46 г (59,7 %);
 б) общее количество жиров 48,8 г также значительно ниже рекомендуемой потребности (79 г). При этом более чем в 2 раза снижено количество растительных жиров (8,2 г вместо 19,75 г);
 в) количество углеводов снижено незначительно и укладывается в допустимые колебания в 10-15 % от физиологических потребностей;
 г) соотношение белков, жиров и углеводов 1:0,9:5,6 (54,9:48,8:308,3) свидетельствует о преобладании углеводов в питании;
 д) отмечается резкий недостаток солей кальция (317,5 мг при норме 1100 мг) и фосфора 1081,5 мг при норме 1650 мг) и неблагоприятное их соотношение 1:3,4 (317:1081) при оптимальной величине 1:1,5;
 е) содержание витамина А (200 мкг ретинола и 700 мкг каротина) при рекомендуемой потребности для детей в возрасте от 7 до 10 лет (210 мкг ретинола и примерно 1260 каротина) свидетельствует о недостаточном поступлении каротина. Содержание витамина В2 (0,7 мг вместо 1,4 мг)

85
<table>
<thead>
<tr>
<th>Наименование продуктов</th>
<th>Общая масса, г</th>
<th>Белки, г</th>
<th>Жиры, г</th>
<th>Углеводы, г</th>
<th>Энергетическая ценность, ккал</th>
<th>Минеральные элементы, мг</th>
<th>Витамины, мг</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Животные</td>
<td>Растительные</td>
<td>Животные</td>
<td>Растительные</td>
<td>Ca</td>
<td>P</td>
</tr>
<tr>
<td>Завтрак:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Колбаса столовая вареная</td>
<td>50</td>
<td>5,7</td>
<td>-</td>
<td>12,9</td>
<td>-</td>
<td>142,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Картофель</td>
<td>150</td>
<td>-</td>
<td>1,9</td>
<td>-</td>
<td>22,7</td>
<td>100,5</td>
<td>12,0</td>
</tr>
<tr>
<td>Масло</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>подсолнечное</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>4,7</td>
<td>-</td>
<td>43,6</td>
<td>-</td>
</tr>
<tr>
<td>Масло сливочное несоленое</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,9</td>
<td>37,4</td>
<td>-</td>
</tr>
<tr>
<td>Сахар</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Хлеб пшеничный из муки 1-го сорта</td>
<td>100</td>
<td>-</td>
<td>6,7</td>
<td>0,7</td>
<td>50,3</td>
<td>240,0</td>
<td>20,0</td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td>5,7</td>
<td>8,6</td>
<td>20,8</td>
<td>5,4</td>
<td>82,6</td>
<td>35,5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Обед</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Говядина</td>
<td>100</td>
<td>13,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-й категория</td>
<td></td>
<td></td>
<td>2,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Картофель</td>
<td>300</td>
<td></td>
<td></td>
<td>3,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Морковь</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лук репчатый</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Масло сливочное несоленое</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,9</td>
</tr>
<tr>
<td>Капуста белокочанная</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Капуста брюссельская</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Яблоко</td>
<td>50</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Антоновское</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Хлеб ржаной</td>
<td>150</td>
<td>7,5</td>
<td></td>
<td>1,5</td>
<td></td>
<td></td>
<td>63,8</td>
</tr>
<tr>
<td>Всего</td>
<td>13,2</td>
<td>12,0</td>
<td>6,5</td>
<td>1,5</td>
<td>112,7</td>
<td>638,8</td>
<td>101,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Половник</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сыр голландский</td>
<td>20</td>
<td>3,7</td>
<td></td>
<td>5,4</td>
<td></td>
<td></td>
<td>0,4</td>
</tr>
<tr>
<td>Хлеб пшеничный из муки 1-го сорта</td>
<td>50</td>
<td>3,4</td>
<td></td>
<td>0,4</td>
<td></td>
<td></td>
<td>25,2</td>
</tr>
<tr>
<td>Сахар</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего</td>
<td>3,7</td>
<td>3,4</td>
<td>5,4</td>
<td>0,4</td>
<td>35,2</td>
<td>225,4</td>
<td>149,8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ужин</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Макароны</td>
<td>50</td>
<td>-</td>
<td>4,7</td>
<td>-</td>
<td>0,4</td>
<td>35,5</td>
<td>168,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Масло сливочное несоленое</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>7,9</td>
<td>-</td>
<td>-</td>
<td>73,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сахар</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19,2</td>
<td>78,0</td>
</tr>
<tr>
<td>Хлеб пшеничный из муки 2-го сорта</td>
<td>50</td>
<td>-</td>
<td>3,6</td>
<td>-</td>
<td>0,5</td>
<td>23,2</td>
<td>114,5</td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td>-</td>
<td>8,3</td>
<td>7,9</td>
<td>0,9</td>
<td>77,8</td>
<td>433,9</td>
</tr>
<tr>
<td>Итого за день</td>
<td>22,6</td>
<td>32,3</td>
<td>40,6</td>
<td>8,2</td>
<td>308,4</td>
<td>1937,1</td>
<td>317,5</td>
</tr>
</tbody>
</table>
также недостаточно. Не обеспечен рацион в достаточной степени и витамина С. С учётом разрушения его при кулинарной обработке физическая обеспеченность составит около 20 мг, что значительно ниже 90 мг, необходимых для обеспечения рекомендуемой нормы (60 мг).

3. Четырехразовое питание соответствует гигиеническим рекомендациям, однако распределение пищи по отдельным приемам нерационально (завтрак 33%, обед 33%, полдник 12%, ужин 22% общей энергетической ценности).

Заключение. Питание ребенка недостаточно и качественно неполноценно. Отмечается дефицит белков (особенно биологически наиболее ценных белков животного происхождения), жиров, кальция и фосфора, витаминов и несбалансированность питания (неблагоприятное соотношение между белками, жирами и углеводами, белками животного и растительного происхождения, кальцием и фосфором).

Для устранения выявленных недостатков необходимо ввести в рацион ребенка молоко и молочнокислые продукты (молока 500 г и кефира 200 г), что позволит увеличить содержание животного белка на 20 г, жира на 25 г, кальция на 840 мг, фосфора на 665 мг, энергетическую ценность на 434 ккал, повысить обеспеченность рациона ретинолом, тиамином и рибофлавином. Включение указанных продуктов позволит улучшить показатели сбалансированности питания (соотношение между белками, жирами и углеводами, белками животного и растительного происхождения и особенно между содержанием в рационе кальция и фосфора).

Для увеличения содержания витамина С и каротина рекомендуется ввести в рацион свежие ягоды, овощи (черная смородина, отвар шиповника, морковный сок, зеленый лук и т.д.) необходимо также увеличить содержание в рационе растительных масел.

Для нормализации режима питания следует несколько облегчить завтрак (до 25% от общей энергетической ценности) и увеличить прием пищи в обед (до 35-40%).

2.2. Гигиеническая оценка витаминной ценности питания

Витамины — это низкомолекулярные органические вещества, как правило, не синтезируемые в организме человека, а доставляемые ему с пищей. Однако некоторые витамины могут быть образованы в организме людей из своих предшественников — провитаминов. Так, витамин РР синтезируется из провитамина — амино-
кислоты триптофана, витамин D₃— из 7,8-дегидрохолестерина. Витамины в минимальных дозах (в мг или даже в мкг) оказывают мощное биологическое действие через участие в деятельности ферментов, входя в состав их коферментов.

Причины нарушения витаминного обмена могут быть различными. Экзогенные, внешние причины, приводят к развитию первичных гиповитаминозов и авитаминозов. Эндогенные, внутренние причины, обусловливают развитие вторичных гипо- и авитаминозов. Чаще встречаются случаи частичной недостаточности витаминов — гиповитаминозы.

Первичные гиповитаминозы возникают в результате недостаточного поступления витамина с пищей или при нарушении сбалансированности питания и достаточного поступления ряда пищевых веществ (других витаминов, белков, углеводов, жиров).

Вторичные гиповитаминозы являются следствием частичного разрушения витаминов в пищеварительном тракте и нарушения их всасывания. Это наблюдается при ряде заболеваний желудочно-кишечного тракта, инфекционных заболеваний, при лечении сультанами и антибиотиками и пр.

При избыточном потреблении витаминов развиваются гипервитаминозы, которые специфичны для жирорастворимых витаминов. Они обладают способностью накапливаться в организме и проявлять токсическое действие.

В настоящее время известно более 20 витаминов и витаминоподобных веществ. По своей способности растворяться в воде или жирах все витамины делятся на 2 группы:

1) водорастворимые витамины: витамины группы В, витамины С, Р и др.;
2) жирорастворимые витамины: А, D, Е, K.

Потребность в витаминах зависит от возраста, пола, характера трудовой деятельности, физиологического состояния организма, климатических условий и многих других факторов. Нормы физиологических потребностей людей в витаминах для различных групп населения приведены в таблице (см. раздел 2.1).

2.2.1. Водорастворимые витамины

Цель занятия: ознакомить студентов с биологической ролью витаминов С, Р и группы В, проявлениями витаминной недостаточности, физиологическими нормами и продуктами — источниками витаминов.
Задание студентам:
1. Оценить суточный продуктовый набор по содержанию в нем ряда водорастворимых витаминов.
2. Поставить и обосновать диагноз заболевания, связанного с витаминной недостаточностью.

Студент должен знать:
1. Биологическую роль витаминов С, Р и группы В.
2. Причины развития витаминной недостаточности.
3. Проявления витаминной недостаточности.
4. Нормы физиологических потребностей людей в водорастворимых витаминах.
5. Продукты-источники витаминов С, Р и группы В.

Витамин С относится к группе водорастворимых витаминов и представляет собой природный, биологически активный комплекс веществ, в состав которых входят аскорбиновая кислота, Р-активные вещества, органические кислоты, пектинов, танины.

Витамин С имеет большое значение в регуляции жизнедеятельности организма. Степень обеспеченности этим витамином существенно влияет на проницаемость сосудистой стенки, на целостность опорных тканей — фиброзной, хрящевой, костной, дентина.

Витамин С активно участвует в обмене веществ (белковом, жировом, углеводном, минеральном, витаминном). Влияние витамина С на белковый обмен проявляется в действии на синтез антител, ферментов, гормонов, опорных структур.

Витамин С активно воздействует на синтез РНК и ДНК, отвечающих за передачу наследственных свойств.

В жировом обмене витамин С нормализует синтез эндогенного холестерина, участвует в утилизации экзогенного холестерина (благодаря стабилизации состояния сосудистой стенки — выраженное антисклеротическое действие).

В углеводном обмене витамин С вызывает активизацию ферментов, задействованных в углеводном обмене (влияние на синтез гликогена). В минеральном обмене витамин С оказывает кальций сберегающее действие (влияет на усвоение кальция и фиксацию его в костной системе).

Витамин С участвует также в обмене всех витаминов группы В (путем включения этих витаминов в состав коэнзимов).

Витамин С относится к наименее стойким витаминам при воздействии различных внешних факторов. Он легко разрушается при доступе кислорода воздуха, особенно при нагревании, в присутствии солей тяжелых металлов (медь, железо), в щелочной среде.
Кислая среда способствует лучшей сохранности витамина С, поэтому в кислых первых блюдах (борщ, щи) он сохраняется дольше, чем в супах, реакция которых ближе к нейтральной. Некоторые пищевые продукты (крахмал, крупа, мука, яйца, сахар) оказывают стабилизирующее действие на аскорбиновую кислоту как в процессе кулинарной обработки, так и при хранении готовых блюд.

Пищевые продукты — источники витамина С по содержанию в них этого витамина делятся на 3 группы: 1-я группа — с содержанием витамина С выше 100 мг%; 2-я группа — с содержанием витамина С от 50 до 100 мг%; 3-я группа — с содержанием витамина С менее 50 мг% (табл. 26).

Таблица 26

<table>
<thead>
<tr>
<th>Группа продуктов</th>
<th>Содержание витамина С выше 100 мг%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>шиповник (сухие плоды) (1500), черная смородина (250), перец красный сладкий (250), облепиха (120), капуста брюссельская (120), укроп (150), зелень петрушки (150), хрен (200).</td>
</tr>
<tr>
<td>II</td>
<td>Содержание витамина С от 50 до 100 мг%</td>
</tr>
<tr>
<td></td>
<td>Капуста красная (60), цветная (70), клубника (70), шавель (55), грейпфрут (60), лук зеленый перо (60).</td>
</tr>
<tr>
<td>III</td>
<td>Содержание витамина С до 50 мг% — витаминносители средней и слабой активности</td>
</tr>
<tr>
<td></td>
<td>а) средней активности (до 50 мг%): капуста белокочанная свежая (30), квашеная (20), все цитрусовые (40-50), яблоки антоновские (16), зеленый горошек (25), томаты (22), малина (37), брусника (17), крыжовник (45), рапа черноплодная (23), клюква (20), вишня (15), бананы (19), картофель (20-30);</td>
</tr>
<tr>
<td></td>
<td>б) слабой активности (до 10 мг%): лук репчатый (10), морковь (5), огурцы (9), свекла (10), чеснок (следы), арбуз (7), гранаты (5), черника (5), виноград (4).</td>
</tr>
<tr>
<td></td>
<td>Продукты животного происхождения: печень (30), почки (15).</td>
</tr>
</tbody>
</table>

Пример типовых задач

Задача № 1. Оценить суточный продуктовый набор по содержанию в нем витамина С мужчины (врача-терапевта) 32 лет.

92
<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование продукта</th>
<th>Вес в граммах</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Хлеб ржаной</td>
<td>400,0</td>
</tr>
<tr>
<td>2.</td>
<td>Хлеб пшеничный</td>
<td>200,0</td>
</tr>
<tr>
<td>3.</td>
<td>Мясо говядина</td>
<td>200,0</td>
</tr>
<tr>
<td>4.</td>
<td>Макароны из муки высшего сорта</td>
<td>100,0</td>
</tr>
<tr>
<td>5.</td>
<td>Крупа гречневая</td>
<td>60,0</td>
</tr>
<tr>
<td>6.</td>
<td>Печенье</td>
<td>50,0</td>
</tr>
<tr>
<td>7.</td>
<td>Сахар</td>
<td>100,0</td>
</tr>
<tr>
<td>8.</td>
<td>Картофель</td>
<td>200,0</td>
</tr>
<tr>
<td>9.</td>
<td>Сало свиное</td>
<td>50,0</td>
</tr>
</tbody>
</table>

Задание студентам
Составить заключение, в котором должны быть даны ответы на вопросы:

1. Достаточность содержания витамина С (без использования таблиц химического состава) в представленном продуктовом наборе.

2. Возможные клинические проявления гиповитаминозного состояния по витамину С. Возможен ли гипервитаминоз С и как он проявляется?

3. Ваши рекомендации по устранению выявленных недостатков содержания в рационе витамина С.

Задача № 2
Рабочая кондитерской фабрики обратилась к врачу с жалобами на чувство слабости и боли в ногах, быструю утомляемость ног при ходьбе. В беседе с больной были установлены существенные недостатки в её питании: ежедневное употребление кондитерских изделий, регулярное использование в питании пшеничного хлеба из муки высшего сорта, манной каши и капри из полированных риса. При пальпации выявлена болезненность икроножных мышц.

Задание студентам
Составить заключение, в котором должны быть даны ответы на вопросы:

1. При недостаточном содержании какого витамина в питании может наблюдался предложенная выше симптоматика?

2. В чем заключается механизм действия в организме этого витамина?

3. Какую коррекцию в питании больной следует внести?
2.2.2. Жирорастворимые витамины

Цель занятия: ознакомить студентов с биологической ролью витаминов A, D, E, K, проявлениями витаминной недостаточности, нормами физиологических потребностей людей и продуктами-источниками этих витаминов.

Задание студентам:
1. Изучить микросимптомы витаминной недостаточности (просмотр слайдов).
2. Оценить суточный продуктовый набор по содержанию в нем некоторых жирорастворимых витаминов.
3. Поставить и обосновать диагноз заболевания, связанного с витаминной недостаточностью.

Студент должен знать:
1. Биологическую роль витаминов A, D, E, K.
2. Причины развития витаминной недостаточности.
3. Проявления витаминной недостаточности.
4. Проявления гипервитаминозных состояний.
5. Нормы физиологических потребностей людей в жирорастворимых витаминах.
6. Продукты — источники витаминов A, D, E, K.

Каротин является провитамином A и в организме человека превращается в ретинол. Превращение каротина в ретинол происходит в стенке кишечника под влиянием фермента каротиназы. Наибольшее значение для организма имеет бета-каротин, который состоит из двух молекул витамина A. Недостаток жира в пище редко снижает усвоение каротина. Каротин содержится в продуктах растительного происхождения, имеющих желто-оранжевую окраску.

Биологическая роль витамина A разнообразна. Он необходим для осуществления процессов роста и развития организма, обеспечения нормальной дифференцировки эпителиальной ткани, образования зрительных пигментов — родопсина и йодопсина. При недостатке витамина A замедляются рост и развитие организма, уменьшается масса тела, наблюдаются избыточное ороговение кожных покровов (гиперкератоз), метаплазия эпителия дыхательных и мочевыводящих путей, желчного пузыря в многолейный плоский ороговевающий, поражение глаз (ксерофталмия кератомаляция), нарушение соматического зрения (гемералопия).
Суточная потребность в витамине А взрослого человека составляет от 800 до 1000 мкг. Для беременных женщин и кормящих матерей эта норма увеличивается на 200-400 мкг. При этом 1/3 должна покрываться за счет ретинола и 2/3 - за счет каротина.
Содержание витамина А и каротина в некоторых продуктах питания приведено в таблице 27.

Таблица 27
Содержание витамина А и каротина в продуктах питания

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Содержание витамина А в мг%</th>
<th>Содержание каротина в мг%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Жир печени трески</td>
<td>19,0</td>
</tr>
<tr>
<td>2.</td>
<td>Печень говяжья</td>
<td>14,0</td>
</tr>
<tr>
<td>3.</td>
<td>Печень свиная</td>
<td>6,0</td>
</tr>
<tr>
<td>4.</td>
<td>Печень трески</td>
<td>3,3</td>
</tr>
<tr>
<td>5.</td>
<td>Яйца</td>
<td>0,6</td>
</tr>
<tr>
<td>6.</td>
<td>Масло сливочное</td>
<td>0,3</td>
</tr>
<tr>
<td>7.</td>
<td>Сливки, сметана</td>
<td>0,3</td>
</tr>
<tr>
<td>8.</td>
<td>Молоко</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Пример типовых задач
Задача № 1. Оценить суточный продуктовый набор по содержанию в нем витамина D женщины (повара) 48 лет.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование продукта</th>
<th>Вес в граммах</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Печень трески (консервы)</td>
<td>30,0</td>
</tr>
<tr>
<td>2.</td>
<td>Масло сливочное н.сол.</td>
<td>20,0</td>
</tr>
<tr>
<td>3.</td>
<td>Сахар</td>
<td>60,0</td>
</tr>
<tr>
<td>4.</td>
<td>Хлеб пшеничный</td>
<td>300,0</td>
</tr>
<tr>
<td>5.</td>
<td>Печень говяжья</td>
<td>100,0</td>
</tr>
<tr>
<td>6.</td>
<td>Горох</td>
<td>50,0</td>
</tr>
<tr>
<td>7.</td>
<td>Морковь</td>
<td>8,0</td>
</tr>
<tr>
<td>8.</td>
<td>Говядина</td>
<td>50,0</td>
</tr>
<tr>
<td>9.</td>
<td>Яйцо 2 шт.</td>
<td>100,0</td>
</tr>
<tr>
<td>10.</td>
<td>Пирожное соленое с кремом</td>
<td>100,0</td>
</tr>
<tr>
<td>11.</td>
<td>Сыр голландский</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Задание студентам
Составить заключение, в котором должны быть даны ответы на вопросы: 1. Достаточность содержания витамина D (без использ
зования таблиц химического состава) в представленном продукт-овом наборе.

2. Возможные клинические проявления гиповитаминозного состояния по витамину D. Возможен ли гипервитаминоз D и как он проявляется?

3. Ваши рекомендации по устранению выявленных недостатков содержания в рационе витамина D.

Задача №2

В конце весны в районную поликлинику к участковому врачу-терапевту обратилась 35-летняя женщина с жалобами на ухудшение у нее респираторных заболеваний: ринита, бронхита, ларингита и резкое ухудшение способности видеть окружающие предметы в сумерках.

При сборе анамнеза выяснилось, что пациентка — верующая и в течение последних 5-ти недель строго соблюдала церковный пост. В этот период она не употребляла в пищу никаких продуктов животного происхождения (мяса, сливочного масла и др.)

При обследовании у больной выявлено ороговение кожи на локтевых сгибах и коленях, сужение поля зрения и нарушение нормального цветоощущения.

Задание студентам

Составить заключение, в котором должны быть отражены следующие вопросы:
1. Клиника авитаминозного состояния по какому витамину приведена выше?
2. В чем заключается механизм действия этого витамина?
3. Назовите возможные причины гипо- и авитаминозных состояний по данному витамину.

2.3. Гигиеническая экспертиза пищевой ценности и доброкачественности продуктов питания

Цель занятия: ознакомить студентов с пищевой ценностью основных продуктов питания и основными принципами их гигиенической экспертизы.

Практические навыки: обучить студентов определению доброкачественности пищевых продуктов (на примере творога, мяса, рыбы, хлеба)

Задание студентам: на примере ситуационных задач дать заключение о доброкачественности продуктов (молока, творога, мяса, рыбы, хлеба).
2.3.1. Санитарно-гигиеническая экспертиза пищевых продуктов

Санитарно-гигиеническая экспертиза продуктов питания является одним из основных разделов в работе практических учреждений санитарно-эпидемиологической службы, осуществляющей надзор за питанием населения с целью охраны его здоровья.

Конкретной задачей санитарно-гигиенической экспертизы является определение пищевой ценности продукта и его безвредности для здоровья населения. При проведении санитарной экспертизы определяют органолептические свойства продукта, соответствие его гигиеническим показателям и требованиям, отклонения в его химическом составе и их причины, характер бактериального загрязнения, его роль в возможной передаче инфекции и в возникновении пищевых отравлений, а также выясняют условия хранения, обусловившие изменение свойств продукта. В задачи санитарной экспертизы входит также установление условий реализации пищевого продукта в зависимости от выявленных свойств, а также возможности его переработки или необходимости уничтожения.

Санитарно-гигиеническая экспертиза проводится в порядке плановой работы Центрами санитарно-эпидемиологического надзора (ЦСЭН) и вне плана – при наличии особых эпидемиологических показаний, а также в порядке арбитража.

Основным документом регламентирующим качество и безопасность продуктов питания является СанПиН 2.3.2.560-96 «Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов» (табл. 28). Кроме того, для оценки показателей не включенных в данный нормативный документ, могут применяться другие нормативные документы СанПиНы, ГОС-Ты, ГН и др. на отдельные продукты питания.

2.3.2. Плановая санитарно-гигиеническая экспертиза

Проводится в порядке предупредительного и текущего санитарного надзора на подконтрольных объектах по календарному графику лаборатории для осуществления контроля качества продуктов по показателям, имеющим гигиеническое значение (органолептическим, физико-химическим, бактериологическим). С этой целью планируется отбор образцов пищевых продуктов и изделий на предприятиях пищевых отраслей промышленности, объектах торговли и общественного питания для лабораторного исследования.
Допустимые уровни основных показателей, характеризующих качество и безопасность некоторых пищевых продуктов (извлечение из СанПиН 2.3.2.560-96)

<table>
<thead>
<tr>
<th>Показатели</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Токсичные элементы: мг/кг, не более</td>
<td></td>
<td></td>
</tr>
<tr>
<td>свинец</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>мышьяк</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>кадмий</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>ртуть</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>медь</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>цинк</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>олово</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>хром</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Пестициды: 19 mg/kg, не более</td>
<td></td>
<td></td>
</tr>
<tr>
<td>гексахлор-20 циклогексан</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>ДДТ и его 23 метаболиты</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>2,4-Д кисло-26 та и ее соли</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>гексахлор-29 бензол</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>ртутьоргани-32 ческие</td>
<td>33</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Продукты</th>
<th>Мясо</th>
<th>Молоко</th>
<th>Рыба</th>
<th>Консервы</th>
<th>Хлеб</th>
<th>Плодоовощные</th>
</tr>
</thead>
<tbody>
<tr>
<td>свинец</td>
<td>0,5</td>
<td>0,1</td>
<td>1,0</td>
<td>0,4-1,0*</td>
<td>0,35</td>
<td>0,4-0,5*</td>
</tr>
<tr>
<td>мышьяк</td>
<td>0,1</td>
<td>0,05</td>
<td>1-5*</td>
<td>0,1-5,0*</td>
<td>0,15</td>
<td>0,2-0,5*</td>
</tr>
<tr>
<td>кадмий</td>
<td>0,05</td>
<td>0,03</td>
<td>0,2</td>
<td>0,03-0,2*</td>
<td>0,07</td>
<td>0,03-0,1*</td>
</tr>
<tr>
<td>ртуть</td>
<td>0,03</td>
<td>0,005</td>
<td>0,3-1*</td>
<td>0,02-1*</td>
<td>0,015</td>
<td>0,02-0,05*</td>
</tr>
<tr>
<td>медь</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>3-10*</td>
<td>7</td>
<td>5-10*</td>
</tr>
<tr>
<td>цинк</td>
<td>70</td>
<td>5</td>
<td>40</td>
<td>10-70*</td>
<td>35</td>
<td>10-20*</td>
</tr>
<tr>
<td>олово</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>хром</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ДДТ и его метаболиты</td>
<td>0,1</td>
<td>0,2-2*</td>
<td>0,1-2*</td>
<td>0,02-0,05*</td>
<td>0,05-0,5*</td>
<td>0,1</td>
</tr>
<tr>
<td>2,4-Д кислота и ее соли</td>
<td>nd**</td>
<td>nd**</td>
<td>nd**</td>
<td></td>
<td>0,01</td>
<td>nd**</td>
</tr>
<tr>
<td>гексахлор-бензол</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ртутьорганические</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Микотоксины: мг/кг, не более</td>
<td>афлатоксин</td>
<td>0,005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>В₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>дезоксиниваленол</td>
<td>0,7-1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Т₂ токсин</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>зеараленон</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>афлатоксин</td>
<td>0,005</td>
<td></td>
<td>0,0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M₁</td>
<td></td>
<td></td>
<td>(мочечные)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>патуллин</td>
<td></td>
<td></td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(овощи)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нитраты, мг/кг, не более</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200-2000*</td>
</tr>
<tr>
<td>Нитрозамины – сумма НДМА и НДЭА, мг/кг, не более</td>
<td>0,002-0,004*</td>
<td>0,03-1,25*</td>
<td>0,003</td>
<td>0,002-003*</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Радионуклиды: Бк/кг</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Цезий-137</td>
<td>160-320*</td>
<td>50</td>
<td>130</td>
<td>40-500*</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Стронций-90</td>
<td>5-200*</td>
<td>25</td>
<td>100</td>
<td>50-100*</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Микробиологические показатели: 1,2 и 3 – КОЕ/г, не более. 4,5 и 6 – масса продукта (г), в которой не допускается.</td>
<td>КМАФАнМ</td>
<td>1×10⁴-5×10⁶*</td>
<td>1×10⁵-4×10⁶*</td>
<td>5×10⁴-1×10⁵*</td>
<td>Треб. группы А</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Дрожжи</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Плесени</td>
<td></td>
<td></td>
<td></td>
<td>Треб. группы A</td>
<td>1×10^2-5×10^2*</td>
</tr>
<tr>
<td></td>
<td>БГКП</td>
<td>0,0001-0,1*</td>
<td>0,01-1,0*</td>
<td>0,001-0,01*</td>
<td>Треб. группы A</td>
<td>0,01-1,0*</td>
</tr>
<tr>
<td></td>
<td>Патогенные, в т.ч. сальмонеллы</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>Треб. группы A</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>S. aureus</td>
<td></td>
<td></td>
<td></td>
<td>Треб. группы A</td>
<td></td>
</tr>
</tbody>
</table>

Примечание:
*) – в зависимости от вида продукта,
**) – не допускается, КМАФАнМ – количество мезофильных аэробных и факультативно-анаэробных микроорганизмов, КОЕ – колониеобразующие единицы.
Работа по санитарно-гигиенической экспертизе должна планироваться в следующих основных направлениях:

- осуществление контроля за качеством скоропортящихся продуктов (молочных, вареных колбасных изделий, кремовых кондитерских, кулинарных изделий и пр.) с учетом их эпидемиологической значимости. Гигиенические исследования должны быть направлены на оценку качества тепловой обработки, определение бактериологических показателей, которые могут оказывать влияние на здоровье;
- осуществление контроля за выпуском новых изделий, а также использовании новых материалов для изделий и оборудования, соприкасающихся с пищевыми продуктами, которые могут повлиять на их качество;
- осуществление контроля на соответствие продуктов рецептур, согласованным с органами государственного санитарного надзора, в частности, за витаминизированными продуктами и кулинарными изделиями (на соответствие обнаруженного количества витаминов утвержденным рецептурам);
- осуществление контроля за содержанием остаточных количеств пестицидов, солей тяжелых металлов, антибиотиков, вредных примесей, пищевых добавок (консервантов, красителей и др.);
- осуществление контроля за качеством готовой пищи в детских учреждениях, учебных заведениях, пищеблоках лечебных и лечебно-профилактических учреждений, предприятиях общественного питания (доброчастенность).

2.3.3. Внеплановая санитарная экспертиза

Проводится по эпидемиологическим показаниям (пищевое отравление, бактериальное загрязнение продукта, нарушение технологического процесса и пр.) в спорных случаях в порядке арбитража, а также по поручению государственных органов, следственных органов и по заявлениям контролирующих организаций.

Провести осмотр партии, при этом выясняются условия хранения продукта, состояние тары, маркировка, предупреждающие надписи на таре, выявляются дефекты тары.
Вскрыть упакованные продукты. Количество подлежащих вскрытию упаковочных единиц предусматривает ГОСТ на каждый вид продукта, при отсутствии ГОСТ вскрывается 5-10% упаковочных единиц от партии, при отсутствии подозрения на неблагополучие партии, можно вскрывать меньше единиц, а при небольшом количестве — вскрываются все.

Провести органолептическое исследование продукта, запаха, вкуса, выявить загрязнения, наличие насекомых или личинок.

Определение запаха проводится при комнатной температуре, продукт предварительно оттаивается или подогревается. В глубине продукта запах определяется с помощью разогретого ножа или шпильки.

Определение вкуса продукта рекомендуется производить при отсутствии сомнений в безвредности продукта при температуре 20-45°C. При более низкой температуре вкусовые ощущения выражены слабее.

Составить акт санитарной экспертизы по результатам осмотра партии.

Если качество продукта вызывает сомнение, то образцы направляются в лабораторию. Продукты с явно выраженными признаками порчи (резко выраженный неприятный запах, изменение консистенции, глубокое и значительное поражение плесенью и др.) могут быть на месте признаны непригодными к употреблению без лабораторного исследования.

На отобранные для лабораторного исследования образцы составляется сопроводительный документ, в котором должна быть четко указана цель исследования, т.е. определение показателей, имеющих гигиеническое или эпидемиологическое значение.

По окончании исследования образца продукта составляется заключение о его качестве.

По качеству пищевые продукты принято делить на следующие категории:

1) доброкачественные пищевые продукты соответствуют всем гигиеническим требованиям, и употребление их в пищу не вызывает сомнений или опасений. Они допускаются к реализации для пищевых целей без ограничений;

2) недоброкачественные пищевые продукты могут представлять опасность для здоровья человека при употреблении их в пищу или иметь выраженные неудовлетворительные вкусовые и другие органолептические качества (посторонний вкус или запах).
Недоброкачественные продукты не соответствуют гигиеническим требованиям, и никакой вид обработки или переработки не может улучшить их качество.

Нарушение качества пищевых продуктов может быть обусловлено разложением его составных частей, в частности белка, под влиянием гнилостной микрофлоры, жира — под влиянием физических и химических факторов. Недоброкачественными могут быть продукты вследствие заражения личинками гельминтов (трихинеллезное мясо, интенсивно пораженное финками мясо), а также загрязненные пестицидами выше предельно допустимых концентраций и другими ядовитыми веществами (свинец, мышьяк);

в) условно годные пищевые продукты в натуральном виде представляют опасность для здоровья человека, но при применении определенного вида обработки дефект может быть устранен и продукт становится пригодным в пищу;

г) пищевые продукты с пониженной питательной ценностью в результате нарушения режима технологической обработки, условий и сроков хранения или других причин, хотя и не удовлетворяют некоторым гигиеническим требованиям, но не представляют опасности для здоровья человека. Они должны быть удовлетворительными по органолептическим и другим показателям.

2.3.4. Гигиеническая экспертиза молочных продуктов

Молоко по своим биологическим и питательным свойствам является одним из наиболее ценных продуктов питания для всех групп населения. Особое значение оно имеет в питании детей, лиц пожилого возраста, в диетическом питании.

Повседневное употребление молока и молочных продуктов улучшает соотношение аминокислот белков всего рациона, что положительно сказывается на синтезе тканевого белка в организме, способствует поступлению достаточного количества кальция и фосфора и установлению благоприятного соотношения между ним.

Химический состав молока непостоянен, колеблется в зависимости от породы животных, периода лактации, времени года, индивидуальных особенностей животных, состояния их здоровья, количества и качества кормов и пр.

Химический состав коровьего молока следующий: воды 88,6%, белков 2,8%, жиров 3,2%, углеводов 4,7%, золы 0,7%.

Энергетическая ценность 100 г молока составляет в среднем около 65 ккал. Все остальные вещества молока хорошо усваиваются организмом.
Молоко содержит в основном витамины А, D и некоторое количество витаминов группы B. Содержание витамина C незначительно.

Иногда отмечается непереносимость молока, обусловленная отсутствием в организме ферментов, расщепляющих галактозу. Выявлена возможность аллергизирующего действия одной из белковых фракций молока (γ-глобулинов).

Кисломолочные продукты обладают высокими пищевыми и вкусовыми свойствами, благотворно влияют на пищеварение и общее состояние организма. Они богаты витаминами группы B, которые вырабатываются молочнокислыми бактериями.

Кисломолочные продукты отличаются высокой усвояемостью, так как молочная кислота, продуцируемая молочнокислыми бактериями, способствует образованию в этих продуктах мелких, нежных хлопьев, легко поддающихся воздействию пищеварительных соков. Особенно велико значение кисломолочных продуктов в детском питании в связи с тем, что под влиянием молочной кислоты повышается усвоение кальция и фосфора. Кисломолочные продукты рекомендуются тем лицам, которые плохо переносят молоко.

Кисломолочные продукты имеют некоторые лечебные свойства: выявлена способность ацидофильных бактерий вырабатывать термостабильные антибиотические вещества (лактолин, лактомин), которые проявляют свое действие в кислой среде. Ацидофильная палочка устойчива к некоторым антибиотикам – левомицетину и синтомицину. Поэтому ацидофильные препараты используются для предупреждения осложнений при длительном лечении антибиотиками. Определенные штаммы молочнокислых бактерий проявляют устойчивость к антибиотикам широкого спектра действия.

В зависимости от способа приготовления различают следующие виды кисломолочных продуктов: а) на заквасках из чистых культур; б) на естественных заквасках; в) произвольного сквашиивания ("самоквас").

На заквасках из чистых культур получают продукты молочнокислоего брожения (простокваша, сметана, творог, сырковая масса), смешанного молочнокислого и спиртового брожения (кефир, ацидофилин), диетические и лечебные кисломолочные продукты (ацидофильное молоко и паста, ацидофильно-дрожжевое молоко и др.).

На естественных заквасках могут быть приготовлены кисломолочные продукты преимущественно молочнокислого брожения (простокваша) или смешанного брожения (кумыс, куранта).
Кисломолочные продукты произвольного сквашивания ("самоквас") в основном молочнокислого брожения — это простоквашиа, творог, сметана.

Кисломолочные продукты (простоквашиа, кефир, ацидофилин) готовят из пастеризованного молока. Содержание жира в них такое же, как в молоке, кислотность может колебаться от 75° до 130° Т.

Сметану получают из пастеризованных сливок путем заквашивания их специальной закваской на смешанных культурах молочнокислых бактерий. Жира в сметане содержится 30-60%, кислотность её составляет 65°-110° Т; сметана — богатый источник молочного жира.

Творог готовится из пастеризованного молока путем сквашивания его чистыми культурами молочнокислого стрептококка. Сгусток обрабатывается для удаления из него сыворотки. Творог может быть жирный (18% жирности), полуторный (9% жирности) и обезжиренный (из обрата). Кислотность жирного творога составляет 200-225°Т, полуторного — 210-240°Т, обезжиренного — 220-270°Т. Творог является высококалорийным продуктом, так как в нем содержится много белка (12-16%) и кальция (около 160 мг на 100 г продукта). В белке представлены все незаменимые аминокислоты, особенно много метионина. Кальций творога легко усваивается. Являясь концентратом молока, творог находит самое широкое употребление в питании населения благодаря приятному вкусу, легкой усвояемости, высокому содержанию полноценного белка, жира и кальция, а также возможности приготовления из него разнообразных блюд.

Гигиенические требования к органолептическим свойствам и химическим показателям творога приведены в таблицах 29, 30.

Таблица 29

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Творог</th>
<th>Творог</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>высшего сорта</td>
<td>первого сорта</td>
</tr>
<tr>
<td>Вкус и запах</td>
<td>Чистые, нежные, кисломолочные, без посторонних привкусов и запахов</td>
<td>Те же, что и для высшего сорта. Допускается слабо выраженный привкус кормов, тары и наличие слабой горечи</td>
</tr>
</tbody>
</table>

105
<table>
<thead>
<tr>
<th>Показатели</th>
<th>Творог в высшем сорте</th>
<th>Творог первого сорта</th>
</tr>
</thead>
<tbody>
<tr>
<td>Консистенция</td>
<td>Нежная, допускается неоднородность</td>
<td>Те же, что и для высшего сорта. Допускается консистенция рыхлая, мажущаяся, а для обезжиренного творога — с незначительным выделением сыворотки, рассыпчатая</td>
</tr>
<tr>
<td>Цвет</td>
<td>Белый, слегка желтоватый с кремовым оттенком, равномерный по всей массе</td>
<td>Белый, со слегка желтоватым оттенком. Для жирного творога допускается некоторая неравномерность цвета</td>
</tr>
</tbody>
</table>

Примечание: Творог жирный диетический по органолептическим показателям должен соответствовать высшему сорту со следующими дополнениями: консистенция однородная, допускается привкус высокой пастеризации.

Таблица 30

<table>
<thead>
<tr>
<th>Химические показатели творога</th>
</tr>
</thead>
<tbody>
<tr>
<td>Наименование показателя в %, не менее</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Содержание жира</td>
</tr>
<tr>
<td>Содержание влаги</td>
</tr>
<tr>
<td>Кислотность в градусах Тернера, не более</td>
</tr>
</tbody>
</table>

Примечание: творог жирный диетический по химическим показателям должен соответствовать требованиям высшего сорта.

Сыры являются ценными молочными концентратами. Они содержат в большом количестве высокоценные белки (20-28%) и жиры (25-50%). Необходимо отметить также высокое содержание кальция (600-1000 мг на 100 г продукта) и фосфора (500-600 мг на 100 г продукта). Сыры являются хорошими источниками ретинола и рибофлавина. Энергетическая ценность 100 г твердых сыров колеблется от 330 до 390 ккал, плавленых — около 270 ккал.
Санитарно-гигиенические требования к молоку и творогу

По органолептическим и физико-химическим показателям молоко, предназначенное для непосредственного употребления в пищу, а также для выработки молочных продуктов, должно отвечать требованиям ГОСТов 13277-79, 3624-92 и 5867-90 (табл. 31 и 32), а для оценки качества и безопасности по токсиологическим и микробиологическим показателям - требованиям СанПиН 2.3.2.560-96 (см. табл. 28).

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Характеристика</th>
</tr>
</thead>
<tbody>
<tr>
<td>Внешний вид и консистенция</td>
<td>Однородная жидкость без осадка. Для молока топленого и повышенной жирности - без отстоя сливок.</td>
</tr>
<tr>
<td>Вкус и запах</td>
<td>Чистые, без посторонних, не свойственных свежему молоку привкусов и запахов. Для топленого молока - хорошо выраженный привкус высокой пастеризации. Для белкового и восстановленного - сладковатый привкус.</td>
</tr>
<tr>
<td>Цвет белый</td>
<td>Со слегка желтоватым оттенком; для топленого молока - с кремовым оттенком, для нежирного - со слегка синеватым.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Физико-химические показатели молока</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молоко</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Пастеризованное</td>
</tr>
<tr>
<td>Пастеризованное</td>
</tr>
<tr>
<td>Пастеризованное</td>
</tr>
<tr>
<td>Топленое</td>
</tr>
<tr>
<td>Топленое</td>
</tr>
<tr>
<td>Белковое</td>
</tr>
<tr>
<td>Белковое</td>
</tr>
<tr>
<td>С витамином С</td>
</tr>
<tr>
<td>С витамином C</td>
</tr>
<tr>
<td>С витамином C</td>
</tr>
<tr>
<td>Нежирное</td>
</tr>
</tbody>
</table>

Примечание. Молоко для приготовления детских молочных смесей должно иметь кислотность не выше 19°Т.
Молоко не должно содержать посторонних механических примесей и консервирующих веществ. Не допускается к употреблению молоко, полученное от коров в течение 7 дней после отела (молозиво), и молоко, полученное в течение 15 дней, предшествовавших отелу (стародойное молоко).

Пример. В лабораторию СЭС принят образец творога жирного высшего сорта. Образец изъят из магазина "Молоко" в порядке внеплановой гигиенической экспертизы. Образец доставлен в стеклянной банке, опечатан, в количестве 600 г.

Органолептические свойства.
Внешний вид — чистый, без комков, без посторонних включений.
Консистенция — нежная, однородная.
Цвет — слегка желтоватый.
Запах — без постороннего запаха.
Вкус — без особенностей.
Физико-химические показатели.
Содержание жира — 18%.
Содержание влаги — 64%.
Кислотность — 190°.
Дать заключение о доброкачественности творога жирного высшего сорта в соответствии с РТУ РСФСР 38-79 и рекомендации по использованию продукта.

Методика лабораторного исследования молока.
Для проведения исследования необходимо брать не менее 250 мл молока. Для получения правильных и однородных данных исследуемое молоко необходимо тщательно перемешать.

Определение органолептических свойств молока.
Внешний вид молока отмечается при рассмотрении его в прозрачном сосуде: отмечают однородность, наличие осадка, загрязнение и т.д.

Цвет. В цилиндр или стакан из бесцветного стекла наливают 50-60 мл молока и при достаточном дневном или искусственном свете отмечают наличие того или иного оттенка.

Цельное молоко имеет цвет с малозаметным желтоватым оттенком. Разбавленное и снятое молоко приобретает синеватый оттенок.

Красноватый цвет молока указывает на примесь крови (болезнь вымени) или обусловливается кормом (морковь, свекла и др.), лекарственными веществами (ревень и др.), наличием в мо-
лoque пигментообразующих бактерий. Карамелизация углеводов придаёт молоку цвет топленого молока.

Консистенция. Налитое в стеклянный сосуд молоко слегка взбалтывают. Консистенцию отмечают по следу, оставленному молоком на стенках сосуда. Молоко жидкой консистенции быстро стекает со стенок, не оставляя следа. Цельное молоко на стенках сосуда оставляет белый след. При слизистой и тягучей консистенции (молоди, попадание в продукт слизистых бактерий) молоко имеет значительную вязкость, тянется по стенкам сосуда.

Запах. Молоко наливают в закрытую чистой пробкой конической колбу и слегка подогревают на водяной бане. Свежее молоко имеет слегка заметный специфический запах. При скисании молока появляется кислый запах: развитие в молоке гнилостных бактерий обусловливает запах аммиака, сероводорода. Может ощущаться запах тех или иных лекарственных веществ. Неправильное хранение молока совместно с сильно пахнущими веществами (мыло, керосин, бензин, нафталин и т.п.) придаёт ему запах последних.

Вкус. Доброкачественное молоко имеет приятный следка сладковатый вкус. Горький, солоноватый, прогорклый, мыльный, рыбный и другие привкусы могут обусловливаться плохим кормом, болезнь животного, лактационным периодом (молоди, стародойное молоко), сильной загрязнённостью молока, примесями и т.д. Кислый и затхлый вкус и запахи появляются в результате развития в молоке кисломолочной и гнилостной микрофлоры.

Определение натуральности и цельности молока. Характеристику натуральности и цельности молока дают по трем показателям: плотности, жирности и сухому остатку.

Определение плотности. Нормальная плотность молока равна 1,028-1,034. Прибавление к молоку воды вызывает уменьшение плотности, а снятие сливок повышает её, так как при этом удаляется наиболее легкая часть молока – жир.

Плотность молока определяют специальным молочным ареометром-лактоденситометром (рис. 9). Шкала молочных ареометров имеет градуировку в величине плотности (например, 1,015-
1,036) или в градусах лактоденсиметра, которые обозначают две последние цифры плотности молока (например, цифра 15 означает плотность 1,015).

Плотность молока зависит от его температуры. Для учета этого фактора в лактоденсиметре имеется термометр, показывающий температуру молока. Принято определять плотность при 20°С.

Методика. Тщательно перемешанное молоко осторожно наливают до 3/4 объема в стеклянный сосуд емкостью 200-250 мл и диаметром не менее 5 см, избегая образования пены. Затем чистый и сухой лактоденсиметр осторожно погружают в молоко до 30-го деления, не касаясь стенок цилиндра, после чего перестают удерживать его пальцами.

Перед отсчетом цилиндр с молоком устанавливают на ровной поверхности в таком положении к источнику света, который делает хорошо видимой шкалу плотности и шкалу термометра. Отсчет производят спустя 5 минут после погружения лактоденсиметра в молоко.

Если температура молока выше 20°С, то к показаниям лактоденсиметра на каждый градус следует прибавить по 0,2 (соответствует плотности 0,0002), а если температура ниже 20°С, то на каждый градус надо отнять по 0,2 от показаний лактоденсиметра.

Пример. Показания шкалы лактоденсиметра 26, показания термометра 25°С. Чтобы привести плотность к 20°С, вводим указанную выше поправку (0,2) на температурную разницу (25−20)·0,2=1,0 и полученное число прибавляем к показаниям лактоденсиметра: 26+1=27. Следовательно, плотность молока равна 1,027.

Определение жира. Жир в молоке определяется по способу Гербера, основанному на сжигании в крепкой серной кислоте (плотность 1,82) всех составных частей молока, кроме жира. Жировые шары с помощью изоамилового спирта собираются в виде общей массы жира. Объем жира после центрифугирования измеряется по шкале, нанесенной на узкой части бутирометра (рис. 10).

Во время смешивания молока и серной кислоты происходит сильное нагревание и выделение газов, которые при неправильном и неполном вывинчивании резиновой пробки в бутирометр могут её вытолкнуть, а вместе с ней и кислотную смесь. Поэтому при работе следует соблюдать максимальную осторожность. При случайном попадании капель серной кислоты необходимо моментально обмыть это место большим количеством водопроводной воды или нейтрализовать 0,1 н. раствором щелочи.

110
Методика. В бутирометр, держа его завернутым в тряпочку, наливают пипеткой (или с помощью автомато-клювов) 10 мл серной кислоты. Затем наливают специальной пипеткой 10,77 мл молока, а третьей пипеткой добавляют 1 мл изоамилового спирта. Горлышко бутирометра хорошо вытирают (инаке пробка не будет плотно держаться), затем бутирометр плотно закрывают каучуковой пробкой, осторожно ввинчивая её. При этом бутирометр нужно держать за широкую часть во избежание его перелома в узкой части. Содержимое бутирометра осторожно перемешивают до полного растворения белковых веществ. В том случае, если верхний уровень жидкости находится ниже градуированной части бутирометра и ввинчиванием пробки её не удается поднять до необходимого уровня, дополнительно следует добавить изоамиловый спирт.

После этого бутирометр помещают в водяную баню (узким концом кверху) с температурой 65°С на 5 минут, а затем центрифугируют в течение 5 минут в специальной молочной центрифуге с крышкой. Бутирометры в центрифугу помещают узким концом к центру, располагая их симметрично так, чтобы один бутирометр находился против другого. В случае нечетного числа бутирометров в центрифугу помещают бутирометр с водой. По окончании центрифугирования бутирометры снова ставят узким концом вверх в водяную баню с температурой 65°С на 5 минут, затем по шкале отсчитывают процент жира в молоке. При неполной прозрачности жира бутирометр повторно помещают в водяную баню на 5 минут и подвергают центрифугированию.

При определении жира бутирометр держат левой рукой вертикально против света, правой рукой подкручивают резиновую пробку до тех пор, пока нижний край столбица жира не достигнет уровня нижней границы шкалы (или уровня длинной черты в середине шкалы). Установив нижнюю границу жира, наблюдают, чтобы она не перемещалась. Каждое большое деление шкалы бутирометра соответствует 1% жира, каждое маленькое — 0,1%.
Определение сухого остатка. Сухое вещество в молоке определяют по формуле:

\[X = \frac{4,8 \cdot J + A}{4} + 0,5, \]

где \(X \) — процент сухого вещества в молоке; \(J \) — процент жира; \(A \) — плотность молока в градусах лактоденсиметра при температуре 20°С; 4,8 и 0,5 — эмпирические коэффициенты.

Количество обезжиренного вещества устанавливают путем вычитания из процента сухого вещества процента жира.

Определение свежести молока. При анализе свежести молока производят определение его кислотности и ставят пробу на свертываемость при кипячении и пробу на редуктазу.

Определение кислотности. Кислотность молока определяют способом титрования: 10 мл молока разбавляют 20 мл воды, добавляют 3-4 капли 1% фенолфталеина и титруют 0,1 н. раствором едкого натрия или едкого калия до слабо-розового окрашивания. Количество миллилитров раствора едкого натрия, пошедшего на титрование, умножают на 10 и получают кислотность в градусах Тернера. Градусом кислотности Тернера называется количество миллилитров 0,1 н. раствора едкого натрия или едкого калия, израсходованное на нейтрализацию кислот в 100 мл молока.

Проба на свертываемость при кипячении. Свертывание молока при кипячении может произойти в результате повышения кислотности, содержания в молоке большого количества пептонизирующих бактерий или присутствия в нем посторонних примесей. Если кислотность молока составляет 18-22°Т, то оно при кипячении не свертывается. Однако уже при кислотности, равной 26-28°Т, оно может свернуться в процессе кипячения. Свертывание молока, имеющего кислотность 30°Т, наступает при нагревании до 77°C, молока с кислотностью 40° – до 65°C, с кислотностью 50°Т – до 40°C. Самопроизвольно при комнатной температуре сворачивается молоко с кислотностью 60°Т.

Методика. В небольшую колбочку наливают 5 мл молока и кипятят 1 минуту; после охлаждения проверяют, не произошло ли выпадение хлопьев казеина.

Проба на редуктазу. Реакция основана на том, что в молоке всегда содержатся в значительном количестве микрофлоры, выделяющие фермент редуктазу, обесцвечивающий некоторые красящие вещества и в том числе раствор метиленового синего. Чем больше в молоке микроорганизмов, тем быстрее происходит обесцвечивание этого раствора (табл. 33).
<table>
<thead>
<tr>
<th>Продолжительность обесцвечивания</th>
<th>Количество бактерий в 1 мл молока</th>
<th>Оценка качества</th>
<th>Класс</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/2 ч и более</td>
<td>Менее 500 000</td>
<td>Хорошее</td>
<td>I</td>
</tr>
<tr>
<td>От 2 до 5 1/2 ч</td>
<td>От 500 000 до 4 000 000</td>
<td>Удовлетворительное</td>
<td>II</td>
</tr>
<tr>
<td>От 20 мин до 2 ч</td>
<td>От 4 000 000 до 20 000 000</td>
<td>Плохое</td>
<td>III</td>
</tr>
<tr>
<td>20 мин и менее</td>
<td>20 000 000 и выше</td>
<td>Очень плохое</td>
<td>IV</td>
</tr>
</tbody>
</table>

Методика. В стерильную пробирку наливают 10 мл молока, 2-3 капли 1% раствора метиленового синего и после перемешивания помещают в терmostat при температуре 37-40°C, предварительно налив поверх молока небольшой слой вазелинового масла для защиты от кислородного воздуха. При обильном загрязнении молока микробами обесцвечивание наступает очень быстро: от нескольких минут до 1 часа. Если обесцвечивание раствора не наступает в течение 5-7 часов, молоко считается незначительно обсемененным.

Проба на редуктазу является ориентировочной и ни в коем случае не заменяет бактериологического анализа.

Определение содержания посторонних примесей в молоке. Посторонние примеси добавляют в молоко с целью его фальсификации. Чаще всего прибавляют гидрокарбонат натрия (питьевая сода) и крахмал.

Реакция на примесь гидрокарбоната натрия. Гидрокарбонат натрия может добавляться к молоку для того, чтобы задержать его скисание, причем чаще к молоку с уже повышенной кислотностью. Санитарным законодательством добавление гидрокарбоната натрия к молоку не допускается.

Методика. В пробирку наливают 5 мл молока и 4-5 капель 0,2% раствора розоловой кислоты в 96% спирте. Молоко, содержащее гидрокарбонат натрия, окрашивается в малиново-красный цвет, не содержащее — в желто-розовый.

Для получения правильного результата необходимо параллельно ставить контроль с молоком, заведомо фальсифицированным гидрокарбонатом натрия.

Реакция на примесь крахмала. Прибавление к молоку муки или крахмала с целью создания видимости густоты после разбавления молока водой может быть легко обнаружено реакцией с йодом.
Методика. В колбу вместимостью 100 мл наливают 10 мл молока и доводят до кипения. После охлаждения добавляют 1 мл раствора Люголя и перемешивают. Появление синей окраски после взбалтывания указывает на присутствие в молоке крахмала.

Заключение о доброкачественности молока выносится в соответствии с данными органолептического и физико-химического исследований.

Не допускается употребление молока, которое имеет затхлый, гнилостный, горький, проргорклый, мыльный и другие неприятные запахи и привкусы, тягучую (слизистую) неоднородную консистенцию, ненормальный цвет (сиян, красноватое, чрезмерно желтое окрашивание) и другие органолептические дефекты.

Запрещается употребление сильно загрязненного молока, с наличием консервирующих веществ (салициловой, борной кислот), примесью молозива и т.д.

Не разрешается употребление молока, находящегося в посуде, не отвечающей санитарным требованиям.

При наличии одного из указанных дефектов молоко должно быть денатурировано или подвергнуто уничтожению. С разрешения санитарного надзора оно может быть направлено на корм животным или использовано для технических целей после переработки на утилизационных заводах.

Молоко пониженного качества (маложирное, с повышенной кислотностью, механической и бактериальной загрязненностью) может быть допущено в пищу только после соответствующей обработки (фильтрация с последующей термической обработкой, переработка в кисломолочные продукты, использование для изготовления молочных блюд и кулинарных изделий и др.). При этом в каждом конкретном случае устанавливают условия его использования и одновременно выясняют причины, вызвавшие дефект.

Пример. В лабораторию СЭС Перовского района принят образец пастеризованного молока с указанием исследования на бактериальную обсемененность. Образец изъят из магазина № 14 в порядке гигиенической экспертизы. Образец: 3 бумажных пакета по 0,5 л.

Органолептические свойства — белая, со слегка желтоватым оттенком, однородная жидкость без осадка, без постороннего привкуса и запаха.

Физико-химические свойства — содержание жира — 3,2 %, удельный вес — 1,032, кислотность — 21°Т.

Проба на редуктазу: время обесцвечивания метиленовой синьки — 6,5 часов.
Бактериологические показатели — КМАФАнМ — 100 тысяч в 1 мл, титр кишечной палочки 0,3 мл.
1. Дать заключение о доброкачественности молока, оценить цельность и свежесть молока.
2. Рассчитать сухой остаток молока.
3. Указать условия и сроки хранения и реализации молока.
4. Дать рекомендации по использованию продукта.

2.3.5. Гигиеническая экспертиза мяса

Мясо является основным источником полноценного белка. В среднем содержание белка в мясе составляет 13-15%. Количество жира в мясе колеблется от 3 до 34%.

Белки мяса по своему составу разнообразны: миозин и миоген (50%), актин (12-15%), глобулин (около 20%). Они обеспечивают организм незаменимыми аминокислотами, особенно триптофаном, лизином и аргинином. С мясом человек получает минеральные со- ли (калий, фосфор, натрий, железо) и витамины (A и группы B).

Мясо должно быть получено от здоровых животных. Недопу- стимо содержание в нем патогенных микроорганизмов и яиц гель- минтов. По органолептическим и физико-химическим показателям мясо должно отвечать требованиям ГОСТов 779-55, 7269-79, 9959-91, 7702.2.3-93, 7702.2.1-95.

Мясо относится к категории скоропортящихся продуктов, спо- собных легко подвергаться гниению с образованием иногда ядови- тых веществ за счет разложения аминокислот под влиянием микро- организмов. Оно может служить фактором передачи ряда заболеваний животных и человека, быть причиной пищевых отравлений и гельминтозов.

Гигиеническая экспертиза мяса основывается главным образом на показателях свежести. Для этого производят определение органолептических показателей, химические исследования и микроско- пию.

Органолептическое исследование мяса

Определение внешнего вида и цвета. При внешнем осмотре отмечают цвет мышечной ткани и жира на поверхности мяса на свежем неглубоком и глубоком разрезах. Обращают внимание на наличие ослизления поверхности, увлажненность и липкость мяса на поверхности и на разрезе. Степень увлажненности проверяют, прикладывая кусочек фильтровальной бумаги к поверхности разреза. Свежее мясо на фильтровальной бумаге дает легкую увлажненность.
Определение консистенции. На свежем разрезе при надавливании пальцем остается ямка. В свежем мясе ямка выравнивается быстро, в мясе сомнительной свежести выравнивание происходит медленно (в течение минуты).

Определение запаха. Вначале определяют запах поверхностного слоя, затем чистым ножом делают надрез и немедленно определяют запах в толще мышечной ткани, прилегающей к кости. Запах мяса отчетливее определяется пробы на нож: в глубину мышцы вводят нагретый нож, немедленно его извлекают и устанавливают запах, исходящий от ножа. Этот способ особенно рекомендуется в случае сомнительного качества мяса.

Определение состояния жира. Определяют цвет жира, его запах, консистенцию при раздавливании кусочков жира пальцами.

Определение состояния костного мозга. Определяют положение костного мозга в трубчатой кости. В свежем мясе он заполняет всю полость трубчатой кости. Костный мозг извлекают из кости, определяют его цвет, упругость и блеск на изломе.

Пробная варка мяса. Исследуемое мясо (30-50 г) нарезают кусочками, заливают дистилированной водой и кипятят в закрытой посуде до готовности. В процессе варки при закипании бульона, а также после окончания варки определяют запах бульона, прозрачность, цвет, вкус и состояние жира (мелкие и крупные капли). Прозрачность определяют в большой пробирке или цилиндре на 25 мл после вливания туда 20 мл бульона.

Признаки свежего мяса, мяса сомнительной свежести и несвежего мяса приведены в таблицах 34, 35.

Таблица 34

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Внешний вид</th>
<th>Консистенция</th>
<th>Запах</th>
</tr>
</thead>
<tbody>
<tr>
<td>Охлажденное</td>
<td>Мясо с поверхности имеет сухую корочку подсыхания, цвет ее бледно-розовый. Поверхность свежего разреза слегка влажная, но не липкая, с характерным для каждого вида животного цветом. Мясной сок прозрачный</td>
<td>На разрезе мясо плотное, эластичное. Образующаяся при надавливании ямка быстро выравнивается</td>
<td>Приятный, характерный для каждого вида животного</td>
</tr>
<tr>
<td>Показатели</td>
<td>Внешний вид</td>
<td>Консистенция</td>
<td>Запах</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Мороженое</td>
<td>Поверхность туши нормального цвета с более ярким оттенком, чем у охлажденного мяса. Поверхность разреза розово-серого цвета. В месте прикосновения пальца или теплого ножа появляется пятно ярко-красного цвета</td>
<td>Мясо твердое, как лед, при постукивании издает ясный звук</td>
<td>В замороженном состоянии мясо запаха не имеет. При оттаивании появляется характерный для данного вида мяса запах (без запаха созревшего мяса)</td>
</tr>
<tr>
<td>Оттаившее</td>
<td>Поверхность туши красного цвета. Цвет жира красноватый, поверхность разреза ровная, сильно влажная, смахивает пальцы, с мяса стекает мясной сок красного цвета</td>
<td>Мясо не эластичное, обраzuющаяся при надавливании ямка не выравнивается. Консистенция тестообразная</td>
<td>Характерный для данного вида мяса запах созревшего мяса</td>
</tr>
<tr>
<td>Повторно замороженное</td>
<td>Поверхность туши красного цвета, цвет жира красноватый. Поверхность разруба темно-красная, при прикосновении пальца или теплого ножа не изменяется.</td>
<td>То же, что и у мороженого мяса</td>
<td>То же, что и у мороженого мяса</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Жир</th>
<th>Костный мозг</th>
<th>Сухожилия и суставы</th>
<th>Бульон при варке</th>
</tr>
</thead>
<tbody>
<tr>
<td>Охлажденное</td>
<td>Жир крупного рогатого скота белый, желтоватый или желтый. Консистенция твердая, при раздавливании крошится. Отсутствует запах прогоркания или осаливания. Жир мелкого рогатого скота белого цвета, плотный, отсутствует запах прогоркания или осаливания</td>
<td>Заполняет всю полость трубчатой кости, упругий, желтого цвета. На изломе блестящий, не отстает от краев кости</td>
<td>Сухожилия упругие, плотные, суставные поверхности гладкие, блестящие. Синовиальная жидкость в суставах прозрачная</td>
<td>Прозрачный, допускается легкая опалесценция</td>
</tr>
<tr>
<td>Показатели</td>
<td>Жир</td>
<td>Костный мозг</td>
<td>Сухожилия и суставы</td>
<td>Бульон при варке</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Мороженое</td>
<td>Жир крупного рогатого скота от белого до светло-желтого цвета, у свиней и мелкого рогатого скота белый</td>
<td>Не учитыывается</td>
<td>Сухожилия плотного белого цвета, с серовато-желтym оттенком</td>
<td></td>
</tr>
<tr>
<td>Оттаявшее</td>
<td>Жир частично окрашен в ярко-красный цвет, мягкий, водянистый</td>
<td>Не учитывается</td>
<td>Сухожилия мягкие, рыхлые, окрашены в ярко-красный цвет</td>
<td></td>
</tr>
<tr>
<td>Повторно замороженное</td>
<td>Жир кирпично-красного цвета, в остальном — то же, что и у мороженого мяса</td>
<td>Не учитывается</td>
<td>Сухожилия окрашены в ярко-красный цвет</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 35
Признаки мяса сомнительной свежести и несвежего

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Характерный признак мяса или субпродукта</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Сомнительной свежести</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Внешний вид и цвет поверхности туши</td>
<td>Местами увлажнена, слегка липкая, потемневшая</td>
</tr>
<tr>
<td>Мышцы на разрезе</td>
<td>Влажные, оставляют влажное пятно на фильтровальной бумаге, слегка липкие, темно-красного цвета. Для размороженного мяса с поверхности разреза стекает мясной сок, слегка мутноватый</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Консистенция</td>
<td>На разрезе мясо менее плотное и менее упругое; образующаяся при надавливании пальцем ямка выравнивается медленно (в течение 1 мин.), жир мягкий; у размороженного мяса жир слегка разрыхлен</td>
</tr>
<tr>
<td>Запах</td>
<td>Слегка кисловатый или с оттенком затхлости</td>
</tr>
<tr>
<td>Состояние жира</td>
<td>Имеет серовато-матовый оттенок, слегка липнет к пальцам, может иметь легкий запах осаливания. Сухожилия менее плотные, матово-белого цвета. Суставные поверхности слегка покрыты слизью</td>
</tr>
<tr>
<td>Прозрачность и аромат бульона</td>
<td>Прозрачный или мутный, с запахом, не свойственным свежему бульону</td>
</tr>
</tbody>
</table>

Химические исследования

Реакцию с сульфатом меди, определение выделения летучих жирных кислот и аминоаминнаучного азота проводят для исследования продуктов разложения белков под влиянием микроорганизмов.

Бактериоскопическое исследование мяса

На поверхности мяса может находиться различное количество микроорганизмов. По количеству их можно ориентировочно судить о свежести мяса. Для определения количества микроорганизмов делают мазки-отпечатки и окрашивают их по Граму, генцианвиолетом и раствором Люголя. Затем мазки промывают водой и обрабатывают спиртом, после чего их опять обрабатывают водой и промывают карболовым фуксином. Грамположительные микроны окрашиваются в фиолетовый цвет.

119
В свежем мясе, в мазках-отпечатках бактерии отсутствуют или в единичном количестве имеются кокки и палочки. В поле зрения нет остатков разложившихся мышечных тканей.

В мясе сомнительного качества можно обнаружить несколько десятков кокков (20-30) в поле зрения и несколько палочек, заметны следы распада тканей.

В несвежем мясе обнаруживается множество микроорганизмов с преобладанием палочек, а также большое количество распавшихся тканей.

Исследование мяса на содержание в нем финн и трихинелл

Мясо может быть поражено личиночными формами некоторых гельминтов, опасных для человека: свиного вооруженного цепня или бычьего невооруженного. Поражение мяса личниками указанных гельминтов называется цистицеркозом (или финнозом) мяса. Мясо на наличие финн исследуется путем осмотра разреза мышечной ткани невозоруженным глазом. При наличии финн они видны в виде мелких белых включений величиной с мелкую горошину или зерно чечевицы. Финны чаще всего локализуются в жевательных мышцах и миокарде.

По существующим санитарно-ветеринарным нормам при наличии более 3-х финн на площади разреза, равной 40 см², мясо считается в пищу непригодным и должно направляться на утилизацию. При наличии в мясе до 3 финн на этой площади мясо подлежит обезвреживанию. Для обезвреживания рекомендуются следующие способы: кипячение в течение двух часов кусками не более 2 кг и толщиной не более 8 см. Если возможно — варка в закрытых котлах под давлением 1,5 атм., срок кипячения сокращается до 1,5 часа.

Мясо крупных рогатого скота можно обезвредить замораживанием. Мясо считается обезвреженным, если его заморозить до температуры -12°C в толще мышц без выдержки или доведением до -6°C последующим выдерживанием при 9°C в течение 24 часов.

Обезвреживание свинины требует доведения температуры до -10°C в толще мышц и последующего выдерживания при -12°C в течение 10 суток.

Обезвреживание финнозного мяса можно провести также крепким посолом и последующим выдерживанием в крепком рассоле в течение 20 суток. При этом жир свинины слабо воспринимает соль, концентрация в нем соли достигает не более 3,5-5%. Финны же по-
гибают при концентрации соли не менее 7%, поэтому обезвреживание шпига от финн производится его перегаиванием при +100°C.

Мясо может быть поражено также очень опасными для человека личинками трихинелл Trichinella spiralis. Для исследования мяса на наличие трихинелл вырезают небольшие кусочки мышечной ткани (величиной с грецкий орех) из ножек, диафрагмы, брюшных и жевательных мышц. От этих вырезок отрезают ножницами кусочки мышечной ткани, величиной с просеянное зерно и сжимают между двумя предметными стеклами. Рассматривают трихинелл под микроскопом под малым увеличением (в 10-15 раз). Они видны в виде свернутых в спираль или изогнутых червей.

Более правильно производить исследование мяса на наличие трихинелл в специальном приборе компрессорнуме. Он состоит из двух стеклянных пластинок, разделенных на 24 квадрата. Пластины имеют винтовые приспособления, которые позволяют сжимать и раздавливать исследуемые пробы мяса. На каждый квадрат наносят по одному кусочку исследуемого мяса, завинчивают винты, сжимают эти кусочки до тех пор, пока не получится просвечивающийся препарат. При обнаружении хотя бы одной трихинеллы, независимо от ее жизнеспособности, тушу и органы запрещают использовать в пищевых целях.

Рекомендации к составлению заключения

В зависимости от окончательной оценки мясу присваивается одна из трех категорий: свежее мясо имеет 21-25 баллов, мясо со- мнительной свежести 10-20 баллов, несвежее мясо 0-9 баллов.

Пример. В лабораторию СЭС Черемушкинского района г. Москвы принят образец охлажденного мяса говяжьего для определения характера поражения. Образец изъят из магазина № 3. Характер упаковки: образец доставлен завернутым в целлофан и оберточную бумагу, перевязан бечевкой, опечатан.

Вес образца — 300 грамм.

Результаты исследования.

Органолептические свойства.

Внешний вид — образец представляет собой кусок сырого говяжьего мяса, состоящий из мышечной ткани с небольшим количеством жира, без кости. Корочка подсыхания слабо выражена.

Цвет — с поверхности и в глубоких частях — буро-красный, свойственный свежей говядине, жир желтоватый, обычный.

Запах — свежего мяса. При разрезе образца в глубине тканей при внимательном осмотре обнаружены пузырьки овальной формы, величиной
с пшеничное зерно. При микроскопии отмечается характерное строение для финны ленточных глист. Внутри пузырька видна головка паразита с присосками и крючьями. При исследовании в растворе желчи — финны жизнеспособны. На участке мышц площадью 40 см² обнаружено 4-5 финн.

Дать заключение о доброкачественности охлажденного мяса говяжьего и рекомендации по использованию продукта.

2.3.6. Гигиеническая экспертиза рыбы

Рыба и рыбопродукты играют важную роль в обеспечении населения полноценным белком. Содержание белка в рыбе довольно стабильно (от 8 до 14%), а количество жира подвержено большим колебаниям (от 0,3 до 28% и более).

Жиры всех рыб относятся к продуктам высокой биологической ценности, что связано с наличием в них полиненасыщенных жирных кислот и жирорастворимых витаминов. Следует отметить, что рыба является хорошим источником микроэлементов (йода, фтора, меди, цинка).

Рыба — более скоропортящийся продукт, чем мясо. Проникновение микроорганизмов в ткани рыбы происходит с поверхности и из кишечника. Кроме микробного разложения, мясо рыб подвергается глубоким химическим изменениям, возникающими под влиянием аутолиза. Рыба может быть причиной некоторых гельминтозов и пищевых отравлений.

Доброкачественность рыбы оценивают теми же методами, что и доброкачественность мяса теплокровных животных (ГОСТ 7636-85 "Правила приемки, органолептические методы оценки качества, методы отбора проб для лабораторных испытаний"), а также СанPiНа 2.3.4.050-96 и ГОСТа 7630-96.

Органолептические свойства

При оценке качества рыбы руководствуются в основном органолептическими показателями. Тщательно проведенное исследование позволяет достаточно рано и объективно оценить качество рыбы и принять правильное решение об её использовании при проведении этого исследования без каких-либо лабораторных и химических анализов. В процессе органолептического исследования рыбы и оценки её качества обращают внимание на следующие признаки: 1) отсутствие неприятного запаха и прозрачность слизи, покрывающей рыбу; 2) прозрачность роговицы глаз и яркость их окраски; 3) ярко-красная окраска жабр и отсутствие неприятного запа-
ха; 4) плотная консистенция рыбы; 5) целостность брюшка и не помятость плавников; 6) отсутствие неприятного гнилостного запа-
ха.

При интенсивном размножении микроорганизмов возможно проникновение их из кишечника в крупные кровеносные сосуды, расположенные вдоль позвоночика. Под влиянием жизнедеятель-
ности микроорганизмов кровь гемолизируется и, проникая через сосудистую стенку, окрашивает в ярко-розовый цвет мышечную ткань, расположенную вдоль позвоночика. Это явление получило название "загар" — существенный дефект рыбы. Если имеются толь-
ко поверхностные изменения, не затрагивающие мышечную ткань, употребление рыбы в пищу разрешается при условии удаления от-
дельных частей (слизь, жабры и др.) и мест с признаками порчи.

Химическое исследование

Для определения доброкачественности рыбы в ряде случаев проводят реакции на аммиак и сероводород, образующиеся при порче рыбы (ГОСТ 7636-85).

Микроскопия. Исследование рыбы на наличие плеероцеркоида широкого лентеца

Плеероцеркоид является одной из промежуточных стадий разви-
тия широкого лентеца — Diphillobotrium latum, опасного для че-
ловека гельминта, достигающего в длину 10 м.

В мышечной ткани рыбы плеероцеркоиды видны на поверхно-
сти мышц после отделения кожи невооруженным глазом. Они представляют собой небольшие личинки в виде молочно-белых не-
прозрачных полосок длиной 1-2,5 см и шириной около 2-3 мм. Ис-
пользование для пищевых целей рыбы, пораженной единичными плеероцеркоидами широкого лентеца возможно только после тща-
тельной термической обработки (прожаривание малых экземпля-
ров ершей, окуней или мелких кусков). Хороший эффект дает вар-
ка рыбы. Обезвреживание достигается путем горячего и холодного копчения, а также посола рыбы с последующей выдержкой в тече-
nie 6-15 дней в зависимости от крепости посола. Слабосоленую рыбу (8-9% соли) следует выдерживать не менее 15 суток. Можно провести обезвреживание также замораживанием при температуре
-12°C в течение 3-х суток.

В случае массового заражения мышечной ткани реализация рыбы не допускается.
Исследование рыбы на наличие кошачьей двуустки

Описторхоз — это гельминтоз, обусловленный проникновением в организм человека кошачьей двуустки Opistorchis felineus (длина 4-13 мм, ширина 1-3,5 мм) или другой трематоды — Opistorchis viverrini.

Заражение человека происходит в результате потребления рыбы, инвазированных инцистированными личинками (метацеркариями) кошачьей двуустки, расположенными в мышечной ткани в виде узелков величиной с просное зерно.

Использование рыбы, пораженной метацеркариями кошачьей двуустки возможно после термической обработки. При варке куском метацеркарии погибают через 20 минут, во фрикаделях из рыбного фарша — через 10 минут, при засолке — через 3,5 минуты (мелкая рыба) и через 10 суток (крупная рыба). Холодное копчение, в отличие от горячего, не убивает метацеркариев. Они хорошо переносят низкие температуры.

Рекомендации к составлению заключения

Органолептические показатели имеют первостепенное значение при подготовке заключения о доброкачественности рыбы. Часто оно делается только на основании этих показателей (ГОСТ 7631-73).

Пример. В лабораторию СЭС Кировского района г. Москвы принят образец рыбы мороженой с целью определения поражения.

Образец изъят из магазина "Рыба" № 5 при внеплановой экспертизе.

Характер упаковки — образец завернут в оберточную бумагу, печатан в количестве 2-х экземпляров рыбы щуки.

Результаты исследования.

Органолептические свойства:

Внешний вид — после оттаивания чешуя плотно прилегает к коже, плавники целы и не деформированы, брюшки в пределах нормы, глаза несколько запавшие. Цвет кожных покровов, чешуи и мяса на разрезе — обычный, цвет жабр — красный. Консистенция мышечной ткани — плотная. Запах — сырой рыбы.

При вскрытии брюшной полости рыбы на поверхности кишечника и печени имеются единичные фиброзные капсулы диаметром около 3 мм. Между петлями кишечника видны единичные (в одном экземпляре рыбы 2, в другом — 3) белые подвижные личинки длиной 2 см, шириной 3 мм, похожие на плероцеркоиды лентеца. В срезах мышц спины обнаружены экземпляры фиброзных капсул. При исследовании содержимого капсула под микроскопом видна головка без крючков широкого лентеца.
Дать заключение о доброкачественности щуки мороженной и рекомендации по использованию продукта.

2.3.7. Гигиеническая экспертиза хлеба

Оценка проводится в соответствии с СанПиН 2.3.2.560-96, СанПиН2.3.4.545-96 и ГОСТами: 5669-96 и 5670-96.

Органолептические показатели качества хлеба

Различие в сортах ржаного и пшеничного хлеба обусловлено сортом (выходом) муки, взятой для его выпечки. В зависимости от способа выпечки хлеб может быть формовым, т.е. выпеченным в формах или подовым, выпеченным на противнях.

Поверхность хлеба должна быть гладкой, без крупных трещин и надрывов. Крупными принято считать трещины шириной более 1 см, проходящие через всю верхнюю корку в одном или нескольких направлениях.

Окраска хлеба должна быть равномерной, коричнево-буровой с некоторым блеском верхней и боковой корки в подовом хлебе и верхней корки в формовом хлебе. Подгорелость корок не допускается так же, как и излишняя их бледность. Переход от корки к мякишу должен быть постепенным, не допускается отслоенность корки от мякиша.

Форма хлеба должна быть правильной, не расплывчатой, не мятой, без боковых наплывов и других дефектов. Толщина верхней корки допускается не более 3-4 мм. У подового хлеба нижняя корка не более 5 мм, у формового — не более 3 мм.

Состояние мякиша учитывается по степени пропеченности, интенсивности и равномерности промеса теста, пористости и эластичности. Хлеб должен быть хорошо пропеченным, не липким, не влажным на ощупь, без комочков и следов непромеса, равномерно пористым. В мякише не допускается наличие пустот и закала, т.е. плотных, водянистых, не содержащих пор участков, располагающихся обычно у нижней корки. Мякиш должен быть достаточно эластичным, не крошковатым, не черствым. При легком надавливании пальцем — быстро принимать первоначальную форму.

Вкус хлеба должен быть умеренно кислым, не пересоленным, без признаков горечи или постороннего привкуса, без хруста на зубах от минеральных примесей.

Запах хлеба должен быть свойствен данному виду и сорту без посторонних оттенков.
Поражение хлеба плесенью, картофельной болезнью и пигментообразующими бактериями

Плесневение хлеба. Поражается плесенью главным образом мякиш. Плесневение хлеба наблюдается при повышенной влажности и хранении его в неблагоприятных условиях (в темных, плохо вентилируемых помещениях). Процесс плесневения обусловливается развитием грибов Penicillium glaucum (зеленая плесень), Mucor mucedo (головчатая плесень) и др.

При плесневении изменяется химический состав хлеба и обрабатываются вещества, обладающие неприятным запахом. Хлеб, пораженный плесенью, не допускается к использованию в пищевых целях.

Картофельная (тягучая) болезнь. Поражение хлеба происходит в результате развития и жизнецветности в нем бактерий из группы Mecentericium, постоянно присутствующих на картофеле. Возбудители картофельной болезни широко распространены во внешней среде и легко попадают в муку и тесто. Они содержат устойчивые к нагреванию споры, выделяющие даже температуру выпечки хлеба.

Картофельной болезнью поражается преимущественно пшеничный хлеб с повышенной влажностью и высокой кислотностью при хранении его в тесных, жарких, плохо вентилируемых складах, как правило, в жаркое время года. Ржаной хлеб из-за высокой кислотности картофельной болезнью не поражается. Мякиш пораженного хлеба представляет собой лищую, тягучую, грязноворонковидную массу, издающую специфический запах гниющих фруктов. В этой разжиженной массе содержатся водорастворимые продукты гидролиза крахмала (декстрин, сахар) и продукты распада белка (пептоны, альбумоны и т.д.).

Хлеб, зараженный картофельной болезнью, непригоден к употреблению в пищу.

Поражение хлеба пигментообразующими бактериями проявляется в виде слизистых ярко-красных пятен, обусловленных жизнедеятельностью пигментообразующего микроба B.prodigiosus, известного под названием чудесной палочкой, на изделиях из пшеничной муки. Развитие бактерий происходит в тесных, влажных, жарких помещениях. Изменения в хлебе не приносят вреда, однако, в связи с необычной окраской такой хлеб в пищу не используется.

Пример. Партия хлеба пшеничного формового, находящегося в складских помещениях детского сада, хранится на стеллажах. Помещение проветривается, температура помещения + 18°С.
Органолептическое исследование образца, проводимое врачом: внешний вид батона — соответствует данному виду хлеба, поверхность гладкая. На разрезе мякиш хлеба имеет:
цвет - равномерный
консистенцию - эластичную
запах - без постороннего запаха
вкус - без постороннего привкуса.
Дать заключение о доброкачественности хлеба пшеничного формового в соответствии с ГОСТом и рекомендации по использованию продукта.

2.3.8. Гигиеническая экспертиза баночных консервов

Оценка консервов проводится в соответствии с СанПиН 2.3.2.560-96 и ГОСТами 13534-89 "Консервы мясные"; 3 50105-92 "Консервы и презеры из рыбы".
Баночные консервы, в зависимости от способа консервирования, выпускаются как истинные консервы и как презеры. Истинные консервы — стерильный пищевой продукт в герметически закупоренной таре, подвергнутый стерилизации в специальных автоклавах. Презеры — не стерильные пищевые продукты (кильки, сельди и т.д.), залитые маринадом или прямым рассолом и герметически укупоренные в банки. К презервам не предъявляются требования стерильности продукта. Они могут храниться кратковременно и только на холоде.
Консервы могут быть мясные, рыбные, овощные, мясорастительные, фруктовые. Содержимое консервных банок должно отвечать названию, указанному на этикетке. Баночные консервы и презеры выпускаются в жестяной или стеклянной таре.
При санитарной экспертизе консервов устанавливают состояние тары и проводят исследование качества содержимого банок в соответствии с требованиями к данному виду консервов.
Внешний осмотр банок: отмечают состояние этикетки, содержание надписи на этикетке, наличие видимых дефектов формы банки, нарушение герметичности, ржавых пятен, состояние шва, содержания оттисков на крышке и донышке банки.
Оттиски обозначают: 1) число выработки — две цифры (до девятого знака впереди 0); 2) месяц выработки — две цифры (до девятого знака впереди 0); 3) год выработки — две последние цифры; 4) номер смены — одна цифра; 5) ассортиментный номер 1-3 цифры. Для консервов высшего сорта к нему добавляется буква "B"; 6) индекс системы — 1-2 буквы: А — мясной промышленности, Р — рыбной промышленности, К — плодоовощного хозяйства, У.С.
- потребкооперации, М.С. - С/Х производства, ЛХ - лесного хозяйства; 7) номер предприятия изготовителя - 1-3 цифры. Оттиск может быть дан весь в две строчки на крышке или на крышке в две строчки с датой выработки и номером смены и ассортиментным номером, а на донышке с индексом системы и номером предприятия.

131088 или на крышке 131088
1183A151 1 183
а на донышке А 151

Консервы выработаны 13 октября 1988 года в 1 смену с ассортиментным номером 183 предприятием мясной промышленности № 151.

При внешнем осмотре банок обращают внимание на состояние донышек: на наличие их вздутия (бомбажа). Бомбаж может иметь различное происхождение: a) микробное (вследствие образования микроорганизмами газов - сероводорода, метана, аммиака, углекислоты); b) физическое вследствие нагревания, заморозки продукта или переполнения банки, а также её деформации; в) химическое, вызванное вздутием донышек вследствие образования водорода в результате действия кислот консервной заливки на металл, покрывающий банку.

Данные внешнего осмотра банки заносят в протокол анализа, после чего приступают к исследованию банки на герметичность упаковки с помощью арбитражного и упрощенного метода.

Упрощенный метод: банку освобождают от этикетки, обтирают от смазывающего слоя вазелина, обвязывают шпагатом и погружают в предварительно нагретую до кипения воду. Количество воды должно быть в 4 раза больше объема банки. Вода должна полностью покрывать погруженную в неё банку. Температура воды после погружения в неё банки падает, её нужно поддерживать на уровне не ниже 85°C. Банка выдерживается в горячей воде в течение 5-7 минут.

При нарушении герметичности упаковки консервов на поверхности воды появляются пузырьки воздуха.

2.3.9. Гигиеническая экспертиза плодоовощной продукции

Гигиенической экспертизе подлежат свежие и свежезамороженные овощи, сушеные овощи, картофель, фрукты, ягоды и грибы, соки, напитки и концентраты овощные, фруктовые, ягодные, соленые и квашеные овощи, соленые и маринованные грибы.
Оценка указанных продуктов осуществляется в соответствии с Санитарными правилами и нормами СанПиН 2.3.2.560-96.

Исследование свежих овощей, фруктов и ягод на содержание в них нитратов.

Содержание нитратов является одним из важных показателей, характеризующих экологическую и гигиениическую безопасность продуктов питания растительного происхождения.

Причиной увеличения содержания нитратов в этих продуктах является, как правило, чрезмерное применение в сельском хозяйстве азотных удобрений, вследствие чего возрастает уровень содержания нитратов в почве, поверхностных и грунтовых водах, откуда они поступают в продовольственные и фуражные сельскохозяйственные продукты. Кроме того, нитраты используются в качестве пищевых добавок, например, в колбасном производстве, где возможна их передозировка. Известно также о возможности использования нитратов с целью фальсификации пищевых продуктов, так как они способствуют ускорению созревания, в частности, бахчевых культур (арбузов, дынь и др.)

Значительное накопление нитратов в воде и пищевых продуктах может явиться причиной метгемоглобинемии у детей и ряда заболеваний у сельскохозяйственных животных. Нитраты могут вступать в соединение с аминами и амидами, образуя обладающие канцерогенным действием нитрозамины и нитрозамиды.

Накопление нитратов в растительных продуктах происходит с различной интенсивностью. Так, при одном и том же содержании их в почве - 80 мг/кг, они могут содержаться в бахчевых в количествах 100-140 мг/кг, томатах - 115 мг/кг, огурцах - 120 мг/кг, картофеле - 220 мг/кг, капусте - 280 мг/кг, свекле - 420 мг/кг.

Для определения содержания нитратов в продуктах питания могут быть использованы различные методы. Методика определения содержания нитратов в плодово-ягодной продукции изложена в МУ 5048-89. Однако, в настоящее время наиболее широко используется экспресс-контроль с помощью прибора «МОРИОН» (рис.11), хотя этот прибор и дает достаточно большую погрешность (порядка 20%).
Рис. 11. Прибор «МАРИОН» для экспресс-контроля растительных продуктов на содержание нитратов: 1 — определятель качества "Морион-ОК-2"; 2 — защитный колпачок; 3 — индикатор; 4 — сектор контроля источника питания; 5 — гнездо для включения внешнего источника питания; 6 — регулятор установки пределов; 7 — кнопка для калибровки шкалы индикатора; 8 — измерительный наконечник; 9 — крышка батарейного отсека; 10 — винт крепления крышки батарейного отдела; 11 — место установки пломбы; 12 — лента для извлечения батарей.

Порядок работы

1. Слегка нажать колесо регулятора 6 и плавно переместить его вправо до включения прибора (при этом слышен щелчок).
2. Выбрать одну из калибровочных кнопок, соответствующую проверяемому продукту и удерживая ее в нажатом состоянии, регулятором 6 установить стрелку индикатора 3 (верхняя шкала) на отметку 100%. Отпустить кнопку (стрелка индикатора должна уйти в крайнее левое положение).
3. Снять защитный колпачок 2 и установить измерительный наконечник 8 в проверяемый продукт на глубину не менее 5 мм — стрелка индикатора (по верхней шкале) покажет процентное содержание нитратов в проверяемом продукте относительно ПДК, принятого за 100%.
4. Рассчитать абсолютное содержание нитратов в исследуемом продукте по формуле:

\[C = \frac{n \cdot \text{ПДК}}{100} \text{ мг/кг}, \]

где \(n \) — показатель индикатора в процентах, ПДК — предельно допустимые концентрации нитратов в данном продукте (см. таблицу 36)

5. После завершения измерений, плавным вращением регулятора 6 влево, прибор выключается. Измерительный наконечник промывается водой, протирается тампоном и защитный колпачок закрывается.

6. При исследовании других продуктов пункты 2, 3, 4 и 5 повторяются.

Таблица 36

ПДК нитратов в некоторых растительных продуктах питания
(СанПиН 2.3.2.560-96)

<table>
<thead>
<tr>
<th>Наименование продукта</th>
<th>ПДК мг/кг</th>
<th>Калибровочная кнопка для определения содержания на приборе «Морион»</th>
</tr>
</thead>
<tbody>
<tr>
<td>Томаты</td>
<td>300</td>
<td>1</td>
</tr>
<tr>
<td>Картофель</td>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>Капуста</td>
<td>900</td>
<td>3</td>
</tr>
<tr>
<td>Баклажаны</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Кабачки</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Лук репчатый</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Лиственные культуры</td>
<td>2000</td>
<td>4</td>
</tr>
<tr>
<td>Свекла</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>Огурцы</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Морковь</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Дыни</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Арбузы</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Ягоды и фрукты</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
2.4. Пищевые отравления, их расследование и профилактика

Цель занятия: ознакомить студентов с современной классификацией пищевых отравлений, их этиологией, клиникой и профилактикой, методами расследования.

Практические навыки: научить студентов проводить расследование пищевых отравлений для выявления этиологического фактора и организации профилактических мероприятий.

Задание студентам:
1. Расследовать описанный случай пищевого отравления, используя данные анамнеза, клиники, результаты лабораторных исследований и данные санитарного обследования предприятия общественного питания.
2. Установить диагноз пищевого отравления, выявить продукт, вызвавший его возникновение, и предложить конкретные меры профилактики (результаты расследований докладывают и обсуждают в группе).

Таблица 37

Классификация пищевых отравлений

<table>
<thead>
<tr>
<th>Нозологическая форма</th>
<th>Этиологический фактор</th>
</tr>
</thead>
<tbody>
<tr>
<td>Микробные</td>
<td></td>
</tr>
<tr>
<td>1.1. Токсикоинфекции:</td>
<td>Потentially-патогенные микроорганизмы: Proteus mirabilis и vulgaris, энтеропатогенные, энтероинвазивные E.coli, Bac.cereus, Cl.perfringens типа A, Str.faecalis var.liquefaciens и zymogenes, Vibrio para- haemolyticus, другие малоизученные бактерии (Citrobacter, Hafnia, Klebsiella, Edwardsiella, Pseudomonas, Aeromonas и др.)</td>
</tr>
<tr>
<td>1.2. Токсикиозы:</td>
<td>Бактериальные токсины, вырабатываемые Staphylococcus aureus и Cl.botulinum</td>
</tr>
<tr>
<td>1.2.2. Микотоксикиозы</td>
<td>Микотоксины, вырабатываемые микроскопическими грибами родов Aspergillus, Fusarium, Penicillium, Claviceps purpurea и др.</td>
</tr>
<tr>
<td>1.3. Смешанной этиологии (микст)</td>
<td>Сочетания потенциально-патогенных микроорганизмов и потенциально-патогенных микроорганизмов + токсин: Bac.cereus + энтеротоксинный S.aureus; протей + энтеротоксинный S.aureus и т.п.</td>
</tr>
</tbody>
</table>
2. Немикробные

<table>
<thead>
<tr>
<th>2.1. Отравления ядовитыми растениями и тканями животных</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1. Растениями, ядовитыми по своей природе</td>
</tr>
<tr>
<td>Дикорастущие растения (белена, дурман, болиголов, красавка, вех ядовитый, аконит, бузина и др.); семена сорняков, злаковых культур (софора, триходесма, гелиотроп и др.)</td>
</tr>
<tr>
<td>Ядовитые грибы (бледная поганка, мухомор, сатанинский гриб, строчки и др.); условно съедобные грибы, не подвергнутые правильной кулинарной обработке (гру兹ь, волушка, валуй и др.)</td>
</tr>
<tr>
<td>Органы некоторых рыб (маринка, усач, севанская хромуля, иглобрюх и др.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.1.2. Тканями животных, ядовитыми по своей природе</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2. Отравления продуктами растительного и животного происхождения, ядовитыми при определенных условиях</td>
</tr>
<tr>
<td>2.2.1. Продуктами растительного происхождения</td>
</tr>
<tr>
<td>Ядра косточковых плодов (персика, абрикосов, вишни, миндаля), содержащие амилдалин; орехи (бука, тунга, рицинн), проросший (зеленый) картофель, содержащий соланин; бобы сырой фасоли, содержащие лектины</td>
</tr>
<tr>
<td>Рыба, содержащая сакситоксин, сигуатеротоксин, биогенные амины; печень, икра и молока некоторых видов рыб в период нереста (налим, щука, скумбрия и др.); мед пчелиный при сборе пчелами нектара с ядовитых растений</td>
</tr>
<tr>
<td>Нитраты, бифенилы, пестициды; соли тяжелых металлов и мышьяк; пищевые добавки, введенные в количествах, превышающих допустимые; соединения, мигрирующие в пищевой продукт из оборудования, инвентаря, тары, упаковочных материалов; другие химические примеси</td>
</tr>
</tbody>
</table>

| 2.2.2. Продуктами животного происхождения |

| 2.3. Отравления примесями химических веществ |

<table>
<thead>
<tr>
<th>3. Неустановленной этиологии</th>
</tr>
</thead>
<tbody>
<tr>
<td>Алиментарная пароксизмально-токсическая миоглюбинурия (гаффская, юковская, сартландская болезнь)</td>
</tr>
<tr>
<td>Озерная рыба некоторых районов мира в отдельные годы</td>
</tr>
</tbody>
</table>
Расследование пищевых отравлений — совокупность мероприятий, направленных на выявление этиологии заболевания и факторов, способствующих его возникновению, с целью осуществления лечения и предупреждения подобных заболеваний.

В расследовании отравления могут принимать участие санитарный врач по гигиене питания или главный врач Центра Госсанэпиднадзора (ЦГСЭН), а также врачи лечебного профиля (участковый врач и врачи-специалисты поликлиники, цеховые врачи меди-ко-санитарных частей и врачи других лечебно-профилактических учреждений).

До прибытия санитарного врача расследование пищевого отравления проводит участковый врач или средний медицинский персонал. Они обязаны:

1. Изъять из употребления остатки подозрительной пищи и взять пробы для анализа в количестве 200-300 г.

2. Собрать рвотные и каловые массы заболевших, промывные воды желудка и мочу в количестве 100-200 мл для бактериологического анализа, взять 10 мл крови из локтевой вены для посева на гемокультуру.

Все пробы для анализа следует собирать в стерильную посуду. В связи с этим в лечебных учреждениях, в первую очередь на станциях скорой помощи, а также в больницах, поликлиниках, должен быть необходимый запас стерильной стеклянной посуды. В случае отсутствия стерильной посуды чисто вымытая стеклянная посуда должна быть прокипячена в воде перед использованием.

3. Направить изъятую пищу, собранное выделение и промывные воды на исследование в санитарно-бактериологическую лабораторию или сохранить их на холоде до прибытия санитарного врача.

4. До выяснения всех обстоятельств запретить реализацию подозрительных продуктов.

5. Немедленно известить о пищевом отравлении по телефону, телеграфу и отослать с нарочным экстренное извещение в местный ЦГСЭН.

Санитарный врач при расследовании пищевого отравления должен:

1. Провести опрос больных по следующей схеме:

Ф.И.О. __
Возраст __
Место работы __
Чем и где питался пострадавший в течение последних 2 сут.

Имеются ли заболевания среди членов семьи, где и чем они питаются

Дата и время начала заболевания

Клинические симптомы заболевания: повышение температуры, понос, озноб, судороги, цианоз, головная боль, боль в конечностях, боль в животе, тошнота, рвота

Какой продукт или блюдо подозревается

Место и время приема в пищу подозрительного продукта

Период инкубации

2. Тщательно проанализировать с участием лечащих врачей всю клиническую картину заболевания с учетом первичных симптомов, дальнейшего течения и исходов. При этом необходимо исключить заболевания иной этиологии, напоминающие по отдельным признакам пищевое отравление.

3. Направить, если это не сделано, на исследование в лабораторию подозрительные продукты и собранные у заболевших выделения.

4. Обеспечить взятие и направление в лабораторию крови заболевших для посева и серологических реакций. Серологические реакции ставятся на 1-3-й день заболевания и на 7-10-й день. Если реакции не сделаны своевременно, то они ставятся на 7-10-й день и повторяются на 15-20-й день.

При большом числе пострадавших серологическому исследованию подвергается кровь наиболее тяжело переболевших (рекомендуется взять кровь не менее чем у 15-20 человек), а при небольшом числе пострадавших — желательно у всех заболевших.

В случае летальных исходов принимаются во внимание результаты патологоанатомического вскрытия и производится лабораторное исследование трупного материала: паренхиматозных органов, содержимого желудка и кишечника (200-300 г), крови из сердца (10 мл).

5. Для выяснения путей инфицирования или загрязнения ядовитыми веществами пищевого продукта, послужившего причиной отравления, необходимо проверить санитарные условия перевозки, технологию приготовления пищи, сроки хранения и реализации сырья, полуфабрикатов и готовой продукции, наличие ветеринарно-санитарных удостоверений, возможность инфицирования про-
дуктов бактерионосителями, лицами с гнойничковыми заболеваниями и др.

В процессе расследования санитарный врач принимает необходимые меры:

1. Запрещает использовать или в необходимых случаях устанавливает порядок реализации пищевых продуктов, послуживших причиной отравления.

2. Немедленно отстраняет от работы или переводит на работу, не связанную с переработкой, хранением или транспортировкой пищевых продуктов, лиц, которые могли быть источником инфицирования пищевых продуктов.

3. Предлагает и контролирует осуществление необходимых санитарных мероприятий на предприятии, санитарные нарушения в котором послужили причиной выработки недоброкачественных продуктов (временное или постоянное запрещение эксплуатации, дезинфекция, ремонт пищевого предприятия).

4. Привлекает к административной ответственности или передает материалы расследования в прокуратуру для привлечения к уголовной ответственности лиц, виновных в производстве, выпуске и реализации продукта, вызвавшего пищевое отравление.

Пример решения типовой задачи

Задача. Гражданка Е. купила в магазине вареную севрюгу. Утром следующего дня часть рыбы была съедена членами семьи. Оставшаяся часть рыбы хранилась в течение 2 дней при комнатной температуре. Вечером на 2-й день она без дополнительной тепловой обработки вновь употреблялась в пищу. Ели рыбу все члены семьи. Однако на следующий день заболевала только дочь в возрасте 17 лет.

Симптомы заболевания: головокружение, боли в животе, тошнота, рвота, неравномерное расширение зрачков, опущение век, гнусавая речь, температура 35°C, пульс частый.

Вызванный из поликлиники врач поставил диагноз: "Бульбарная форма полинемиелита" и госпитализировал больную. Вечером того же дня она умерла. Труп доставили в морг для судебно-медицинскую экспертизы.

Данные лабораторных исследований: при бактериологическом исследовании остатков рыбы и смывов с посуды, в которой она хранилась, патогенной и условно-патогенной микрофлоры не обнаружено.

Судебно-медицинской экспертизой не установлено наличия солей тяжелых металлов, ядовитых и сильнодействующих соединений.

1. Какое пищевое отравление можно заподозрить на основании клинических данных?
2. Какие дополнительные лабораторные исследования необходимо произвести для уточнения диагноза?
3. Какую помощь необходимо было немедленно оказать пострадавшей?
4. Какие обстоятельства способствовали возникновению заболевания и почему заболевал только один член семьи?

Заключение.
1. Клинические проявления заболевания, в частности наличие симптомов бульбарных поражений, позволяют заподозрить отравление ботулиническим токсином. Врач был введен в заблуждение отсутствием случаев заболеваний среди других членов семьи.
2. Для уточнения диагноза следовало поставить биологическую пробу на мышах с остатками подозрительного пищевого продукта, а после смерти больной с трупным материалом.
Лабораторией особо опасных инфекций в трупном материале при помощи биологической пробы обнаружен Cl.botulinum токсин типа В.
3. Основное терапевтическое мероприятие, резко снижающее летальность при ботулизме, заключается в возможно раннем введении поливалентной антиботулинической сыворотки, содержащей антитоксицынны типов А, В, С и Е (лечебная доза 10 000 ME). В случаях установления вида возбудителя вводится моновалентная сыворотка. В данном случае необходимо было ввести сыворотку типа В (лечебная доза 5000 ME). При отсутствии эффекта через 5 часов сыворотку вводят повторно.
4. Рыба, очевидно, была загрязнена спорами Cl.botulinum при- жизненно (за счет их внедрения через раны или другие дефекты кожных покровов) или подвергалась длительной агонии, при которой Cl.botulinum может пенетрировать из кишечника. В процессе термической обработки (варки) рыбы споры вследствие их высокой термостойчивости не были уничтожены.
Длительное и неправильное хранение (при комнатной температуре) повлияло за собой прорастание спор, размножение культуры Cl.botulinum и гнездовое (в участке внедрения спор) накопление токсина этого микроорганизма. Отсутствие повторной термической обработки не позволило разрушить этот токсин. Употребление той части рыбы, где находился токсин, и привело к возникновению заболевания. Другие куски рыбы токсин не содержали и поэтому заболеваний у остальных членов семьи не было.
2.5. Гигиенические требования к планировке и режиму работы пищеблока

Цель занятия: Ознакомить студентов с принципами планировки различных типов пищеблоков (лечебных учреждений, школ, школ-интернатов, детских дошкольных учреждений, пионерских лагерей), санитарными требованиями к внутренней отделке помещений, к оборудованию и инвентарю, санитарно-гигиеническим требованиям к организации работы пищеблока, противопоказаниям к допуску на работу на пищевые предприятия.

Практические навыки: научить студентов проведению оценки проекта пищеблока, степени достаточности в оснащении оборудованием пищеблока, бракеражу готовых блюд на пищеблоке и выявлению нарушений в режиме работы пищеблока, которые могут привести к возникновению пищевых отравлений (на примере случаев пищевых отравлений).

Задание студентам: проведите гигиеническую оценку планировки и оборудования пищеблока, ответив на вопросы:
1. Определите тип пищеблока данного учреждения.
2. Перечислите набор помещений пищеблока.
3. Укажите помещения и оборудование, предназначенные для хранения мяса, рыбы, молочных продуктов, яиц, хлеба, сыпучих продуктов, овощей, фруктов.
4. Для хранения каких продуктов предназначен холодильник, размещенный в варочном (горячем) цехе?
5. Где и каким образом производят дефростацию (размораживание) мяса?
6. В каких помещениях производят первичную обработку овощей?
7. Какие правила должны соблюдать при хранении сыпучих продуктов и хлеба?
8. Имеются ли в варочном зале условия для приготовления мясных, рыбных, молочных и овощных блюд?
9. Какое количество мясорубок имеется на пищеблоке и их назначение?
10. Укажите температуру I–II и III блюд при их раздаче (реализации).
11. Укажите, в каких помещениях производят мытьё кухонной посуды.
12. Какие правила следует соблюдать при мытье кухонной и столовой посуды?
13. Какой инвентарь подлежит обязательной маркировке на пищеблоке?
14. Какие медицинские обследования проходят поступающий на работу и работающие на пищеблоке, и какова периодичность обследований?
15. Перечислите блюда и продукты, реализация которых запрещена в детских учреждениях (в пионерском лагере, детском саду, детских яслях).
16. Правила, которыми руководствуются при проведении бракеража готовых блюд.

Строительство и оборудование пищеблоков осуществляют в соответствии со "строительными нормами и правилами (СНиП II-Л8-71, СНиП 69-78 и др.)".
Условно пищеблок можно разделить на 3 типа:
1. Работающие на сырье с полным циклом его обработки: столовые промышленных предприятий, пищеблоки больниц, детских дошкольных учреждений, школ-интернатов, пионерских лагерей и др.
2. Работающие на полуфабрикатах: столовые-доготовочные многих учебных заведений, кафе, пельменные и др.
3. Реализующие поступившую из других предприятий общественного питания готовую пищу: буфеты, буфеты раздаточные отделений больниц, школ, кафе-мороженое и др.
Правильный санитарный режим на пищеблоке обеспечивает рациональная планировка производственных и складских помещений, направленная на исключение встречных и перекрещивающихся потоков сырья и готовой пищи.
Пищеблоки, построенные по централизованному или дезцентрализованному принципу, обязательно имеют в наборе следующие помещения:
1. Складские помещения: разгрузочные площадки, холодильные камеры раздельного хранения мяса, рыбы, молочных продуктов, овощей, фруктов и зелени, отходов (с отдельным наружным выходом), неохлаждаемые кладовые для хранения бакалейных продуктов.
2. Производственные помещения: коренной цех (заготовка овощей), мясной цех (в нем же допускается разделка птицы и рыбы на отдельно поставленных столах), холодный цех, кондитерский цех, хлеборезка, моющая кухонной посуды и тары.
3. Служебные и бытовые помещения: кабинет директора, бухгалтерия, гардероб для персонала, санитарные узлы, душевые, комнаты отдыха персонала, бельевая, инвентарная, гладильная.

4. Технические помещения: вентиляционные камеры, машинное отделение, мастерские.

Некоторые особенности имеет планировка пищеблоков детских дошкольных учреждений, малокомплектных школ, малокомплектных больниц и др. Как правило, в этом случае пищеблок строят по централизованному принципу и располагают на первом этаже. Он должен иметь самостоятельный вход, лучше с территории хозяйственного двора. При правильном взаимном расположении помещений вход в кладовые (овощную и для сухих продуктов) и заготовочный цех происходит из тамбура. Вход же в варочный цех осуществляется через заготовительный цех, что обеспечивает правильный поток сырья и исключает перекрешивание потоков готовых блюд и сырых продуктов.

Пищеблок дошкольного учреждения может быть представлен в виде одного помещения для заготовки и приготовления холодных и горячих блюд, а также для мойки кухонной посуды.

В школах предусматривают буфеты. Для школ на 320 и более учащихся, а также школ-интернатов создают школьно-базовые столовые и комбинаты питания, которые должны обеспечить пищеблок школ полуфабрикатами высокой степени готовности, освобождая их от первичной обработки сырья. Это ускоряет приготовление пищи и упрощает систему завоза продуктов.

В школьной столовой, имеющей отдельный выход на участок, должны быть обеденный зал, кухня, овощной и мясорубный цех, моочная, кладовая сухих продуктов, кладовая овощей и холодильные камеры.

Площадь обеденного зала зависит от вместимости школы. Предусмотрено 0,65-0,75 м² на одно посадочное место при количестве посадочных мест, рассчитанных не менее чем на 25% учащихся.

Перед входом в столовую должны быть установлены умывальники (1 кран на 20 посадочных мест). Для улучшения обслуживания учащихся следует использовать механизированные линии комплектации завтраков и обедов, а также заблаговременную сервировку столов. Обслуживание младших классов может осуществляться в классных комнатах.
Во всех, производственных, служебных и бытовых помещениях проектируют разветвленную сеть холодного и горячего водоснабжения. Бытовые помещения должны быть обособлены от производственных помещений с тем, чтобы работающие в пищевых цехах не проходили через производственные помещения непищевых цехов. Туалеты должны быть как в бытовом секторе, так и в секторе производственных помещений.

Внутренняя отделка должна быть простой, светлой и доступной для уборки. Поля гладкие, несколько, из водонепроницаемого светлого материала. Стены на высоту 1,8-2,0 м отделяют легко моющимся материалами, а выше этого уровня покрывают белой клеевой краской или известковою.

2.5.1. Оборудование пищеблока

Все предметы оборудования изготовливают из легко моющихся, прочных, безвредных для здоровья материалов, устойчивых к химическим веществам и высокой температуре.

Производственные столы на металлических ножках должны иметь крышки из прочного водонепроницаемого материала с гладкой поверхностью, желательно из мрамора или дюрала, или из нержавеющей стали. В связи с дефицитом этих материалов в настоящее время все еще применяют столы с деревянными крышками, обитые оцинкованным железом, к недостатком которых следует
отнести быстрое стирание слоя цинка или полуды. Столы для теста (ленивых вареников, сырников и др.) изготавливают из гладко струганной фанеры.

Разделочные доски изготавливают из твердых пород дерева (бук, дуб), без трещин, с гладкой поверхностью. Ножи — из нержавеющей стали, предпочтительно с деревянными ручками (для удобства маркировки выжиганием). Доски и ножи закрепляют за определенными столами и хранят в том же помещении в специальных кассетах, установленных на ребро или на кронштейнах.

Разделочные доски и ножи обязательно маркируют выжиганием:

"СМ" — сырое мясо "ВМ" — вареное мясо
"СР" — сырая рыба "ВР" — вареная рыба
"СО" — сырые овощи "ВО" — вареные овощи
"КО" — квашеные овощи "МГ" — мясная гастрономия
а также "ХЛЕБ", "СЕЛЬДЬ", "МАСЛО", "ЗЕЛЕНЬ".

Разделочные доски и ножи хранят в том же помещении, где используют.

Для измельчения продуктов на пищеблоке необходимо иметь не менее 2-х мясорубок — одну для сырых, другую для вареных продуктов с соответствующей маркировкой.

Кухонную посуду изготавливают из нержавеющей стали, алюминия, железа (противни), чугуна (сковородки). Оцинкованную посуду (бочки, тазы) используют только для хранения сыпучих продуктов, а эмалированную посуду, вследствие непрочности покрытия и образования сколов, применяют редко.

Внутренняя поверхность посуды должна быть гладкой, не иметь пятен и царапин. Вся кухонная посуда должна иметь маркировку. На котлах и крышках ставят обозначение I, II, III блюдо, молоко, рыбные блюда, селедка, салаты. Для I и III блюда и молока на внутренней поверхности должна быть отметка объема в литрах. Кухонную посуду не разрешено ставить на пол, для этой цели должны быть специальные табуретки, подставки, стеллажи.

2.5.2. Требования к транспортировке, приему и хранению пищевых продуктов

Поступающие на пищеблок продукты должны иметь сопроводительную документацию установленного образца, качественные удостоверения с указанием даты и часа выработки, времени от-
правки продукта, условий и сроков хранения, а также сроков реализации.

Для транспортировки продуктов выделяют специальный транспорт, имеющий санитарный паспорт, выданный СЭС с указанием номера автомашины, фамилии шофера, обеспеченногосанитарной одеждой. Транспортировочная тара не должна иметь деформаций, должна быть чистой, герметичной и иметь четкую маркировку.

Длительное хранение продуктов на пищеблоке не производят. Запас скоропортящихся продуктов (мясо, рыба, гастрономия, сыр) не более, чем на 3 дня с учетом сроков их реализации. Молоко доставляют ежедневно. Запас масла сливочного — не более, чем на 10 дней, яиц и овощей (корнеплодов, капусты) — на 20 дней, сыпучих продуктов на 30 дней. Зелень и фрукты длительно не хранят, доставляют по мере использования, имея запас не более, чем на 3 дня. Для хранения рыбы наиболее благоприятна температура -2°С. При этой температуре мороженую рыбу хранят до 5 суток, охлажденную — до 2-х суток. Хранение проводят в той же таре, в которой она поступила. Сроки и условия хранения приведены в табл. 39.

При наличии всего одной холодильной камеры места хранения мяса, рыбы и молочных продуктов в закрытой таре должны быть строго разграниченны с обязательным устройством легко моющихся полок. Масло сливочное, а также сыр хранят раздельно в таре или бруками, завернутыми в пергамент; нельзя хранить открытое масло вместе с другими остро пахнущими продуктами. Яйца хранят в таре или выложенными на лотки.

Таблица 39

<table>
<thead>
<tr>
<th>Наименование продуктов</th>
<th>Сроки хранения в часах, не более</th>
<th>Температура хранения, °С</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мясные крупнокусковые полуфабрикаты</td>
<td>48</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Печень замороженная</td>
<td>48</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Печень охлажденная</td>
<td>24</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Мясо птицы, кролика, охлажденное</td>
<td>48</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Мясо птицы, кролика, замороженное</td>
<td>72</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Колбасы вареные:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>высшего сорта</td>
<td>72</td>
<td>+2 +6</td>
</tr>
<tr>
<td>первого сорта</td>
<td>48</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Наименование продуктов</td>
<td>Сроки хранения в часах, не более</td>
<td>Температура хранения, °C</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Сосиски, сардельки мясные первого и второго сорта</td>
<td>48</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Молоко пастеризованное, сливки, ацидофиллин</td>
<td>36</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Кефир, простокваши</td>
<td>24</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Творог жирный. Обезжиренный</td>
<td>36</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Творог диетический</td>
<td>24</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Сметана</td>
<td>72</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Сырково-творожные изделия</td>
<td>36</td>
<td>0 +2</td>
</tr>
<tr>
<td>Продукты детского питания:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Детский кефир в бутылочках</td>
<td>24</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Детский кефир в пакетах</td>
<td>36</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Детский творог</td>
<td>24</td>
<td>+2 +6</td>
</tr>
<tr>
<td>"Малютка" в бутылках</td>
<td>24</td>
<td>+2 +6</td>
</tr>
<tr>
<td>"Малютка" в пакетах</td>
<td>36</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Продукты детских молочных кухонь</td>
<td>24</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Сыры сливочны в коробочках (из полиэтилена и других полимерных материалов):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сладкий и фруктовый</td>
<td>48</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Острый, советский</td>
<td>72</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Масло сливочное брусочками</td>
<td>6</td>
<td>+2 +6</td>
</tr>
<tr>
<td>Рыба всех наименований, охлажденная</td>
<td>48</td>
<td>0 -2</td>
</tr>
<tr>
<td>Рыба и рыбные товары всех наименований, марженые</td>
<td>До 5 суток</td>
<td>0 -2</td>
</tr>
<tr>
<td>Яйца (в лотках или таре)</td>
<td>20 суток</td>
<td>0 -2</td>
</tr>
</tbody>
</table>

Хлеб доставляют ежедневно и хранят на полках (в шкафу) или в ларях, раздельно черный и белый, с целью предупреждения адсорбции запахов и закисания белого хлеба. Расстояние от нижней полки до пола не менее 35 см. Дверки шкафа (ларя) должны иметь отверстия для вентиляции.

2.5.3. Технология приготовления пищи

Большинство блюд и кулинарных изделий, изготовленных на пищеблоке представляют скоропорящуюся продукцию, которая должна быть реализована в течение 2-4 часов. Даже при непродолжительном хранении блюда теряют свежесть, а многие витамины и ценные вещества полностью или частично разрушаются, заметно ухудшая вкусовые качества продукта.
При приготовлении пищи на небольшом пищеблоке (детского учреждения) необходимо соблюдать следующие правила:

1. Обработка сырых и вареных продуктов проводится на разных столах, имеющих маркировку "сырые", "вареные", и при использовании соответствующих досок и ножей.

2. Особое внимание следует обратить на приготовление салатов из сырых овощей. Они не подвергаются термической обработке, и поэтому тщательно вымытые и очищенные овощи разделяют на столах для вареных продуктов на доске с маркировкой "ВО" — вареные овощи.

Технология приготовления блюд включает две основные стадии — первичную (холодную) обработку сырья и тепловую обработку.

А) Холодная обработка продуктов.

Холодная обработка продуктов включает сортировку, размораживание, мытье, зачистку, измельчение, формовку и пр. Во избежание размножения микроорганизмов размораживание (дефростацию) мяса и птицы проводят в специальных холодильных камерах при температуре от 0 до +6°C или на столе мясного цеха при +18°C, обеспечивая условия для постепенного повышения температуры в толще мяса до +2 +3°C. По окончании дефростации мясо моют и удаляют видимые загрязнения. Субпродукты и птицу размораживают в лотках при температуре +15, +18°C, разложенными в один ряд. Рыбу размораживают в холодной воде в течение 2-4 часов. Для уменьшения потерь минеральных веществ, растворяющихся в воде, в воду рекомендуется добавлять соль (7-8 г/л).

Мясной и рыбный фарш изготавливают по мере надобности и хранят при температуре 0 -2°C. Овощи, зелень, грибы, фрукты перебирают, очищают от загрязнения, моют в холодной воде. Грибы и зелень для удаления песка многократно погружают в ванны или котлы. Особенно тщательно промывают овощи и зелень, используемые в пищу в сыром виде. Очищенный картофель клубнями хранят в холодной воде при +12°C не более 3 часов, а очищенные корнеплоды — накрытыми влажной тканью для предохранения от высыхания не более 2-3 часов. Нарезанный картофель нельзя хранить в воде в связи с потерями минеральных веществ, крахмала и витамина С.

Крупу перебирают с целью удаления посторонних примесей и не обрушенных зерен и моют, а муку, сахар-песок, соль перед употреблением просеивают вручную на ситах.
Б) Тепловая обработка пищевых продуктов.
Тепловую обработку продуктов проводят в варочном (горячем) цехе.
При действии высокой температуры в продуктах происходит изменение структуры белков, расщепление протопектина, набухание и клейстеризация крахмала, что, в свою очередь, приводит к изменениям цвета, запаха, вкуса, консистенции продуктов и способствует лучшему перевариванию.
Присутствующие в сырых продуктах и полуфабрикатах микроорганизмы при термической обработке погибают.
Известны два основных вида тепловой обработки: варка и жарение, а также комбинированные виды обработки — тушение, запекание, бланшировка, обработка паром и т.д.
Варка — наиболее часто применявшийся вид тепловой обработки. Варка — более надежный в эпидемическом отношении способ приготовления пищи, так как при соблюдении заданных режимов имеет место прогревание продуктов до 96-100°С. Наиболее трудным в приготовлении является мясо: чтобы его равномерно прогреть на всю глубину, нужно варить небольшими кусками по 1,5-2 кг и не менее 2-х часов. Однако при варке происходит значительные потери водорастворимых пищевых веществ — минеральных солей, витамина C, аминокислот, экстрактивных веществ и др. Для уменьшения этих потерь можно использовать ряд приемов — закладывать мясо (птицу, рыбу) в кипящую воду или в кипящие овощные отвары. Потери пищевых веществ уменьшаются при варке продуктов на пару с использованием специального оборудования, однако время варки при этом увеличивается.
Во избежание попадания образующихся при разрубе мяса мелких острых косточек, прежде чем готовить первое блюдо, сваренный бульон обязательно фильтруют через ситец или ткань.
Овощи, предназначенные для салатов и винегретов, следует варить в кожуре. Нельзя их варить накануне, так как в вареных продуктах создаются более благоприятные условия для размножения микроорганизмов.
Жарение способствует сохранению пищевых веществ в продукте, так как образующаяся корочка препятствует их выходу. Кроме того, жарение способствует улучшению органолептических свойств и повышению пищевой ценности за счет добавления жира и приправы. Однако при жарении, особенно на сильном огне, температура в толще может быть менее 80°С, что недостаточно для уничтожения вегетативных форм микроорганизмов, в том числе и патогенных. Котлеты, биточки и другие изделия из мясного или рыбно-
го фарша обжаривают в кипящем жире с обеих сторон не менее 10 минут, после чего выдерживают в духовом шкафу при температуре 220-250°C до готовности 5-8 минут. При изготовлении вторых блюд из вареного мяса (рулеты, запеканки) или при отпуске его с первым блюдом измельченное или порционное мясо обязательно подвергают вторичной термической обработке — кипячение в бульоне, соусе, обжарка в духовом шкафу или в течение 10 минут в духовке при 220-250°C.

Запеканки, омлеты выдерживают в духовом шкафу при температуре не менее 220-250°C не менее 8-10 минут. Приготовленные первые и вторые блюда до момента выдачи больным или детям могут находиться на горячей плите не более 2-3 часов.

Полученное с базы или фермы молоко обязательно процеживают через двойной слой марли для удаления возможных загрязнений и немедленно кипятят. Кипяченое молоко оставляют в холодном охладителе (ванна с холодной водой) или путем использования наружного холода в чистом неотапливаемом помещении. Остуженное молоко хранят в плотно закрытых котлах или флягах при температуре не менее +6°C. Оно должно быть реализовано в течение данного дня. Нереализованные остатки молока при отсутствии ухудшения вкусовых качеств снова кипятят перед употреблением. Прокисшее молоко ("самоквас") употреблять в пищу непосредственно запрещено, его можно использовать для выпечки пирогов, кулея, блинов и т.д.

В детских учреждениях (детских садах, школах, пионерских лагерях) творог в натуральном виде не употребляют, а, как правило, подвергают термической обработке, изготавливая сырники, запеканки, пудинги, ватрушки и т.д.

При организации питания в детских коллективах запрещено:
1) изготовление простокваш-"самокваса", творога и других кисломолочных продуктов;
2) приготовление блинчиков с мясом, макарон по-флотски, зельцы, студней, фаршмаков и паштетов;
3) употребление кремов, морсов, напитков, квасов;
4) категорически запрещено употребление грибов в пищу;
5) употребление флякного, бочкового молока без кипячения;
6) творога и сметаны без термической обработки;
7) яиц и мяса водоплавающей птицы;
8) мяса, не прошедшего ветеринарный контроль;
9) запрещено принимать непотрошенных кур и индеек;
10) запрещены консервы домашнего приготовления;
11) заводские консервы без термической обработки;
12) запрещено использование остатков пищи от предыдущего приема.

2.5.4. Правила проведения бракеража

По существующему порядку ни одна выдача пищи из пищеблоков не может быть произведена без предварительного её опробования и записи в бракеражном журнале о разрешении на выдачу. Пробу пищи, как правило, проводит врач (в его отсутствие — медсестра) и руководитель учреждения. В детских садах, где медработники бывают не ежедневно и не полный рабочий день, бракераж проводит руководитель детского учреждения, завхоз или одна из воспитательниц.

Качество готовых блюд оценивают органолептическим методом по следующим показателям: внешний вид, цвет, запах, консистенция, вкус.

Вначале исследуют блюда, имеющие слабовыраженные запахи и вкус (например, крупяные супы), а затем те блюда, запах которых выражен отчетливо.

Сладкие блюда дегустируют последними. Определяют кулинарную готовность и доброкаучественность пищи.

При подаче первые блюда и горячие напитки должны иметь температуру не ниже 75°C, вторые блюда — не ниже 65°C, холодные напитки и блюда — от +7 до +14°C.

2.5.5. Правила мытья посуды

Для мытья кухонной посуды используют цельнометаллические или изготовленные из нержавеющей стали ванны с подводкой к ним горячей и холодной воды. Кухонную посуду, мелкий инвентарь (доски, мешалки, ножи) моют в 2-х ваннах: сначала в горячей воде (40-45°C) с добавлением разрешенных моющих средств (таблица 40), а затем ополаскивают горячей водой (не менее 65°C) и просушивают на решетчатых полках. Металлический инвентарь после мытья следует прокаливать в духовом шкафу, мясорубки разбирают, промывают, обдают кипятком и тщательно просушивают. Моечные ванны по мере необходимости и по окончании работы оцищают моющими средствами (порошки "Гигиена", "Пемоксоль"), ополаскивают и при необходимости дезинфицируют. Колоды для рубки мяса и рыбы зачищают от пищевых остатков и посыпают солью. Мочалки после мытья посуды и столов кипятят в течение 15 минут, просушивают и хранят в закрытой посуде.

148
Рекомендуемый перечень моющих средств, допущенных для мытья посуды на предприятиях общественного питания (Извлечение из методических указаний по санитарному контролю за применением чистящих средств для обработки посуды на предприятиях общественного питания № 2956-83 от 30 января 1983 г.)

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование моющего средства</th>
<th>Назначение</th>
<th>Режим применения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>"Прогресс"</td>
<td>Для ручного мытья столовой посуды, тары и оборудования</td>
<td>5 г препарата на 1 литр воды</td>
</tr>
<tr>
<td>2.</td>
<td>Паста "Специальная-2"</td>
<td>Моющее средство на предприятиях общественного питания для механизированного и ручного мытья посуды и оборудования</td>
<td>В количествах, указанных на этикетке</td>
</tr>
<tr>
<td>3.</td>
<td>"Посудомой"</td>
<td>Для мытья столовой посуды в посудомоечной машине и вручную</td>
<td>1 ст. ложка на 1 литр теплой воды при ручной мойке</td>
</tr>
<tr>
<td>4.</td>
<td>Сода кальцинированная (техническая)</td>
<td>Для ручной мойки</td>
<td>До 20 г на 1 литр воды</td>
</tr>
<tr>
<td>5.</td>
<td>Средство чистящее для кухни "Светлый"</td>
<td>Для чистки всех видов посуды (кроме полированного алюминия), газовых плит, раковин, наружной поверхности холодильников</td>
<td>По инструкции, указанной на этикетке</td>
</tr>
<tr>
<td>6.</td>
<td>"Санит"</td>
<td>Для чистки всех видов посуды (кроме полированного алюминия), газовых плит, раковин, наружной поверхности холодильников</td>
<td>По инструкции, указанной на этикетке</td>
</tr>
<tr>
<td>7.</td>
<td>"Вимол"</td>
<td>Для чистки всех видов посуды (кроме полированного алюминия), газовых плит, раковин, наружной поверхности холодильников</td>
<td>По инструкции, указанной на этикетке</td>
</tr>
<tr>
<td>8.</td>
<td>"Блик-1"</td>
<td>Для чистки всех видов посуды (кроме полированного алюминия), газовых плит, раковин, наружной поверхности холодильников</td>
<td>По инструкции, указанной на этикетке</td>
</tr>
<tr>
<td>№ п/п</td>
<td>Наименование моющего средства</td>
<td>Назначение</td>
<td>Режим применения</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>9.</td>
<td>"Аракс"</td>
<td>Для чистки всех видов посуды (кроме полированных алюминия), газовых плит, раковин, наружной поверхности холодильников</td>
<td>По инструкции, указанной на этикетке</td>
</tr>
<tr>
<td>10.</td>
<td>Средство "Агат"</td>
<td>Для чистки всех видов посуды (кроме полированных алюминия), газовых плит, раковин, наружной поверхности холодильников</td>
<td>По инструкции, указанной на этикетке</td>
</tr>
<tr>
<td>11.</td>
<td>"Вильфа"</td>
<td>Для чистки всех видов посуды (кроме полированных алюминия), газовых плит, раковин, наружной поверхности холодильников</td>
<td>По инструкции, указанной на этикетке</td>
</tr>
</tbody>
</table>

Столовую посуду моют сразу после использования. Перед мытьем её очищают от остатков пищи, причем пищевые отбросы собирают в специальный бачок с крышкой.

При ручной мойке посуду моют в трех водах — в специальных трехгнездных ваннах по следующему режиму:

В первой ванне моют щеткой или мочалкой при температуре +50°C с добавлением моющих средств, способствующих лучшей очистке и обезжириванию.

Во второй ванне по эпидемиологическим показателям посуду дезинфицируют погружением в 0,2% раствор хлорной извести или хлорамина не менее, чем на 10 минут. Такая обработка посуды обязательна на всех предприятиях общественного питания, в том числе и в школах после окончания работы, в течение дня во вторую ванну добавляют моющие средства в количестве, в 2 раза меньшем, чем в первой ванне.

В третьей ванне производят ополаскивание посуды чистой проточной водой с температурой не менее 65°C.

Просушивание посуды производится в сушильных шкафах или на полках-решетках.

Для борьбы с мухами и грызунами необходимо использовать механические средства истребления, а также обеспечить правильное хранение продуктов и приготовленной пищи. Применение химических препаратов категорически **запрещено**.
2.5.6. Санитарные требования к содержанию помещений

Чистота предприятий общественного питания достигается регулярно проводимой уборкой и дезинфекцией помещений. Существует несколько видов уборки: ежедневная проводимая влажная (текущая) уборка, еженедельная с мытьем стен, окон, дверей (генеральная) и санитарный день, проводимый раз в месяц при закрытом объекте с дезинфекцией, дезинсекцией, дезинтоксикацией.

2.5.7. Медицинские обследования персонала пищеблока

Основная цель медицинского обследования персонала состоит в охране их здоровья и предупреждении допуска к работе больных лиц или бактерионосителей, которые могут стать источником инфекционных заболеваний или пищевых отравлений.

Медицинскому обследованию подлежат все поступающие работать на пищеблок (связь с пищей, инвентарем, посудой, тарой). Обследование включает: осмотры терапевта, гинеколога, дерматолога с лабораторным исследованием на сифилис и гонорею 1 раз в 3 месяца, рентгеноскопию (1 раз в год), лабораторное исследование на гельминтозы и бактерионосительство на кишечную группу инфекций (а для работающих по указанию СЭС). Результаты медицинских осмотров и лабораторных исследований записывают в личные медицинские книжки персонала.

К работе не допускаются лица с открытой формой туберкулеза, туберкулезной волчанкой, туберкулезом костей и суставов, с наличием свищей. Не допускаются больные кишечными инфекционными заболеваниями и бактерионосители, а также больные венерическими заболеваниями, кожными заразными болезнями (чесотка, фавус, стригущий лишай и др.) и лица, у которых обнаружено носительство ящ. остриц и карликового цепня. Лица, страдающие другими гельминтозами, подвергаются лечению без отстранения от работы. Не разрешается приступать к работе лицам с гнойничковыми заболеваниями.

Работники, в семье, квартире или по месту работы которых выявлены больные или бактерионосители брюшного тифа, паратифов, дисентерии, вирусного гепатита и других кишечных инфекционных заболеваний, могут быть допущены к работе на пищеблоке только после предъявления справки о госпитализации больного и проведения специальных анализов.
Рис. 12. Температурные режимы обработки и хранения пищевых продуктов.
Раздел 3.
ГИГИЕНА ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКИХ УЧРЕЖДЕНИЙ

Лечебно-профилактические учреждения и их лабораторно-диагностические подразделения являются основным рабочим местом работников системы здравоохранения, в том числе врачей любого профиля. При проектировании и строительстве таких учреждений должны выполняться определенные санитарные нормы и правила, что обеспечивает режим пребывания больных, соблюдение лечебно-охранительного режима в них, предупреждение возникновения и распространения внутрибольничных инфекций. Вместе с тем, выполнение этих норм и правил направлено и на оптимизацию работы персонала этих учреждений, в том числе предупреждение влияния на персонал факторов профессиональной вредности, оптимизацию условий труда медицинского персонала, повышение коэффициента полезного действия их трудового процесса.

Совершенно естественно, что знание основных нормативных материалов по проектированию, строительству и функционированию лечебно-профилактических учреждений совершенно необходимо врачу любого профиля, хотя могут иметь и ряд специфических черт, в зависимости от специальности врача, профиля подразделения, в котором он работает и ряда других факторов.

Целью лабораторных и практических занятий, включенных в настоящий раздел, как раз и является познакомить будущих врачей с основными нормативными документами, принципиальными подходами к проектированию и строительству лечебно-профилактических учреждений разного профиля и их структурных подразделений.

3.1. Гигиенические требования к размещению и планировке лечебно-профилактических учреждений

Цель занятия: ознакомить студентов с основными гигиеническими требованиями к размещению и внутренней планировке лечебно-профилактических учреждений.

Практические навыки: освоить методику гигиенической оценки проектов лечебно-профилактических учреждений.

Задание студентам: провести разбор и санитарную экспертизу типового проекта больницы по следующим разделам:
• планировка и застройка больничного участка (генеральный план);
• приемное отделение и помещения для выписки больных;
• палатная секция;
• основные отделения больницы: терапевтическое, хирургическое, акушерское, гинекологическое, детское, инфекционное, поли- клиническое.

Больницы являются лечебно-профилактическими учреждениями, предназначенными для оказания населению стационарной медицинской помощи. Больницы могут проектироваться в комплексе с поликлиникой или станцией скорой и неотложной медицинской помощи, роддомом, перинатальным центром. Мощность и структура больницы определяется потребностью населения обслуживаемой зоны.

В зависимости от района обслуживания многопрофильные больницы подразделяются на:
• участковые;
• районные;
• центральные районные;
• городские;
• областные (краевые).

Самостоятельными могут быть больницы скорой медицинской помощи, больницы восстановительного лечения, детские. Для оказания стационарной помощи определенного профиля предназначены специализированные больницы (инфекционная, туберкулезная, психиатрическая и т.д.). Специализированными стационарными учреждениями являются и родильные дома, оказывающие медицинскую помощь беременным, роженицам, родильницам, новорожденным, гинекологическим больным (при наличии гинекологического отделения).

Строительство и реконструкция больниц в нашей стране ведется в соответствии со строительными нормами и правилами (СНиП 2.08.02-89 "Общественные здания и сооружения") с учетом санитарных правил устройства, оборудования и эксплуатации больниц, родильных домов и других лечебных стационаров (СанПиН 5179-90). Большая роль в улучшении больничного строительства принадлежит медицинским работникам, участвующим в экспертизе проектов.
3.1.1. Система строительства больниц

Больницы могут сооружаться по децентрализованной, централизованной или смешанной системам.

Децентрализованная система строительства больниц позволяет размещать различные по профилю больничные отделения в отдельных корпусах обычно небольшой этажности. При децентрализованной системе строительства осуществляется хорошая изоляция отделения, облегчается профилактика внутрибольничных инфекций, создаются условия для пребывания больных на свежем воздухе и поддержания лечебно-охранительного режима. Однако при этой системе удлиняются все коммуникации, дублируются некоторые помещения и оборудование, усложняется обслуживание больных, удорожается строительство. Поэтому в настоящее время децентрализованная система применяется в тех случаях, когда больничный комплекс необходимо расчленить на отдельные части соответственно их функциональным особенностям. В частности, для строительства инфекционных, психиатрических, туберкулезных больниц, а также больниц, располагаемых в сейсмических районах.

В последнее время распространение получила централизованная система строительства больниц, при которой все лечебные, лечебно-диагностические и вспомогательные отделения больницы объединены в одном здании или в сблокированных корпусах. Она обеспечивает более удобную взаимосвязь отделений, сокращает графики движения больных и персонала, создает возможность централизации лечебно-диагностических отделений (операционных, рентгеновских кабинетов, кабинетов функциональной диагностики, лабораторий) и быстрой доставки готовой пищи из кухни в палаты.

В отечественной практике широко применяется смешанная система строительства больниц, при которой на участке, кроме главного лечебного корпуса, патологоанатомического и хозяйственного корпусов, в отдельно стоящих зданиях размещаются инфекционное, родильное, детское, поликлиническое отделения (или одно из них).

Эта система строительства сочетает положительные качества децентрализованной и централизованной систем.

Родильное отделение имеет сложную планировку, обусловленную необходимостью изоляции физиологического и обсервационного отделений, графиков движения рожениц, родильниц, персонала, посетителей. Поэтому размещение крупного родильного отделения
в общем корпусе обычно сопровождается нарушением гигиенических требований к его планировке.

Как правило, поликлиника также должна располагаться в отдельном здании, так как совместное ее размещение со стационаром нарушает режим последнего.

3.1.2. Гигиенические требования к выбору земельного участка под строительство больницы

Лечебные учреждения могут располагаться в селитебной (жилоей), зеленой или пригородной зонах. При выборе участка следует учитывать окружающую санитарную ситуацию и господствующее направление ветра.

Для лечебно-профилактических учреждений отводятся земельные участки, наиболее благоприятные по своим естественным условиям, расположенные на возвышенной сухой местности, по возможности с южным склоном, хорошо проветриваемые и богатые растительностью.

Территория больницы должна быть удалена от источников шума (аэродромы, железные дороги, главные городские магистрали) и загрязнения воздуха, почвы и воды (общегородские свалки, поля ассенизации, бойни, скотомогильники).

Запрещается размещение больничных учреждений на участках, использовавшихся под свалки, поля ассенизации, скотомогильники, кладбища и т.п., а также имеющие загрязнения почвы органического, химического и другого характера.

Между промышленными предприятиями и больничным участком устанавливаются санитарно-защитные зоны шириной от 50 до 1000 м в зависимости от вредности производства (СНиП 245-71). Участок должен располагаться с наветренной стороны (с учетом розы ветров) в отношении производственных предприятий и других источников загрязнения воздуха.

Наиболее удобным для размещения больничного комплекса является участок прямоугольной формы с соотношением сторон 1:2 или 2:3. Длинная ось больничного здания должна быть расположена в направлении с востока на запад, что позволяет обеспечить наиболее благоприятную южную ориентацию палат для больных.

При выборе участка следует учитывать возможность присоединения здания больницы к имеющимся сетям водопровода, канализации, электрификации, теплофикации и газификации. В случае их отсутствия необходимо предусмотреть создание местных комму-
нальных устройств (артезианские скважины, очистные сооружения и др.).

Участок должен быть связан с обслуживаемым районом или населенным пунктом удобными подъездными путями и подходами.

Одним из основных принципов построения сети лечебно-профилактических учреждений является приближение медицинской помощи к обслуживающему населению. Больницы, особенно имеющие в своем составе поликлинические отделения (поликлиники), родильные дома, диспансеры размещаются равномерно по территории населенного пункта. При этом целесообразно отводить для больницы самостоятельный квартал на тихих улицах вблизи зеленных массивов.

Строительство многопрофильных больниц на 600-1000 и более коек, а также специализированных больниц (инфекционных, туберкулезных, онкологических, психиатрических и др.), для которых требуются большие земельные участки, следует осуществлять на окраине города или даже за его пределами.

3.1.3. Гигиенические требования к планировке и застройке (генеральному плану) больничного участка

Площадь земельного участка принимается в зависимости от мощности и системы строительства больницы (табл. 41).

Таблица 41

<table>
<thead>
<tr>
<th>Число коек</th>
<th>Децентрализованная</th>
<th>Смешанная</th>
<th>Централизованная</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3,0</td>
<td>2,5</td>
<td>2,0</td>
</tr>
<tr>
<td>300</td>
<td>4,5</td>
<td>4,0</td>
<td>3,5</td>
</tr>
<tr>
<td>600</td>
<td>6,5</td>
<td>6,0</td>
<td>5,5</td>
</tr>
<tr>
<td>1000</td>
<td>11,0</td>
<td>10,5</td>
<td>10,0</td>
</tr>
</tbody>
</table>

Примечание. Площади земельных участков для больниц, размещаемых в пригородной зоне, увеличиваются по сравнению с указанными в таблице на 15% — для инфекционных и онкологических, на 25% — для туберкулезных, на 20% — для больниц восстановительного лечения для взрослых и на 40% — для больниц восстановительного лечения для детей.

В основе рациональной планировки больничного участка лежит его зонирование, обеспечивающее правильное расположение зданий, удобные и короткие графики движения.
На участке больницы должны быть выделены следующие зоны: лечебных неинфекционных корпусов, лечебных инфекционных корпусов, садово-парковая, поликлиники, хозяйственных корпусов (кухня, прачечная, гараж, мастерские, котельная), патологоанатомического и радиологического корпусов.

Между зонами следует предусматривать полосы зеленых насаждений шириной не менее 15 м. Для неинфекционных, инфекционных и детских отделений необходимо отводить изолированные участки садово-парковой зоны.

Для улучшения инсоляции и аэрации больничных зданий необходимо соблюдать достаточные разрывы между ними. Санитарные разрывы следует принимать:

а) между лечебными корпусами и патологоанатомическим корпусом, а также между пищевым блоком и патологоанатомическим корпусом — не менее 30 м;

б) между стенами зданий с окнами палат — 2,5 высоты противостоящего здания, но не менее 25 м.

Лечебные корпуса следует размещать на удалении не менее 30 м от красной линии застройки, а здание поликлиники — не менее 15 м.

Административно-хозяйственные здания допускается размещать по границе участка. Патологоанатомический корпус и дороги к нему должны располагаться так, чтобы их не было видно из окон лечебных корпусов и из садово-парковой зоны.

Правильная планировка предусматривает наличие минимум двух въездов на территорию больницы: в лечебную и хозяйственную зоны. Последний может быть использован для подъезда к патологоанатомическому корпусу.

Плотность застройки участка больницы должна быть в пределах 12-15%. Площадь зеленых насаждений и газонов занимает не менее 60% территории. По периметру участка следует предусматривать полосы зеленых насаждений шириной 15 м.

Задание 1. Проведите гигиеническую оценку генерального плана больничного участка, ответив на следующие вопросы: 1) система строительства больницы; 2) площадь земельного участка больницы; 3) конфигурация участка, соотношение его сторон; 4) зонирование территории больницы; 5) величина санитарных разрывов между зданиями на участке; 6) удаление больничных корпусов, поликлиники, административно-хозяйственных зданий от красной линии застройки; 7) количество въездов на территорию больницы; 8) плотность застройки больничного участка; 9) ширина зеленых насаждений по периметру участка; 10) процент озеленения земельного участка больницы.
Перечислите выявленные недостатки планировки и застройки больничного участка.

3.1.4. Приемное отделение и помещения для выписки больных

В инфекционных больницах и инфекционных отделениях многопрофильных больниц для приема больных следует предусматривать приемно-смотровые боксы, количество которых определяется в зависимости от количества коек в отделениях:
- до 60 коек — 2 бокса;
- от 60 до 100 коек — 3 бокса;
- от 100 коек — 3 бокса +1 дополнительный на каждые 50 коек в отделениях.

Приемно-смотровой бокс является основным помещением приемных отделений детских и инфекционных больниц, предназначается для индивидуального приема больных и выполняет аналогичные функции смотровых кабинетов многопрофильных больниц. В состав помещений приемно-смотрового бокса должны входить: входной (наружный или уличный) тамбур, смотровое помещение, уборная и предбокс, служащий шлюзом для входа персонала из коридора приемного отделения.

Внутренняя планировка приемного отделения должна обеспечивать профилактику внутрибольничных инфекций и способствовать ускорению и повышению качества лечебно-диагностического процесса.

Приемные отделения должны быть отдельными для детского, акушерского, инфекционного, дерматовенерологического, туберкулезного, психиатрического (психосоматического) отделений.

Помещения для приема больных, поступающих в другие отделения, могут быть общими и размещаться в главном корпусе больницы или в корпусе с наибольшим количеством коек. Помещения для санитарной обработки больных, при отсутствии отапливаемых переходов, должны предусматриваться в каждом лечебном корпусе.

Расчетное число больных, поступающих в приемное отделение в течение суток, составляет для многопрофильных больниц 10% вместимости больницы, для туберкулезных, психиатрических больниц и больниц восстановительного лечения — 2%, для больниц скорой медицинской помощи — 15%, для родильных домов — 12%.

При приемном отделении размещаются палаты для больных с невыясненным диагнозом. Количество коек в них должно составлять 10% от числа больных, поступающих в течение суток.
Состав и площади помещений для приема взрослых больных приведены в табл. 42.

Таблица 42

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вестибюль-ожидальная</td>
<td>1,2 на каждого больного поступающего в течение суток, но не менее 12 (1,5 в детских отделениях)</td>
</tr>
<tr>
<td>Регистратура и справочная (в больницах на 200 коек и более)</td>
<td>10</td>
</tr>
<tr>
<td>Помещение для временного хранения вещей больных</td>
<td>0,3 на каждого больного, поступающего в течение суток, но не менее 4</td>
</tr>
<tr>
<td>Смотровая</td>
<td></td>
</tr>
<tr>
<td>Без гинекологического кресла</td>
<td>12</td>
</tr>
<tr>
<td>С гинекологическим креслом</td>
<td>18</td>
</tr>
<tr>
<td>Санитарный пропускник:</td>
<td></td>
</tr>
<tr>
<td>Раздевальня</td>
<td>6</td>
</tr>
<tr>
<td>Ванная с душем</td>
<td>10</td>
</tr>
<tr>
<td>Ванна с приспособлением для опускания больного</td>
<td>12</td>
</tr>
<tr>
<td>Одевальня</td>
<td>6</td>
</tr>
<tr>
<td>Процедурная</td>
<td>12</td>
</tr>
<tr>
<td>Перевязочная</td>
<td>12</td>
</tr>
<tr>
<td>Лаборатория для срочных анализов</td>
<td>12</td>
</tr>
<tr>
<td>Рентгенодиагностический кабинет</td>
<td></td>
</tr>
<tr>
<td>С одним столом</td>
<td>34</td>
</tr>
<tr>
<td>С двумя столами</td>
<td>45</td>
</tr>
<tr>
<td>Комната управления аппаратами</td>
<td>10</td>
</tr>
<tr>
<td>Кабинет врача</td>
<td>10</td>
</tr>
<tr>
<td>Палаты:</td>
<td></td>
</tr>
<tr>
<td>На 1 койку</td>
<td>9</td>
</tr>
<tr>
<td>На 2 койки и более</td>
<td>7 на каждую койку</td>
</tr>
<tr>
<td>Пост дежурной медицинской сестры</td>
<td>6</td>
</tr>
<tr>
<td>Буфетная</td>
<td>12</td>
</tr>
</tbody>
</table>
В крупных многопрофильных больницах, кроме перечисленных выше помещений, предусматриваются операционная для срочных операций, реанимационный бокс (при отсутствии отделений анестезиологии-реанимации) и ряд других помещений.

Помещения для выписки больных состоят из выписной площадью 12 м² и кабин для переодевания больных размером 3 м². На каждые 100 коек планируют 1 кабину, но не менее двух. Помещение для выписки больных должно быть смежным с вестибулем-ожидальницей.

Детские приемные отделения имеют ряд особенностей. В их состав входят приемно-смотровые боксы (16 м²), боксы для детей с невыясненным диагнозом (22 м²), санитарный пропускник для персонала, состоящий из гардеробных домашней и рабочей одежды и душевой. Количество приемно-смотровых боксов должно составлять 3%, а количество боксов — 5% от числа коек в детском отделении.

Помещения для приема и выписки детей следует предусматривать в каждом корпусе, где размещены педиатрические отделения. Состав помещений для выписки и их площадь такие же, как в общем приемном отделении.

Задание 2. Проведите гигиеническую оценку планировки приемных отделений и помещений для выписки больных, обратив внимание на следующие вопросы: 1) организация приема больных в различные отделения больницы (терапевтическое, хирургическое, гинекологическое, акушерское, детское, инфекционное); 2) состав и площади помещений общего приемного отделения; 3) достаточно ли одной смотровой и одного санитарного пропускника в общем приемном отделении; 4) требуемая площадь
смотровой в общем приемном отделении; 5) состав и площади помещений для приема больных детей; 6) наличие помещения для выписки больных из детского, акушерского, терапевтического, хирургического и гинекологического отделений; 7) соблюдение принципа поточности движения поступающих и выписывающихся больных; 8) условия для оказания экстренной помощи и временной изоляции и госпитализации больных в приемном отделении.

Перечислите недостатки, обнаруженные при гигиенической оценке внутренней планировки приемных отделений и помещений для выписки больных.

3.1.5. Палатная секция

Основным структурным элементом больницы является палатная секция на 30 коек, состоящая из нескольких палат с относящимися к ним лечебно-вспомогательными помещениями. Секция предназначена для лечения больных с однородными заболеваниями.

В состав палатной секции входят следующие помещения:

а) для пребывания больных: палаты, комната дневного пребывания, застекленная веранда;

б) лечебно-вспомогательные: кабинет врача, процедурная (манипуляционная), пост медицинской сестры, перевязочная в отделении хирургического профиля;

в) хозяйственные: буфетная, столовая, бельевая, комнаты сестры-хозяйки и старшей медицинской сестры;

г) санитарный узел: ванная, умывальник, туалеты для больных и персонала, санитарная комната;

д) палатный коридор, связывающий перечисленные помещения.

Палатное отделение может состоять из 1 или 2 палатных секций. В последнем случае некоторые вспомогательные помещения могут быть общими для всего отделения (буфетная, столовая, кабинет заведующего отделением, комнаты старшей медицинской сестры и сестры-хозяйки).

Высота помещений палатной секции и всех лечебно-диагностических помещений больницы должна быть не менее 3,3 м, за исключением операционных блоков, высота которых должна составлять 3,5 м.

Площади помещений палатной секции представлены в таблице 43.
<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Палаты для взрослых:</td>
<td></td>
</tr>
<tr>
<td>на 1 койку без шлюза</td>
<td>9</td>
</tr>
<tr>
<td>на 1 койку со шлюзом</td>
<td>12</td>
</tr>
<tr>
<td>на 1 койку со шлюзом и туалетом</td>
<td>14</td>
</tr>
<tr>
<td>на 2 койки и более:</td>
<td></td>
</tr>
<tr>
<td>в ожоговых, радиологических отделениях и отделениях восстановительного лечения</td>
<td>10 на 1 койку</td>
</tr>
<tr>
<td>в отделениях интенсивной терапии</td>
<td>13</td>
</tr>
<tr>
<td>в инфекционных и туберкулезных отделениях</td>
<td>7,5</td>
</tr>
<tr>
<td>в прочих отделениях</td>
<td>7</td>
</tr>
<tr>
<td>Пост дежурной медицинской сестры</td>
<td>6</td>
</tr>
<tr>
<td>Кабинет врача</td>
<td>10</td>
</tr>
<tr>
<td>Процедурная:</td>
<td></td>
</tr>
<tr>
<td>с гинекологическим креслом</td>
<td>18</td>
</tr>
<tr>
<td>без гинекологического кресла</td>
<td>12</td>
</tr>
<tr>
<td>Клизменная</td>
<td>8</td>
</tr>
<tr>
<td>Буфетная с оборудованием для мытья посуды для 1 секции</td>
<td>18</td>
</tr>
<tr>
<td>для 2 секций</td>
<td>22</td>
</tr>
<tr>
<td>Столовая (на 1 посадочное место):</td>
<td></td>
</tr>
<tr>
<td>в больницах восстановительного лечения</td>
<td>2,5</td>
</tr>
<tr>
<td>в других больницах</td>
<td>1,2</td>
</tr>
<tr>
<td>Помещение для дневного пребывания больных в отделениях туберкулезных, психиатрических и восстановительного лечения</td>
<td>1 на 1 койку</td>
</tr>
<tr>
<td>в других отделениях</td>
<td>0,8 на 1 койку</td>
</tr>
<tr>
<td>Веранда:</td>
<td></td>
</tr>
<tr>
<td>в больницах туберкулезных, восстановительного лечения и отделениях патологии беременности</td>
<td>3,5 на 1 койку</td>
</tr>
<tr>
<td>в других отделениях и больницах</td>
<td>2,5 на 1 койку</td>
</tr>
<tr>
<td>Помещения для хранения теплых вещей при веранде</td>
<td>0,3 на 1 койку на веранде, но не менее 6</td>
</tr>
<tr>
<td>Санитарные узлы для больных:</td>
<td></td>
</tr>
<tr>
<td>туалет мужской и женский с умывальником в шлюзах (1 унитаз на 15 мужчин и 1 унитаз на 10 женщин)</td>
<td>1,76 на 1 кабину</td>
</tr>
<tr>
<td>ванная на 1 ванну с душевой сеткой</td>
<td>12</td>
</tr>
<tr>
<td>кабина личной гигиены женщины</td>
<td>5</td>
</tr>
<tr>
<td>Кладовая чистого белья</td>
<td>4</td>
</tr>
<tr>
<td>Кабинет заведующего отделением</td>
<td>12</td>
</tr>
<tr>
<td>Комната сестры-хозяйки</td>
<td>10</td>
</tr>
<tr>
<td>Помещения</td>
<td>Площадь, м²</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Комната старшей медсестры</td>
<td>10</td>
</tr>
<tr>
<td>Комната персонала</td>
<td>10</td>
</tr>
<tr>
<td>Туалет для персонала с умывальником в шлюзе</td>
<td>10</td>
</tr>
<tr>
<td>Помещение для хранения переносной физиотерапевтической и рентгеновской аппаратуры в кардиологических отделениях</td>
<td>20</td>
</tr>
<tr>
<td>в других отделениях</td>
<td>12</td>
</tr>
<tr>
<td>Специализированные кабинеты</td>
<td></td>
</tr>
<tr>
<td>Кабинеты уролога, гинеколога, онколога, дерматолога, венеролога (предусматривается слив)</td>
<td>20</td>
</tr>
<tr>
<td>Процедурные при этих кабинетах</td>
<td>18</td>
</tr>
<tr>
<td>Кабинеты отоларингологической со звукоизолированной кабиной, офтальмологический и офтальмонарологический с темными кабинами</td>
<td>18 + 8</td>
</tr>
<tr>
<td>Кабинет отоневрологический</td>
<td>15</td>
</tr>
<tr>
<td>Кабинет для аудиометрических исследований со звукоизолированной кабиной</td>
<td>18 + 8</td>
</tr>
<tr>
<td>Кабинет нейрохирургический со звукоизолированной кабиной</td>
<td>24</td>
</tr>
<tr>
<td>Стоматологический кабинет</td>
<td>14, на каждое кресло свыше одного площадь увеличивается на 7-10</td>
</tr>
<tr>
<td>Кабинеты врачей прочих специальностей</td>
<td>12</td>
</tr>
<tr>
<td>Перевязочная</td>
<td>22</td>
</tr>
<tr>
<td>Комната для приготовления и хранения гипса</td>
<td>10</td>
</tr>
<tr>
<td>Малая операционная с предоперационной</td>
<td>24 + 8</td>
</tr>
<tr>
<td>Лаборатория для эндокринологических исследований</td>
<td>12</td>
</tr>
<tr>
<td>Процедурная для перitoneального диализа</td>
<td>18</td>
</tr>
<tr>
<td>Процедурная для проведения зондирования</td>
<td>18</td>
</tr>
</tbody>
</table>

Все больничные помещения должны иметь естественное освещение. Искусственное освещение допускается в санитарных узлах при палатах, кишечных, гигиенических ваннах, комнатах личной гигиены, душевых для персонала, наркозных, предоперационных, аппаратных, складских помещениях, фотолабораториях.

Гигиенические требования к ориентации и освещению больничных помещений приводятся в разделе 1 (1.2).

Основным помещением палатной секции является палата. В настоящее время общие палаты для взрослых больных проектируются не более чем на 4 койки; при этом в каждой секции должны
быть две палаты на 2 койки и не менее 2 однокоечных палат. Кровати должны быть расположены параллельно стене с окнами, но не более чем в три ряда. При этом расстояние от кроватей до наружных стен должно быть не менее 0,9 м, между длинными сторонами рядом стоящих коек – не менее 0,8 м. Глубина палат при естественном освещении с одной стороны должна быть не более 6 м.

Пост дежурной сестры проектируется как остекленная кабина площадью 4 м², располагаемая с северной стороны коридора и несколько выступающая в коридор, чтобы обеспечить хорошее наблюдение за входом в палаты. Расположение поста в центре секции (вокруг поста группируются одно- и двухкоекные палаты для тяжелобольных) сокращает график движения медицинской сестры (15-18 м до дальней палаты) и облегчает её труд.

В больничном строительстве в настоящее время признана целесообразной частичная двусторонняя застройка коридоров с устройством светового разрыва протяженностью не менее 40% его длины. Наличие светового разрыва и окон в торцах коридора позволяет создать удовлетворительные условия естественной освещенности и эффективное проветривание коридора. При такой застройке значительн о сокращаются графики движения персонала по сравнению с графиками движения при односторонней застройке коридора. Световые разрывы используются как помещения дневного пребывания больных. Ширина палатного коридора, необходимая для свободного передвижения и поворота носилок, каталок и кроватей, должна быть не менее 2,4 м.

Процедурная (манупуляционная) служит в палатной секции для проведения некоторых физиотерапевтических процедур, массажа, инъекций.

Столовую можно устраивать одну на отделение (две секции), располагая её рядом с буфетной комнатой. Количество посадочных мест в столовых принимают равным 80% количества коек в отделениях послеродовых физиологических, кожно-венерологических, туберкулезных, психиатрических и восстановительного лечения и не менее 60% — в остальных отделениях. В буфетной комнате подогревают и распределяют на горячую пищу, поступающую из кухни, а также моют посуду.

Санитарный узел состоит из умывальни, ванной, туалетов и санитарной комнаты. Санитарная комната служит помещением, где производятся мытьё, стерилизация подкладных суден, хранение материала для анализов, разборка и временное хранение грязного белья, мытье клюенок, хранение предметов уборки. Санитарные
узлы для больных (умывальни, туалеты) должны иметь естественное освещение.

Задание 3. Проведите гигиеническую оценку планировки палатной секции на примере терапевтического отделения, ответив на следующие вопросы: 1) количество секций в отделении; 2) набор помещений каждой палатной секции; 3) общие помещения для всего отделения; 4) количество и коечность палат; 5) площадь на 1 койку в 2 и 4-коекных палатах, световой коэффициент, ориентация; 6) количество коек в палатах с ориентацией окон на север и северо-запад; 7) расстановка кроватей в палатах (по отношению к светоснабжению стене, ряжость, расстояние от наружной стены, между длинными сторонами рядом стоящих кроватей); 8) расположение поста дежурной медицинской сестры; 9) расстояние от поста дежурной медицинской сестры до дальней палаты; 10) взаиморасположение поста дежурной медицинской сестры и палат для тяжелобольных (1- и 2-коекных); 11) процедурная, её расположение, расстояние до поста дежурной медицинской сестры, площадь, ориентация; 12) комната дневного пребывания больных, её расположение, достаточность площади; 13) буфетная, её ориентация; 14) столовая, её ориентация, достаточность площади и количества посадочных мест; 15) санитарный узел для больных, набор помещений, наличие естественного освещения; 16) палатный коридор, его ширина, наличие светового разрыва и окон в торцах его, процент двусторонней застройки.

Перечислите недостатки, обнаруженные при гигиенической оценке внутренней планировки палатной секции.

3.1.6. Терапевтическое отделение

Терапевтическое отделение — основное структурное подразделение многопрофильной больницы. Для проведения лечебных мероприятий в большинстве терапевтических отделений предусматриваются только процедурные кабинеты. Поэтому палатные секции этих отделений состоят из набора одинаковых помещений.

В настоящее время в составе отделений терапевтического профиля выделяются узкоспециализированные отделения: кардиологическое, ревматологическое, нефрологическое, гематологическое, гастроэнтерологическое, пульмонологическое и др., где широко применяются новые методы диагностики и лечения больных с использованием сложной медицинской аппаратуры. Поэтому в специализированных отделениях терапевтического профиля предусматриваются дополнительные помещения для проведения специальных исследований и лечебных процедур.
Задание 4. Проведите гигиеническую оценку планировки терапевтического отделения, руководствуясь гигиеническими требованиями к внутренней планировке палатной секции (см. задание 3).

3.1.7. Хирургическое отделение

Общими требованиями, предъявляемыми к проектированию хирургического отделения (общего типа или специализированного), являются:

1. Наличие удобной связи с операционным блоком и диагностическими отделениями (клинико-диагностическая лаборатория, отделение функциональной диагностики, рентгенологическое отделение).

2. Наличие соответствующего числа перевязочных и процедурных.

3. Организация условий для послеоперационного пребывания больных в специально оборудованных палатах, в том числе и для проведения длительного наркоза с реанимационной или лечебной целью.

4. Исключение возможности контакта послеоперационных ("чистых") больных и, так называемых, "гнойных" больных, у которых появились послеоперационные осложнения.

Палатная секция отделения общей хирургии мало чем отличается от секции терапевтического отделения. Дополнительно во всех хирургических отделениях проектируется перевязочная.

Для больных с нагноительными процессами (флегмоны, абсцессы, общирные гнойные раны) выделяются гнойные отделения или секции и специальная операционная. Все другие больные размещаются в чистых отделениях или секциях.

Главной особенностью отделения общей хирургии является наличие операционного блока, а в крупных больницах – операционных отделений.

Операционный блок. Операционный блок представляет собой важную структурную единицу хирургического отделения. Большое значение придается расположению операционного блока и его планировке. Удобнее располагать операционный блок в тупиковом выступе, торце здания или на отдельном этаже. При этом должны быть обеспечены удобные и кратчайшие связи с хирургическими отделениями, приемным отделением и рентгеновским кабинетом, если его нет в составе операционного блока.
Операционный блок никогда не устраивается проходным. Операционный блок, как правило, должен иметь два непроходных отделения: септическое и асептическое.

В состав операционного блока входят: операционная, предоперационная, стериллизационная, наркозная и другие помещения.

Операционную следует проектировать из расчета 1 операционный стол на 30 коек хирургического профиля. Высота операционной, в отличие от всех других помещений стационара, должна быть не менее 3,5 м. Ширина операционной — не менее 5 м, коридоров в операционном блоке — не менее 2,8 м.

Предоперационная предназначена для проведения последней подготовки хирурга и другого медицинского персонала перед операцией. Из предоперационной хирург должен иметь возможность наблюдать наркозную и операционную, где готовят к операции больного.

Наркозная — помещение для последней подготовки больного к операции. Она является также рабочим местом анестезиолога, который ведет наркоз во время операции.

Площади помещений операционного блока даны в таблице 44.

Таблица 44

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Операционная:</td>
<td></td>
</tr>
<tr>
<td>Общейхирургического профиля</td>
<td>36</td>
</tr>
<tr>
<td>Для ортопедотравматологических и нейрохирургических операций</td>
<td>42</td>
</tr>
<tr>
<td>Для операций на сердце и сосудах</td>
<td>48</td>
</tr>
<tr>
<td>Предоперационная:</td>
<td></td>
</tr>
<tr>
<td>Для 1 операционной</td>
<td>15</td>
</tr>
<tr>
<td>Для 2 операционных</td>
<td>25</td>
</tr>
<tr>
<td>Стериллизационная:</td>
<td></td>
</tr>
<tr>
<td>Для 1 операционной</td>
<td>10</td>
</tr>
<tr>
<td>Для 2 операционных</td>
<td>15</td>
</tr>
<tr>
<td>Наркозная:</td>
<td></td>
</tr>
<tr>
<td>Для 1 операционной</td>
<td>20</td>
</tr>
<tr>
<td>Для 2 операционных</td>
<td>30</td>
</tr>
<tr>
<td>Аппаратная</td>
<td>10</td>
</tr>
<tr>
<td>Помещение для хранения и приготовления крови</td>
<td>10</td>
</tr>
<tr>
<td>Помещения</td>
<td>Площадь, м²</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Лаборатория срочных анализов (для септического и асептического отделений)</td>
<td>10</td>
</tr>
<tr>
<td>Инструментально-материальная</td>
<td>4 на каждую операционную, но не менее 10</td>
</tr>
<tr>
<td>Помещение для разборки и мытья инструментов</td>
<td>10</td>
</tr>
<tr>
<td>Помещение для аппарата искусственного кровообращения:</td>
<td></td>
</tr>
<tr>
<td>Монтажная</td>
<td>18</td>
</tr>
<tr>
<td>Моенная</td>
<td>18</td>
</tr>
<tr>
<td>Гипсовальная</td>
<td>20</td>
</tr>
<tr>
<td>Комната для хранения гипса</td>
<td>10</td>
</tr>
<tr>
<td>Кладовая для гипсовых бинтов</td>
<td>6</td>
</tr>
<tr>
<td>Кладовая для переносной аппаратуры</td>
<td>15</td>
</tr>
<tr>
<td>Помещение для хранения передвижного рентгеновского аппарата и фотолаборатория</td>
<td>10+6</td>
</tr>
<tr>
<td>Кабинет заведующего отделением (для септического и асептического отделений)</td>
<td>10</td>
</tr>
<tr>
<td>Кабинет врача-анестезиолога</td>
<td>10</td>
</tr>
<tr>
<td>Кабинет хирурга</td>
<td>10</td>
</tr>
<tr>
<td>Комната старшей медицинской сестры (для септического и асептического отделений)</td>
<td>10</td>
</tr>
<tr>
<td>Комната медицинских сестер и сестер-анестезисток</td>
<td>3,35 на 1 сестру, но не менее 10</td>
</tr>
<tr>
<td>Комната младшего медицинского персонала</td>
<td>8</td>
</tr>
</tbody>
</table>

Стерилизационная в операционном блоке располагается обычно между двумя операционными и служит для стерилизации хирургического инструмента.

В непосредственной близости к операционному блоку размещаются палаты для послеоперационного пребывания больных. Количество коек в послеоперационных палатах устанавливают из расчета 2 койки на 1 операционную. При наличии отделений анестезиологии и реанимации или реанимации и интенсивной терапии эти койки не предусматриваются. Площадь в послеоперационных палатах увеличивается до 13 м² на 1 койку, что позволяет разместить специальное оборудование для ухода за больными. При послеоперационных палатах размещаются пост дежурной медицинской сестры (6 м²), помещение для мытья и стерилизации суден (8 м²), для хранения предметов уборки (4 м²) и грязного белья (4 м²).
Задание 5. Проведите гигиеническую оценку планировки хирургического отделения, руководствуясь гигиеническими требованиями к планировке палатной секции и спецификой планировки отделения, по следующему перечню вопросов: 1) наличие удобной связи операционного отделения с операционным блоком и диагностическими отделениями; 2) перевозочная, количество их в отделении, площадь, ориентация; 3) возможность выделения септической (гнойной) секции.

Перечислите выявленные недостатки планировки хирургического отделения.

Задание 6. Проведите гигиеническую оценку планировки операционного блока, рассмотрев следующие вопросы: 1) расположение операционного блока в здании больницы; 2) наличие удобных и коротких путей связи с хирургическими отделениями, приемным покоем, рентгеновским кабинетом; 3) набор помещений операционного блока; 4) достаточно ли количество операционных; 5) возможность выделения септической ("гнойной") операционной; 6) операционная, её площадь, состояние естественного освещения, ориентация; 7) предоперационная, её взаимоположение с операционной и наркозной; 9) стерилизационная, её расположение; 10) послеоперационные палаты, их расположение по отношению к операционному блоку, количество коеч в них, площадь на 1 койку; 11) другие помещения операционного блока (гипсovalная, кабинет заведующего, комната хирурга, инструментально-материальная).

Перечислите выявленные недостатки планировки операционного блока.

3.1.8. Акушерское отделение

В том случае, когда акушерское и гинекологическое отделения расположены в одном здании, они должны быть изолированы друг от друга, иметь самостоятельные входы.

В состав акушерских отделений (родильных домов) входят отделения патологии беременности (25-30% от общего количества акушерских коеч), родовое и послеродовое физиологические и обсервационные отделения.

Планировка акушерского отделения должна обеспечивать тщательную изоляцию здоровых и больных рожениц. В связи с этим для проведения родов и послеродового пребывания родильниц и новорожденных предусматриваются отдельные физиологические и обсервационное отделения. В последнее поступают роженицы с гнойничковыми заболеваниями кожи, гриппом, ангиной, температурящие, с подозрением на инфекционные заболевания.
Изоляцию этих рожениц осуществляют уже в приемном отделении, где имеется фильтр, через который проходит роженица до поступления в смотрюю. Смотрюю должно быть две: одна для поступающих в родовое физиологическое, другая — в обсервационное отделение. При каждой смотрюю устраивается комната санитарной обработки с душевой и туалетом.

Помещения для выписки родильниц из физиологического послеродового и обсервационного отделений должны быть раздельными. Комната встречи выписывающихся родильниц и новорожденных следует размещать рядом с помещением для посетителей.

Площади приемно-выписных помещений акушерского отделения приведены в таблице 45.

Таблица 45

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вестибюль-ожидальня</td>
<td>1,5 м на 1 роженицу, поступающую в течение суток, но не менее 12</td>
</tr>
<tr>
<td>Фильтр</td>
<td>14</td>
</tr>
<tr>
<td>Смотровая для поступающих в родовое физиологическое отделение и отделение патологии беременности</td>
<td></td>
</tr>
<tr>
<td>То же для поступающих в обсервационное отделение</td>
<td>18</td>
</tr>
<tr>
<td>Комната для санитарной обработки поступающих в физиологическое отделение, с душевой кабиной и унитазом</td>
<td>18</td>
</tr>
<tr>
<td>Комната для санитарной обработки поступающих в обсервационное отделение, с душевой кабиной и унитазом</td>
<td>14</td>
</tr>
<tr>
<td>Помещение для выписки родильниц из послеродового физиологического отделения</td>
<td>14</td>
</tr>
<tr>
<td>То же для выписки родильниц из обсервационного отделения</td>
<td>14</td>
</tr>
<tr>
<td>Комната ожидания выписывающихся родильниц и новорожденных</td>
<td>12</td>
</tr>
</tbody>
</table>

Родовое физиологическое отделение состоит из предродовых палат, родового и операционного блоков и послеоперационных палат (табл. 46).
<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Предродовые палаты (12 % расчетного количества коек послеродового физиологического отделения, но не менее 2):</td>
<td>9</td>
</tr>
<tr>
<td>1 койку</td>
<td>7 на 1 койку</td>
</tr>
<tr>
<td>на 2-4 койки</td>
<td></td>
</tr>
<tr>
<td>Родовые палаты (8 % расчетного количества коек послеродового физиологического отделения, но не менее 2):</td>
<td>24</td>
</tr>
<tr>
<td>на 1 кровать</td>
<td>36</td>
</tr>
<tr>
<td>на 2 кровати</td>
<td></td>
</tr>
<tr>
<td>Подготовительная для персонала</td>
<td>12</td>
</tr>
<tr>
<td>Манипуляционные туалетные для новорожденных при родовых палатах:</td>
<td></td>
</tr>
<tr>
<td>на 1 кроватка</td>
<td>12</td>
</tr>
<tr>
<td>на 2 кроватки</td>
<td>24</td>
</tr>
<tr>
<td>Родовая палата на 1 кровать с туалетом для новорожденного (20 % коек физиологического родового отделения) на 2 койки (при отсутствии отделений анестезиологии и реанимации и интенсивной терапии)</td>
<td>26</td>
</tr>
<tr>
<td>Помещение (пост) аккушерки со стерилизационной</td>
<td>6 + 10</td>
</tr>
<tr>
<td>Операционный блок</td>
<td>См. таблицу</td>
</tr>
<tr>
<td>Кладовая переносной аппаратуры</td>
<td>10</td>
</tr>
<tr>
<td>Послевознические палаты (1 койка) при расчетной вместимости аккушерского отделения до 10 коек, 2 койки при расчетной вместимости более 100 коек</td>
<td>13 на 1 койку</td>
</tr>
<tr>
<td>Помещения:</td>
<td></td>
</tr>
<tr>
<td>для мытья и стерилизации суден</td>
<td>8</td>
</tr>
<tr>
<td>для временного хранения грязного белья</td>
<td>4</td>
</tr>
<tr>
<td>для хранения предметов уборки помещений</td>
<td>4</td>
</tr>
<tr>
<td>для временного хранения последов</td>
<td>4</td>
</tr>
<tr>
<td>Шлюз при входе в отделение</td>
<td>12</td>
</tr>
<tr>
<td>В родовом физиологическом отделении предусматриваются также кабинет заведующего отделением, ординаторская, комната старшей аккушерки, сестры-хозяйки, буфетная (14 м), кладовая для чистого белья</td>
<td></td>
</tr>
<tr>
<td>Перед входом в отделение размещается санитарный пропускник персонала</td>
<td></td>
</tr>
</tbody>
</table>
Послеродовое физиологическое отделение (количество коек в послеродовых палатах) планируют на 50-55% общего количества акушерских коек. Дополнительно предусматривают резервные койки, составляющие 10% этого количества.

Послеродовое отделение состоит из палат для родильниц, новорожденных и вспомогательных помещений.

Послеродовые палаты устраивают небольшими, на 2-4 койки, чтобы поступление и выписка всех родильниц происходили в один день. Обязательно предусматривают палаты на 1 койку (не менее 7% количества коек к отделению; в том числе в палатах со шлюзом размещают 4% коек). Состав и площади помещений послеродовых физиологических отделений принимаются по нормативам для палатных секций (см. табл. 46).

Палаты для новорожденных (количество коек в них должно составлять 110% расчетного количества коек послеродового отделения) размещают в изолированном отсеке не более чем на 20 кроваток. В отсеке перед входом в палаты предусматривается специальное помещение шириной 2 м с постом дежурной сестры. Площади помещений для новорожденных приведены в таблице 47.

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Палаты для новорожденных:</td>
<td></td>
</tr>
<tr>
<td>На 1 кроватку</td>
<td>9</td>
</tr>
<tr>
<td>На 2 кроватки</td>
<td>10</td>
</tr>
<tr>
<td>Изолитор на 1 кроватку со шлюзом</td>
<td>11</td>
</tr>
<tr>
<td>Пост дежурной медицинской сестры</td>
<td>10</td>
</tr>
</tbody>
</table>

Кроме того, в послеродовом физиологическом отделении специализированного роддома могут быть предусмотрены палаты совместного пребывания родильниц (1-2 кровати) и новорожденных (1-2 кроватки).

Обсервационное отделение должно быть изолировано от физиологического акушерского отделения. Сообщение между ними осуществляется только через шлюз.

В обсервационном отделении предусматриваются не менее 3 одно-коечных родовых палат (24 м²) и операционные с подсобными помещениями. Следует предусмотреть также родовой бокс (43 м²) для полной изоляции беременных, рожениц, родильниц с новорожденными.
Количество коек в послеродовых палатах составляет 20-25% общего количества акушерских коек. Дополнительно планируют резервные койки, составляющие 5-7% расчетного количества коек в послеродовых палатах. Палаты обсервационного отделения устройства на одну и две койки. В палатах на одну койку необходимо размещать не менее 15% от общего количества коек отделения, в том числе в палатах со шлюзом – 10% коек.

Палаты для новорожденных планируют на 105-107% от расчетного количества коек в послеродовых палатах. В обсервационном отделении они должны быть боксированными.

При родовых отделениях следует предусматривать помещения гипербарической оксигенации для родильниц и новорожденных.

Площади помещений обсервационного отделения (палат для родильниц и новорожденных, процедурных, клизменных, буфетных, кабинетов медицинского персонала, туалетов, санитарных комнат и др. принимаются, как и в физиологических отделениях, по нормам палатных секций.

Задание 7. Проведите гигиеническую оценку внутренней планировки акушерского отделения, ответив на следующие вопросы: 1) изоляция акушерского отделения от гинекологического; 2) наличие родового и послеродового физиологического и обсервационного акушерских отделений, состав и площади помещений для приема рожениц; 3) состав помещений родового физиологического отделения; 4) предродовые палаты, количество коек в них, площадь на 1 койку, ориентация; 5) родовые палаты интенсивной терапии, её площадь; 7) операционная, её площадь, ориентация, вспомогательные помещения; 8) состав помещений послеродового физиологического отделения; 9) послеродовые палаты для родильниц, количество коек в них, площадь на 1 койку, освещенность, ориентация; 10) палаты для новорожденных, количество коек в них, площадь на 1 койку, ориентация; 11) устройство шлюзов перед палатами новорожденных; 12) наличие комнаты дневного пребывания, столовой в физиологическом отделении; 13) изоляция обсервационного акушерского отделения (секция, подсекции) от физиологического, наличие между ними шлюза; 14) наличие в обсервационном отделении родовой, операционной, послеродовых палат; 15) наличие боксированных палат для новорожденных; 16) наличие родового бокса для изоляции рожениц и родильниц с новорожденными.

Перечислите недостатки, обнаруженные при гигиенической оценке внутренней планировки акушерского отделения.
3.1.9. Гинекологическое отделение

В гинекологическом отделении осуществляется оперативное и консервативное лечение больных. Для оперативного вмешательства в отделении предусматривается малая операционная с предоперационной.

При консервативном лечении широко используются методы физического лечения (электролечение, диатермия, массаж, гимнастика и др.), поэтому отделения должны иметь связь с физиотерапевтическим отделением.

В гинекологическом отделении (в каждой палатной секции) предусматривается одна процедурная площадью 18 м². Все другие помещения должны проектироваться в соответствии с требованиями к внутренней планировке палатной секции.

Задание 8. Проведите гигиеническую оценку внутренней планировки гинекологического отделения, руководствуясь гигиеническими требованиями к внутренней планировке палатной секции и спецификой планировки отделения по следующему перечню вопросов: 1) наличие малой операционной с предоперационной, их площади, ориентация; 2) процедурная, её площадь, ориентация; 3) наличие удобной связи с физиотерапевтическим отделением.

Перечислите недостатки, обнаруженные при гигиенической оценке внутренней планировки гинекологического отделения.

3.1.10. Детское неинфекционное отделение

К проектированию детских неинфекционных отделений предъявляют ряд специфических требований:
1) предотвращение внутрибольничного инфицирования детей и изолирование определенной категории больных, что достигается устройством необходимого количества боксов для изоляции больных с подозрением на инфекционное заболевание, строгой изоляцией каждой палатной секции;
2) наличие специальных помещений для занятий и игр детей школьного и дошкольного возраста;
3) выделение дополнительных (дублируемых) коек для матерей.

Детское отделение должно иметь собственную приемно-выписную часть. Детское отделение вместимостью более 60 коек следует размещать в отдельном корпусе. В здании больницы общего типа (или комплексной с со специализированными отделениями) для
взрослых детское отделение следует размещать на 1-м этаже. Каждая секция детского отделения должна быть непроходной и полностью изолированной, поэтому в детских отделениях не допускается объединение вспомогательных помещений для двух секций.

Внутри секции необходимо иметь возможность для изоляции детей с подозрением на инфекционное заболевание. Для этого в каждой секции предусматривается по 2 бокса или полубокса на 1 койку или две палаты на 1 койку (со шлюзом и без него).

В секции для детей до 1 года (отделения недоношенных, новорожденных — до 1 мес., грудных детей — до 1 года) должно быть 24 койки (на каждые 8 коек имеется пост дежурной медицинской сестры). Пост медицинской сестры пространственно объединяется с группой обслуживания палат. Палаты оборудуют пеленальным столом, столом для детских весов, ванной, умывальником, столом для кормления детей. На высоте 2, 3 м над входом в палату устанавливается бактерицидный облучатель. В палатах должна быть предусмотрена подводка кислорода.

Секция для детей старше 1 года рассчитана на 30 коек. На север и северо-запад должно быть ориентировано не более 10% общего количества коек отделения.

Палаты для детей до 1 года проектируют не более чем на 2 койки, для детей старше 1 года — не более чем на 4 койки. В детских неинфекционных отделениях предусмотрено 6 м на 1 койку. Между кроватями можно устанавливать переносные застекленные перегородки высотой 1,8-2 м. Для удобного наблюдения за детьми стены между палатами, а также палатами и коридорами делают с остекленными проемами.

В секциях для детей младшего и старшего возраста имеется комната для игр (для детей от 1 года до 6 лет — 25 м) или помещение дневного пребывания (для детей от 7 лет и старше — 25 м). Оптимальная ориентация для этих помещений — южная. В секциях для детей старше 3 лет устраивают столовую. В свободное от еды время она может использоваться для игр выздоравливающих детей. Обязательным элементом детской секции является отапливаемая веранда. Рекомендуется иметь на веранде количество коек на 50% детей в палатной секции.

В детском отделении должны быть предусмотрены помещения для УФ-облучения детей и хранения физиотерапевтической аппаратуры.

При детском отделении выделяются помещения для матерей (спальня, комната отдыха, столовая, душевая, туалет) с изолированным входом. Число мест в них следует принимать равным 20%
от количества коек в детском отделении. Эти помещения должны непосредственно сообщаться с комнатами для кормления и сцеживания грудного молока.

Площади помещений детского неинфекционного отделения приведены в таблице 48.

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полубокс на 1 койку</td>
<td>22</td>
</tr>
<tr>
<td>Палаты: на 1 койку без шлюза</td>
<td>9</td>
</tr>
<tr>
<td>на 1 койку со шлюзом</td>
<td>12</td>
</tr>
<tr>
<td>на 2-4 койки</td>
<td>6 на 1 койку</td>
</tr>
<tr>
<td>Кабинет врача</td>
<td>10</td>
</tr>
<tr>
<td>Процедурная</td>
<td>12</td>
</tr>
<tr>
<td>Пост дежурной сестры</td>
<td>6</td>
</tr>
<tr>
<td>Буфетная с оборудованием для мытья и стерилизации посуды</td>
<td>25</td>
</tr>
<tr>
<td>Столовая (для детей старше 3 лет)</td>
<td>1,2 на 1 посадочное место</td>
</tr>
<tr>
<td>Комната игр для детей от 1 года до 7 лет</td>
<td>25</td>
</tr>
<tr>
<td>Помещение для дневного пребывания детей старше 7 лет</td>
<td>2,5 на 1 койку на веранде</td>
</tr>
<tr>
<td>Помещение для хранения теплых вещей</td>
<td>8</td>
</tr>
<tr>
<td>Помещения: для мытья и стерилизации суден, горшков, мытья и сушки клюенок и пеленок</td>
<td>8</td>
</tr>
<tr>
<td>для сортировки и временного хранения грызного белья</td>
<td>4</td>
</tr>
<tr>
<td>для хранения предметов уборки помещений</td>
<td>4</td>
</tr>
<tr>
<td>для хранения чистого белья</td>
<td>4</td>
</tr>
<tr>
<td>Туалеты для детей</td>
<td>6 + 6</td>
</tr>
<tr>
<td>Горшечная</td>
<td>12</td>
</tr>
<tr>
<td>Ванная с подъемником</td>
<td>12</td>
</tr>
<tr>
<td>Умывальник с мойками для ног</td>
<td>4 + 4</td>
</tr>
<tr>
<td>Кабинет заведующего отделением</td>
<td>12</td>
</tr>
<tr>
<td>Кабинет старшей медицинской сестры</td>
<td>10</td>
</tr>
<tr>
<td>Кабинет сестры-хозяйки</td>
<td>10</td>
</tr>
<tr>
<td>Комната персонала</td>
<td>10</td>
</tr>
<tr>
<td>Туалет для персонала с умывальником в шлюзе</td>
<td></td>
</tr>
<tr>
<td>Помещения</td>
<td>Площадь, м²</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>для сцеживания грудного молока</td>
<td>10</td>
</tr>
<tr>
<td>для его стерилизации</td>
<td>10</td>
</tr>
<tr>
<td>Комната для кормления детей младше 1 года</td>
<td>20</td>
</tr>
<tr>
<td>Помещение для облучения детей кварцевой лампой</td>
<td>15</td>
</tr>
<tr>
<td>Помещение для хранения переносной физиотерапевтической аппаратуры</td>
<td>12</td>
</tr>
<tr>
<td>Помещения для матерей (вне палатной секции, но вблизи палат для детей в возрасте до 1 года):</td>
<td></td>
</tr>
<tr>
<td>Спальня</td>
<td></td>
</tr>
<tr>
<td>Комната отдыха-столовая</td>
<td></td>
</tr>
<tr>
<td>Туалет с умывальником в шлюзе и душевой</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,5 на 1 место</td>
</tr>
<tr>
<td></td>
<td>1,2 на 1 место</td>
</tr>
</tbody>
</table>

Задание 9. Проведите гигиеническую оценку внутренней планировки детского неинфекционного отделения, руководствуясь гигиеническими требованиями к внутренней планировке детского отделения по следующему перечню вопросов: 1) местонахождение детского отделения в здании многопрофильной больницы для взрослых; 2) является ли детское отделение проходным или нет; 3) возможность ли его карантинизация; 4) наличие в детском отделении полубоксов и палат для изоляции детей; 5) количество коек в детской секции; 6) вместимость палат, площадь на 1 койку; 7) процент коек, расположенных в палатах с ориентацией на север и северо-запад; 8) наличие комнат для игр или помещения дневного пребывания, их площадь, ориентация; 9) столовая, её площадь, ориентация; 10) наличие отапливаемой веранды, на какое количество коек она рассчитана, достаточность её площади, ориентация; 11) наличие помещения для УФ-облучения и хранения физиотерапевтической аппаратуры; 12) помещения для матерей, их расположение, набор помещений, на какое количество коек они рассчитаны; 13) наличие помещений для кормления и сцеживания грудного молока.

Перечислите недостатки, обнаруженные при гигиенической оценке внутренней планировки детского неинфекционного отделения.

3.1.11. Инфекционное отделение

Больные поступают в инфекционное отделение не только для лечения, но и для изоляции. Поэтому в правильно организованном инфекционном отделении должна быть исключена возможность распространения внутрибольничных инфекций.
Инфекционное отделение рациональнее размещать в отдельно стоящем здании. Внутренняя планировка и санитарный режим этого отделения имеют ряд особенностей, направленных на предупреждение внутрибольничных инфекций. Для приема больных предусматриваются приемно-смотровые боксы площадью 16 м². В отделении вместимостью от 30 до 60 коек должно быть 2 бокса, от 60 до 100 коек – 3 бокса, более 100 коек – 3% количества коек.

Для персонала в приемном отделении инфекционного корпуса (отделения) предусматривается санитарный пропускник.

Помещения для выписки в инфекционных отделениях следует предусматривать для больных, выписываемых из полубоксов и палат, для каждой секции отдельно. Площадь выписной следует принимать 8 м². Помещения для выписки должны быть смежными с вестибулем-гардеробной для посетителей больницы.

Изоляция инфекционных больных может осуществляться либо в профилированных отделениях (групповая изоляция больных одноковой формой заболевания), либо в боксах, построенных по принципу индивидуальной изоляции.

Бокс представляет собой помещение общей площадью 22 м², в котором выделены палата, входной тамбур, санитарный узел, со-стоящий из туалета и ванной, и шлюз. Бокс имеет отдельный на-ружный вход (выход) на улицу. Больной поступает в бокс непосредственно с улицы через входной тамбур. Шлюз связывает бокс с больничным коридором. Через шлюз в бокс входят врачи, медицинская сестра, санитарка. В шлюзе размещается умывальник, имеется дезинфицирующий раствор, вешалка для халатов. Для передачи из коридоров в бокс пищи устраивается специальный шкаф. Благодаря такой планировке бокса коридор боксированного отделения можно рассматривать как нейтральную зону, а в боксах создается возможность изолировать больных с разными инфекциями. Боксы могут проектироваться также на 2 койки площадью 27 м². В боксированных отделениях 25% коек рекомендуется располагать в боксах на 1 койку, остальным – в боксах на 2 койки.

Полубокс состоит из тех же помещений, что и бокс, но не имеет наружного входа (выхода) с тамбуром. Больные и медицинский персонал входят в полубокс через шлюз из больничного коридора. Полубоксы также предусматриваются на 1 и 2 койки. В секции, состоящей из полубоксов, могут находиться больные только с одинаковыми инфекционными заболеваниями.

Строительство инфекционных отделений с боксами обходится значительно дороже, но обеспечивает маневрирование инфекционными
коеками и создает возможность полной ликвидации внутрибольничных инфекций.

В зависимости от количества коек в инфекционном отделении рекомендуется определенное распределение коек в боксах, полубоксах и палатах (табл. 49).

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Количество коек в инфекционном отделении</th>
<th>Свыше 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>До 30</td>
<td>До 60</td>
</tr>
<tr>
<td>Боксы на 1 койку</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Боксы на 2 койки</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Полубокс на 1 койку</td>
<td>–</td>
<td>15</td>
</tr>
<tr>
<td>Полубокс на 2 койки</td>
<td>35</td>
<td>–</td>
</tr>
<tr>
<td>Палаты</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

В боксы помещают в первую очередь больных с невыясненным диагнозом и смешанной инфекцией, с воздушно-капельной инфекцией высокой контагиозности (корь, ветряная оспа). Санитарная обработка больных, поступающих в боксы, проводится непосредственно в боксах или боксах приемно-смотрового отделения.

В полубоксах помещают больных с воздушно-капельной инфекцией относительно невысокой контагиозности (эпидемический паротит, скарлатина, дифтерия), с кишечными заболеваниями. Санитарная обработка больных, поступающих в полубоксы, проводится в санпропускнике при секции, состоящей из полубоксов.

В инфекционном отделении, состоящем из боксов и полубоксов, общие помещения для больных (столовые, комнаты для игр, дневного пребывания, ванные) не устраиваются.

В инфекционном отделении, состоящем из палат, основное количество коек рекомендуется располагать в боксированных палатах на 1-2 койки. Боксированная палата отличается от полубоксов отсутствием ванной и входом в уборную из шлюза. В каждой палатной секции следует также предусматривать два полубокса на 1-2 койки. В каждой секции необходимо иметь полный набор обслуживавших помещений (процедурная, буфетная, столовая, санитарный узел). Санитарная обработка больных проводится в санпропускнике при секции.

В целях изоляции каждое отделение должно иметь два входа, а для отделения, расположенного на втором этаже, — две лестницы.
Один вход предназначен для больных и инфицированных вещей, другой — для персонала, доставки пищи и неинфицированных детей.

Помещения для выписки в инфекционных отделениях следует предусматривать для больных, выписываемых из полубоксов и палат, отдельно для каждого отделения. Площадь помещения для выписки больных следует принимать равной 8 м² с устройством душевой кабины.

Обработка посуды инфекционных больных проводится в специально выделенном помещении для мытья и стерилизации посуды рядом с буфетной.

Состав и площади помещений секций, состоящих из боксов и полубоксов, и секций, состоящих из палат, приведены в табл. 50.

Таблица 50

Площади помещений инфекционных отделений

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Секции, состоящие из боксов и полубоксов</td>
<td></td>
</tr>
<tr>
<td>Боксы:</td>
<td></td>
</tr>
<tr>
<td>на 1 койку</td>
<td>22</td>
</tr>
<tr>
<td>на 2 койки</td>
<td>27</td>
</tr>
<tr>
<td>Полубоксы:</td>
<td></td>
</tr>
<tr>
<td>на 1 койку</td>
<td>22</td>
</tr>
<tr>
<td>на 2 койки</td>
<td>27</td>
</tr>
<tr>
<td>Кабинет врача</td>
<td>10</td>
</tr>
<tr>
<td>Пост дежурной медсестры</td>
<td>6</td>
</tr>
<tr>
<td>Помещение для хранения передвижных рентгеновских и переносных физиотерапевтических аппаратов</td>
<td>12</td>
</tr>
<tr>
<td>Буфетная</td>
<td>18</td>
</tr>
<tr>
<td>Помещение для мытья и стерилизации столовой посуды</td>
<td>10</td>
</tr>
<tr>
<td>Санпинпункт для больных, поступающих в полубоксы:</td>
<td></td>
</tr>
<tr>
<td>раздевальня</td>
<td>6</td>
</tr>
<tr>
<td>ванна с душем</td>
<td>10</td>
</tr>
<tr>
<td>ванна с приспособлением для опускания больного одевальня</td>
<td>12</td>
</tr>
<tr>
<td>Туалет для персонала с умывальником в шлюзе</td>
<td>6</td>
</tr>
<tr>
<td>Помещения</td>
<td>Площадь, м²</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Секции, состоящие из палат</td>
<td></td>
</tr>
<tr>
<td>Санпропускник для больных</td>
<td></td>
</tr>
<tr>
<td>Полубокс на 1 койку</td>
<td>22</td>
</tr>
<tr>
<td>Палаты на 1 койку со шлюзом и туалетом</td>
<td>14</td>
</tr>
<tr>
<td>Палаты на 2 койки и более</td>
<td>7,5 на 1 койку</td>
</tr>
<tr>
<td>Кабинет врача</td>
<td>10</td>
</tr>
<tr>
<td>Процедурная</td>
<td>18</td>
</tr>
<tr>
<td>Помещение для хранения рентгеновской и физиотерапевтической аппаратуры</td>
<td></td>
</tr>
<tr>
<td>Пост дежурной медсестры</td>
<td>12</td>
</tr>
<tr>
<td>Буфетная с оборудованием для мытья и стерилизации посуды</td>
<td>6</td>
</tr>
<tr>
<td>Столовая (из расчета 60% количество коек в секции)</td>
<td>1,2 на 1 посадочное место</td>
</tr>
<tr>
<td>Веранда (в детском палатном отделении)</td>
<td>2,5 на 1 койку на веранде</td>
</tr>
<tr>
<td>Помещение для хранения теплых вещей при веранде</td>
<td>8</td>
</tr>
<tr>
<td>Помещения:</td>
<td></td>
</tr>
<tr>
<td>для мытья и стерилизации суден и горшков</td>
<td>8</td>
</tr>
<tr>
<td>для хранения горшков (для детских палат)</td>
<td>4</td>
</tr>
<tr>
<td>для хранения предметов уборки помещений</td>
<td>4</td>
</tr>
<tr>
<td>Туалет для персонала с умывальником в шлюзе</td>
<td></td>
</tr>
<tr>
<td>Шлюз при входе в секцию</td>
<td></td>
</tr>
</tbody>
</table>

Задание 10. Проведите гигиеническую оценку внутренней планировки инфекционного отделения, ответив на следующие вопросы: 1) расположение инфекционного отделения; 2) состав помещений для приема инфекционных больных; 3) необходимое количество приемно-смотровых боксов, их площадь; 4) из каких помещений состоят инфекционные отделения (боксов, полубоксов, палат); 5) необходимое количество коек в боксах, полубоксах, палатах в процентах от количества коек в инфекционном отделении; 6) внутренняя планировка бокса и полубокса, их площадь, ориентация, количество коек; 7) общие помещения для больных в секции, состоящей из палат; 8) общие помещения для больных в секции, состоящей из боксов и полубоксов; 9) пути доставки пищи больным и возможность стерилизации посуды; 10) пути движения поступающих и выписывающихся больных.

Перечислите недостатки, выявленные при гигиенической оценке внутренней планировки инфекционного отделения.
3.1.12. Лечебно-диагностические отделения

К лечебно-диагностическим отделениям относятся следующие отделения:

1. Отделение анестезиологии-реанимации предусматривается в многопрофильных больницах вместимостью от 500 коек, а в детских от 300 и более. Отделение анестезиологии-реанимации должно состоять из двух подразделений: для больных, поступающих извне, и для больных, направленных из стационара.

Основными помещениями отделения анестезиологии-реанимации являются реанимационный зал с предоперационной, лаборатория срочных анализов, помещение для хранения крови, для контрольно-диагностической аппаратуры, палаты интенсивной терапии и др.

2. Отделение функциональной диагностики в больницах вместимостью менее 400 коек предусматривается одно для приема госпитализированных больных и посетителей поликлинического отделения. В больницах вместимостью 400 коек и более создают два отделения: одно для приема больных стационара, другое для приема посетителей поликлинического отделения.

При размещении поликлинического отделения в отдельно стоящем здании, независимо от вместимости больницы, должны предусматриваться два отделения функциональной диагностики: для приема больных стационара и для приема больных поликлинического отделения.

Основными помещениями отделения функциональной диагностики являются кабинеты электрокардиографии и векторографии, оксигемометрии и капилляроскопии, электроэнцефалографии, электромиографии, определения основного обмена, обследования органов дыхания и эндокринной системы, эндоскопические кабинеты и др.

3. Рентгенологическое отделение больницы, как правило, централизовано и размещается с учетом максимального сокращения графиков движения персонала и больных и возможности обследования стационарных и амбулаторных больных.

Отдельные рентгенологические кабинеты проектируются в инфекционных и туберкулезных отделениях, в приемных отделениях больниц вместимостью 400 коек и более.

Рентгенотерапевтические кабинеты должны, как правило, размещаться в радиологических отделениях.
Входы в рентгенологическое отделение для больных стационара и для посетителей поликлинического отделения должны быть отдельными.

Количество рентгенодиагностических кабинетов принимается из расчета 1 кабинет на 150 коек в стационаре и 1 кабинет на 150 посещений в наибольшую смену работы поликлиники.

Одним из основных помещений в рентгеновском отделении является процедурная. В непосредственной близости к ней должна располагаться фотолаборатория.

При наличии в отделении рентгенотерапевтического кабинета, кроме процедурной, должно быть предусмотрено отдельное помещение для пульта управления. Между комнатой управления и процедурной рентгенотерапевтического кабинета устраивается смотровое окно из просвинцованного стекла, снижающего мощность дозы облучения до предельно допустимой. Двери, стены, пол и комната управления должны обеспечивать защиту от рентгеновского излучения основных и смежных помещений.

Флюорографический кабинет предназначен для массовых рентгенодиагностических исследований. При кабинете должна быть ожидальная с раздевальными. Кабинет для флюорографии устраивается только в поликлиниках и противотуберкулезных диспансерах.

4. Отделение восстановительного лечения (физиотерапевтическое) предусматривается общим для приема больных стационара и посетителей поликлиники с устройством отдельных входов.

В отделении восстановительного лечения осуществляются все виды лечения: электро-, свето-, тепло-, водо- и грязелечения.

Для повышения эффективности стационарной помощи широко используют подвижную аппаратуру, особенно для обслуживания лежачих больных непосредственно в палатах. В состав отделения восстановительного лечения входят кабинеты лечебной физкультуры для индивидуальных занятий, зал лечебной физкультуры, массажная и др.

Задание 11. Проведите гигиеническую оценку расположения и набора помещений лечебно-диагностических отделений, ответив на следующие вопросы: 1) расположение лечебно-диагностических отделений в здании больницы; 2) наличие отдельных входов в лечебно-диагностические отделения для больных стационара и посетителей поликлиники; 3) какие отделения входят в состав лечебно-диагностических отделений больницы; 4) рентгенодиагностические кабинеты, достаточно ли их количество и площадь; 5) наличие флюорографического кабинета, его расположение;
6) виды физиотерапевтического лечения, применяемые в отделении восстановительного лечения.

Перечислите недостатки, обнаруженные при гигиенической оценке лечебно-диагностических отделений.

3.1.13. Поликлиника

Поликлиники следует размещать в отдельно стоящих зданиях или в зданиях, примыкающих к стационару в местах размещения общих для стационара и поликлиники лечебно-диагностических отделений. При расчете поликлинической помощи исходят из 12,9 посещения в год на одного городского жителя и 8,2 посещения в год на одного сельского жителя. Около 40% всех посещений приходится на терапевтическое и 20% — на хирургическое отделения поликлиники. Количество посещений поликлиники в наибольшую смену следует принимать равным 60% общего количества посещений поликлиники в день.

Подход больных к корпусу должен быть самостоятельный, независимый от въезда к стационару.

Основными помещениями поликлиники являются: врачебные, лечебно-диагностические кабинеты, ожидальные для больных, регистратура, вестибюль с гардеробной.

Вестибюль с гардеробной проектируется при главном входе. Его площадь определяется из расчета 0,38 м на каждого посетителя с учетом количества посетителей, одновременно находящихся в поликлинике, в зависимости от числа врачебных кабинетов (см. табл. 48).

Регистратура проектируется из расчета 8 м на одного регистратора, обслуживающего 100 больных в наибольшую смену, но не менее 10 м.

Помещения для ожидания при кабинетах проектируются из расчета 1,2 м² на каждого больного, ожидавшего приема. Изолированные ожидальные устраиваются при акушерско-гинекологическом, туберкулезном, дерматовенерологическом и психиатрическом кабинетах. В ожидальном при кабинетах дерматовенеролога следует предусматривать туалет на 1 унитаз с умывальником в шлюзе. Ожидальные ориентируют на юг.

Если под ожидальными используют коридоры, то ширина их должна составлять 3,2 м при двустороннем и 2,8 м при одностороннем расположении кабинетов.

Врачебные кабинеты следует ориентировать не север. Площадь кабинета терапевта, невропатолога, психиатра, подросткового вра-
ча составляет 12 м². Площадь специализированных кабинетов (хирурга, фтизиатра, дерматовенеролога, акушера-гинеколога, уролога, онколога, травматолога, ортопеда) должна быть не менее 18 м². Глазной кабинет должен иметь в длину не менее 5 м для определения остроты зрения.

Поликлиническое отделение для детей полностью изолируется от отделения для взрослых. Поступление детей осуществляется через фильтр, в котором медицинская сестра расспрашивает родителей о состоянии ребенка, осматривает кожу и слизистые оболочки, измеряет температуру. Детей с повышенной температурой, с признаками остrego заразного заболевания направляют из фильтра в бокс. Вызванный врач производит осмотр больного ребенка в боксе. Бокс имеет отдельный наружный выход для больных.

Детей без признаков остrego заболевания и с нормальной температурой направляют из фильтра в общее отделение, где имеются вестибюль с гардеробной, регистратура и две группы кабинетов — участковых педиатров — со своими ожидальными.

Из вестибюля детской поликлиники должен быть предусмотрен выход на улицу, чтобы пути движения детей, поступающих в поликлинику и уходящих домой, не пересекались.

Ожидальны в детских поликлиниках рекомендуется устраивать отдельными для нескольких близких по профилю кабинетов (по децентрализованной системе).

Площади вестибюля, гардеробной и ожидален для детских поликлиник определяются так же, как и для взрослых, но количество посетителей, одновременно находящихся в учреждении, принимается на 75% больше (табл. 51).

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Расчетное число посетителей на 1 кабинет</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ожидальны</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Кабинеты терапевта, невропатолога, педиатра, акушера-гинеколога, уролога, онколога, хирургической стоматологии</td>
<td>4</td>
</tr>
<tr>
<td>Кабинеты травматолога-ортопеда для взрослых</td>
<td>6</td>
</tr>
<tr>
<td>для детей</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Кабинеты офтальмолога, отоларинголога, дерматовенеролога</td>
<td>7</td>
</tr>
<tr>
<td>Кабинет хирурга</td>
<td>8</td>
</tr>
<tr>
<td>Кабинеты терапевтической стоматологии и детского психиатра</td>
<td>2</td>
</tr>
<tr>
<td>Кабинеты кардиоревматолога, психиатра</td>
<td>3</td>
</tr>
<tr>
<td>Кабинеты ортопедической стоматологии, ортопедии и логопедии</td>
<td>1</td>
</tr>
<tr>
<td>Рентгенодиагностический кабинет</td>
<td>-</td>
</tr>
<tr>
<td>Процедурные</td>
<td>9</td>
</tr>
</tbody>
</table>

Площадь кабинета педиатра должна быть 15 м², площадь кабинетов врачей-специалистов — 12-18 м², для матерей с грудными детьми устраивается отдельная комната для кормления детей. Площади помещений поликлиники даны в табл. 52.

Таблица 52

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вестибюль-гардеробная с аптечным кioskом и справочной</td>
<td>0,38 на каждого одновременно находящегося посетителя, но не менее 10</td>
</tr>
<tr>
<td>Ожидальня</td>
<td>1,2 на каждого одновременно находящегося посетителя, но не менее 10</td>
</tr>
<tr>
<td>Регистратура</td>
<td>8 на одного регистратора, но не менее 10</td>
</tr>
<tr>
<td>Помещения для вызова врача на дом: а) комната для вызова врача</td>
<td>12</td>
</tr>
<tr>
<td>б) комната для участковых врачей</td>
<td>(при числе врачей более 3 площадь увеличивается на 3,25 на каждого)</td>
</tr>
<tr>
<td>комната для медицинских сестер</td>
<td>12</td>
</tr>
<tr>
<td>(при числе сестер более 3 площадь увеличивается на 3,25 на каждую)</td>
<td></td>
</tr>
<tr>
<td>Помещения</td>
<td>Площадь, м²</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Кабинет кардиоревматолога с процедурной</td>
<td>16 + 12</td>
</tr>
<tr>
<td>Кабинеты хирурга, фтизиатра, дерматовенеролога, онколога, травматолога-ортопеда, акушера-гинеколога, уролога</td>
<td>18</td>
</tr>
<tr>
<td>Процедурная для иглолитерации</td>
<td>20</td>
</tr>
<tr>
<td>Процедурная для внутримышечных инъекций</td>
<td>12</td>
</tr>
<tr>
<td>Процедурная для внутривенных вливаний</td>
<td>12</td>
</tr>
<tr>
<td>Клизменная (предусматривается слив)</td>
<td>10</td>
</tr>
<tr>
<td>Операционная с предоперационной</td>
<td>22 + 8</td>
</tr>
<tr>
<td>Стерилизационная</td>
<td>10</td>
</tr>
<tr>
<td>Перевязочная</td>
<td>22</td>
</tr>
<tr>
<td>Гипсовая перевязочная</td>
<td>22</td>
</tr>
<tr>
<td>Комната для хранения гипса</td>
<td>10</td>
</tr>
<tr>
<td>Процедурная при кабинете врача-специалиста</td>
<td>20</td>
</tr>
<tr>
<td>Смотровой кабинет с гинекологическим креслом</td>
<td>18</td>
</tr>
<tr>
<td>Кабинет отоларинголога со звукоизолированной кабиной</td>
<td>18 + 8</td>
</tr>
<tr>
<td>Кабинет для исследования вестибулярного аппарата</td>
<td>10</td>
</tr>
<tr>
<td>Кабинет аудиометрии со звукоизолированной кабиной</td>
<td>16 + 8</td>
</tr>
<tr>
<td>Кабинет офтальмолога с темной кабиной</td>
<td>18 + 8</td>
</tr>
<tr>
<td>Помещения для люминесцентной диагностики грибковых заболеваний</td>
<td>6</td>
</tr>
<tr>
<td>Операционная с предоперационной при кабинетах офтальмолога и отоларинголога</td>
<td>14 + 8</td>
</tr>
<tr>
<td>Кабинет врача по инфекционным болезням:</td>
<td></td>
</tr>
<tr>
<td>- помещение для врача</td>
<td>12</td>
</tr>
<tr>
<td>- помещение для ректороманоскопии</td>
<td>18</td>
</tr>
<tr>
<td>- помещение для медсестры</td>
<td>8</td>
</tr>
<tr>
<td>Клизменная</td>
<td>8</td>
</tr>
<tr>
<td>Процедурная (предусматривается слив)</td>
<td>10</td>
</tr>
<tr>
<td>Санитарная комната</td>
<td>8</td>
</tr>
<tr>
<td>Туалет с умывальником в шлюзе</td>
<td>1,76 на 1 кабину</td>
</tr>
<tr>
<td>Кабинет враченско-контрольной комиссии</td>
<td>20</td>
</tr>
<tr>
<td>Организационно-методический кабинет</td>
<td>Не менее 12</td>
</tr>
<tr>
<td>Статистический кабинет</td>
<td>Не менее 12</td>
</tr>
<tr>
<td>Кабинет санитарного просвещения</td>
<td>12</td>
</tr>
</tbody>
</table>
Помещения

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Врачебно-трудовая экспертиза:</td>
<td></td>
</tr>
<tr>
<td>- ожидальня</td>
<td>24</td>
</tr>
<tr>
<td>- регистратура</td>
<td>24</td>
</tr>
<tr>
<td>- архив</td>
<td>24</td>
</tr>
<tr>
<td>- кабинет врачей-экспертов</td>
<td>30</td>
</tr>
<tr>
<td>Помещения неотложной помощи:</td>
<td></td>
</tr>
<tr>
<td>- кабинет врачей</td>
<td>12</td>
</tr>
<tr>
<td>- ожидальня для посетителей</td>
<td>10</td>
</tr>
<tr>
<td>- комната медсестры</td>
<td>10</td>
</tr>
<tr>
<td>- перевязочно-процедурная</td>
<td>22</td>
</tr>
<tr>
<td>- комната временного пребывания больных</td>
<td>6 на 1 кущетку, но не менее</td>
</tr>
<tr>
<td>- диспетчерская и комната шофёров</td>
<td>12</td>
</tr>
<tr>
<td>- туалет для персонала с умывальником в шлюзе</td>
<td>6 + 10</td>
</tr>
</tbody>
</table>

Дополнительные помещения в детских поликлиниках и отделениях

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Площадь, м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фильтр-бокс для приема детей (не менее 2)</td>
<td>12</td>
</tr>
<tr>
<td>Кабинет педиатра</td>
<td>15</td>
</tr>
<tr>
<td>Кабинет логопеда</td>
<td>18</td>
</tr>
<tr>
<td>Процедурная для детей</td>
<td>18</td>
</tr>
<tr>
<td>Кабинет антропометрии</td>
<td>15</td>
</tr>
<tr>
<td>Помещение для прививок</td>
<td>20 + 10</td>
</tr>
<tr>
<td>Массажная для детей грудного возраста</td>
<td>15</td>
</tr>
<tr>
<td>Комната для кормления грудных детей</td>
<td>10</td>
</tr>
<tr>
<td>Комната для обучения ухода за новорожденным</td>
<td>10</td>
</tr>
<tr>
<td>Комната для сцеживания грудного молока и его стерилизации</td>
<td>10 + 6</td>
</tr>
<tr>
<td>Кабинет охраны зрения детей</td>
<td>25</td>
</tr>
</tbody>
</table>

Примечание. В состав поликлиник могут входить следующие подразделения: рентгенологическое отделение, лаборатория, отделения терапевтической, хирургической и ортопедической стоматологии, отделение дегельминтизации, аллергологический кабинет.

Задание 12. Проведите гигиеническую оценку расположения и внутренней планировки поликлиники для взрослых, ответив на следующие вопросы: 1) вестибюль с гардеробом, достаточна ли его площадь; 2) регистратура, количество регистраторов, площадь регистратуры; 3) ожидальни, их площадь и планировка (децентрализованные); 4) наличие кабинетов врачей; 5) площадь кабинета хирурга, его ориентация, наличие перевязочной; 6) площадь кабинета терапевта, его ориентация, площадь ожидальной; 7) площадь кабинета акушера-гинеколога, наличие изолированной ожидальной, ее площадь; 8) планировка ожидален при кабинетах дерматовенеролога, фтизиатра, онколога; 9) ширина коридоров поликлиники.
Поликлиника для детей: 1) особенности планировки детской поликлиники в целях профилактики инфекционных заболеваний; 2) площадь кабинета педиатра, его ориентация; 3) система охлаждения, достаточность их площади, ориентация; 4) организация выхода детей из поликлиники.
Перечислите недостатки, выявленные при гигиенической оценке расположения и внутренней планировки поликлиники.

3.2. Гигиеническая оценка микробного загрязнения воздушной среды в лечебных учреждениях

Цель занятия: ознакомить студентов с методами изучения и оценки бактериального загрязнения воздуха.

Практические навыки: научить студентов производить бактериологическое исследование воздуха, давать гигиеническую оценку микробного загрязнения воздушной среды в лечебно-профилактических учреждениях.

Задание студентам:
1. Произвести бактериологический посев воздуха с помощью прибора Кротова.
2. Дать заключение о бактериальной загрязненности воздуха на основании предложенных данных.

Микробная загрязненность воздуха имеет большое эпидемиологическое значение, так как через воздух могут передаваться многие инфекционные заболевания. Микроорганизмы находятся в воздухе в виде бактериального аэрозоля (дисперсионная среда — воздух, дисперсная фаза — капельки жидкости или твердые частицы, содержащие микроорганизмы). Различают 3 фазы микробного аэрозоля: крупноядерную жидкую фазу с диаметром капель более 0,1 мм, мелкоядерную жидкую фазу с диаметром капель менее 0,1 мм и фазу бактериальной пыли. Способность микробов сохраняться в той или иной фазе аэрозоля определяется устойчивостью их к высушиванию. Например, в крупноядерной фазе выживают даже малостойкие микроорганизмы (вирусы гриппа, кори и др.), в мелкоядерной фазе — палочки дифтерии, стрептококки, менингококки и др., в фазе бактериальной пыли — микобактерии туберкулеза, споры бактерий, грибы.

Оценку чистоты воздуха помещений производят на основании определения общего количества микроорганизмов, содержащихся в 1 м³ воздуха, и наличия санитарно-показательных микроорганизмов (гемолитических стрептококков и стафилококков) — обычных обитателей дыхательных путей человека.
Особенно важен контроль за микробным загрязнением воздуха в хирургических и педиатрических отделениях больниц, в родильных домах, где возникновение госпитальных инфекций наиболее опасно. Здесь главное внимание должно уделяться определению патогенных стафилококков и других патогенных бактерий — возбудителей послеоперационных и послеродовых инфекций и заболеваний новорожденных. В качестве показателей микроорганизмов для оценки воздушной среды используют определение патогенных (коагулазоположительных) гемолитических стафилококков.

При систематическом контроле обнаружение небольшого количества патогенных стафилококков в отделениях, где отсутствует госпитальная инфекция, является закономерным и не может рассматриваться как выходящее за рамки допустимого. Показателем санитарного неблагополучия является большее, особенно нарастающее, обесценение лечебных учреждений этими микроорганизмами.

При оценке результатов необходимо установить, какое место среди обнаруживаемых патогенных стафилококков занимают виды, устойчивые к антибиотикам, и не преобладает ли среди высеваемых культур какой-либо один или немногие фаготипы. Наращение количества патогенных стафилококков при одновременном сужении круга их типов и повышении удельного веса полирезистентных к антибиотикам форм следует рассматривать как грозный предвестник возможного появления госпитальных инфекций.

Плановые исследования воздуха на общую бактериальную обсемененность и наличие золотистых стафилококков проводятся 1 раз в месяц в помещениях лечебно-профилактических учреждений, таких, как операционные, асептические, реанимационные палаты хирургических отделений, родильные залы и детские палаты акушерских стационаров; по показаниям на наличие грамотрицательных микроорганизмов — в асептических отделениях.

По эпидпоказаниям спектр определяемых в воздухе микроорганизмов может быть расширен.

В таблице 53 представлены допустимые уровни бактериальной обсемененности воздуха.

В зависимости от принципа улавливания микроорганизмов выделяют следующие методы бактериологического исследования воздуха: 1) седиментационный; 2) фильтрационный; 3) основанный на принципе ударного действия воздушной струи.
<table>
<thead>
<tr>
<th>Место отбора проб</th>
<th>Условия работы</th>
<th>Общее количество колоний в 1 м³ воздуха</th>
<th>Количество золотистого стафилококка в 1 м³ воздуха</th>
<th>Количество грамотрицательных бактерий в 1 м³ воздуха</th>
</tr>
</thead>
<tbody>
<tr>
<td>Операционные (обеспеченные 10-20 и более кратным воздухообменом)</td>
<td>Подготовленные к работе</td>
<td>не более 100</td>
<td>не должно быть</td>
<td>не должно быть</td>
</tr>
<tr>
<td>Реанимационное отделение (палаты)</td>
<td></td>
<td>не более 1000</td>
<td>не более 4</td>
<td>не должно быть</td>
</tr>
<tr>
<td>Боксы</td>
<td>Перед помещением больного в палату</td>
<td>не более 50</td>
<td>не должно быть</td>
<td>не должно быть</td>
</tr>
<tr>
<td></td>
<td>Во время пребывания больного в палате</td>
<td>не более 250</td>
<td>не более 1-2</td>
<td>не более 1-2</td>
</tr>
<tr>
<td>Процедурная</td>
<td>До начала работы</td>
<td>не более 50</td>
<td>не должно быть</td>
<td>не должно быть</td>
</tr>
<tr>
<td></td>
<td>Во время работы</td>
<td>не более 2000</td>
<td>не более 1-2</td>
<td>не более 1</td>
</tr>
</tbody>
</table>

Наиболее простым является седиментационный метод, который позволяет уловить самопроизвольно оседающую фракцию микробного аэрозоля. Посев производят на открытые на больших или меньший срок горизонтально поставленные чашки Петри с плотной питательной средой. После инкубации подсчитывают количество выросших колоний. Этот метод рекомендуется использовать в настоящее время только для получения сравнительных данных о частоте воздуха помещений в различное время суток, для оценки эффективности санитарно-гигиенических мероприятий (вентиляция, влажная уборка) и т.д.

Фильтрационный метод посева воздуха заключается в просасывании определенного объема воздуха через жидкую питательную среду. Для посева микроорганизмов используют бактериоультромер Речменского и прибор ПОВ-1, действие которых основано на сорб-
ции микробов в жидкой питательной среде, распыляющейся в струе исследуемого воздуха.

Одним из наиболее совершенных приборов, в котором используются принцип ударного действия воздушной струи, является прибор Кротова, представляющий собой цилиндрический корпус, в основании которого установлен электромотор с центробежным вентилятором, а в верхней части размещен вращающийся диск. На этот диск устанавливается чашка Петри с питательной средой. Корпус прибора герметически закрывается крышкой с радиально расположененной клиновидной щелью. При работе прибора аспирируемый вентилятором воздух поступает через клиновидную щель и струя его ударяется об агар, в результате чего к нему прилипают частицы микробного аэрозоля. Вращение диска с чашкой Петри и клиновидная форма щели гарантируют равномерное распределение микробов по поверхности агара. Для пересчета величины бактериального загрязнения на 1 м³ воздуха регистрируют скорость просасывания воздуха. Зная время отбора пробы, определяют общее количество аспирированного воздуха.

Методика бактериологического исследования воздуха с помощью прибора Кротова (рис. 13).

Рис. 13. Прибор Кротова для бактериологического исследования воздуха. 1 — клиновидная щель; 2 — вращающийся диск; 3 — реометр.
1. Подключить прибор к сети.
2. Установить на диск открытую чашку Петри с плотной питательной средой. При определении общей бактериальной обсемененности для посева используют 2% мясо-пептонный агар, при определении стафилококков — желточный агар Чистовича, стрептококков — сахарно-кровяной агар с генциановым синим (среда Гаро).
3. Закрыть прибор с чашкой и включить электромотор.
4. С помощью регулятора установить нужную скорость всасывания воздуха (около 25 л в 1 мин).
5. Прососав необходимое количество воздуха (для определения общего количества колоний при среднем загрязнении воздуха про-пускают около 50 л; при отборе проб для выделения стрептококков и стафилококков на элективных средах объем аспирированного воздуха увеличивается до 250 л и более), прибор отключают. Чашку Петри инкубируют в термостате при 37°C в течение 48 ч.
6. Количество выросших колоний пересчитывают на 1 м³.
Раздел 4.
ВОЗДЕЙСТВИЕ ВРЕДНЫХ ПРОИЗВОДСТВЕННЫХ ФАКТОРОВ НА ЗДОРОВЬЕ ЛЮДЕЙ

Данный раздел гигиены является одним из наиболее важных для студентов медицинских вузов, многие из которых будут рабо- тать врачами здравпунктов, медико-санитарных частей промыш- ленных предприятий или обслуживать промышленных рабочих в общих поликлиниках.

К числу основных задач работы врача на производстве отно- сятся: участие в мероприятиях, направленных на оздоровление труда рабочих и служащих, предупреждение и снижение общей и профессиональной заболеваемости.

Работа медико-санитарных частей или поликлиники строится по цеховому принципу. Это значит, что к каждому цеху прикреп- ляется врач-терапевт (цеховой врач), ответственный за лечебно- профилактическую работу в закрепленном за ним цехе.

В обязанности цеховых врачей входит:
1. Оказание квалифицированной лечебной помощи работаю- щим (в необходимых случаях с привлечением других специалистов или использованием стационара).
2. Организация и проведение предварительных при поступле- нии на работу, а также периодических медицинских осмотров (со- вместно с ЦГСЭН и администрацией предприятия).
3. Анализ причин общей и профессиональной заболеваемости и участие (совместно с ЦГСЭН и администрацией предприятия) в разработке мероприятий по их профилактике и снижению.
4. Санитарно-просветительская работа.

Для проведения профилактической работы цеховому врачу- терапевту выделяется из общего бюджета рабочего времени 9 часов в неделю; другим врачам-специалистам: хирургам, гинекологам, окулистам, дерматологам — примерно 4 часа в неделю; фтизиатрам — 6 часов в неделю и т.д.

Работа врачей на производстве может быть эффективной толь- ко при знании условий труда рабочих и служащих и профессио- нальной патологии. На основании изучения технологических и са- нитарно-гигиенических особенностей производства цеховой врач (совместно с санитарным врачом по гигиене труда) разрабатывает конкретные мероприятия по снижению заболеваемости и участвует в контроле за выполнением всех оздоровительных мероприятий на производстве.

7*
Врачи-специалисты также осуществляют профилактику заболеваемости. Так, дерматологи знакомятся с санитарными условиями на рабочих местах с целью борьбы с микротравмами, приводящими к развитию гнойничковых заболеваний кожи, следят за санитарным состоянием одежды; офтальмологи изучают глазной травматизм и его причины и т.д.

Профилактическим медицинским осмотром подлежат лица, которые могут подвергаться воздействию опасных, вредных веществ и неблагоприятных факторов производства в соответствии с Приказом МЗ № 555 от 29 сентября 1989 г. "О совершенствовании системы медицинских осмотров трудящихся и водителей индивидуальных транспортных средств". Приказ № 555 утверждает: 1) перечень опасных и вредных веществ и неблагоприятных производственных факторов, характер проводимых работ, при которых обязательны осмотры с целью предупреждения профессиональных заболеваний; 2) периодичность осмотров; 3) участие врачей-специалистов; 4) необходимые лабораторные и функциональные исследования; 5) медицинские противопоказания к допуску на работу трудящихся; 6) список профессиональных заболеваний и 7) положение о диспансеризации больных профзаболеваниями.

Медицинские осмотры разделяются на предварительные и периодические.

Предварительные медицинские осмотры проводятся при поступлении на работу. Они позволяют выявить людей, которые по состоянию здоровья не могут быть допущены на работу в условиях данного производства. В предварительных медицинских осмотрах участвуют все врачи-специалисты (терапевт, невропатолог, офтальмолог, дерматовенеролог, отоларинголог, хирург).

Периодические медицинские осмотры позволяют на ранних стадиях выявить профессиональное заболевание или отклонение в состоянии здоровья, повышающие опасность воздействия профессиональных вредностей. Основным лицом, проводящим периодические медицинские осмотры, является врач-терапевт. Участие врачей-специалистов (фтизиатра, невропатолога и др.) определяется врачом-терапевтом.

При проведении предварительных и периодических медицинских осмотров все жители обязательно обследуются врачом-акушером-гинекологом с проведением цитологического и бактериоскопического исследования.

Лица, подвергающиеся воздействию веществ, являющихся аллергенами, в обязательном порядке осматриваются терапевтом,
отоларингологом, дерматовенерологом с проведением клинического анализа крови.

Все данные медицинского обследования заносятся в медицинскую карту амбулаторного больного (форма 025/У-87).

В случае установления при проведении медицинских осмотров признаков профзаболевания трудящиеся направляются для специального обследования с целью уточнения диагноза и установления связи заболевания с профессиональной деятельностью в центры профпатологии.

Одним из документов, на основании которого решается вопрос о связи заболевания с профессиональным трудом, является санитарно-гигиеническая характеристика условий труда работающего (осуществляется в соответствии с приказом МЗ №555). Санитарно-гигиеническая характеристика составляется и выдается только центрами Госсанэпиднадзора. Право на запрос санитарно-гигиенической характеристики имеет главный врач медико-санитарной части предприятия, на котором работает заболевший.

Все лица с выяленными профессиональными заболеваниями должны находиться на диспансерном наблюдении в течение всей жизни у соответствующих специалистов в зависимости от установленного патологического процесса (Приложение №9 к Приказу МЗ от 30.05.86 г. №770).

В профилактической работе цехового врача большое значение имеет санитарно-просветительная работа. В ней в обязательном порядке участвуют все врачи и средние медработники. Содержанием санитарно-просветительной работы на предприятии являются:

а) пропаганда медицинских знаний по вопросам, прежде всего, тех заболеваний, которые распространены на данном предприятии;

б) пропаганда знаний по борьбе с профессиональными болезнями;

в) пропаганда знаний в области личной и общественной гигиены.

Принципы профилактики вредного воздействия производственных факторов

Мероприятия по профилактике профессиональных заболеваний являются индивидуальными в отношении каждой отдельной вредности и каждого отдельного производственного процесса. Общими являются только некоторые важнейшие принципы, на кото-
рых базируются профилактические мероприятия в отношении отдельных вредностей и отдельных производств.

К общим принципам профилактики относятся:

1. Гигиеническое нормирование профессиональных вредностей (например: установление предельно-допустимых концентраций токсических веществ и нетоксических веществ в воздухе рабочих помещений, допустимых уровней ионизирующих излучений, допустимых уровней шума и вибрации и т.д.). Эти регламентирующие показатели являются основой профилактической работы и оценки эффективности проведения оздоровительных мероприятий. Систематический контроль за состоянием производственной среды осуществляется лабораториями ЦГСЭН, заводскими лабораториями.

2. Изменение технологии производства (использование вместо порошкообразных продуктов брикетов, гранул, паст; замена сухих процессов влажными; замена пневмоклапанных молотков точечной сваркой и т.д.).

3. Механизация и автоматизация производственных процессов.

4. Герметизация аппаратуры, в которой происходит обработка токсических или пылящих материалов.

5. Эффективная местная и общебменная вентиляция.

6. Использование индивидуальных средств защиты.

7. Биологические методы профилактики: общеоздоровительные и специальные. К первой группе относятся: рациональная организация труда и отдыха, массовые занятия физкультурой и спортом, рациональное питание и пр. Вторая группа мероприятий проводится в зависимости от этиологического и патогенетического принципа, на основании знания неблагоприятного действия на организм различных факторов производственной среды — пылевых, химических и физических. Например, известно положительное значение дыхательной гимнастики, ингаляций аэрозолей, а также рационального питания с включением соответствующих витаминов в профилактике пневмоклаперозов, бронхитов пылевой и токсико-химической этиологии, значение массажа, камерных ванн и целенаправленных гимнастических упражнений для профилактики вибрационной болезни и т.д.

8. Предварительные и периодические медицинские осмотры лиц, работающих в условиях профессиональных вредностей, способных вызвать профессиональные заболевания.

9. Санитарно-просветительная работа.

198
4.1. Производственный шум и его влияние на организм

Цель занятия: познакомить студентов с воздействием на организм производственного шума, его нормированием, шумоизмерительной аппаратурой, а также методами физиологического обследования лиц, подвергающихся воздействию шума на производстве.

Практические навыки: освоить методику измерения и оценки производственного шума.

Задание студентам:
1. Ознакомиться с аппаратурой для определения интенсивности и частотных характеристик производственного шума.
2. Измерить с помощью прибора ИШВ-1 уровень производственного шума, записанного на магнитную ленту, и дать заключение о возможном влиянии шума на организм по полученным данным.
3. Ознакомиться с физиологическими методами оценки влияния шума на организм.

В промышленности, сельском хозяйстве и на транспорте имеется большое число видов профессиональной деятельности, связанных с возможностью воздействия на рабочих производственного шума.

Шум — это сочетание звуков различной частоты и интенсивности. Неблагоприятное действие шума зависит от его интенсивности, длительности и спектрального состава, сопутствующих вредных производственных факторов, а также от исходного функционального состояния организма, подвергающегося шумовому влиянию.

Под воздействием шума в организме работающих появляются многообразные патологические изменения, степень выраженности которых зависит от соотношения указанных выше факторов. Симптомокомплекс изменений, развивающихся в организме под действием шума, определяют как шумовая болезнь.

Шумовая болезнь — это общее заболевание организма, для которого характерно преимущественное поражение центральной нервной системы и слухового анализатора.

Клинические проявления, возникающие в организме под влиянием шума, делятся на специфические (изменения в органе слуха и неспецифические (изменения в других органах и системах).

Результатом воздействия шума на слуховую функцию является развитие профессиональной тугоухости и глухоты. Вначале под влиянием шумового воздействия наблюдается понижение слуховой
чувствительности. При этом, если после воздействия шума чувствительность к нему понижается не более чем на 10-15 дБ, а восстановление происходит за 2-3 минуты, следует думать о временном физиологическом приспособлении, которое носит название слуховой адаптации. Однако при длительном воздействии шума происходит истощение адаптационной способности. Период восстановления затягивается, порог повышается более значительно, что свидетельствует об утомлении слуха. Хроническое утомление слуха переходит в профессиональную тугоухость и глухоту.

В основе стойкого нарушения слуховой чувствительности, по мнению ряда авторов, лежат поражение звуковоспринимающего аппарата органа слуха, дегенеративные изменения в волосковых клетках и других элементах кортиевого органа.

Из неспецифических изменений, происходящих под воздействием шума, следует отметить нарушения со стороны центральной нервной системы (быструю утомляемость, ослабление памяти, снижение внимания, потеря работоспособности, повышенная раздражительность и др.); сердечно-сосудистой системы (изменение частоты пульса, замедление внутрижелудочковой проводимости, угнетение электрической активности сердца, сужение периферических сосудов и капилляров, повышение артериального давления); системы органов дыхания (угнетение частоты и глубины дыхания); системы органов чувств и зрения (снижение устойчивости ясного видения, ослабление сумеречного зрения, изменение чувствительности к разным частям спектра света); вестибулярного аппарата (головокружение, ощущение неустойчивости и т.д.); пищеварительной системы (угнетение секреции желудочного сока, снижение перистальтики желудка и кишечника); желез внутренней секреции, обмена веществ, системы крови и др.

Характерной особенностью шумовой болезни являются нарушения по типу астеновегетативного и астеноневротического синдромов, развитие которых значительно опережает поражение слуховой функции.

В производственных условиях источником звуков и шумов являются колеблющиеся твердые, жидкие и газообразные тела, вызывающие сгущение и разражение воздуха. Звуковая волна характеризуется величиной давления (Р), представляющей собой разность между давлением максимального сгущения и атмосферным давлением, измеряемой в системе СИ в Н/м². Звуковая волна является носителем энергии. Эту энергию называют силой звука (1) и выражают в Вт/м².
Для гигиенической характеристики шума используются не физическими величинами (давление, энергия), а относительными, учитываемыми субъективное восприятие звука. Увеличение силы звука вызывает повышение его громкости, но возрастание громкости происходит гораздо медленнее, чем увеличение звукового давления. Между этими величинами существует логарифмическая зависимость. Поэтому шкала уровней звукового давления представляет собой логарифмических величин звука отпорога слухового ощущения \(10^{-12}\ \text{Вт/м}^2\), принятого за ноль, до болевого порога \(10^2\ \text{Вт/м}^2\). Выражается эта шкала в дБ (дБ) и укладывается в пределы от 0 до 140 дБ (0-14 Б). По частотной характеристике различают шумы низкочастотные (16-350 Гц), среднечастотные (350-800 Гц), высокочастотные (более 800 Гц). Слуховой анализатор более чувствителен к высоким тоналм, чем к низким, в связи с чем предусмотрен дифференцированный подход к допустимым уровням шума в зависимости от его частотной характеристики, а также времени воздействия и характера труда (табл.54).

4.1.1. Измерение уровней шума

Согласно правилам, для оценки уровней шума на рабочих местах в помещениях промышленных предприятий должно быть произведено измерение не менее чем в трех точках. Микрофон, воспринимающий шум, следует располагать на высоте 1,5 м над уровнем пола или рабочей площадки (или на высоте головы человека, работающего сидя). Он должен быть направлен в сторону источника шума и удалены не менее чем на 0,5 м от человека, производящего измерение.

При измерении могут быть определены общие уровни звукового давления, спектральный состав шума в октавных полосах, а также эквивалентные уровни звука в децибелах А (дБА), которые нормируются Санитарными нормами – СН 2.2.4/2.1.8.562-96 (см. табл. 54). Преимуществом измерения шума в дБА заключается в том, что позволяет определять повышение допустимых уровней шума без спектрального анализа его в октавных полосах.

Оценка вредности шума производится по уровню звукового давления в дБА (интенсивность) в зависимости от частотной характеристики (в октавных полосах со средними геометрическими частотами, Гц) при сравнении с ПДУ.
Пределы допустимые уровни шума на рабочих местах (извлечение из СН 2.2.4/2.1.8.562-96).

<table>
<thead>
<tr>
<th>Рабочие места</th>
<th>Уровни звукового давления в дБ в октавных полосах со среднегеометрическими частотами, Гц</th>
<th>Уровни звука и эквивалентные уровни звука в дБА</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31,5</td>
<td>63</td>
</tr>
<tr>
<td>Конструкторские бюро, комнаты расчетчиков-программистов вычислительных машин, лабораторий для теоретических работ и обработки экспериментальных данных, для приема больных в здравпунктах</td>
<td>86</td>
<td>71</td>
</tr>
<tr>
<td>Помещения управления, рабочие комнаты</td>
<td>93</td>
<td>79</td>
</tr>
<tr>
<td>Кабины наблюдения и дистанционного управления:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) без речевой связи по телефону</td>
<td>103</td>
<td>91</td>
</tr>
<tr>
<td>b) с речевой связью по телефону</td>
<td>96</td>
<td>83</td>
</tr>
<tr>
<td>Помещения и участки точной сборки, машинописные бюро</td>
<td>96</td>
<td>83</td>
</tr>
<tr>
<td>Помещения лабораторий для проведения экспериментальных работ, для размещения "шумных" агрегатов вычислительных машин</td>
<td>103</td>
<td>91</td>
</tr>
<tr>
<td>Постоянные рабочие места и рабочие зоны в производственных помещениях и на территории предприятий</td>
<td>107</td>
<td>95</td>
</tr>
</tbody>
</table>
Предельно допустимый уровень шума – это уровень фактора, который при ежедневной (кроме выходных дней) работе, но более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований. Соблюдение ПДУ не исключает нарушений здоровья сверх чувствительных лиц. Для измерения уровней шума используют обычно приборы ИШВ-1, шумомер и анализатор шума АШ-2М, Брюль и Кьер, RFT и др. Принцип работы приборов, измеряющих уровень шума, состоит в преобразовании параметров электрического тока в них под влиянием звуковой энергии с помощью микрофона и регистрации этих изменений тока специальными индикаторами. Многие приборы отградуированы непосредственно в децибелях, другие дают показания в относительных единицах.

Измеритель шума и вибрации ИШВ-1. Этот прибор позволяет измерить общие уровни шума (или вибрации), а также спектральный состав их в пределах октавных полос и уровни звукового давления в дБА. Индикатор прибора отградуирован в дБ, питание от батареи (рис. 14).

Рис. 14. Прибор для измерения шума и вибрации ИШВ-1. Объяснение в тексте.
На панели управления имеются: 1 — гнездо для подключения микрофона (или вибропреобразователя); 2 и 3 — переключатели "Дец.І" и "Дец.ІІ"; 4 — переключатель характера измерения (общий уровень шума, спектральный состав его, уровень в дБА); 5 — переключатель рода работы ("Контр.", "Быстро", "Медленно"); 6 — переключатель частотных диапазонов; 7 — переключатель датчиков ("Микрофон", "Виброприемник"); 8 — гнездо для калибровки прибора (верхнее при измерении шума, нижнее при измерении вибрации); 9 — контрольная лампа питания; 10 — гнездо для подключения электрокалибратора; 11 — стрелочный индикатор; 12 — гнездо для подключения магнитофона или осциллографа; 13 — клемма заземления. На рис. 14 видны также 14 — микрофон; 15 — датчик вибрации.

Количественную оценку тяжести и напряженности трудового процесса в условиях действия шума можно проводить в соответствии с "Гигиеническими критериями оценки условий труда по показателям вредности — 2.2.013-94".

Таблица 55

Предельно допустимые уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности в дБА

<table>
<thead>
<tr>
<th>Категория напряженности трудового процесса</th>
<th>Категория тяжести трудового процесса</th>
</tr>
</thead>
<tbody>
<tr>
<td>Легкая физическая нагрузка</td>
<td>Средняя физическая нагрузка</td>
</tr>
<tr>
<td>Напряженность легкой степени</td>
<td>80</td>
</tr>
<tr>
<td>Напряженность средней тяже-сти</td>
<td>70</td>
</tr>
<tr>
<td>Напряженный труд 1-й степени</td>
<td>60</td>
</tr>
<tr>
<td>Напряженный труд 2-й степени</td>
<td>50</td>
</tr>
</tbody>
</table>

Пример решения типовой задачи

В помещении здравпункта машиностроительного завода произведено измерение уровня шума прибором ИШВ-1. Полученные данные в сравнении с допустимыми уровнями представляем в виде таблицы (табл. 56).
Таблица 56

<table>
<thead>
<tr>
<th>Уровень шума</th>
<th>Общая интенсивность шума, дБ</th>
<th>Интенсивность в октавных полосах со среднегеометрическими частотами, Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Фактический</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Допустимый</td>
<td>50</td>
<td>71</td>
</tr>
</tbody>
</table>

Для графического сопоставления фактических уровней шума с допустимыми строим спектрограмму шума (рис. 15).

Как видно из таблицы и рисунка, имеется превышение как общего уровня шума, так и уровней звукового давления на частотах 250-2000 Гц.

Рис. 15. Спектрограмма шума. Штриховкой показана зона превышения ПДУ.

Артериальная осциллография позволяет определить минимальное и максимальное давление, а также среднединамическое давление до и в процессе воздействия шума. Осуществляется с помощью артериального осциллографа.

Пульсотахометрия дает возможность определить частоту пульса в любой промежуток времени. Датчик прибора укрепляется на 1 фаланге любого пальца обследуемого со стороны подушечки пальца. С ногтевой стороны располагается лампочка. Шкала прибора отградуирована таким образом, что по ней в любой момент исследования можно определить частоту пульса в удахах в минуту.
Хронорефлексометрия — исследование латентного периода двигательного условного рефлекса. Оно описано в разделе "Гигиена детей и подростков".

Сопоставление физиологических показателей до и в процессе воздействия шума дает возможность оценить степень изменений, возникающих в организме под влиянием исследуемого шума определенной частотной характеристики.

4.2. Гигиеническая оценка вибрации

Цель занятия: ознакомить студентов с физической природой вибрации, виброизмерительной аппаратурой, характером воздействия производственной вибрации на организм и методами исследования некоторых функций организма, изменяющихся под воздействием вибрации.

Практические навыки: освоить методику измерения вибрации и научиться производить гигиеническую оценку виброграмм.

Задание студентам:
1. Ознакомиться с виброизмерительной аппаратурой.
2. Измерить с помощью вибрографа вибрацию, заданную преподавателем на вибростенде.
3. Произвести расшифровку и дать гигиеническую оценку полученной виброграммы.
4. Ознакомиться с методами определения физиологических реакций организма на воздействие вибрации.

Физической основой вибрации являются механические колеблющиеся движения твердых тел. Вибрация, как и шум, характеризуется частотой колебаний в секунду (Гц), а также величиной амплитуды колебательного движения (полуразмахом). В прямой зависимости от этих величин находятся скорость и ускорение колеблющейся точки.

При соприкосновении вибрирующего объекта с поверхностью тела человека вибрация передается на ткани организма, в результате чего раздражаются нервные рецепторы различных органов и тканей. При этом в зависимости от интенсивности и длительности воздействия на рецепторы возникает соответствующий, более или менее интенсивный рефлекторный ответ, выражающийся в изменении функционального состояния определенных систем организма.

В зависимости от степени распространения вибрации в тканях организма её условно делят на общую, распространяющуюся на всё тело, и местную, когда распространение её ограничено. Степень
распространения вибрации в тканях организма зависит в основном от амплитуды колебательных движений. Колебания с малой амплитудой хорошо гасятся тканями человеческого тела, с увеличением амплитуды зона распространения вибрации увеличивается.

В производственных условиях люди наиболее часто подвергаются воздействию местной вибрации при работе с пневматическим инструментом ударного действия (отбойные молотки, зубила, виброплуги и т.д.), с бурильным и сверлильным инструментом вращательного действия. Общей вибрации, как правило, подвергаются лица, работающие на виброуплотнительных площадках заводов железобетонных изделий, на транспорте, горных и сельскохозяйственных машинах и т.д.

Клинические проявления при воздействии местной вибрации могут начинаться с легких функциональных сдвигов, наиболее выраженных в местах приложения вибрации (нарушение болевой и вибрационной чувствительности, изменение капилляроскопической картины, температуры кожи и т.д.). При интенсивном длительном воздействии вибрации на организм может развиться выраженная симптоматика вибрационной болезни: чувство онемения и парестезии в местах приложения вибрации (руки), стойкий спазм мелких сосудов, повышенная чувствительность к холодовым воздействиям, изменения в костно-мышечном и связочном аппарате суставов.

Патологические изменения в организме при воздействии общей вибрации более разнообразны и выражаются, главным образом, в нарушении деятельности вестибулярного аппарата и центральной нервной системы.

Результирующей величиной, характеризующей интенсивность вибрации, является виброскорость, которая находится в определенной зависимости от частоты и амплитуды колебаний. Эта зависимость выражается следующим отношением:

$$V_{макс} = 2\pi \cdot f \cdot a,$$

где $V_{макс}$ — скорость вибрации, см/с; f — частота колебаний, Гц; a — амплитуда колебаний, см.

Скорость вибрации можно выражать в абсолютных единицах (м/с, см/с, мм/с) или в относительных (дБ). За нулевой уровень скорости принята скорость вибрации 5×10^5 мм/с, от которой и производится отсчет.

Предельно допустимые уровни местной и общей вибрации различны и приведены в таблицах 57 и 58.
Гигиенические нормы местной вибрации

(извлечение из СН 2.2.4/2.1.8.566-96)

<table>
<thead>
<tr>
<th>Виброскорость</th>
<th>Октавные полосы со среднегеометрическими частотами, Гц</th>
<th>8</th>
<th>16</th>
<th>31.5</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>М/c×10^{-2}</td>
<td></td>
<td>2.8</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

В результате совпадения частоты колебательных движений тканей человека с частотой внешней вибрации может возникать явление резонанса. Частота возбуждающих колебаний, совпадающая с частотой собственных колебаний тела человека, получила название резонансной. Резонансная вибрация оказывает на организм более интенсивное воздействие. По указанному признаку все виды вибрации делят на 5 классов (см. табл. 58).

Таблица 58

Резонансная характеристика вибрации

<table>
<thead>
<tr>
<th>Класс вибрации</th>
<th>Частота вибрации, Гц</th>
<th>Характеристика вибрации</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>До 5</td>
<td>Низкочастотная нерезонансная</td>
</tr>
<tr>
<td>II</td>
<td>5-10</td>
<td>Низкочастотная резонансная</td>
</tr>
<tr>
<td>III</td>
<td>10-30</td>
<td>Среднечастотная резонансная</td>
</tr>
<tr>
<td>IV</td>
<td>30-50</td>
<td>Среднечастотная нерезонансная</td>
</tr>
<tr>
<td>V</td>
<td>Свыше 50</td>
<td>Высокочастотная</td>
</tr>
</tbody>
</table>

4.2.1. Измерение вибрации

Для измерения интенсивности вибрации существуют приборы, называемые виброметрами и вибрографами. Последние позволяют получать графическую запись движений колеблющегося тела — вибросигналы. Принцип работы приборов, измеряющих уровни вибрации, такой же, как и при измерении шума. Поэтому для измерения вибрации часто используют ту же аппаратуру, что и для измерения шума (ИШВ-1, Брюль и Кьер, РТ и др.), но в качестве воспринимающей части (датчиков) вместо микрофона подключают виброконтроллеры (пьезоэлектрические, индуктивные, оптические и др.). Однако эти приборы не в состоянии регистрировать вибрацию с частотой менее 10 Гц. В связи с этим для измерения вибрации применяют также низкочастотную виброметрию.
рительную аппаратуру (НВА-1), позволяющую измерять вибрацию в диапазоне 1,4-355 Гц.

При использовании для измерения вибрации прибора ИШВ-1 (описание и порядок работы приведены выше) вместо микрофона в гнездо (1) подключают ввод вибродатчика (пьезоэлектрические виброопреобразователи Д 13 или Д 14, работающие в диапазонах частот 10-2800 Гц и 10-11 200 Гц соответственно). Тумблер (7) прибора переводят в положение "Датчик". При измерении общего уровня вибрации переключатель (4) должен находиться в положении "Лин.", при определении спектрального состава вибрации — в положении "Фильтры".

При измерении непрерывной вибрации переключатель (5) ставят в положение "Быстро", при измерении импульсной вибрации — в положение "Медленно". В остальном порядок работы с прибором и отсчет результатов измерения совпадают с описанными при измерении шума.

Оценку вибрации следует производить путем сравнения результатов измерения с нормативными величинами скорости вибрации (см. табл. 57 и 59).

Расшифровка и оценка виброграммы. При использовании некоторой виброзаписывающей аппаратуры возникает необходимость в расшифровке виброграмм. При расшифровке определяют частоту и амплитуду, по которым рассчитывают виброскорость и виброускорение. Для этого необходимо подсчитать на виброграмме число пиков между двумя отметками времени. Полученное число будет показывать частоту вибрации (Гц).

Для определения амплитуды вибрации необходимо измерить при помощи измерительной линейки размах 10 пиков кривой на виброграмме (расстояние от верхнего пика до нижнего). Далее нужно вычислить среднее значение одного размаха. Полученное значение следует разделить на два (амплитуда определяется по отношению к средней линии виброграммы — положение покоя). Затем по формуле вычисляют скорость вибрации.

Сравнивая полученный результат с предельно допустимыми величинами, оценивают записанную вибрацию и дают заключение.
Таблица 59

Гигиенические нормы общей вибрации (СН 2.2.4/2.1.8.566-96)

<table>
<thead>
<tr>
<th>Технологическая вибрация</th>
<th>Виброскорость в октавных полосах со среднегеометрическими частотами, Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>м/с × дБ</td>
</tr>
<tr>
<td>На постоянных рабочих местах в производственных помещениях предприятий</td>
<td>1,3</td>
</tr>
<tr>
<td>В служебных помещениях, на судах (рулевая рубка, помещения управления и ведения документации)</td>
<td>0,71</td>
</tr>
<tr>
<td>В складах, столовых, бытовых и дежурных помещениях</td>
<td>0,5</td>
</tr>
<tr>
<td>В заводоуправлении, конструкторских бюро, лабораториях, здравпунктах, конторских помещениях</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Примечание. Нормы установлены для продолжительности рабочей смены 8 часов.
Пример. Число пиков между двумя отметками времени на виброграмме, полученной при записи с вибрирующего инструмента, составляет 32, следовательно, частота вибрации равна 32 Гц. Среднее расстояние между верхним и нижним пиками равно 24 мм, а амплитуда $a = 0,2 < (\frac{2,4 \text{ см}}{6,2})$, где 6 — коэффициент вибрографа без насадки, 2 — деление полного размаха колебательного движения пополам).

Виброскорость данной вибрации будет равна:

$V = 2 \times 3,14 \times 32 \times 0,2 = 40,2 \text{ см/с} = 40,2 \times 10^{-2} \text{ м/с.}$

По таблице 53 находим, что данная частота вибрации находится в диапазоне среднегеометрической частоты, равной 31,5, для которой допускается скорость вибрации $3,5 \times 10^{-2} \text{ м/с.}$

Заключение. Исследуемая вибрация принадлежит к IV классу (среднечастотная нерезонансная) и превышает допустимые скорости в 11 раз, $\frac{402}{3,5} = 11,5$. Вибрирующий инструмент рабочего необходимо снабдить амортизирующим приспособлением, снижающим скорость вибрации.

4.2.2. Методы функциональных исследований действия вибрации на организм

Основными методами исследования влияния вибрации на организм являются: 1) исследование вибрационной чувствительности; 2) капиллярstrposия; 3) определение температуры кожи.

Исследование вибрационной чувствительности проводится для определения ранних стадий функциональных нарушений, связанных с воздействием вибрации.

Для исследования используют специальные приборы типа ИВЧ-02 (измеритель вибрационной чувствительности), при помощи которых можно определить пороги вибрационной чувствительности в разных частотных диапазонах. Метод основан на плавном увеличении амплитуды колебательных движений и установлении минимальной амплитуды, при которой обследуемый начинает ощущать вибрацию. Исследование проводится несколько раз при разных частотных характеристиках вибрации. Начинают измерение обычно с частоты 500 Гц, последовательно переходя на 250, 125 ..., 16 Гц.

Обследуемый помещает указательный палец на вибрирующую площадку прибора, а в другую руку берет кнопку ответа. На определенной частоте плавно увеличивают амплитуду колебательных
действий вибрирующей площадки. При первом ощущении вибрации обследуемый должен нажать кнопку ответа. Затем переходят к испытанию на следующей, более низкой частоте и т.д. Важным условием является отсутствие возможности наблюдения со стороны обследуемого за панелью прибора.

Оценку вибрационной чувствительности производят до и после воздействия вибрации. Обычно после воздействия вибрации пороги вибрационной чувствительности возрастают в результате утомления вибрационных анализаторов.

При длительном воздействии вибрации наблюдается стойкое снижение вибрационной чувствительности, наиболее выраженное в диапазоне частоты 250 Гц.

Капиляроскопия. Капиляроскопическое исследование производится специальным микроскопом с осветителем отраженного света и с применением осветляющей жидкости (кедровое масло). Наиболее удобно производить осмотр капилляров кожи около ногтевого ложа IV пальца левой руки.

При исследовании обращают внимание на форму и ширину капилляров, особенности тока крови. У здоровых людей капилляры расположены обычно правильными рядами с 2-3 мягкими изгибами параллельно друг другу. Ток крови в них быстрый, равномерный. При воздействии вибрации капилляры становятся более извилистыми, деформированными (состояние спазма и атонии). Артериальное колено бывает резко сужено, венозная веть, наоборот, чаще расширена. Ток крови обычно замедлен.

Определение температуры кожи. В связи с спазмом сосудов при воздействии вибрации температура поверхности кожи снижается.

Изменение температуры кожи производят электрическим термометром. При измерении датчик электротермометра приводят обычно в соприкосновение с ладонной поверхностью II или III пальца правой руки (наиболее подверженной вибрации при работе с вибрирующим инструментом). Измерение производят всегда в условиях внешней температуры (20°C) после пребывания руки в покое в этих условиях не менее 10 мин.

Для оценки показаний электротермометра сравнивают с показаниями его при таких же измерениях, проведенных до воздействия вибрации. Наиболее правильные результаты получаются при динамических исследованиях.
4.3. Оценка токсичности промышленных ядов

Цель занятия: ознакомить студентов с основными параметрами, характеризующими степень токсичности и опасности химических веществ в условиях производства, с основными принципами санитарно-эпидемиологических правил, с принципами первичной профилактики по отношению к промышленным ядам.

Практические навыки: освоить методы оценки токсичности и опасности промышленных ядов; ознакомиться с правилами защиты от действия промышленных ядов.

Задание студентам:
1. Дать токсикологическую характеристику веществ на основании физико-химических констант.
2. Перечислить принципы первичной профилактики на предприятиях с промышленными ядами.
3. Определить роль врача в сохранении здоровья рабочих.

Контакт человека с промышленными ядами в условиях производства может приводить к возникновению профессиональных заболеваний.

1. Острое отравление — наблюдается редко, возникает внезапно, в основном, при аварийных ситуациях с выделением или выбросом значительного количества вредных веществ. Обычно предшествует различный по продолжительности продромальный период.

2. Хроническое отравление — медленно возникающее отравление при длительной работе в условиях воздействия относительно невысоких концентраций вредных веществ. К хроническим отравлениям ведут яды, обладающие свойством вызывать материальную или функциональную кумуляцию в организме.

Задачами промышленной токсикологии являются всесторонняя токсикологическая характеристика промышленных ядов в условиях острого и хронического воздействия и обоснование предельно допустимых концентраций токсических веществ.

В основе установления последних лежит представление о пороговости действия токсических веществ. Установлено, что токсические эффекты наступают лишь в тех случаях, когда достигается определенная интенсивность воздействия — порог острого или хронического действия. Пороговость действия позволяет устанавливать предельно допустимые концентрации токсических веществ для раз-
личных объектов окружающей среды и в том числе для воздуха рабочей зоны промышленных предприятий.

Наличие предельно допустимых концентраций позволяет осуществлять постоянный лабораторный контроль за степенью загрязнения воздуха на промышленных предприятиях, что является важной мерой профилактики острый и хронических профессиональных интоксикаций.

Таблица 60

<table>
<thead>
<tr>
<th>Вид промышленного предприятия</th>
<th>Название промышленного яда</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) синтез пластмасс</td>
<td>Бензол</td>
</tr>
<tr>
<td>2) производство красок</td>
<td></td>
</tr>
<tr>
<td>3) производство лака</td>
<td></td>
</tr>
<tr>
<td>4) производство керамики</td>
<td>Бериллий</td>
</tr>
<tr>
<td>5) производство радиоламп</td>
<td></td>
</tr>
<tr>
<td>6) порошковая металлургия</td>
<td></td>
</tr>
<tr>
<td>7) производство люминофоров</td>
<td></td>
</tr>
<tr>
<td>8) в условиях неполного сгорания материалов, содержащих углерод</td>
<td>Угарный газ (окись углерода)</td>
</tr>
<tr>
<td>9) выхлопные и взрывные газы</td>
<td></td>
</tr>
<tr>
<td>10) производство серной кислоты</td>
<td>Сернистый газ</td>
</tr>
<tr>
<td>11) текстильная промышленность</td>
<td></td>
</tr>
<tr>
<td>12) дезинфекция фруктов</td>
<td></td>
</tr>
<tr>
<td>13) производство свинцовых красок</td>
<td>Свинец</td>
</tr>
<tr>
<td>14) производство аккумуляторов</td>
<td></td>
</tr>
<tr>
<td>15) полиграфическое производство</td>
<td></td>
</tr>
<tr>
<td>16) золотодобывающая промышленность</td>
<td>Ртуть</td>
</tr>
<tr>
<td>17) производство пестицидов</td>
<td></td>
</tr>
<tr>
<td>18) производство взрывчатых веществ</td>
<td></td>
</tr>
<tr>
<td>19) термометры, манометры, рентгенокатоды, люминесцентные электроды</td>
<td></td>
</tr>
<tr>
<td>20) в стоматологии</td>
<td></td>
</tr>
<tr>
<td>21) производство удобрений</td>
<td>Нитрогазы</td>
</tr>
<tr>
<td>22) взрывные работы</td>
<td></td>
</tr>
<tr>
<td>23) испытание высоковольтной аппаратуры</td>
<td></td>
</tr>
<tr>
<td>24) производство стекол</td>
<td>Марганец и его соединения</td>
</tr>
<tr>
<td>25) электросварка электродами</td>
<td></td>
</tr>
<tr>
<td>26) металлургическая промышленность</td>
<td>Хром и его соединения</td>
</tr>
<tr>
<td>27) химическая промышленность</td>
<td></td>
</tr>
<tr>
<td>28) кожевенная, текстильная и лакокрасочная промышленность</td>
<td></td>
</tr>
<tr>
<td>Вид промышленного предприятия</td>
<td>Название промышленного яда</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>29) в сельском хозяйстве (борьба с вредителями)</td>
<td>Соединения мышьяка</td>
</tr>
<tr>
<td>30) производство мышьяковых препаратов</td>
<td>Сероводород</td>
</tr>
<tr>
<td>31) при осаждении металлов из растворов в текстильной и</td>
<td>Анилин</td>
</tr>
<tr>
<td>32) кожевенной промышленности</td>
<td>Фтор</td>
</tr>
<tr>
<td>33) красильные фабрики</td>
<td>Кадмий</td>
</tr>
<tr>
<td>34) анилино-красочные заводы</td>
<td></td>
</tr>
<tr>
<td>35) производство суперфосфатов</td>
<td></td>
</tr>
<tr>
<td>36) травление стекол</td>
<td></td>
</tr>
<tr>
<td>37) синтез ядохимикатов</td>
<td></td>
</tr>
<tr>
<td>38) производство щелочных аккумуляторов</td>
<td></td>
</tr>
<tr>
<td>39) изготовление кадмиевых ламп</td>
<td></td>
</tr>
</tbody>
</table>

Схема исследования химических веществ, внедряемых в производство, включает следующие основные этапы:

1. Получение информации о физико-химических свойствах и условиях применения изучаемого вещества.

2. Оценка токсичности в условиях острого воздействия (определение средних смертельных доз и концентраций, порога острого действия, коэффициента кумуляции, изучение местного и кожно-резорбтивного действия). Эти данные позволяют составить представление об опасности острых отравлений при воздействии данного яда.

3. Изучение воздействия яда в условиях хронического эксперимента, позволяющее определить пороговые концентрации при длительной экспозиции.

Определение основных токсикометрических параметров позволяет установить степень опасности вредных веществ, используемых в промышленности.

По степени воздействия на организм вредные вещества делятся на четыре класса опасности: 1-й — вещества чрезвычайно опасные; 2-й высокопасные; 3-й умеренно опасные; 4-й — малоопасные (табл. 61).
Установление классов опасности по различным показателям
(извлечение из ГОСТа 12.1.007-76).

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Нормы для класса опасности</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-го</td>
</tr>
<tr>
<td>Средняя смертельная доза при введении в желудок, мг/кг</td>
<td>Менее 15</td>
</tr>
<tr>
<td>Средняя смертельная доза при нанесении на кожу, мг/кг</td>
<td>100</td>
</tr>
<tr>
<td>Средняя смертельная концентрация в воздухе, мг/м³</td>
<td>500</td>
</tr>
<tr>
<td>Коэффициент возможности ингаляционного отравления (КВИО)</td>
<td>Более 300</td>
</tr>
<tr>
<td>Зона острого действия</td>
<td>Менее 6,0</td>
</tr>
<tr>
<td>Зона хронического действия</td>
<td>Более 10,0</td>
</tr>
<tr>
<td>Пределенно допустимая концентрация вредного вещества в воздухе рабочей зоны, мг/м³</td>
<td>Менее 0,1</td>
</tr>
</tbody>
</table>

4.3.1. Ориентировочная оценка токсичности веществ по некоторым химическим и физико-химическим свойствам

Установлено, что биологическое действие веществ зависит от их химического строения и физико-химических свойств.

Наличие связи между химическим строением вещества и его токсикологическим действием важно для промышленной токсикологии, так как, зная химическую структуру вещества, возможно в некоторой степени предвидеть характер его токсического действия. В связи с этим для оценки новых соединений используют сведения о токсичности веществ, сходных по химическому строению и физико-химическим свойствам.

Характеристику вещества начинают с получения сведений о его структурной формуле, физических и физико-химических свойствах (молекулярная масса, температура кипения, упругость пара, растворимость в воде и др.). Из физико-химических свойств в первую очередь принимают во внимание абсолютную летучесть, коэффициенты распределения вода/воздух и масло/вода.
Абсолютная летучесть — максимально достижимая концентрация вещества в воздухе при данной температуре. Абсолютная летучесть при температуре 20 °C определяется по формуле:

\[C_{20} = \frac{P \cdot M}{18,3} \]

где \(C_{20} \) — абсолютная летучесть при температуре 20 °C, мг/л; \(M \) — молекулярная масса; \(P \) — давление насыщенного пара (упругость) при температуре 20 °C, мм рт.ст.

Вещества, имеющие высокую летучесть, легко испаряются и создают в воздухе рабочих помещений большие концентрации токсичных веществ. Поэтому при возможности выбора предпочтение отдается менее летучим веществам. Для суждения о непосредственной опасности возникающих концентраций для развития острых отравлений сопоставляют летучесть с величиной средних смертельных концентраций.

Для суждения о накоплении в организме паров и газов, поступающих в кровь через легкие на основе закона диффузии (так называемых нерегулирующих), в промышленной токсикологии используется коэффициент распределения в системе артериальная кровь/альвеолярный воздух. Последний без большой погрешности может быть заменен коэффициентом растворимости вода/воздух (\(\lambda \)) и вычислен по формуле:

\[\lambda = \frac{22.4 \cdot 760 \cdot S \cdot T}{273 \cdot P \cdot M} \]

где \(\lambda \) — коэффициент растворимости вещества в воде; \(S \) — растворимость в воде, г/л; \(T \) — абсолютная температура (273+t); \(M \) — молекулярная масса, г; \(P \) — упругость пара, мм рт.ст.

Вещества, хорошо растворяющиеся в воде, имеют большие значения коэффициента \(\lambda \). Эти вещества легко диффундируют из альвеолярного воздуха в кровь, но скорость насыщения артериальной крови до концентраций, максимально возможных при данном содержании вещества в воздухе, для них незначительна. Наоборот, вещества, имеющие малое значение коэффициента \(\lambda \), быстро насыщают артериальную кровь и опасны в отношении развития острых отравлений.

Показателем растворимости веществ в жирах и липидах служит коэффициент распределения масло/вода (Овертон—Мейера).

Незелектролиты, имеющие высокие значения этого коэффициента (10-10⁵ и более), проникают через неповрежденную кожу и
слизистые оболочки, легко проходят через клеточные мембранны, быстро проникают в клетки и быстро из них выводятся. Их распределение в организме определяется условиями кровоснабжения органов и тканей. Особенно быстро насыщается мозг, содержащий много липидов и богато васкуляризированный.

4.3.2. Оценка токсичности веществ в условиях острого воздействия

Оценка токсичности в условиях острого воздействия проводится путем определения следующих показателей: средних смертельных доз и концентраций, коэффициента возможности ингаляционного отравления, порога и зоны острого действия, изучения раздражающего и кожно-резорбтивного действия.

CL_{50} – средняя смертельная концентрация – концентрация вещества, вызывающая гибель 50% животных при 2-4-часовом ингаляционном воздействии (2 ч – мыши, 4 ч – крысы).

Определение средних смертельных концентраций целесообразно производить не менее чем на двух видах лабораторных животных. Обычно используются белые мыши (масса 18-24 г) и крысы (масса 180-240 г). Затравка производится однократно в камерах при динамической подаче вредного вещества. Каждая концентрация испытывается не менее чем на 6 животных.

Во время затравки регистрируют проявления раздражающего действия, наступление бокового положения, потерю рефлексов при постукивании по булыж, судороги, наркоз. После двухнедельного срока наблюдения отмечают количество погибших животных.

Расчет средней смертельной концентрации может производиться по методу Першина, позволяющему вычислить CL_{50} при разном числе животных в группах и разных интервалах между выбранными дозами:

$$CL_{50} = \frac{\sum [(a + b) \cdot (m - n)]}{200},$$

где CL_{50} – смертельная концентрация для 50% мышей при ингаляционной затравке, мг/л; a, b – величины смежных испытанных концентраций, мг/л; m, n – соответствующие этим концентрациям частоты смертельных исходов в процентах.

При расчете по формуле Першина составляется специальная таблица, облегчающая проведение расчетов (см. пример).

КВИО – коэффициент возможности ингаляционного отравления – отношение максимально допустимой концентрации
вредного вещества в воздухе при температуре 20°C к средней смертельной концентрации для мышей.

Вычисление КВИО производят по формуле:

$$\text{КВИО} = \frac{C_{20}}{C_{L_{50}}}$$

где C_{20} — абсолютная летучесть при температуре 20°C, мг/м³; $C_{L_{50}}$ — средняя смертельная концентрация, мг/м³.

Вещества, имеющие большое значение КВИО, опасны в отношении развития ингаляционных отравлений. DL_{50} — средняя смертельная доза при введении в желудок — доза вещества, вызывающая гибель 50% животных при однократном введении в желудок.

Определение средней смертельной дозы проводят на белых мышах массой 18-24 г. Каждая испытуемая доза вводится 6 белым мышам в чистом виде, в водном растворе или в 0,2 мл рафинированного подсолнечного масла. За 3 ч до опыта мышей лищают корма и вновь дают его через 3 ч после отравления.

Картина отравления регистрируется в течение 2 нед. Вычисление DL_{50} можно проводить по методу Першина.

Z_{ac} — зона острого действия. Показателем опасности острого отравления может служить зона острого действия, которая определяется как отношение средней смертельной концентрации к порогу острого действия по формуле:

$$Z_{ac} = \frac{C_{L_{50}}}{Lim_{ac}}$$

где $C_{L_{50}}$ — средняя смертельная концентрация, мг/м³; Lim_{ac} — порог острого действия — минимальная концентрация, вызывающая изменения биологических показателей на уровне целостного организма при однократном поступлении вещества в организм, мг/м³.

При определении порога острого действия используют не менее двух видов животных. Время воздействия для мышей составляет 2 ч, для крыс — 4 ч.

Узость зоны острого действия указывает на большую возможность острых отравлений, и, наоборот, чем шире зона острого действия, тем сильнее выражены компенсаторные реакции при действии данного яда и тем ниже потенциальная возможность острых отравлений.

Оценка кумулятивного действия. Количественная оценка кумуляции производится на уровне действия смертельных доз путем определения коэффициента кумуляции. K_{cum} (коэффициент
кумуляции) — отношение суммарной средней смертельной дозы (ΣDL_{50}), полученной в опыте с повторным введением вещества, к таковой же при однократном введении.

$$K_{\text{cum}} = \frac{\sum DL_{50}}{DL_{50}}.$$

Обычно затравки производят ежедневно дозами, равными 1/10, 1/20 или 1/50 от DL_{50}. При этом каждое животное получает суммарно за 4 мес при введении 5 раз в неделю соответственно 10; 5 и 2 DL_{50}, что вполне достаточно для оценки эффекта кумуляции.

Для оценки величины K_{cum} можно пользоваться шкалой Л.И.Медведя и соавт. в модификации Е.И.Люблиной (табл. 62).

Таблица 62

<table>
<thead>
<tr>
<th>Коэффициент кумуляции</th>
<th>Оценка действия</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>Сверхкумуляция</td>
</tr>
<tr>
<td>1+2,2</td>
<td>Выраженная кумуляция</td>
</tr>
<tr>
<td>2,2+5</td>
<td>Средняя кумуляция</td>
</tr>
<tr>
<td>>5</td>
<td>Слабая кумуляция</td>
</tr>
</tbody>
</table>

Вещества с выраженным кумулятивным эффектом более опасны в отношении развития хронических отравлений.

Исследование местного и кожно-резорбтивного действия. Исследование местного действия может производиться путем внесения изучаемого вещества в конъюнктивальный мешок глаза кролика с последующей регистрацией гиперемии, отечности, инъекции сосудов склеры и роговицы, её прозрачности и т.п.

Кожно-резорбтивное действие изучают путем аппликаций вещества на выстриженные участки кожи живота крыс или кроликов. Место аппликации яда закрывают колпачком. Наблюдения за животными продолжают 2 нед. Для веществ, вызывающих гибель животных, определяют среднюю смертельную концентрацию при на- несении на кожу. Для экспресс-оценки местного и кожно-резорбтивного действия применяют метод аппликаций яда на кожу хвостов мышей.
4.3.3. Оценка токсичности веществ в условиях хронического воздействия. Обоснование величин предельно допустимых концентраций

О степени потенциальной опасности возникновения хронических интоксикаций судят по зоне действия (Z_{ch}).

Зона хронического действия — отношение пороговых концентраций при остром и хроническом воздействиях.

$$Z_{ch} = \frac{Lim_{ac}}{Lim_{ch}}$$

где Lim_{ac} — пороговая концентрация по интегральному показателю при однократном воздействии, мг/м³; Lim_{ch} — пороговая концентрация по интегральному или специфическому показателю при хроническом воздействии, мг/м³.

Если зона хронического действия широка (интервал между Lim_{ac} и Lim_{ch} велик), то хронические интоксикации развиваются часто. Широкая зона хронического действия свидетельствует, с одной стороны, о выраженности кумулятивных свойств яда, с другой стороны, является показателем развития компенсаторных реакций организма при воздействии на пороговом уровне.

Гигиеническое нормирование новых химических веществ, внедряемых в производство, производится в несколько этапов. Первоначально устанавливают временные безопасные уровни воздействия (ОБУВ). Расчет ОБУВ производят по физико-химическим константам, показателям острой токсичности или путем интерполаций и экстраполяций в рядах соединений, близких по строению и свойствам. В дальнейшем ОБУВ на основе всестороннего токсикологического изучения вещества заменяют предельно допустимыми концентрациями (ПДК), которые, в свою очередь, корректируются путем сравнительного изучения условий труда на производстве и состояния здоровья работающих.

Основой для обоснования величин предельно допустимых концентраций является определение пороговых концентраций, которые устанавливаются в хронических экспериментах на лабораторных животных. Задачей хронического эксперимента является выявление пороговых (минимально действующих) и недействующих концентраций при длительной экспозиции.

Затравка животных проводится в специальных затравочных камерах в течение 4 мес. при ежедневном 4-часовом воздействии токсического вещества. Как правило, опыты проводятся на белых
крысах, а при выраженных различиях видовой чувствительности и на более чувствительном виде животных.

Для оценки токсического действия применяются разнообразные показатели:

1. Интегральные показатели, отражающие общее состояние организма: оценка функционального состояния центральной нервной системы (метод условных рефлексов, электроэнцефалография, хронаксиметрия, способыность к суммации подпороговых импульсов), изучение работоспособности, функции внешнего дыхания и др.

2. Показатели, выявляющие функциональное состояние отдельных органов и систем, например, показатели функционального состояния печени (определение белков сыворотки крови, осадочные пробы, проба Квика, исследование углеводного обмена и др.).

3. Изучение состояния биохимических систем (определение активности различных ферментов).

4. Морфологические методы (патогистологическое и гистохимическое исследование органов и тканей, определение весовых коэффициентов органов, определение картин крови).

Предельно допустимые концентрации (ПДК) устанавливаются с учетом коэффициента запаса. Коэффициент запаса берется большим для веществ с высокой токсичностью (малые средние смертельные и термодинамические концентрации), летучестью, при узких зонах остrego действия, при выраженных кумулятивных свойствах и резком кожно-резорбтивном действии.

В настоящее время для воздуха рабочей зоны промышленных предприятий разработаны и утверждены предельно допустимые концентрации 646 веществ.

Пример решения типовой задачи

Задача. Дать токсикологическую характеристику винилацетата CH₃COOCH=CH₂ по физико-химическим константам (M=86, d=0,93; t_кип=74°C; P=100 мм рт.ст.; S=25г/л; K=2,5·10²) и результатам экспериментального определения CL₅₀ минимальной концентрации, изменяющей протекание сгибательного рефлекса у кролика при однократном воздействии (Limₐₑ =25мг/л), и концентрации, изменяющей условнорефлекторную деятельность крыс при ежедневной 4-часовой ингаляции в течение 4 мес (Limₜₕ=0,005 мг/л). ПДК винилацетата в воздухе рабочей зоны 10 мг/м³.
Результаты экспериментального определения CL_{50}. Изучалось действие винилацетата при 2-часовой ингаляции в концентрациях 5, 10, 15, 20, 25 и 30 мг/л. Действие каждой концентрации было изучено на 6 белых мышах. В результате воздействия указанных концентраций соответственно погибли 3, 4, 5, 6, 6 и 6 животных. По ходу опыта отмечено сильное раздражающее и наркотическое (боковое положение животных) действие вещества.

Винилацетат представляет собой виниловый эфир уксусной кислоты. Наличие двойных связей позволяет предполагать раздражающее действие на кожу, слизистые оболочки глаз и дыхательных путей. Последнее подтверждается картиной острого отравления.

Вычисленная величина летучести $C_{20} = \frac{M \cdot P}{18,3} = \frac{86 \cdot 100}{18,3} = 415$ мг/л показывает, что винилацетат обладает высокой способностью к испарению. Максимальная концентрация при температуре 20°С в производственных условиях может составить 425 мг/л.

Для характеристики условий проникновения вещества в организм определяем его коэффициент растворимости:

$$\lambda = \frac{22,4 \cdot 760 \cdot S \cdot T}{273 \cdot P \cdot M} = \frac{22,4 \cdot 760 \cdot 25(273 + 20)}{273 \cdot 100 \cdot 86} = 51,5.$$

Однотельно низкое значение коэффициента λ свидетельствует о том, что пары винилацетата быстро насыщают кровь до концентраций, максимально возможных при данном содержании вещества в воздухе. Быстрое насыщение крови обусловливает при значительном загрязнении воздуха винилацетатом возможность развития острых отравлений.

Коэффициент распределения масло/вода ($K=2,5 \cdot 10^2$) показывает, что винилацетат обладает способностью растворяться в жирах и липидах, вследствие чего проходит через неповрежденную кожу и слизистые оболочки.

Величину CL_{50} рассчитываем по результатам остrego опыта, используя метод Першина, для чего составляем специальную таблицу (табл. 63).
Таблица из расчета CL_{50} по формуле Першина

<table>
<thead>
<tr>
<th>Испытанные концентрации, мг/л</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Погибшие мыши (из 6):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Число</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>%</td>
<td>50,0</td>
<td>66,6</td>
<td>83,3</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>a+b</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>m-n</td>
<td>16,6</td>
<td>16,7</td>
<td>16,7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a+b) \cdot (m-n)</td>
<td>249</td>
<td>415</td>
<td>581</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\sum [(a + b) \cdot (m - n)] = 249 + 415 + 518 = 1245. \]

\[CL_{50} = \frac{1245}{200} = 6,2 \text{мг/л}. \]

Определяем коэффициент возможности ингаляционного отравления и зону острого действия:

\[KBHO = \frac{C^{20}}{CL_{50}} = \frac{415}{6,2} = 66; \]

\[Z_{\alpha} = \frac{CL_{50}}{Lim_{ch}} = \frac{6,2}{0,25} = 24,8 \]

Величина KBHO лежит в пределах регламентов для веществ, относящихся к 2-му классу опасности. Однако величина этого показателя приближается к его значениям для веществ 3-го класса. По величинам средней смертельной концентрации, зоны острого действия виниалацетат должен быть отнесен к 3-му классу умеренно опасных соединений.

Расчет зоны хронического действия \(Z_{ch} = \frac{Lim_{\alpha}}{Lim_{ch}} = \frac{0,25}{0,05} = 5 \) показывает, что винилалцетат обладает той же мерой токсичности и в отношении развития хронических интоксикаций.

ПДК винилацетата (10 мг/м³) также находится в пределах нормативов для веществ 3-го класса (см. табл. 57).

Таким образом, определение токсикометрических параметров позволяет отнести винилацетат по степени воздействия на организм к 3-му классу опасности и охарактеризовать его как соединение умеренно опасное в отношении возможности развития как острого, так и хронических интоксикаций.
Пример ситуационной задачи

В одном из цехов предприятия по производству аккумуляторов, где работают 300 человек (из них 5% женщин и подростков) слабый санитарный контроль; из-за технической неисправности вентиляции не работает 1-2 дня в неделю по несколько часов; среди рабочих отмечен высокий процент заболеваемости. Производственный стаж большинства рабочих составляет 10 лет и более.

Вопросы:
1. Какой промышленный яд используется в этой промышленности и какой его класс токсичности?
2. Какие нарушения санитарно-эпидемиологических правил на этих предприятиях?
3. Ожидаемые заболевания среди рабочих.
4. Роль врача в уменьшении процента заболеваемости.
5. Перечислите принципы первичной профилактики на этих предприятиях.

4.4. Гигиеническая оценка производственной пыли

Цель занятия: познакомить студентов с воздействием на организм промышленной пыли, методами её изучения и нормированием.

Практические навыки: научить давать заключение о степени загрязнения воздуха промышленной пылью и возможном характере её воздействия на организм.

Задание студентам:
1. Познакомиться с аппаратуру для отбора проб воздуха с целью определения его запыленности.
2. Определить уровень запыленности воздуха на основании данных карты обследования.
3. Определить степень дисперсности и морфологию пылевых частиц образцов пыли.
4. Дать заключение о пылевом загрязнении воздуха производственных помещений на основании карты обследования и данных, полученных в ходе изучения образцов пыли.

Производственная пыль является весьма распространенным, а при некоторых производственных процессах основным вредным фактором. К таким процессам относятся бурение, дробление и измельчение сырья и полуфабрикатов в горнорудной, угольной, фар-
форофаянсовой промышленности и др.; снятие поверхностного слоя при точке, шлифовке в машиностроительной промышленности; перемешивание, расфасовка и упаковка сыпучих веществ в химической, пищевой промышленности, промышленности стройматериалов и т.д. Такую пьyllь принято называть аэрозолем измельчения или дезинтеграции. Кроме того, при плавке, сварке, плазменном напылении металлов и обработке некоторых неметаллов, например, соединений бария, кремния и т.д., в воздух могут поступать пары этих веществ, которые в дальнейшем вследствие конденсации образуют в воздухе высокодисперсные частицы твердого вещества ("дымы", или аэрозоли конденсации).

Характер воздействия пыли на организм многообразен и зависит от ряда её свойств и прежде всего от её химического состава. Пылевые частицы ряда химических веществ обладают выраженной токсичностью и при попадании в организм могут вызывать отравления. К таким видам пыли относится пыль бериллия, ванадия, окиси кадмия, свинца, тория и др.

Пыль, не обладающая выраженной токсичностью, может приводить к развитию хронических неспецифических заболеваний легких, выражающихся в продуктивной реакции с развитием соединительной ткани, — пневмокониозов, а также бронхитов, трахеитов, пневмоний, конъюнктивитов пылевой этиологии.

В зависимости от химического состава нетоксической пыли различают следующие виды пневмокониозов: 1) силикоз, вызываемый пылью, содержащей SiO₂ в свободном состоянии; 2) силикатозы (асбестоз, талькоз, цементоз и др.), связанные с попаданием в легкие силикатов минералов, содержащих SiO₂ в связанном состоянии; 3) антраэоз, развивающийся от вдыхания угольной пыли; 4) пневмокониозы — от пыли, не содержащей SiO₂ ни в свободном, ни в связанном состоянии (алюминий, сидероз, станиоз и др.); 5) пневмокониозы от смешанной пыли (силикоантраэоз, силикосидероз и т.д.).

Некоторые виды пыли вызывают в легких и других органах гранулематозный процесс (бериллий). Другие способны вызывать аллергические заболевания (меховая, растительная пыль).

Важным свойством пыли является её дисперсность. От степени дисперсности пылевых частиц зависит как стойкость пылевого аэрозоля в воздухе производственного помещения, так и степень задержки частиц пыли в дыхательных путях (табл. 64). Выраженной фиброгенной активностью обладают аэрозоли дезинтеграции с частицами менее 5 мкм и аэрозоли конденсации с частицами менее 0,3-0,4 мкм, так как они обладают глубокой проникающей способно-
стью и задерживаются непосредственно в альвеолах. Более крупные частицы, как правило, задерживаются в верхних дыхательных путях и затем выводятся с мокротой.

Для санитарной оценки воздушной среды на производстве определяют содержание пыли в воздухе, степень её дисперсности, морфологию пылевых частиц и их химический состав. Последний анализ на функционирующих производствах может не проводиться, так как химический состав пыли определенного производства обычно известен.

Регламентация содержания пыли в воздухе осуществляется в зависимости от её химического состава.

Таблица 64
Задержка пылевых частиц каолина в зависимости от их размеров

<table>
<thead>
<tr>
<th>Диаметр частиц, мкм</th>
<th>Общий % задержки</th>
<th>% задержки в верхних дыхательных путях</th>
<th>% отложения в альвеолах</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,3</td>
<td>47,8</td>
<td>9,2</td>
<td>34,5</td>
</tr>
<tr>
<td>0,9</td>
<td>63,5</td>
<td>16,5</td>
<td>50,5</td>
</tr>
<tr>
<td>1,6</td>
<td>71,7</td>
<td>46,5</td>
<td>25,9</td>
</tr>
<tr>
<td>5,0</td>
<td>92,3</td>
<td>82,7</td>
<td>9,8</td>
</tr>
</tbody>
</table>

Санитарными правилами предусматриваются допустимые уровни более чем для 130 видов различных производственных аэрозолей. Они установлены для аэрозолов, обладающих токсичностью, в зависимости от степени токсичности, для нетоксичных аэрозолов — в зависимости от содержания свободной SiO₂ (табл. 65).

Таблица 65
Предельно допустимые концентрации аэрозолей преимущественно фиброгенного действия

<table>
<thead>
<tr>
<th>Наименование вещества</th>
<th>Величина ПДК мг/м³</th>
<th>Класс опасности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кремния двуокись кристаллическая:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) при содержании ее в пыли свыше 70%</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>B) при содержании ее в пыли От 10 до 70%</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>B) при содержании ее в пыли От 2 до 10%</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Кремния двуокись аморфная в виде аэрозоля конденсации:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) При содержании ее в пыли свыше 60%</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>B) при содержании ее в пыли От 10 до 60%</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Наименование вещества</td>
<td>Величина ПДК мг/м³</td>
<td>Класс опасности</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Силикаты и силикатсодержащая пыль:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А) АсBEST</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Б) Асbestoцемент, цемент, апатит, глина</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>В) Тальк, слюда</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Г) Стеклянное волокно</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Углерода пыль:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А) Алмаз металлизированный</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Б) Каменный уголь с содержанием свободной двуокиси кремния до 5%</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Металлов пыль:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А) Алюминий и его сплавы (в пересчете на алюминий)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Б) Алюминия оксид с примесью двуокиси кремния в виде аэрозоля конденсации</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>В) Алюминия оксид в виде аэрозоля дезинтеграции (глинозем, электрокорунд)</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Г) Железа оксид с примесью оксидов марганца до 3%</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Д) Железа оксид с примесью оксидов марганца 3-6%</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Е) Чугун</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Ж) Титан, диоксид титана</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>З) Тантал и его оксиды</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Пыль растительного и животного происхождения:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А) Зерновая (вне зависимости от содержания диоксида кремния)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Б) Мучная, хлопчатобумажная, древесная и др. (с примесью диоксида кремния менее 2%)</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>В) Хлопчатобумажная, хлопковая, льняная, шерстяная, пуховая и др. (с примесью диоксида кремния более 10%)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Г) С примесью диоксида кремния от 2 до 10%</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Определение содержания пыли в воздухе. Содержание пыли в воздухе определяется по весовому количеству её в единице объема и выражается в мг/м³ (весовой метод) и по числу пылинок в 1 см³ (счетный метод).

Весовой метод основан на задержке пыли из известного объема воздуха на фильтре с предварительным и последующим взвешиванием фильтра на аналитических весах. В качестве фильтрующего материала используют специальные ткани или вату (стеклянную
или хлопчатобумажную), закладываемые в специальные трубки (аллонжи), которые могут быть стеклянными, пластмассовыми или металлическими.

В последнее время наибольшее распространение получили фильтры АФА из ткани ФПП-15. Эти фильтры обладают рядом ценных качеств: высокой эффективностью пылеулавливания, малым сопротивлением току аспирируемого воздуха, стойкостью к химическим агрессивным средам, отсутствием необходимости высушивания фильтров до и после аспирации (за исключением случаев отбора проб в условиях высокой влажности, когда после аспирации фильтр необходимо высушить). Эти фильтры могут быть использованы для последующего определения степени дисперсности и морфологии пылевых частиц после их просветления в органических растворителях.

Для фильтра АФА обычно используют металлические или пластмассовые аллонжи в виде воронок, в широкой части которых при помощи гайки укрепляется фильтр (рис. 16).

Рис. 16. Кассеты и аллонжи для отбора проб воздуха на фильтры. 1 - фильтры из ткани ФПП, 2 - пластмассовый аллонж с фильтром; 3 - металлический аллонж; 4 - корпус кассеты; 5 - прокладки.

Для отбора проб воздуха с целью определения содержания в нем пыли используют аспириаторы.

Электрические аспириаторы предназначены для отбора воздуха на участках производства, где имеется подводка электрического тока, и состоят из воздуховодки, электромотора и реометров. На передней панели аспириатора расположены: колодка для присоединения...
нения к прибору шнура, тумблер для включения и выключения аппарата, ручки вентиля для регулировки скорости отбора проб, штуцеры для присоединения резиновых трубок к аллеражам, реометры, предохранительный клапан для предотвращения перегрузок электродвигателя при отборе проб воздуха с малыми скоростями, гнездо предохранителя, клемма для заземления аппарата (рис. 17). Порядок работы с аспиратором следующий: после заземления аппарата и подключения к сети предохранительный клапан устанавливают в положение "1", а вентили реометров открывают до отказа. Присоединив резиновые трубки с аллеражами к штуцерам реометров, регулируют скорость просасывания воздуха. Если последняя окажется недостаточной, предохранительный клапан должен быть установлен в положение "2". Отчет скорости прохождения воздуха по шкалам производят по верхнему краю поплавка реометров.
При отсутствии подвода электрического тока, а также на взрывоопасных производствах для отбора проб воздуха может быть использован эжекторный аспирантор АЭРА.

Время аспириции воздуха при определении его запыленности определяют опытным путем исходя из уровня запыленности. Для получения достаточно четких результатов необходимо, чтобы привес фильтра составил не менее 3-5 мг. При большой запыленности это достигается аспириацией 120-200 л воздуха при скорости 10 л/мин. При незначительном содержании пыли приходится протягивать значительно больший объем (до 0,5 м³), что удлиняет время отбора проб. В случае использования фильтров из ткани ФПП минимальный привес должен быть не менее 1 мг, максимальный — не более 25-50 мг.

Вычисление запыленности воздуха производят следующим образом. Из массы фильтра после взятия пробы (Q) вычитают первоначальную массу (Q₀) и определяют прибавку (ΔQ).

Объем пронитутого при аспириции воздуха приводится к нормальным условиям по формуле:

\[V₀ = \frac{Vₜ \cdot 273 \cdot B}{(273 + t) \cdot 760}, \]

где \(Vₜ \) — объем аспирированного воздуха, л; \(t \) — температура воздуха в помещениях, °C; \(B \) — барометрическое давление в помещениях, где производится отбор пробы воздуха, мм рт.ст.

Весовая концентрация пыли рассчитывается по формуле:

\[x = \frac{\Delta Q \cdot 1000}{V₀}, \text{мг}/\text{м}^{3}, \]

Определение дисперсного состава пыли. После взвешивания с целью определения пыли в воздухе фильтр из ткани ФПП-15 помещают на предметное стекло и просветляют в парах ацетона (в вытяжном шкафу с соблюдением мер противопожарной безопасности). Для этого предметное стекло подносят к горловине колбы с ацетоном, подогреваемой на водяной бане. Ткань фильтра быстро просветляется и тонким прозрачным слоем плотно пристает к стеклу, фиксируя на нем пылевые частицы.

Предметное стекло с просветленным фильтром помещают на столик микроскопа. Микроскопирование пыли производится при большом увеличении. Предварительно определяют цену деления окулярного микрометра, вставленного в окуляр микроскопа. Для этого на оптический столик микроскопа помещают объектив-микрометр и, найдя его при малом увеличении, устанавливают в центре поля зрения. Затем под большим увеличением совмещают ли-
нин объекта микрометра с линиями окуляренного микрометра (см. рис. 17) подсчитывают количество делений окулярного микрометра до момента совпадения их с линиями объекта-микрометра, определяют цену деления окулярного микрометра.

Например, на рис.18 видно, что при данных оптических условиях 100 делений окулярного микрометра совпадают с 35 делениями объекта-микрометра (цена деления 10 мкм). Следовательно, 1 деление окулярного микрометра равно \(\frac{17 \cdot 35}{100} = 3,5 \text{мкм} \).

Рис. 18. Измерение цены деления окулярной микрометрической линейки. 1 — окулярная микрометрическая линейка; 2 — объектив — микрометр.

После этого объектив-микрометр снимают с предметного столика, а на его место устанавливают изучаемый препарат. Перемещая препарат в разных направлениях, подсчитывают не менее 100 пылевых частиц, определяя их размеры при помощи окулярного микрометра и занося значения в таблицу. Одновременно даётся описание морфологии пылевых частиц. При этом отмечаются их конфигурация, характер краев и т.д. Изучение морфологии пылевых частиц позволяет судить о составе пыли (минеральная, растительная и др.) и о возможных особенностях её воздействия на организм.
Пример типовых задач

Задача № 1.
Карта обследования запыленности воздуха производственных помещений
1. Наименование предприятия
2. Цех, участок
3. Место отбора пробы
4. Производственная операция
5. Смена, час рабочего дня
6. Номер фильтра
7. Начало отбора пробы ч мин
8. Конец отбора пробы ч мин
9. Скорость аспирации
10. Количество аспирированного воздуха
11. Масса фильтра до аспирации г
12. Масса фильтра после аспирации г
13. Температура воздуха в месте отбора пробы °С
14. Атмосферное давление мм рт.ст.
15. Дополнительные данные о пыли

Заключение. На основании расчета содержания пыли в исследуемой пробе, степени её дисперсности и морфологии дается заключение о санитарном состоянии производства и возможном влиянии данных условий на здоровье рабочих.

Задача № 2.
Исследование запыленности воздуха проводилось на заводе асбестотехнических изделий, в крутильном отделении, на рабочем месте у крутильной машины. В функции данной профессии входит крушение нити.

Общая вентиляция отделения функционирует, а местная вентиляция отсутствует. Оборудование крутильной машины не исключает загрязнения воздуха асбестовой пылью.

Результаты исследования запыленности воздуха: асбестовая пыль, концентрация в воздухе рабочей зоны равна 10 мг/м³.

Распределение частиц по дисперсности:

<table>
<thead>
<tr>
<th>Размеры пылевых частиц</th>
<th>До 1,0 ммк</th>
<th>От 1 до 5 ммк</th>
<th>Более 5 ммк</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание пылевых частиц в %</td>
<td>3</td>
<td>10</td>
<td>87</td>
</tr>
</tbody>
</table>

233
Составить заключение, в котором должны быть ответы на вопросы:
1. Оценить содержание пыли в воздухе рабочей зоны.
2. Дать гигиеническую оценку степени дисперсности пыли.
3. Дать заключение о степени загрязнения воздуха промышленной пылью и возможном характере её воздействия на организм.
4. Указать перечень профилактических мероприятий для человека, работающего в данных производственных условиях.

4.5. Радиационная безопасность при работе с радиоактивными веществами и источниками ионизирующего излучения

Защита от внешнего γ-излучения

Цель занятия: ознакомить студентов с основными параметрами защиты для создания безопасных условий работы с источниками ионизирующих излучений.

Практические навыки: научить студентов производить оценку радиационной обстановки и давать рекомендации по радиационной защите.

Задание студентам:
1. Ознакомиться с методами расчета защиты от γ-излучения.
2. Решить задачи по расчету защиты от γ-излучения.

Использование радиоактивных веществ сопряжено с опасностью воздействия на организм человека ионизирующей радиации. В результате несоблюдения мер радиационной безопасности могут возникнуть различные нарушения в состоянии здоровья: непосредственные и отдаленные заболевания (острая и хроническая лучевая болезнь, лейкозы, злокачественные новообразования) и генетические последствия.

Поэтому при использовании радиоактивных веществ принимают меры, предохраняющие от излишнего облучения людей извне, а также от проникновения радиоактивных веществ внутрь организма (инкорпорирование) и внутреннего облучения. Поскольку γ-лучи по сравнению с α- и β-излучением обладают наибольшей проникающей способностью, при расчетах защиты от внешнего облучения имеется в виду прежде всего защита от γ-излучения.

Для количественной характеристики ионизирующей радиации используют понятие экспозиционной дозы. Системная единица экспозиционной дозы — кулон/кг (Кл/кг), внесистемная — рент-
ген (P). Обе единицы установлены, исходя из степени ионизации воздуха под влиянием ионизирующей радиации. Кулон/кг – количество энергии ионизирующего излучения, под действием которого в 1 кг воздуха образуются ионы, несущие заряд в 1 кулон количества электричества каждого знака.

Рентген – доза, под действием которой в 1 см³ воздуха образуются ионы, несущие заряд в одну электростатическую единицу количества электричества каждого знака (2,08·10⁹ пар ионов). Один рентген равен 0,258 мКл/кг.

В последней редакции НРБ-99 понятие экспозиционной дозы не используется, соответственно не используются единицы ее выражения. Для характеристики степени воздействия рентгеновского или γ-излучения на биологические объекты в указанных нормах пользуются понятием поглощенной дозы, которая выражается системной единицей – грей (Гр) или внесистемной – рад.

Грэй (джоуль/кг) – количество энергии ионизирующей радиации, под действием которого в 1 кг облучаемого вещества поглощается энергия, равная 1 джоулю.

Рад – единица поглощенной дозы, равная 100 эргам, поглощенным в 1 г вещества.

Для оценки степени радиационной опасности хронического облучения излучением произвольного состава введено понятие эквивалентной дозы (H), представляющей собой произведение поглощенной дозы (D) на взвешивающий коэффициент для данного вида излучения (W_R). В качестве единиц эквивалентной дозы используют зиверт (системная единица) и бэр (специальная единица).

\[13\text{Gr} = 1\text{Gp} \times W_R = 100\text{rad} \times W_R = 100\text{бэр} \]

Взвешивающий коэффициент (W_R) учитывает относительную эффективность различных видов излучения в зависимости от его биологического действия. Для рентгеновского, γ- и β-излучения он равен 1, поэтому дозы облучения, выраженные в радах и берах или в греях и зивертах, будут иметь одинаковые значения.

Мощность дозы – доза облучения, получаемая объектом в единицу времени (секунду, минуту, час).

Эффективная доза (E) – доза гипотетического одномоментного облучения человека, вызывающая такие же биологические эффекты, что и подобная доза протяжённого во времени или фракционированного облучения. Эта доза используется как мера риска возникновения отдаленных последствий облучения всего тела человека.
века и отдельных его органов с учетом их радиочувствительности. Эффективная доза представляет сумму произведений эквивалентной дозы в органе на соответствующий взвешивающий коэффициент для данного органа или ткани (W_T) (табл.66).

Единицей измерения эффективной дозы является также Зиверт ($Зв$) = Дж/кг.

Таблица 66

Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы

<table>
<thead>
<tr>
<th>Органы</th>
<th>Коэффициент</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гонады</td>
<td>0,20</td>
</tr>
<tr>
<td>Костный мозг (красный)</td>
<td>0,12</td>
</tr>
<tr>
<td>Толстый кишечник (прямая, сигмовидная, нисходящая)</td>
<td>0,12</td>
</tr>
<tr>
<td>Лёгкие</td>
<td>0,12</td>
</tr>
<tr>
<td>Жёлудок</td>
<td>0,12</td>
</tr>
<tr>
<td>Мочевой пузырь</td>
<td>0,05</td>
</tr>
<tr>
<td>Грудная железа</td>
<td>0,05</td>
</tr>
<tr>
<td>Печень</td>
<td>0,05</td>
</tr>
<tr>
<td>Пищевод</td>
<td>0,05</td>
</tr>
<tr>
<td>Щитовидная железа</td>
<td>0,05</td>
</tr>
<tr>
<td>Кожа</td>
<td>0,01</td>
</tr>
<tr>
<td>Клетки костных поверхностей</td>
<td>0,01</td>
</tr>
<tr>
<td>Остальное (надпочечники, гол. мозг, слепая, восходящая и поперечно-ободочная кишка, тонкий кишечник, почки, мышечная ткань, поджелудочная железа, селезёнка, вилочковая железа, матка)</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Пример. При рентгеновском обследовании грудной клетки средняя эквивалентная доза облучения лёгких составила 180 мкЗв, молочной железы — 30 мкЗв, щитовидной железы — 50 мкЗв, красного костного мозга — 110 мкЗв, гонад — 10 мкЗв, поверхностии костной ткани — 23 мкЗв, желудка, кишечника, печени, почек, селезёнки, поджелудочной железы — по 20 мкЗв. Облучением остальных органов и тканей можно пренебречь. Определить эффективную эквивалентную дозу, полученную пациентом при обследовании.

\[
180 \cdot 0,12 + 30 \cdot 0,05 + 50 \cdot 0,05 + 110 \cdot 0,12 + 10 \cdot 0,2 + 23 \cdot 0,01 + 20 \cdot 0,12 + 20 \cdot 0,05 = 50.
\]

Ответ: 50 мкЗВ.

Предел дозы (ПД) — величина годовой эффективной или эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет неблагоприятных изменений в состоя-
нции здоровья персонала, обнаруживаемых современными методами исследования.

Нормы радиационной безопасности разрабатываются и перерабатываются на основе рекомендаций Международной Комиссии по радиационной защите. В настоящее время в нашей стране действует НРБ-99 (СП 2.6.1.758-99).

Главной целью радиационной безопасности является охрана здоровья людей от вредного воздействия ионизирующей радиации без необоснованных ограничений полезной деятельности при использовании радиоактивных веществ и источников ионизирующих излучений в различных областях хозяйства, науке и медицине.

Существует определенная числовая зависимость между системными и несистемными единицами активности и доз излучения.

<table>
<thead>
<tr>
<th>Наименование измерения</th>
<th>Название и обозначение единиц</th>
<th>Связь между единицами</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>единица СИ</td>
<td>внесистемная единица</td>
</tr>
<tr>
<td>Активность</td>
<td>Беккерель (Бк) = 1 распад/сек</td>
<td>Кюри (Ки)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Экспозиционная доза</td>
<td>Кулон на кг (Кл/кг)</td>
<td>Рентген (Р)</td>
</tr>
<tr>
<td>Поглощенная доза</td>
<td>Грей (Гр)</td>
<td>рад</td>
</tr>
<tr>
<td>Эквивалентная доза</td>
<td>Зиверт (Зв)</td>
<td>бэр</td>
</tr>
</tbody>
</table>

4.5.1. Основные принципы радиационной безопасности

1. **Принцип нормирования** — непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующих излучений.
2. **Принцип обоснования** – запрещение всех видов деятельности по использованию ионизирующих излучений, при которых полученная для человека и общества польза не превышает риск возможного вреда, причинённого дополнительным к естественному радиационному фону облучением.

3. **Принцип оптимизации** – поддержание на возможно низком и достижимом уровне с учётом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующих излучений.

При реализации этого принципа принимается, что облучение в коллективной эффективной дозе в 1 человеко-Зиверт (чел.-Зв) приводит к потере 1 человеко-года жизни населения.

Нормами радиационной безопасности устанавливаются следующие категории облучаемых лиц:

- **Персонал** (категория А) – лица, работающие с техногенными источниками излучения.
- **Персонал** (категория Б) – лица, находящиеся по условиям работы в сфере воздействия излучения.
- **Население** – все лица, включая персонал вне работы с источниками ионизирующего излучения.

Для этих категорий устанавливаются пределы эффективных и эквивалентных доз по трем группам органов (хрусталик глаза, кожа, кисти и стопы) (табл.67).

<table>
<thead>
<tr>
<th>Нормируемые величины</th>
<th>Персонал (группа А)</th>
<th>Персонал (группа Б)</th>
<th>Население</th>
</tr>
</thead>
<tbody>
<tr>
<td>Эффективная доза</td>
<td>20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год</td>
<td>5 мЗв в год в среднем за любые последовательные 5 лет, но не более 12,5 мЗв в год</td>
<td>1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год</td>
</tr>
<tr>
<td>Эквивалентная доза за год:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>в хрусталике глаза</td>
<td>150 мЗв</td>
<td>37,5 мЗв</td>
<td>15 мЗв</td>
</tr>
<tr>
<td>коже</td>
<td>500 мЗв</td>
<td>125 мЗв</td>
<td>50 мЗв</td>
</tr>
<tr>
<td>кистях и стопах</td>
<td>500 мЗв</td>
<td>125 мЗв</td>
<td>50 мЗв</td>
</tr>
</tbody>
</table>
Существует также опасность возникновения отдаленных эффектов и генетических последствий от воздействия радиации. Поэтому должны приниматься меры по максимально возможному ограничению облучения населения (в частности, при рентгенорадиологических исследованиях).

Доза внешнего облучения, полученного при работе с источником зависит от активности источника, времени облучения, расстояния от источника облучения, а также от плотности среды, через которую проходит радиация. Это создает возможность использовать указанные факторы для защиты от внешнего облучения. Правильное решение вопросов защиты возможно лишь на основании знания методов дозиметрии и принципов защиты. Ниже приведены расчеты, позволяющие создать безопасные условия работы с источниками ионизирующих излучений.

Расчет дозы внешнего г-облучения. Для того, чтобы выяснить необходимость применения защиты от облучения, нужно рассчитать дозу радиации, которую может получить работающий с РВ при определенных условиях.

Расчет дозы облучения (D), полученной от точечного источника без специальной защиты, производится по формуле:

\[D_{мзв} = \frac{K_\gamma \times A \times t}{r^2} \]

где \(D_{мзв}\) — доза полученного облучения, в мЗв; \(A\) — \(\gamma\)-активность источника облучения, в мКи; \(K_\gamma\) — гамма постоянная для данного радионуклида; \(t\) — время облучения, в ч; \(r\) — расстояние от источника облучения, в см.

Из формулы видно, что величина дозы полученного облучения прямо пропорциональна активности источника и времени облучения и обратно пропорциональна квадрату расстояния от источника облучения.

4.5.2. Расчет основных параметров защиты от внешнего облучения

Критерием при расчете параметров защиты от внешнего облучения является предел эффективной дозы, который для работающих с радиоактивными веществами (персонал-категория А) составляет 20 мЗв в год (табл. 67). Хотя в настоящее время предел доз на неделю не регламентируется, при расчетах удобнее пользоваться недельной дозой, которая при равномерном распределении годового облучения составляет 0,4 мЗв.
Подставив значение недельной дозы, приведя в соответствие единицы измерений и выразив расстояние в метрах, можно получить упрощенную формулу для расчета основных параметров защиты:

\[
\frac{m \times t}{R^2} = 1,8 \times 10^8 ,
\]

где \(m \) — γ-активность источника облучения, в Бк; \(t \) — время облучения за рабочую неделю, в ч; \(R \) — расстояние от источника облучения, в м; \(1,8 \times 10^8 \) — коэффициент пересчета.

Так как данная формула отражает соотношение между активностью источника, расстоянием и временем облучения при безопасных условиях работы, её можно использовать для расчета основных параметров защиты.

Защита количеством заключается в определении предельно допустимой активности источника, с которой можно работать без экрана в течение данного времени на данном расстоянии.

Пример. Оператор постоянно работает на расстоянии 1 м от источника излучения в течение 36 ч в неделю. С какой максимальной активностью источника излучения он может работать? По формуле вычисляем:

\[
m = \frac{1,8 \times 10^8 \times R^2}{t} = \frac{1,8 \times 10^8 \times 1}{36} = 5,0 \times 10^6 \text{ Бк}
\]

Защита временем заключается в определении срока работы с радиоактивным веществом в течение недели, при котором создаются безопасные условия (без превышения ПД) при постоянной работе.

Пример. В лаборатории работают с источником облучения активностью \(5,8 \times 10^7 \) Бк на расстоянии 1 м от него. Необходимо определить допустимое время работы (за неделю). По формуле вычисляем:

\[
t = \frac{1,8 \times 10^8 \times R^2}{m} = \frac{1,8 \times 10^8 \times 1}{5,8 \times 10^7} = 3,2 \text{ часа в неделю}
\]

Защита расстоянием заключается в определении расстояния от работающего до источника излучения, на котором (при данном источнике и времени) можно работать безопасно.
Пример. Сестра радиологического отделения в течение 6 ч ежедневно готовит препараты радия активностью 5,8×10^6 Бк. На каком расстоянии от источника она должна работать?

\[R = \sqrt{\frac{5,8 \times 10^6 \times 36}{1,8 \times 10^8}} = 1,05 м \]

Защита экранами основана на способности материалов поглощать радиоактивное излучение. Интенсивность поглощения \(\gamma\)-излучения прямо пропорциональна удельному весу материалов и их толщине и обратно пропорциональна энергии излучения.

При наружном облучении \(\alpha\)-частицами в экранировании нет необходимости, так как \(\alpha\)-частицы имеют небольшой пробег в воздухе и хорошо задерживаются другими материалами (лист бумаги не пропускает \(\alpha\)-частицы).

Для защиты от \(\beta\)-излучения следует применять легкие материалы: алюминий, стекло, пластмассы и др. Слой алюминия толщиной 0,5 см полностью задерживает \(\beta\)-частицы.

Для защиты от \(\gamma\)-лучей следует применять экраны из тяжелых металлов: свинца, чугуна и других тяжелых материалов (бетон). Можно использовать также грунт, воду и т.д.

Толщину защитного экрана, который ослабит мощность \(\gamma\)-излучения до предельно допустимых уровней, можно рассчитать двумя способами: 1) по таблицам (с учетом энергии излучения); 2) по слою половинного ослабления (без учета энергии излучения).

Расчет толщины экрана по таблицам. В зависимости от энергии \(\gamma\)-излучения проникающая способность его будет различной. Поэтому для точного расчета толщины защитных экранов составлены специальные таблицы, в которых учитывается кратность ослабления и энергии излучения (табл. 68).

Пример. Лаборант, производящий фасовку радиоактивного золота \(^{198}\text{Au}\) с энергией излучения 0,8 МэВ, получил без защиты через неделю дозу облучения 2,0 мЗв. Какой толщины свинцовый экран необходимо применить для создания безопасных условий работы лаборанта?

Величина коэффициента ослабления (кратность ослабления) определяется по формуле:

\[K = \frac{P}{P_0}, \]

где \(K \) — кратность ослабления; \(P \) — полученная доза; \(P_0 \) — предельно допустимая доза.
Толщина защитного экрана из свинца (мм) в зависимости
от кратности ослабления и энергии γ-излучения (широкий пучок)

<table>
<thead>
<tr>
<th>Кратность ослабления, K</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
<th>0,4</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>0,5</td>
<td>1,0</td>
<td>1,5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11,5</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>19,5</td>
<td>23,5</td>
<td>28</td>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>5,5</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>21</td>
<td>26</td>
<td>30,5</td>
<td>35,5</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>15</td>
<td>20</td>
<td>26</td>
<td>32,5</td>
<td>38,5</td>
<td>44</td>
<td>49</td>
</tr>
<tr>
<td>30</td>
<td>3,5</td>
<td>7</td>
<td>11,5</td>
<td>17</td>
<td>23</td>
<td>30</td>
<td>36,5</td>
<td>43</td>
<td>49,5</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>18</td>
<td>24</td>
<td>31</td>
<td>38</td>
<td>45</td>
<td>52</td>
<td>58</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>8,5</td>
<td>14</td>
<td>19,5</td>
<td>26</td>
<td>32,5</td>
<td>39,5</td>
<td>46</td>
<td>53</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>4,5</td>
<td>9</td>
<td>14,5</td>
<td>20,5</td>
<td>27</td>
<td>34,5</td>
<td>42</td>
<td>49,5</td>
<td>56</td>
<td>63</td>
</tr>
<tr>
<td>80</td>
<td>4,5</td>
<td>10</td>
<td>15,5</td>
<td>21,5</td>
<td>28</td>
<td>37</td>
<td>45</td>
<td>53</td>
<td>60</td>
<td>67</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>10</td>
<td>16</td>
<td>23</td>
<td>30</td>
<td>38,5</td>
<td>47</td>
<td>55</td>
<td>63</td>
<td>70</td>
</tr>
<tr>
<td>Кратность ослабления, K</td>
<td>1,25</td>
<td>1,5</td>
<td>1,75</td>
<td>2</td>
<td>2,5</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1,5</td>
<td>9,5</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>17</td>
<td>18,5</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td>20</td>
<td>16</td>
<td>15</td>
<td>13,5</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>33</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>46</td>
<td>45</td>
<td>38</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>48</td>
<td>52,5</td>
<td>55</td>
<td>57</td>
<td>59</td>
<td>58</td>
<td>50</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>45</td>
<td>51</td>
<td>56</td>
<td>59</td>
<td>61</td>
<td>65</td>
<td>64</td>
<td>55</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>20</td>
<td>58</td>
<td>66</td>
<td>72</td>
<td>76</td>
<td>78</td>
<td>83</td>
<td>82</td>
<td>71</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td>30</td>
<td>65</td>
<td>73</td>
<td>80</td>
<td>85</td>
<td>88</td>
<td>93</td>
<td>92</td>
<td>80</td>
<td>72</td>
<td>63</td>
</tr>
<tr>
<td>40</td>
<td>68,5</td>
<td>78</td>
<td>86</td>
<td>91</td>
<td>91</td>
<td>100</td>
<td>99</td>
<td>87</td>
<td>78</td>
<td>68</td>
</tr>
<tr>
<td>50</td>
<td>72</td>
<td>82</td>
<td>90</td>
<td>96</td>
<td>100</td>
<td>106</td>
<td>105</td>
<td>92</td>
<td>83</td>
<td>73</td>
</tr>
<tr>
<td>60</td>
<td>75</td>
<td>85</td>
<td>95</td>
<td>101</td>
<td>104</td>
<td>110</td>
<td>109</td>
<td>97</td>
<td>87</td>
<td>77</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>92</td>
<td>101</td>
<td>107</td>
<td>111</td>
<td>117</td>
<td>116</td>
<td>104</td>
<td>94</td>
<td>82</td>
</tr>
<tr>
<td>100</td>
<td>84,5</td>
<td>96,5</td>
<td>106</td>
<td>113</td>
<td>117</td>
<td>122</td>
<td>121</td>
<td>109</td>
<td>99</td>
<td>87</td>
</tr>
</tbody>
</table>
В нашем примере:

\[K = \frac{2.0}{0.4} = 5 \text{ раз} \]

В табл. 68 на пересечении линий, соответствующих кратности ослабления 5 и энергии излучения 0,8 МэВ, находим, что необходимая толщина свинцового экрана должна быть 22 мм.

При несовпадении данных кратности ослабления и энергии излучения с указанными в таблице результат находят методом интерполяирования либо используют последующие числа, обеспечивающие более надежную защиту.

Расчет толщины экрана по слоям половинного ослабления. Слоем половинного ослабления называется толщина материала, ослабляющая мощность γ-излучения в 2 раза. Число слоев половинного ослабления в зависимости от необходимой кратности ослабления представлено в табл. 69.

Таблица 69

<table>
<thead>
<tr>
<th>Кратность ослабления</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число слоев половинного ослабления</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Пример. Требуется ослабить интенсивность γ-излучения ⁶⁰Co в 1000 раз экраном из свинца, для которого один слой половинного ослабления равен 1,8 см. Из таблицы 69 находим, что для ослабления в 1000 раз требуется 10 слоев половинного ослабления свинца. Следовательно, общая толщина свинцового экрана равна: 1,8×10 = 18 см.

Примечание. Толщина одного слоя половинного ослабления составляет для свинца – 1,8 см, бетона – 10 см, дерева – 25 см, грунта – 14 см.

4.6. Санитарно-дозиметрический контроль при работе с источниками ионизирующего излучения

Цель занятия: ознакомить студентов с дозиметрической аппаратурой и методами дозиметрического контроля.
Практические навыки: научить студентов пользоваться дозиметрической аппаратурой, производить оценку результатов измерений.

Задание студентам:

1. По прилагаемому дозиметру определить на приборе КИД-6 суммарную дозу облучения, полученную рабочим, и дать заключение в соответствии с условиями полученной задачи.

2. Ознакомиться с устройством карманного прямопоказывающего дозиметра ДК-0,2 и освоить зарядку его на зарядном устройстве.

3. Ознакомиться с устройством и принципом измерения индивидуальных доз облучения дозиметрами фотоконтроля и термоляминесцентными (по настоящему руководству и наглядным пособиям).

4. Ознакомиться с методикой определения мощности дозы излучения с помощью прибора ДРС-01.

5. Ознакомиться с методикой определения интенсивности рентгеновского излучения с помощью микрорентгенометра МРМ-2.

6. Ознакомиться с методикой контроля радиоактивной загрязненности поверхностей β-активными веществами с помощью прибора СЗБ2-1М.

Основным способом проверки достаточности мер радиационной защиты персонала является дозиметрический контроль, который включает: 1) определение индивидуальных доз облучения, получаемых каждым работающим; 2) систематический контроль за мощностью дозы облучения непосредственно на рабочих местах и в смежных помещениях; 3) применение приборов, сигнализирующих о превышении допустимой дозы облучения.

В соответствии с этим приборы, используемые для дозиметрического контроля, делятся на три группы:

1. Дозиметры индивидуального контроля, предназначенные для измерения доз внешнего облучения, получаемые каждым работником, подвергающимся воздействию ионизирующей радиации. Они могут быть ионизационными, фотохимическими, термолюминесцентными (КИД-6; ДК-0,2; ИФКУ-1 и др.; рис. 19).
Рис. 19. Индивидуальные дозиметры. а – из комплекта КИД-2; б – прямопоказывающий ДК-0,2; в – кассета дозиметра ИФК.

2. Стационарные или переносные приборы, предназначенные для измерения мощностей доз излучения. К приборам этого типа относят радиометры и интегриметры "Аргунь", РУП-1, "Луч-А", "Аракс", "Актиния" и многие другие.

Датчики приборов указанных двух групп работают обычно по принципу ионизационных счетчиков или сцинтилляторов.

3. Стационарные установки для регистрации мощности излучений в определенных помещениях. Датчики таких приборов размещаются в местах измерений, а пульт управления может быть вынесен. Как правило, приборы такого типа оборудованы сигнализирующими устройствами, которые подают световые или звуковые сигналы в случае превышения допустимой мощности дозы (прибор заранее настраивают на определенный уровень радиации). К таким приборам относят установки типа УСИТ-1, УСИТ-2, УСИД-12 и др.

Прибор для индивидуального контроля безопасности типа КИД-6. Комплект индивидуальных дозиметров КИД-6 предназначен для измерения суммарной дозы рентгеновского или
у-излучения в пределах двух Р, полученной за определенный про-межуток времени (рабочий день, неделю и т.д.).

Прибор состоит из двух частей: 1. Зарядно-измерительное уст-ройство, питание которого осуществляется от сети переменного тока напряжением 127 или 220 В. Шкала измерительного устройства градуирована в рентгенах, отсчет ведется справа налево.

2. Набор двойных конденсаторных камер (индивидуальных дозиметров), которые оформлены в виде автоматических ручек с держателем. Комплект таких дозиметров помещается в отдельном ящике.

Чувствительным элементом прибора является конденсаторная ионизацияционная камера, которую перед началом работы заряжают до определенного потенциала. При размещении камеры в поле ионизирующего излучения в её объеме возникает ионизацияционный ток. Этот ток снижает потенциал конденсаторной камеры пропорцио-нально мощности дозы и времени воздействия излучения. Таким образом, по снижению напряжения на конденсаторе можно судить об общей дозе облучения, полученной камерой, а следовательно, и человеком, в кармане которого она находилась.

Каждый индивидуальный дозиметр имеет две конденсаторные камеры разной емкости (по одной с каждого конца). Одна из них (со стороны держателя) служит для измерения малых доз облучения (до 0,2 Р), а с противоположной — для измерения больших доз — до 2 Р. На измерительной шкале соответственно имеются две градуировки (до 0,2 и 2 Р). При измерении на зарядно-измеритель-ном устройстве дозы той или иной камеры дозиметра автоматиче-ски переключаются лампочки диапазонов, указывающие, по какой шкале необходимо производить отсчет. Начинать измерение надо с камеры для больших доз. Если при этом окажется, что полученная доза меньше 0,2 Р, то нужно перевернуть дозиметр и по камере с малой емкостью определить дозу более точно.

До начала измерения необходимо произвести настройку заряд-но-измерительного прибора, которая осуществляется с запасным дозиметром (включение и настройку прибора делает лаборант).

Измерение. При положении тумблера "Измерение" плотно вставить исследуемую камеру дозиметра, полученного у преподава-теля, в гнездо "Измерение" и отсчитать дозу облучения (по шкале, соответствующей горящей лампочке поддиапазона).

Пример. При индивидуальной дозиметрии установлено, что рабочий получил дозу облучения равную 0,9 мЗв (в пересчете на эффективную дозу). Согласно условиям задачи, эта доза была по-
лучена за 24 рабочих часа. Следовательно, за неделю (36 рабочих часов) рабочий получит дозу равную 1,4 мЗв. Если он будет продолжать работать в таких условиях, то получит дозу, превышающую предельно допустимую в 3,5 раза (1,4 мЗв × 50 недель = 70 мЗв). Необходимо изменить условия работы таким образом, чтобы получаемая доза уменьшилась в 3,5 раза.

Прямопоказывающий карманный дозиметр ДК-02.

Дозиметр выполнен в виде авторучки и заряжается от зарядного устройства ЭД-4.

Этот прибор предназначен для определения индивидуальной дозы жесткого γ-излучения. Обеспечивает измерение дозы в диапазоне от 0 до 200 мР. Принцип действия такой же, как у дозиметра прибора КИД-6. Измерение потенциала ионизационной камеры дозиметра ДК-02 производится с помощью миниатюрного электроскопа, смонтированного внутри дозиметра. Отклонение подвижной системы электроскопа — платинированной кварцевой нити — измеряется с помощью отсчетного микроскопа со шкалой, отградуированной в мР, который вмонтирован в дозиметр.

Порядок работы с прибором. Для приведения дозиметра в рабочее состояние его следует зарядить. После этого он будет непосредственно показывать дозу облучения, если смотреть в оптическую систему на источник света через окуляр, расположенный в верхнем торце дозиметра (со стороны держателя).

Зарядку дозиметра производят следующим образом:

1. Отвинтить нижний наконечник дозиметра и защитный колпачок зарядного устройства.
2. Ручку потенциометра на зарядном устройстве повернуть влево до отказа.
3. Дозиметр вставить в гнездо зарядного устройства.
4. Включить подсветку зарядного гнезда и высокое напряжение (тумблер зарядного устройства поставить в положение "Вкл.").
5. Наблюдая в окуляр дозиметра, нажать на дозиметр и поворачивать ручку потенциометра вправо до тех пор, пока изображение нити на шкале дозиметра не перейдет примерно на два деления левее нуля. Выключить зарядное устройство, вынуть дозиметр и коснуться металлической проволочкой центрального контакта дозиметра.
6. Проверить положение нити на свет: её изображение должно быть на нулевом делении шкалы.
7. Завернуть нижний наконечник дозиметра и колпачок зарядного устройства.
Заряженный дозиметр поместить вблизи источника γ-излучения (расстояние и время облучения указывает преподаватель) и по окончании облучения произвести отсчет дозы, полученной дозиметром. Дать заключение о безопасном времени пребывания человека на том расстоянии от препарата, на котором находился дозиметр.

Индивидуальный фотоконтроль ИФКУ-1. Принцип действия дозиметров этого типа состоит в регистрации степени потемнения фотопленки в зависимости от дозы ионизирующей радиации. Оценка степени потемнения производится путем сравнения со стандартными шкалами либо путем измерения на специальных денситометрах.

Фотопленку помещают в кассету, изготовленную из воздуховквивалентного материала, разделенного на секции, имеющие различные по толщине фильтры, изготовленные из разных материалов (медь, алюминий, гетинакс и др.). Таким дозиметром можно определить суммарную дозу облучения за определенный промежуток времени, оценить энергию излучения. С помощью прибора ИФКУ-1, имеющего отверстие в одной секции, можно определить дозу за счет β-частиц.

Термоловинесцентные дозиметры (КДТ-02 – индивидуальный люминесцентный контроль). Принцип их действия заключается в способности некоторых химических соединений накапливать энергию, получаемую при облучении их ионизирующей радиацией, и выделять её при нагревании в виде видимых лучей.

В специальные кассеты помещают стекло, покрытое термолюминесцентным составом, либо крупные таблетки, спрессованные из него. Закрепляют кассеты на груди облучаемого. Для измерения дозы кассету вскрывают в специальном регистрирующем приборе. Активный элемент, находящийся в ней, нагревают, и он начинает испускать лучи, которые регистрируют с помощью фотозлементов. Интенсивность свечения элемента зависит от суммарной дозы полученной радиации.

Дозиметр для измерения мощности дозы ДРС 0-1. Дозиметр предназначен для измерения мощности экспозиционной дозы непрерывного и импульсного рентгеновского и γ-излучения. Он может применяться в дозиметрических лабораториях научно-исследовательских учреждений и промышленных предприятий.

Прибор основан на сцинтилляционном методе измерения ионизирующих излучений. Он состоит из пульта и блока детектирования, соединенных кабелем. В блоке детектирования расположены фотоэлектронный умножитель (ФЭУ), световой затвор и сцинтилл-
лятор. В пульте размещены электрическая схема, регистрирующая ток ФЭУ, преобразователь постоянного напряжения, блок питания. Шкала измерительного прибора откалибрована в мкР/с (от 3 до 33 мкР/ч).

Порядок работы с прибором. Подготовку к работе необходимо производить в проводимой последовательности.

1. Поставить переключатель B2 в положение "Выкл."
2. Переключатель B1 поставить в положение "Ток стаб."
3. Подключить дозиметр к сети и включить переключатель B2 в положение "Напр. выше 30"; при этом стрелка должна остановиться на делении 2 по шкале, обозначенной "0-3"
4. После 2-минутного прогрева поставить переключатель B1 в положение "Накал". Стрелка измерительного прибора должна остановиться на делении 2 по шкале "0-3"
5. Переключатель B1 установить в положение "Анод". При этом стрелка должна остановиться на делении 1,45 по шкале "0-3"
6. Перевести переключатель B1 в положение "Уст. нуля" и при закрытом затворе (на детекторе) установить стрелку на "0". После 3-минутного прогрева переключатель B1 перевести в положение "30", открыть световой затвор.
7. Снять показания от контрольного источника. Показания должны быть 1,7 по шкале, обозначенной "0-3". Это соответствует 17 мкР. Снять контрольный источник. Прибор готов к работе.

Микрорентгенометр медицинский МРМ-2. Предназначен для измерения мощности дозы γ- и рентгеновского излучения с энергией 0,025-3,0 МэВ. Шкала прибора отградуирована в мкР/с.

Порядок работы с прибором. Перед включением прибора ручки управления должны находиться в следующих положениях:

а) тумблер "Вкл.-Выкл." – в положении "Выкл."; б) тумблер "Измерение-Контроль" – в положении "Измерение"; в) переключатель поддиапазонов – в положении "Уст. нуля". В зависимости от используемого источника тока выбрать шнур питания и присоединить его к прибору. При питании от сети переменного тока переключатель напряжения сети установить в положение, соответствующее напряжению.

Тумблером "Вкл.-Выкл." включить прибор. При этом загорается сигнальная лампочка. Прогреть прибор в течение 15 мин, после чего можно производить измерение.

Переключатель поддиапазонов переключить на тот диапазон, на котором возможен отсчет измеряемой мощности дозы.

При измерениях на первых четырех поддиапазонах отсчет производить через 10 с после момента переключения, на пятом
поддиапазоне — не ранее, чем через 20 с. Отсчет производить по шкале с учетом рабочего поддиапазона.

4.6.1. Измерение радиоактивной загрязненности поверхностей

При работе с радиоактивными веществами в открытом виде, а также в результате аварий возможно загрязнение рабочих поверхностей, кожи, спецодежды, средств индивидуальной защиты и других объектов. Для контроля за таким загрязнением вводится понятие ДУ (допустимого уровня загрязнения).

В таблице 70 приводятся ДУ загрязнения для ряда поверхностей.

<table>
<thead>
<tr>
<th>Таблица 70</th>
</tr>
</thead>
</table>

Допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, кожи (в течение рабочей смены), спецодежды и средств индивидуальной защиты, част./(мин·см²)

<table>
<thead>
<tr>
<th>Объект загрязнения</th>
<th>Альфа-активные нуклиды</th>
<th>Бета-активные нуклиды</th>
</tr>
</thead>
<tbody>
<tr>
<td>Неповрежденная кожа, спецбелье, полотенца, внутренняя поверхность лицевых частей средств индивидуальной защиты</td>
<td>Отдельные: 2 200</td>
<td>Прочие: 2 200</td>
</tr>
<tr>
<td>Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви</td>
<td>Отдельные: 5 2000</td>
<td>Прочие: 20 2000</td>
</tr>
<tr>
<td>Поверхность помещений постоянно го пребывания персонала и находящегося в них оборудования</td>
<td>Отдельные: 5 2000</td>
<td>Прочие: 20 2000</td>
</tr>
<tr>
<td>Поверхность помещений периодического пребывания персонала и находящегося в них оборудования</td>
<td>Отдельные: 50 10000</td>
<td>Прочие: 200 10000</td>
</tr>
<tr>
<td>Наружная поверхность дополнительных средств индивидуальной защиты, снимаемой в саншлюзах</td>
<td>Отдельные: 50 10000</td>
<td>Прочие: 200 10000</td>
</tr>
</tbody>
</table>

Наличие такого загрязнения может быть обнаружено и измерено с помощью ряда приборов, в частности, переносного универсального радиометра РУП-1, позволяющего обнаружить α- и β-час-
тицы. Для сигнализации о превышении порога загрязнения по β-активным веществам может быть использован прибор СЭБ2-1М (рис.20), который обеспечивает включение сигнализации при достижении заданного порогового уровня излучения.

Рис. 20. Сигнализатор загрязнений СЭБ2-1М. 1 — выносной блок со счетчиками; 2 — блок питания, управления, регистрации импульсов.

Измерение. Прибор предварительно должен быть включен в сеть и отрегулирован лаборантом. Измерение проводят в следующей последовательности. Вначале требуется установить необходимый порог сигнализации превышения степени загрязненности. Для этого прижмите и зафиксируйте откидную планку блока детектирования; наложите на планку блока детектирования соответствующий эталонный источник (стронций-90 и иттрий-90). Плавно вращая движок переменного резистора "Порог превышения", добейтесь включения сигнализации — засветки табло "Грязно".

Снимите β-источник и верните откидную планку блока детектирования в исходное состояние. Включите таймерное устройство, нажав кнопку "Таймер" до фиксации. Затем прижмите планку блока детектирования, при этом должно засветиться табло "Измерение". Наложите на планку источник. В течение 10 с должно включиться табло "Грязно", а табло "Измерение" — погаснуть. Снимите источник с планки блока детектирования и отожмите откидную планку блока детектирования до засветки табло "Измерение".
Спустя 10 с должно включиться табло "Чисто", а табло "Измерение" — погаснуть.
На основании сигнала "Чисто" и "Грязно" дайте заключение о степени загрязненности поверхности.

4.7. Гигиенические аспекты работы операторов на персональных компьютерах

Цель занятия. Ознакомить студентов с гигиеническими и медицинскими проблемами, возникающими в результате работы на компьютере. Основные факторы вредного влияния компьютера на организм.

Практические навыки. Освоить методы оценки факторов риска на здоровье при работе на компьютере.

Задание студентам:
1. Дать характеристику факторов риска при работе на компьютере, их вредное влияние на здоровье человека.
2. Перечислить санитарно-гигиенические рекомендации, защищающие здоровье при работе на компьютере.
3. Ознакомиться с аппаратурой для замера величины электрического и магнитного полей от дисплея компьютера.
4. Решить ситуационную задачу с составлением паспорта рабочего места.

Компьютер — это техническое средство отображения визуальной информации, обеспечивающее эффективное информационное взаимодействие человека с ЭВМ. Компьютеры в настоящее время внедряются во все сферы общественной жизни и человеческой деятельности. Персональные компьютеры становятся основным рабочим инструментом человека в его ежедневной деятельности. Ни экономические, ни научные достижения невозможны без быстрой и четкой информационной связи и наиболее эффективного практического использования этой информации. В последнее время непрерывно растет число людей, работающих с персональным компьютером.

Виды работ на компьютере: одна из широко распространенных классификаций видов работ основана на предпочтительном учете режима операции:
1) ввод данных;
2) сбор данных;
3) диалоговый режим;
4) обработка текстов и программирование.

Основные рабочие элементы:
1) монитор (экран) (его размеры)
2) клавиатура (мышка)
3) рабочая поверхность
4) рабочая мебель
5) общая освещенность
6) микроклимат в помещении.

4.7.1. Основные факторы, влияющие отрицательно на организм при работе на компьютере

При несоблюдении санитарно-гигиенических правил и норм работы на компьютере может повлечь за собой развитие ряда заболеваний. На состояние здоровья могут влиять такие вредные факторы, как длительное неизменное положение тела, вызывающее мышечно-скелетное нарушение, постоянное напряжение глаз, воздействие радиации (излучение от высоковольтных элементов схемы дисплея и электронно-лучевой трубки), влияние электростатических и электромагнитных полей. Существует тесная взаимосвязь между эргономикой (научной организацией рабочего места) и уровнем психологических расстройств и нарушения здоровья.

Светотехнические параметры дисплея, размеры экрана и символов, цветовые параметры, скорость смены информации, яркость экрана дисплея, частота смены кадров и общая освещенность в помещении влияют на состояние зрения. Низкий уровень освещенности экрана ухудшает восприятие информации, а слишком высокая приводит к уменьшению контраста изображения знаков на экране, что вызывает усталость глаз. Основным осложнением при длительной работе на компьютере является снижение работоспособности глаз (утомление зрения) и возникновение головной боли.

Существенным фактором, влияющим на утомление глаз, является частота перевода взгляда с экрана на клавиатуру. Это объясняет большую утомляемость начинающих операторов.

Работа на близком расстоянии (менее 50 см) вызывает покраснение глаз, слезотечение, резь и ощущение иноядного тела в глазах, что может привести к сухости глаз, светобоязненности, плохой видимости в темноте (в некоторых случаях заболевание катарактой) из-за постоянных электромагнитных излучений дисплея.

При работе дисплея регистрируется слабое рентгеновское, ультрафиолетовое, инфракрасное, микроволновое излучение, низко- и ультранизкочастотное электромагнитное поле. Исследования
показали, что на состояние здоровья оператора дисплея, который проводит не менее 20 часов в неделю с компьютерными терминалами, могут влиять такие вредные факторы, как электростатические и электромагнитные поля, воздействие радиации, что может привести к появлению головных болей и дисфункции ряда органов.

У женщин число выкидышей в первые три месяца беременности возникают в 2 раза чаще, чем у работающих на других производствах, вероятность рождения детей с врожденными пороками увеличивается в 2,5 раза. Наблюдается также рост заболеваемости центральной нервной системы в 4,6 раза, сердечно-сосудистой — в 2 раза, верхних дыхательных путей в 4,1 раза, желудочно-кишечного тракта в 2 раза, опорно-двигательной системы в 3 раза.

Отмечено явное ослабление работоспособности головного мозга, на 7% за 2 часа непрерывной работы и на 20% — за 4 часа, сосуды глаза соответственно на 16 и 43%, нарушение работы мочевого аппарата на 12 и 20% и т.д. Следует отметить, что все функции нормы рассчитаны на здорового человека, а если есть определенные патологические отклонения, то степень поражения резко возрастает.

Проблема безопасной работы с дисплеями настолько серьезна, что находит отражение в деятельности Всемирной организации здравоохранения при ООН. Европейское экономическое сообщество выпустило директиву № 26/054/ЕЕС, в которой указано, что оператор должен быть информирован о возможном вреде здоровью и необходимых мерах безопасности. В ряде стран, например ФРГ, оператор включен в перечень наиболее опасных профессий.

Имеются данные, показывающие, что при работе с дисплеем в течение 2-6 и более часов в день повышается риск заболевания экземой из-за наличия электростатического и, возможно, электромагнитного поля, которые являются причиной повышенной концентрации положительных аэроионов в рабочей зоне оператора.

Длительная работа с компьютером приводит к снижению внимания и восприятия, ухудшению переработки информации, утомлению и головным болям, возникновению негативно-эмоциональных состояний (как депрессивное).

Интенсивная продолжительная работа на компьютере может быть причиной профессиональных заболеваний из-за повторяющихся нагрузок, а также из-за высокого расположения клавиатуры, неправильной высоты кресла, неправильного положения кистей рук во время работы или высокого положения поверхности стола. Заболевания включают болезни нервов, мышц и сухожилий, такие как:
1. Тендовагинит кистей, запястьев, плеч.
2. Травматический эпикондилеит (раздражение сухожилий предплечья и локтевого сустава).
3. Ущемление медиального нерва рук.
4. Хроническая боль шейного и поясничного отдела позвоночника из-за неизменной рабочей позы.

Электромагнитные излучения ухудшают работу сосудов головного мозга (снижение памяти), глаз, могут быть катализатором ряда заболеваний.

4.7.2. Санитарно-гигиенические рекомендации при работе на компьютере

Перед началом работы нужно обратить внимание на:
1. Не мешают ли опоры для рук работе на клавиатуре?
2. Расположение верхнего края экрана по отношению к глазам.
3. Высоту рабочего кресла (эргономика).
4. На общую освещенность.

Рекомендации по подготовке рабочего места
1. Установить на экран пластмассовый оптический фильтр.
2. Верхний край монитора должен находиться на одном уровне с глазом, нижний край экрана должен находиться примерно на 20° ниже уровня глаз.
3. Экран компьютера должен быть на расстоянии 50-75 см от глаз.
4. Освещенность экрана должна быть равна освещенности помещения.
5. При работе с клавиатурой локтевой сустав должен находиться под углом 90°.
6. Каждые 10 минут отводить на 5-10 секунд взгляд в сторону от экрана (например в сторону окна)
7. Не работать на клавиатуре непрерывно более 30 минут.
8. При первых признаках боли рук немедленно обращаться к врачу.
9. Организовать работу таким образом, чтобы характер выполняемых операций изменялся в течение рабочего дня.

Защита от излучений
Одной из причин ухудшения состояния здоровья у операторов компьютеров является их низкое качество. Только 25% мониторов
соответствуют стандартам, 30% соответствуют частично, а 45% полностью не соответствуют требованиям по электромагнитной безопасности.

Следует отметить, что используемые защитные экраны не всегда ослабляют электромагнитное поле. Так, по данным испытательного центра "Элита" сертифицировано только 2 типа фильтров из 200 применяемых, некоторые из которых полностью прозрачные для излучений.

Из вышеизложенного следует, что первым мероприятием по защите от излучений является проверка сертификатов качества по электромагнитной безопасности. В то же время необходимо иметь в виду, что в ряде сертификатов есть ссылки на несуществующие санитарно-гигиенические нормы или указание на защиту не менее 100%.

При оценке влияния излучений необходимо учитывать наличие трех составляющих электромагнитного излучения:
- электростатического поля улавливаемого фильтрами практически полностью, снимаемого с них путем заземления защитного экрана;
- электрической составляющей электромагнитного поля, не улавливаемой фильтрами, которые создают только препятствие для их прохождения, в результате чего поток огибает фильтр и на расстоянии 1,5-2 м от него опять соединяется;
- магнитной составляющей - практически не улавливаемой фильтрами (до 5%).

Важным мероприятием по защите от излучений является оптимальная расстановка компьютеров в рабочем помещении (рис. 22, 23).

При этом расстояние между рабочими столами в направлении тыла поверхности одного монитора и экрана другого должно составлять не менее 2 м, а расстояние между боковыми поверхностями мониторов не менее 1,2 м.

Возможно также применение средств индивидуальной защиты. Средства защиты разделяются на три группы:
1) профилактические медикаментозные мероприятия;
2) улучшение условий считывания информации;
3) экранирование оператора целиком или отдельных зон его тела.

Выбор средств индивидуальной защиты зависит от возраста, состояния здоровья и продолжительности работы.
Профилактические медикаментозные мероприятия
Учитывая тот факт, что при работе на компьютере нарушается минеральный обмен, важным профилактическим мероприятием следует считать его нормализацию с помощью специальных напитков. Профилактические напитки рекомендовано применять практически здоровым взрослым операторам при работе не более 8 часов в день. В качестве профилактического напитка предложен минерализованный напиток "Защита", разработанный ТОО "Профиль". Прием напитка осуществляется по 50 мл через каждые 3-4 часа работы с компьютером.

Улучшение условий считывания информации
Улучшение условий считывания информации осуществляется путем применения очков со специальным покрытием. Профилактические очки разработаны АО "Лорнет-М". Очки уменьшающие утомляемость глаз, не менее чем на 25-30%, рекомендуется применять всем операторам при работе более 2 часов в день, а при нарушении зрения на 2 и более диоптрий – независимо от продолжительности работы.

Экранирование оператора целиком или отдельных зон его тела
Защитный костюм, полностью экранирующий оператора из ткани "Восход", целесообразно применять в период беременности, а также при предонкологических заболеваниях (миома матки, мастопатия, нарушение функции предстательной железы и т.д.), имеющих тенденцию к росту.
Защитный костюм с экранированием только отдельных зон тела оператора обеспечивает поддержание состояния здоровья в оптимальных условиях в течение 6 часов непрерывной работы.
Защитная шапочка или повязка экранирует лоб и за счет сохранения функций мозга и сосудов снижает ухудшение состояния здоровья от действия излучений в 5 раз. Рекомендуется применять независимо от продолжительности работы.

Выдержки из санитарных правил и норм (2.2.2.542-96) – гигиенические требования к видеодисплеямым терминалам, персональным электронно-вычислительным машинам и организации работы.
1. Освещение в помещениях должно быть смешанным (естественное и искусственное).
 а) Естественное освещение в помещении должно осуществляться через световые проемы.
КЭО — не ниже 1,2% в зонах с устойчивым снежным покровом и 1,5% на остальной территории.

Ориентация помещения должна быть на север и северо-восток.

б) Осветительные установки должны обеспечивать равномерную рассеянность освещения, светильники общего освещения следует располагать над рабочими поверхностями в равномерно-прямоугольном порядке. Величина искусственной освещенности — не ниже 300 ЛК.

2. Рабочий стол должен регулироваться по высоте в пределах 680-800 мм. Оптимальная ширина рабочей поверхности стола — 800, 1000, 1200, 1400 мм при глубине 800 и 1000 мм. Под рабочим столом должно быть свободное пространство для ног высотой не менее 60 см.

3. Требования к экрану:
 а) размер экрана — не менее 31 см по диагонали.
 б) Экран должен иметь антибликовое покрытие.
 в) Дрожание на экране должно находиться в пределах 0,1 мм.

4. Контрастность изображения знака — не менее 0,8.

5. Продолжительность непосредственной работы с компьютером зависит от наличия навыков и тяжести работы и составляет:
 для школьников:
 1 класса - 10 мин,
 2-5 классов - 15 мин,
 6-7 классов - 20 мин,
 8-9 классов - 25 мин,
 10-11 классов - 30 мин;
 для студентов 1-го курса — 1 час;
 для студентов старших курсов — 2 часа с перерывом 15-20 мин;
 для преподавателей — 4 часа с перерывом 15-20 мин через 2 часа;
 для операторов компьютеров — 6 часов с перерывом 20 мин через каждые 2 часа.

При нормировании числа считываемых или вводимых знаков за смену (число считываемых знаков не более 60 000, а суммарное количество считываемых и вводимых знаков до 40 000 за смену и 8-ми часовым рабочем дне регламентированные перерывы устанавливаются каждые два часа по 15 минут.

6. В целях профилактики переутомления и перенапряжения необходимо выполнять во время перерывов комплексы упражнений (для глаз и мышц тела).
7. Работники должны проходить предварительный (при приезде на работу) и периодический медицинский осмотр для предупреждения профзаболеваний.

Не рекомендуется работа на компьютере беременным женщинам, имеющим предонкологические заболевания (маммопатия, миома матки, нарушение функции предстательной железы и т.д.), заболевания глаз, приводящие к снижению зрения на 3 и более диоптрии.

4.7.3. Измерение электрического и магнитного полей компьютерной техники

Компьютерная техника должна испытываться в два этапа. На первом этапе — в специализированной аккредитованной лаборатории, на втором — на рабочем месте.

Измерение магнитного поля проводится в 16-ти точках на трех уровнях (всего 48 точек), электрического поля — в 4-х точках, расположенных равномерно по окружности на расстоянии 0,5 м от центра дисплея и его экрана. Во время измерений выключаются все посторонние источники электромагнитных полей, массивные металлические предметы должны располагаться на расстоянии не менее 1-го метра от испытуемого дисплея. В каждом диапазоне частот в протокол заносится значение поля перед экраном и максимальное значение в других точках.

![Изображение](image_url)

Рис. 21. Аппараты для определения электромагнитных полей: 1 — измеритель электрического поля ИЭП-04 с дисковой антенной, 2 — измеритель магнитного поля ИМП-04.

Согласно СанПиН 2.2.2.452-96 установлены следующие допустимые значения уровней электромагнитных излучений.

1. Напряженность электромагнитного поля по электрической составляющей — 10 В/м.
2. Напряженность электромагнитного поля по магнитной составляющей – 0,3 A/м.

На каждое рабочее место или группу рабочих мест, расположенных в одном помещении, необходимо составить паспорт, который должен включать:
- схему размещения в помещении со схемой электропитания;
- перечень технических средств с их описанием и руководством по эксплуатации с указанием типа, года выпуска, заводского и инвентарного номера, номера или копии сертификата на соответствие требованиям по электромагнитной совместимости и безопасности;
- данные о наличии средств индивидуальной защиты оператора и их эффективность;
- результаты периодического контроля за соответствием рабочего места и величины электромагнитных полей гигиеническим требованиям.

При проведении измерений электромагнитных полей необходимо руководствоваться ГОСТом Р 50923-96, измерения проводятся при яркости и контрастности, используемых пользователем.

Критерием качества ПЭВМ является соответствие величины напряженности электромагнитного поля на рабочем месте требованиям СанПиН 2.2.2.452-96.

Аппаратура для измерения электромагнитных полей состоит из приемной антенны и измерительного прибора. Согласно ГОСТу Р 50949-96, приемная антенна представляет собой металлизированный с двух сторон диэлектрический диск диаметром 300 мм. На измеряемой поверхности (обращенной к измеряемому объекту) выделяется активная измеряемая поверхность диаметром 100 мм.
Рис. 22. Нерациональное размещение ПК в помещении (наблюдается перекрестное облучение рабочих мест).

Рис. 23. Рекомендуемое размещение ПК в помещении (перекрестное облучение рабочих мест отсутствует).
Раздел 5.
ГИГИЕНИЧЕСКИЕ ОСНОВЫ ОБЕСПЕЧЕНИЯ НОРМАЛЬНОГО РОСТА И РАЗВИТИЯ РЕБЕНКА

Обеспечение нормального роста и развития подрастающего поколения — основная задача гигиены детей и подростков — самостоятельного раздела гигиенической науки. Гигиена детей и подростков изучает влияние природных и социальных факторов, оценивает и прогнозирует их воздействие на растущий организм, разрабатывает гигиенические нормативы и санитарно-профилактические требования и правила, контролирует санитарное состояние детских и подростковых учреждений, обосновывает оздоровительные мероприятия, направленные на снижение заболеваемости, совершенствование функциональных возможностей и гармоническое развитие детей и подростков.

Гигиена детей и подростков, как научная дисциплина и практическая область здравоохранения, включает в себя санитарно-эпидемиологическую службу (коммунальная гигиена, гигиена труда и питания, социальная гигиена и эпидемиология) применительно к растущему организму с учетом его потребностей, а также закономерностей роста и морро-функциональной зрелости на каждом возрастном этапе.

Отличительные особенности детского организма (незавершенность развития, пластичность) определяют большую степень их подверженности влиянию разнообразных факторов окружающей среды. Особое внимание в последние годы приобретают экологические проблемы в связи с глобальными изменениями среды нашего обитания. Современные медико-социальные исследования свидетельствуют о том, что окружающая среда, включающая весь комплекс экзогенных факторов, в том числе и социально-экономические, является одним из важнейших компонентов, определяющих формирование здоровья населения и, в первую очередь, детского. Ряд исследователей предлагают выделить особый раздел "Медицинская экология роста и развития" или "Медицинская экология онтогенеза человека", в котором бы изучались взаимоотношения между растущим человеческим существом и теми условиями, в которых происходит его развитие.

В настоящем разделе представлены практические занятия, способствующие формированию у будущих врачей гигиенических знаний, а также умень и навыков, необходимых для оценки здоровья детского населения, физического развития, условий воспитания и
обучения и др., а в конечном итоге — разработки мероприятий по оздоровлению условий жизни подрастающего поколения.

5.1. Исследование и оценка физического развития детей и подростков

Цель занятия: ознакомить студентов с основными показателями и методами оценки физического развития детей и подростков.
Практические навыки: научить студентов пользоваться антропометрическим инструментарием, правильно производить антропометрические измерения и оценивать полученные результаты.
Задание студентам:
1. Ознакомиться с инструментарием, необходимым для антропометрических измерений.
2. Освоить методы оценки физического развития детей и подростков.
3. Произвести оценку физического развития детей и подростков по предлагаемым задачам.

Физическое развитие является одним из ведущих показателей состояния здоровья детей и подростков и зависит от множества факторов — наследственности, климата, особенностей питания, уровня материальной обеспеченности семьи, выполнения основных режимных моментов и т.д.

Наблюдение за физическим развитием детей и подростков — неотъемлемая часть работы врача любого детского учреждения (детские ясли, сады, школы, школы-интернаты и др.). Детальная оценка показателей, характеризующих физическое развитие, проводится при углубленных медицинских осмотрах детей с участием всех специалистов перед поступлением в школу и в определенных "декретированных" классах — 3, 6, 8 классах (приказ МЗ СССР № 387 от 10.04.81 г. "О мерах по совершенствованию медико-санитарной помощи подросткам"). В связи с этим овладение методикой антропометрических исследований, а также методами оценки физического развития совершенно необходимо для подготовки специалистов.

Для оценки физического развития детей и подростков используют следующие показатели:
1. Соматометрические — длина тела (рост), масса тела (вес), окружность грудной клетки и др.
2. Соматоскопические — состояние кожных покровов и видимых слизистых оболочек, степень развития подкожно-жирового
слова, состояние опорно-двигательного аппарата, степень полового развития.

3. Физиометрические – жизненная емкость легких, мышечная сила, частота пульса, величина артериального давления и др.

4. Состояние здоровья.

5.1.1. Методика антропометрических измерений

Соматометрические признаки. Рост стоя и сидя измеряют с помощью деревянного ростомера или металлического антропометра (рис. 24). Деревянный ростомер представляет собой стойку высотой до 2 м с делениями по 0,5 см, хорошо укрепленную на прочной площадке. На стойке передвигается муфта с планшеткой. Для определения роста сидя имеется откидная скамейка, укрепленная на площадке ростомера.

Рис. 24. Измерение роста: а – стоя, деревянным ростомером; б – сидя, деревянным ростомером; в – стоя, металлическим антропометром.

Измерение роста стоя. Обследуемый стоит прямо, руки по швам, пятки – вместе, носки – вроль. При этом он касается стойки
ростомера пятками, ягодицами и межлопаточной областью. Голова должна находиться в таком положении, чтобы линия, мысленно проведенная от верхнего края козелка уха до нижнего края глазницы, была горизонтальной. При этом планка ростомера касается верхушечной точки черепа (арех), и показания прибора наиболее точны.

Измерение роста сидя. Обследуемый садится на скамейку ростомера, касаясь его стойки межлопаточной областью и ягодицами. Положение головы такое же, как при измерении роста в положении стоя. Ноги согнуты в коленных суставах под прямым углом. Ступни опираются о пол или подставку. Руки лежат вдоль бедер.

Рост стоя или сидя можно измерить также металлическим антропометром, который состоит из четырех полых трубок. Будучи вставлены одна в другую, они образуют штангу длиной 2 м с миллиметровыми делениями. На конце верхней трубки неподвижно укреплена муфта с металлической линейкой, вторая муфта с вырезом, через который видны деления, может свободно передвигаться по штанге антропометра. В эту муфту вставляется линейка скопленным концом кверху.

При измерении роста антропометром позиция обследуемого такая же, как при измерении роста с помощью ростомера. Обследуемый становится спиной к стене, антропометр устанавливают вертикально впереди него, а линейку антропометра опускают на верхушечную точку головы. С помощью металлического антропометра можно определить также размеры туловища, верхних и нижних конечностей и т.д. Для точного измерения пользуются антропометрическими точками: например, при измерении длины верхних конечностей используют плечевую и пальцевую точки. Ошибка при измерении не должна превышать 0,5 см.

Определение массы тела. Для взвешивания пользуются медицинскими весами. В верхней части их имеются две планки с делениями. Деления на нижней планке соответствуют десяткам килограммов (10, 20, 30 и т.д.), на верхней обозначены деления через каждые 50 г. Весы перед взвешиванием должны быть выверены. Взвешивание производят натощак, без одежды и обуви. Обследуемый становится на середину площадки весов.

Измерение окружностей. Для измерения окружностей головы, грудной клетки, плеча, бедра, голени пользуются стальной рулеткой или обычной сантиметровой лентой. Окружность грудной клетки измеряют в состоянии покоя, максимального вдоха и максимального выдоха. Ленту накладывают сзади по нижним углам лопаток при поднятых руках. Затем руки опускают, и лента, со-
скальзывая, ложится под углами лопаток. У мужчин и детей лента должна проходить спереди по краю околососкового кружка, у женщин — по IV ребру. Во время глубокого вдоха и выдоха лента должна без задержки следовать за движением грудной клетки.

Соматоскопические признаки. При осмотре (соматоскопии) обращают внимание на состояние кожных покровов и слизистых оболочек (цвет, тургор, чистота, влажность), степень жироотложения, состояние опорно-двигательного аппарата (костяк, форма грудной клетки, позвоночник, форма ног и стопы).

Жироотложение — развитие подкожного жирового слоя — объективно определяют измерением толщины жировой складки на животе (на уровне пупка, на 5-6 см сбоку от него) и под лопаткой. Измеренную малым толстотным циркулем толщину складки делят пополам. Средним считают жироотложение при толщине жировой складки от 1 до 2 см, ниже среднего — при толщине жировой складки менее 1 см, выше среднего — при толщине более 2 см.

Костяк. Различают три типа костяка: тонкий, коренастый и промежуточный между ними. Тонкий характеризуется узкими плечами и грудной клеткой, малыми размерами кистей рук и ступней; коренастый — широкими плечами и грудной клеткой, большими размерами кистей рук и ступней.

Формы грудной клетки. Различают цилиндрическую, коническую, плоскую и смешанную грудную клетку. Грудная клетка цилиндрической формы при рассматривании спереди и сбоку выглядит равномерно развитой в верхнем и нижнем отделах, подгрудинный угол округлой формы и по величине приближается к 90°. Грудная клетка конической формы имеет более широкий и выступающий вперед нижний отдел по сравнению с верхним. Подгрудинный угол большой, более 90°. Плоская грудная клетка обычно имеет удлиненную уплощенную форму; подгрудинный угол сужен, он менее 90°. В младшем возрасте часто встречаются смешанные формы грудной клетки. Могут встречаться рахитические и редко — бочкообразные формы.

Позвоночник. Различают нормальный, лордотический, кифотический. Нормальный позвоночник в сагittalной плоскости имеет S-образную форму. Шейная и поясничная кривизна невелика, обращена вперед, грудная выпуклость обращена назад. Для лордотического характерна малая шейная кривизна и резко выраженная поясничная. У кифотического позвоночника все три кривизны резко выражены.

К деформациям позвоночника относятся право- и левосторонние сколиозы разной степени. При сколиозе первой степени отме-
чается слабо выраженная асимметрия плеч, лопаток. Дефект не имеет стойкого характера, при напряжении мускулатуры выправляется. Вторая степень характеризуется устойчивым искривлением вправо или влево, наличием мышечных компенсаторных валиков. При третьей степени отмечаются глубокие искривления, сопровождающиеся деформацией грудной клетки. Начинающиеся изменения позвоночника можно обнаружить следующим простым способом: проводят с известным нажимом пальцем по верхушкам остистых отростков позвонков, а затем по образующейся сплошной красной полосе судят об изменениях в изгибе позвоночника.

Форма ног. Различают нормальную, X-образную и O-образную форму ног. При определении этого показателя обследуемый ставит пятки вместе, носки – врозь. При правильной форме ноги соприкасаются в области коленных суставов, при O-образной форме коленные суставы не соприкасаются, при X-образной – один коленный сустав заходит за другой.

Форма стопы. Различают стопу нормальную (сводчатую), уплощенную и плоскую. Для выявления плоскостопия делают отпечатки стопы (плантография). Раствором метилового синего с помощью ватного тампона смачивают стопу и ставят ребенка на чистый лист бумаги. Можно использовать также 10% раствор полуторахлористого железа, бумага при этом смачивается 10% раствором танина в спирте.

Рис. 25. Схема оценки отпечатка стопы. а – нормальная; б – уплощенная; в – плоская.
На полученном отпечатке (рис. 25) проводят касательную к наиболее выступающим точкам внутренней поверхности стопы. Из середины касательной восстанавливают перпендикуляр до наружного края стопы. Затем вычисляют процентное отношение той части перпендикуляра, которая прошла через отпечаток, ко всей длине. Если перепеек составляет до 50% – стопа оценивается как сводчатая, нормальная (а). В случае ~50-60% – стопа уплощенная (б). И наконец, если отношение >60%, речь идет о выраженной плоскостопии (в).

5.1.2. Оценка степени полового созревания

Начиная с 10-11 лет у мальчиков и с 9-10 лет у девочек при оценке физического (точнее биологического) развития необходимо учитывать степень полового созревания. Развитие вторичных половых признаков происходит в определенной последовательности. У мальчиков половое созревание начинается с изменения (мутаций) тембра голоса (Vox), затем отмечается оволосение лобка (Pubis), далее следуют увеличение щитовидного хряща гортани (Larynx), оволосение подмышечных впадин (Axillaris) и оволосение лица (Facies).

У девочек половое созревание начинается с развития молочных желез (Mamma), позднее наступает оволосение лобка (Pubis) и подмышечных впадин (Axillaris). Ведущим критерием полового созревания девочек является становление менструальной функции (Menses) и, в частности, возраст установления первой менструации.

Степень развития описанных признаков определяется по следующей системе.

1. Стадии развития волоссяного покрова на лобке: P₀ – отсутствие волос; P₁ – единичные короткие волосы; P₂ – волосы в центре лобка, густые, умеренные; P₃ – волосы на всем треугольнике лобка, густые, длинные; P₄ – волосы на всем треугольнике лобка, густые, длинные, распространяющиеся на внутреннюю поверхность бедер и вверх по белой линии живота (мужской тип оволосения).

2. Стадии развития волоссяного покрова в подмышечных впадинах: Ax₀ – отсутствие волос; Ax₁ – единичные волосы; Ax₂ – волосы в центре впадины, хорошо выражены; Ax₃ – волосы по всей подмышечной области, густые.

3. Стадии развития грудных желез: M₀ – детская стадия; M₁ – соски приподняты над околоносковым кружком, железы не выделяются; M₂ – околоносковый кружок увеличен, вместе с соском образует конус, железы несколько выделяются; M₃ – сосок и
околососковый кружок сохраняют форму конуса, железы поднимаются на большом участке; Ma₄ – женская стадия: сосок приподнят над околососковым кружком, железы принимают размеры и форму, свойственные взрослой женщине.

Степень полового созревания обозначают формулой, в которой фиксируются стадии развития всех указанных компонентов. Например, Ax₃ P₄ у мальчиков или Ma₃ Ax₂ P₃ у девочек и т.д. Возрастные нормативы развития вторичных половыми признаков у детей приведены в таблице 71. У девочек, начиная с 11-летнего возраста, к формуле полового созревания добавляются данные о наличии (Me+) или отсутствии (Me-) регул.

<table>
<thead>
<tr>
<th>Возраст в годах</th>
<th>Мальчики</th>
<th>Девочки</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Ap₀P₀</td>
<td>Ma₀ Ap₀P₀</td>
</tr>
<tr>
<td>11</td>
<td>Ap₀P₀</td>
<td>Ma₀Ap₀P₀ или выраженность одного-двух показателей в степени 1</td>
</tr>
<tr>
<td>13</td>
<td>Ap₀P₀ – Ap₁P₁ и выраженность одного показателя в степени 1, а другого 0.</td>
<td>Ma₂Ap₂P₂ – Ma₃Ap₃P₃ или выраженность одного-двух показателей в степени 2 или 3. Наличие или отсутствие регул.</td>
</tr>
</tbody>
</table>

Примечание: Наибольшее внимание следует обращать на развитие показателей Ma и P; Ax – наиболее вариабельный и потому менее надежный показатель.
Физиометрические признаки. Жизненную емкость легких измеряют с помощью водяного спирометра, состоящего из наружного и внутреннего цилиндров. На передней стенке внутреннего цилиндра нанесены деления, по которым ведется отсчет объема выдыхаемого воздуха (в миллилитрах). На крышке цилиндра имеется отверстие с резиновой пробкой, которую открывают в том случае, когда необходимо внутренний цилиндр опустить на дно наружного. В нижней части наружного цилиндра есть кран, на который надевают резиновую трубку с мундштуком на конце. Перед исследованием уровень воды должен соответствовать нулевой отметке ("O"). Обследуемый делает максимальный вдох, задержав дыхание, плотно обхватывает этот мундштук и выдыхает в трубку весь воздух, исключив выдох через нос. Измерение проводится 2-3 раза, учитывается лучший из показателей.

Помимо описанного прибора используется и газовый спирометр, имеющий значительно меньшие размеры и отличающийся большей простотой и удобством в обращении.

Мышечную силу рук определяют ручным динамометром. Обследуемый старается максимально сжать пружину динамометра в вытянутой и отведённой под прямым углом в сторону руке. Учитывают максимальный результат (в килограммах). Для следующего определения стрелку прибора возвращают в нулевое положение.

Становую силу (силю разгибателей спины) измеряют с помощью станового динамометра. Обследуемый фиксирует ступнями ног прикрепленную к полу (или помещенную на полу) пластину динамометра, наклоняется и берет в руки находящуюся на уровне колен рукютоку прибора и, стараясь максимально разогнуться, тянет её вверх. Учитывают максимальный результат (в килограммах).

Измерение частоты пульса
Частота сердечных сокращений по пульсу должна подсчитываться в течение одной минуты с целью выявления нарушений ритма у детей. Их наличие всегда требует направления на консультацию к кардиоревматологу.

Показатели максимального и минимального артериального давления (АД) измеряют аппаратом Рива-Роччи или тонометром (по методу Н.С.Короткова) на правой руке в положении сидя, после 1-минутного отдыха. Манжетку накладывают на середину обнажённого плеча на 1-2 см выше локтевого сгиба. Рука обследуемого должна быть удобно расположена на столе и повернута ладонью вверх. Момент появления тонов соответствует систолическому дав-
лению, а исчезновение их — диастолическому. Измерения производятся не менее 3-х раз, фиксируются повторяющиеся параметры.

Измерение АД у школьников следует проводить ежегодно, начиная с 7 лет. Отсутствие в медицинских кабинетах школ "возрастных" манжет может затруднить выполнение данного исследования. Однако специальные возрастные корректировки с учетом физического развития позволяют осуществить оценку АД и у младших школьников при использовании стандартной манжеты в массовых осмотрах. У детей 13 лет и старше (независимо от уровня физического развития) истинные цифры АД могут быть получены при использовании стандартной манжеты.

5.1.3. Оценка физического развития

Оценку физического развития производят на основании сопоставления индивидуальных показателей, характеризующих уровень развития ребенка со средними их значениями для данной возрастно-половой группы детей. Средние данные (региональные стандарты), отражающие степень развития детей и подростков, проживающих в аналогичных условиях, получают при массовом исследовании выборочной группы детей (не менее 100-150 человек) одного возраста и пола. Полученные данные подвергают обработке с применением разных способов статистического анализа (методом сигмальных отклонений, регрессионным или центильным методами). Продолжать оценку индивидуальных показателей можно лишь после определения точного возраста ребенка и принадлежности его к определенной возрастной группе.

Определение точного возраста ребенка

Возрастная группировка, применяемая в антропологических исследованиях, предусматривает определение возраста ребенка с точностью до дней. Для этого необходимо из даты обследования вычесть дату рождения ребенка.

Например: девочка родилась 26 декабря 1978 года. Медицинский осмотр проведен 3 января 1986 года. Определить возраст ребенка на день осмотра.

<table>
<thead>
<tr>
<th>+ 30 дней</th>
<th>+ 11 месяцев</th>
<th>- 1 год</th>
</tr>
</thead>
<tbody>
<tr>
<td>дата осмотра 3-го дня</td>
<td>1-го месяца</td>
<td>1986 года</td>
</tr>
<tr>
<td>дата рождения 26-го дня</td>
<td>12-го месяца</td>
<td>1978 года</td>
</tr>
</tbody>
</table>

| 7 дней | 0 месяцев | 7 лет |
При вычитании следует пользоваться общезвестными математическими закономерностями. Итак, точный возраст ребенка 7 лет и 7 дней.

Существенно облегчает задачу определения точного возраста приведенная ниже таблица 72.

При пользовании этой таблицей следует из года, когда проводится обследование, вычесть год рождения ребенка, а затем из полученного числа вычесть или к нему прибавить (см. знак) число месяцев, указанное на пересечении горизонтальной (месяц рождения) и вертикальной (месяц обследования) строк.

Например, ребенок родился 07.10.79 г., обследован 10.09.89 г. Вычитая год рождения ребенка из года его обследования, получаем возраст 10 лет; на пересечении горизонтальной (X месяц) и вертикальной (IX месяц) строк таблицы находим цифру "-1", значит до 10 лет недостает 1 месяца. Следовательно, возраст ребенка в момент обследования 9 лет 11 месяцев.

Возрастная группировка неодинакова для детей различных возрастов. Для разработки и правильного использования стандартов и других оценочных таблиц необходимо соблюдать следующие правила возрастной группировки. Детей первого года жизни объединяют в группу с интервалом в 1 месяц. Так, к возрастной группе детей 1-го месяца относят детей от 16 дней до 1 месяца 15 дней, за 2 месяца считают возраст от 1 месяца 16 дней до 2 месяцев 15 дней и т.д. до 1 года. Затем возрастная группировка идет по четвертям года: за 1 год 3 месяца считают возраст от 1 года 1 месяца 16 дней до 1 года 4 мес. 15 дней; за 1 год 6 мес. – от 1 года 4 мес. 16 дней до 1 года 7 мес. 15 дней и т.д. до 3 лет. К 3-летним относят детей от 2 лет 10 мес. 16 дней до 3 лет 5 мес. 29 дней. После 3 лет (до 18) группировка проводится с интервалом в 1 год: за 4 года считаю возраст от 3 лет 6 мес. до 4 лет 5 мес. 29 дней, от 4 лет 6 мес. до 5 лет 5 мес. 29 дней – ребенок считается пятилетним и т.д. (табл. 73).
Таблица 72

Определение возраста ребенка в момент обследования

<table>
<thead>
<tr>
<th>Месяц рождения ребенка</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
<td>+6</td>
<td>+7</td>
<td>+8</td>
<td>+9</td>
<td>+10</td>
<td>+11</td>
</tr>
<tr>
<td>II</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
<td>+6</td>
<td>+7</td>
<td>+8</td>
<td>+9</td>
<td>+10</td>
</tr>
<tr>
<td>III</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
<td>+6</td>
<td>+7</td>
<td>+8</td>
<td>+9</td>
</tr>
<tr>
<td>IV</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
<td>+6</td>
<td>+7</td>
<td>+8</td>
</tr>
<tr>
<td>V</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
<td>+6</td>
<td>+7</td>
</tr>
<tr>
<td>VI</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
<td>+6</td>
</tr>
<tr>
<td>VII</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>VIII</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
</tr>
<tr>
<td>IX</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
</tr>
<tr>
<td>X</td>
<td>-9</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>XI</td>
<td>-10</td>
<td>-9</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>XII</td>
<td>-11</td>
<td>-10</td>
<td>-9</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Возрастная группировка детей и подростков от 3 до 18 лет

<table>
<thead>
<tr>
<th>Возраст</th>
<th>Диапазон возрастных интервалов</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 года</td>
<td>от 2 лет 10 мес. 16 дн. до 3 лет 2 мес. 29 дн.</td>
</tr>
<tr>
<td>3 года 6 мес.</td>
<td>от 3 лет 3 мес. до 3 лет 8 мес. 29 дн.</td>
</tr>
<tr>
<td>4 года</td>
<td>от 3 лет 9 мес. до 4 лет 2 мес. 29 дн.</td>
</tr>
<tr>
<td>4 года 6 мес.</td>
<td>от 4 лет 3 мес. до 4 лет 8 мес. 29 дн.</td>
</tr>
<tr>
<td>5 лет</td>
<td>от 4 лет 9 мес. до 5 лет 2 мес. 29 дн.</td>
</tr>
<tr>
<td>5 лет 6 мес.</td>
<td>от 5 лет 3 мес. до 5 лет 8 мес. 29 дн.</td>
</tr>
<tr>
<td>6 лет</td>
<td>от 5 лет 9 мес. до 6 лет 2 мес. 29 дн.</td>
</tr>
<tr>
<td>6 лет 6 мес.</td>
<td>от 6 лет 3 мес. до 6 лет 8 мес. 29 дн.</td>
</tr>
<tr>
<td>7 лет</td>
<td>от 6 лет 9 мес. до 7 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>8 лет</td>
<td>от 7 лет 6 мес. до 8 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>9 лет</td>
<td>от 8 лет 6 мес. до 9 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>10 лет</td>
<td>от 9 лет 6 мес. до 10 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>11 лет</td>
<td>от 10 лет 6 мес. до 11 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>12 лет</td>
<td>от 11 лет 6 мес. до 12 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>13 лет</td>
<td>от 12 лет 6 мес. до 13 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>14 лет</td>
<td>от 13 лет 6 мес. до 14 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>15 лет</td>
<td>от 14 лет 6 мес. до 15 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>16 лет</td>
<td>от 15 лет 6 мес. до 16 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>17 лет</td>
<td>от 16 лет 6 мес. до 17 лет 5 мес. 29 дн.</td>
</tr>
<tr>
<td>18 лет</td>
<td>от 17 лет 6 мес. до 18 лет 5 мес. 29 дн.</td>
</tr>
</tbody>
</table>

I. Метод симплльных отклонений с графическим изображением профиля физического развития

В настоящее время практически не используется, однако знакомство с этим методом необходимо с точки зрения овладения более современными методами оценки физического развития детей и подростков.

Метод предполагает графическое изображение основных показателей физического развития (длина тела, масса тела и окружность грудной клетки) после предварительного сравнения их со стандартными. В стандартах, разработанных с учетом возраста и пола, представлены (табл. 74) средние арифметические значения (M) каждого из указанных выше признаков для детей г. Москвы, а также среднее квадратическое отклонение – допустимое отклонение от средних значений в сторону увеличения или уменьшения (±σ).
Таблица 7.4

Стандарты физического развития детей г. Москвы

<table>
<thead>
<tr>
<th>Возраст</th>
<th>Мальчики</th>
<th>Девочки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>±σ</td>
</tr>
<tr>
<td>Длина тела (см)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>110,0</td>
<td>4,86</td>
</tr>
<tr>
<td>6</td>
<td>116,4</td>
<td>5,27</td>
</tr>
<tr>
<td>7</td>
<td>123,76</td>
<td>5,88</td>
</tr>
<tr>
<td>8</td>
<td>128,08</td>
<td>6,00</td>
</tr>
<tr>
<td>9</td>
<td>132,1</td>
<td>6,19</td>
</tr>
<tr>
<td>10</td>
<td>137,0</td>
<td>6,90</td>
</tr>
<tr>
<td>11</td>
<td>141,2</td>
<td>6,82</td>
</tr>
<tr>
<td>12</td>
<td>146,5</td>
<td>7,44</td>
</tr>
<tr>
<td>13</td>
<td>152,4</td>
<td>8,44</td>
</tr>
<tr>
<td>14</td>
<td>158,9</td>
<td>8,70</td>
</tr>
<tr>
<td>15</td>
<td>165,0</td>
<td>8,54</td>
</tr>
<tr>
<td>16</td>
<td>169,3</td>
<td>8,10</td>
</tr>
<tr>
<td>17</td>
<td>172,0</td>
<td>6,78</td>
</tr>
<tr>
<td>18</td>
<td>173,9</td>
<td>6,78</td>
</tr>
</tbody>
</table>

Масса тела (кг)

<table>
<thead>
<tr>
<th>Возраст</th>
<th>Мальчики</th>
<th>Девочки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>±σ</td>
</tr>
<tr>
<td>5</td>
<td>19,4</td>
<td>2,48</td>
</tr>
<tr>
<td>6</td>
<td>21,9</td>
<td>3,13</td>
</tr>
<tr>
<td>7</td>
<td>24,7</td>
<td>3,88</td>
</tr>
<tr>
<td>8</td>
<td>27,02</td>
<td>4,24</td>
</tr>
<tr>
<td>9</td>
<td>29,1</td>
<td>4,86</td>
</tr>
<tr>
<td>10</td>
<td>32,2</td>
<td>5,80</td>
</tr>
<tr>
<td>11</td>
<td>34,8</td>
<td>5,74</td>
</tr>
<tr>
<td>12</td>
<td>37,4</td>
<td>6,70</td>
</tr>
<tr>
<td>13</td>
<td>43,0</td>
<td>8,10</td>
</tr>
<tr>
<td>14</td>
<td>48,1</td>
<td>8,66</td>
</tr>
<tr>
<td>15</td>
<td>54,3</td>
<td>9,22</td>
</tr>
<tr>
<td>16</td>
<td>58,8</td>
<td>8,72</td>
</tr>
<tr>
<td>17</td>
<td>62,7</td>
<td>7,54</td>
</tr>
<tr>
<td>18</td>
<td>64,5</td>
<td>8,08</td>
</tr>
</tbody>
</table>

Окружность грудной клетки (см)

<table>
<thead>
<tr>
<th>Возраст</th>
<th>Мальчики</th>
<th>Девочки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>±σ</td>
</tr>
<tr>
<td>5</td>
<td>56,9</td>
<td>3,16</td>
</tr>
<tr>
<td>6</td>
<td>58,7</td>
<td>3,62</td>
</tr>
<tr>
<td>7</td>
<td>61,5</td>
<td>4,02</td>
</tr>
<tr>
<td>8</td>
<td>63,6</td>
<td>4,22</td>
</tr>
<tr>
<td>9</td>
<td>66,0</td>
<td>3,92</td>
</tr>
<tr>
<td>10</td>
<td>67,0</td>
<td>4,30</td>
</tr>
<tr>
<td>11</td>
<td>68,6</td>
<td>3,28</td>
</tr>
<tr>
<td>12</td>
<td>70,2</td>
<td>5,06</td>
</tr>
<tr>
<td>13</td>
<td>74,2</td>
<td>5,58</td>
</tr>
<tr>
<td>14</td>
<td>77,6</td>
<td>6,08</td>
</tr>
<tr>
<td>15</td>
<td>80,8</td>
<td>6,04</td>
</tr>
<tr>
<td>16</td>
<td>83,6</td>
<td>6,00</td>
</tr>
<tr>
<td>17</td>
<td>85,9</td>
<td>5,78</td>
</tr>
<tr>
<td>18</td>
<td>87,4</td>
<td>5,14</td>
</tr>
</tbody>
</table>
Порядок оценки физического развития

1. Каждый из индивидуальных признаков сравнивают со средней арифметической этого признака для данного возраста и находят фактическое отклонение от неё (со знаком +, если имеется превышение по сравнению со стандартным значением, либо со знаком — в случае недостаточного развития признака).

2. Путем деления фактического отклонения на величину среднего квадратического отклонения (σ) находят сигмаальное отклонение, которое показывает, на сколько сигм в большую или меньшую сторону отклоняются показатели исследуемого ребенка от средних показателей, свойственных данному возрасту и полу.

3. Для построения профиля физического развития (рис. 25) на равном расстоянии друг от друга проводят горизонтальные линии по числу оцениваемых признаков. Вертикальная линия в центре соответствует средним величинам (M) для возрастно-половой группы, к которой относится ребенок. По обе стороны от неё проводят вертикальные линии, обозначающие величины средних квадратических отклонений с положительными значениями вправо (+1σ; +2σ; +3σ) и отрицательными влево (-1σ; -2σ; -3σ).

Величины сигмаальных отклонений отмечают точками на соответствующей признаку горизонтальной линии. Все точки соединяют прямыми. Полученный график (профиль физического развития) позволяет сделать заключение о физическом развитии ребенка, величине отклонений от средних показателей и о пропорциональности телосложения. Отклонение индивидуальных показателей от средних стандартных величин в пределах M±1σ указывает на среднее физическое развитие данного индивидуума. При развитии ниже среднего показатели находятся в пределах от -1σ до -2σ, при низком физическом развитии от -2σ до -3σ. При физическом развитии выше среднего индивидуальные показатели находятся в пределах от +1σ до +2σ, при высоком — от +2σ до +3σ. При этом решающим показателем для определения степени физического развития считается рост (длина тела), наименьше подверженный внешним влияниям признак, характеризующий ростовые процессы детского организма.

Для суждения о гармоничности развития необходимо оценить взаиморасположение точек, соответствующих величине сигмаальных отклонений по каждому признаку. Если они все укладываются в интервал одной сигмы, развитие считается гармоничным. В случае, если разброс признаков превышает одну сигму — развитие дисгармоничное. И, наконец, если один признак отличается от другого
более чем на 2σ, такое развитие расценивается как резко дисгармоничное.

Пример оценки физического развития мальчика 10 лет методом сигмальных отклонений с последующим графическим изображением профиля физического развития приведен ниже.

<table>
<thead>
<tr>
<th>Признак</th>
<th>Индивидуальные показатели</th>
<th>Стандартные показатели</th>
<th>Величина фактического отклонения</th>
<th>Величина сигмального отклонения, σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рост стоя, см</td>
<td>133,4</td>
<td>131,8</td>
<td>$+1,6$ см</td>
<td>$+0,3$</td>
</tr>
<tr>
<td>Масса тела, кг</td>
<td>31,4</td>
<td>28,1</td>
<td>$+3,3$ кг</td>
<td>$+1,4$</td>
</tr>
<tr>
<td>Окружность груди, см</td>
<td>65,8</td>
<td>63,7</td>
<td>$+2,1$ см</td>
<td>$+0,7$</td>
</tr>
</tbody>
</table>

Представлены индивидуальные признаки данного ребенка (длина и масса тела, окружность грудной клетки), стандартные показатели для мальчиков этого возраста (табл. 72), расчет величины фактического и сигмального отклонения для каждого из оцениваемых показателей.

Графическое изображение профиля физического развития, построенного по полученным данным, приведено на рис. 26.

Рис. 26. Профиль физического развития.

При оценке полученного профиля следует отметить, что два из трех оцениваемых признаков — длина тела и окружность груди — находятся в пределах средних величин ($M \pm 1\sigma$), а масса тела в интервале "выше среднего" ($M + 1\sigma - M + 2\sigma$).

Таким образом, физическое развитие ребенка можно оценить как среднее, дисгармоничное, т.к. масса тела по отношению к длине тела и окружности груди увеличена, что может иметь место при избыточном питании и малой двигательной активности.
Недостатком этого способа оценки физического развития является отсутствие корреляционной зависимости между массой тела, ростом и окружностью грудной клетки. Каждый показатель оценивается отдельно, вне связи с другими.

II. Оценка физического развития по шкалам регрессии

Этот метод более совершенный, так как оценочные таблицы, составленные по шкале регрессии, учитывают корреляционную зависимость между двумя антропометрическими признаками: длиной и массой тела, длиной тела и окружностью грудной клетки. Таблицы составляются на основании вариационно-статистической обработки данных измерений этих признаков у выборочной группы детей (не менее 100-150 человек) одного возраста и пола.

Основу оценочной таблицы (табл. 72) составляет длина тела, представленная во всех вариантах (от минимального до максимального значения с интервалом в 1 см) с делением на 5 групп: низкая, ниже средней, средняя, выше средней и высокая. Для каждого варианта длины тела вычислены средние значения (М) и частные сигмы (±σ) массы тела и окружности грудной клетки. Производя индивидуальную оценку физического развития по оценочным таблицам, прежде всего определяют, к какой группе (средняя, выше средней и т.д.) относится рост ребенка. Затем находят показатели массы тела и окружности грудной клетки, соответствующие этому росту (с учетом допустимых сигма-мальных отклонений). Далее составляют найденные величины с фактическими показателями массы тела и окружности грудной клетки ребенка.

На практике в связи с наличием тесной прямой корреляционной зависимости между массой тела и окружностью грудной клетки допускается для оценки физического развития использовать только соотношение длины и массы тела. Имеется таблица для индивидуальной оценки физического развития детей 4-17 лет.

В таблице 75 представлена шкала регрессии для детей 10 лет.

<p>| Таблица 75 |
|---|---|---|---|
| Границы нормальных вариантов массы тела (в веса) при разном росте у детей 10 лет |
| Вариант роста | Мальчики | Девочки | | |
| | Рост (см) | Вес (кг) | Рост (см) | Вес (кг) |
| Ниже среднего | 125** | От 20,5 до 32,2 | 125** | От 19,1 до 31,9 |
| | 126 | От 21,1 до 32,9 | 126 | От 19,8 до 32,7 |
| | 127 | От 21,8 до 33,6 | 127 | От 20,5 до 33,4 |</p>
<table>
<thead>
<tr>
<th>Вариант роста</th>
<th>Мальчики</th>
<th>Девочки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рост (см)</td>
<td>Вес (кг)</td>
<td>Рост (см)</td>
</tr>
<tr>
<td>128</td>
<td>От 22,4 до 34,2</td>
<td>128</td>
</tr>
<tr>
<td>129</td>
<td>От 23,1 до 34,9</td>
<td>129</td>
</tr>
<tr>
<td>130</td>
<td>От 23,7 до 35,5</td>
<td>130</td>
</tr>
<tr>
<td>131</td>
<td>От 24,4 до 36,2</td>
<td>131</td>
</tr>
<tr>
<td>Средний</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>От 25,0 до 36,8</td>
<td>132</td>
</tr>
<tr>
<td>133</td>
<td>От 25,7 до 37,5</td>
<td>133</td>
</tr>
<tr>
<td>134</td>
<td>От 26,4 до 38,1</td>
<td>134</td>
</tr>
<tr>
<td>135</td>
<td>От 27,0 до 38,8</td>
<td>135</td>
</tr>
<tr>
<td>136</td>
<td>От 27,7 до 39,4</td>
<td>136</td>
</tr>
<tr>
<td>137</td>
<td>От 28,3 до 40,1</td>
<td>137</td>
</tr>
<tr>
<td>138</td>
<td>От 29,0 до 40,8</td>
<td>138</td>
</tr>
<tr>
<td>139</td>
<td>От 29,6 до 41,4</td>
<td>139</td>
</tr>
<tr>
<td>140</td>
<td>От 30,3 до 42,1</td>
<td>140</td>
</tr>
<tr>
<td>141</td>
<td>От 30,9 до 42,7</td>
<td>141</td>
</tr>
<tr>
<td>142</td>
<td>От 31,6 до 43,4</td>
<td>142</td>
</tr>
<tr>
<td>143</td>
<td>От 32,2 до 44,0</td>
<td>143</td>
</tr>
<tr>
<td>144</td>
<td>Выше среднего</td>
<td>144</td>
</tr>
<tr>
<td>145</td>
<td>От 32,9 до 44,7</td>
<td>145</td>
</tr>
<tr>
<td>146</td>
<td>От 35,5 до 45,3</td>
<td>146</td>
</tr>
<tr>
<td>147</td>
<td>От 34,2 до 46,0</td>
<td>147</td>
</tr>
<tr>
<td>148</td>
<td>От 34,9 до 46,6</td>
<td>148</td>
</tr>
<tr>
<td>149</td>
<td>От 35,5 до 47,9</td>
<td>149</td>
</tr>
<tr>
<td>150</td>
<td>От 36,2 до 48,0</td>
<td>150</td>
</tr>
<tr>
<td>150</td>
<td>От 36,8 до 48,</td>
<td></td>
</tr>
<tr>
<td>Высокий</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>От 37,5 до 49,3</td>
<td>151</td>
</tr>
<tr>
<td>152</td>
<td>От 38,1 до 49,9</td>
<td>152</td>
</tr>
<tr>
<td>153</td>
<td>От 38,8 до 50,6</td>
<td>153</td>
</tr>
<tr>
<td>154</td>
<td>От 39,4 до 51,2</td>
<td>154</td>
</tr>
<tr>
<td>155</td>
<td>От 40,1 до 51,9</td>
<td>155</td>
</tr>
<tr>
<td>156</td>
<td></td>
<td>156</td>
</tr>
</tbody>
</table>

* 1. Дети с весом ниже данных границ подлежат наблюдению педиатром (дефицит веса).

II. Дети с весом, превышающим границы (избыток веса) направляются к эндокринологу, т.к. возможно ожирение.

** Дети с ростом ниже этих значений направляются к эндокринологу, т.к. возможна общая задержка физического развития.

Таблицы для индивидуальной оценки физического развития, составленные на основе региональных стандартов и разработанные общепринятым методом регрессионного анализа, устанавливают для конкретных вариантов длины тела (роста) в каждой возрастно-половой группе детей диапазон нормальных колебаний массы (вега) тела (от M-1σ до M+2σ). При оценке физического развития в

280
соответствующей полу и возрасту ребенка таблице находят его рост, затем строго по горизонтальной строке – соответствующий данному росту диапазон "нормы" массы тела. В зависимости от того, попадает ли фактическое значение массы тела в данный диапазон, окажется ниже минимальной или выше максимальной его границы, оценивается физическое развитие ребенка:

1. Оценку "нормальное физическое развитие" получают дети и подростки с длиной тела ниже средней, средней и выше средней (эти варианты отражают генетическую вариабельность признака) и массой тела в пределах от M-1σ до M+2σ.

2. Остальные показатели длины тела и сочетания их с массой тела оцениваются как отклонения в физическом развитии. Их можно сгруппировать в 6 вариантов: "низкий рост", "высокий рост", "дефицит массы" I и II степени, "избыток массы" I и II степени.

Дети с избыточной массой тела направляются на консультацию к эндокринологу, т.к. в значительном проценте случаев среди них встречаются лица с ожирением.

Дети с низким ростом также направляются к эндокринологу для решения вопроса, имеет ли место общая задержка физического развития или низкий рост ребенка обусловлен генетическими факторами (низкорослость родителей).

Дети с дефицитом массы тела подлежат наблюдению педиатром для установления причин этого дефицита.

III. Использование центильного метода для оценки физического развития детей и подростков

Сущность метода заключается в следующем. Все результаты измерений одного признака у большой группы детей одного пола и возраста располагают в восходящем порядке в виде упорядоченного ряда. Этот ряд делят на сто интервалов. Для характеристики распределения приводят обычно не все 100, а лишь семь фиксированных центилей: 3-й, 10-й, 25-й, 50-й, 75-й, 90-й, 97-й. Третий центиль отсекает три процента наблюдений данного ряда, десятый центиль – 10% наблюдений и т.д. Каждый из фиксированных центилей называют центильной вероятностью и обозначают в процентах. Между фиксированными центильными вероятностями образуется 8 промежутков, которые получили названия центильных интервалов.
Принадлежность изучаемых признаков к тому или иному центильному интервалу позволяет оценить их по следующей схеме:

<table>
<thead>
<tr>
<th>Центильные интервалы</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Центильная вероятность (центили)</td>
<td>3%</td>
<td>10%</td>
<td>25%</td>
<td>50%</td>
<td>75%</td>
<td>90%</td>
<td>97%</td>
<td></td>
</tr>
</tbody>
</table>

В центильном методе величину наблюдаемого признака считают средней, типичной, если она находится в пределах 25-75 центилей. Следовательно, за среднее значение признака принимают его величины, ограничённые 4 и 5 центильными интервалами. 1-3 интервалы характеризуют снижение изучаемого показателя, 6-8 интервалы свидетельствуют об увеличении изучаемого показателя по сравнению со средним его значением.

Методика оценки индивидуальных показателей центильным методом

При оценке физического развития данным методом используют одномерные центильные шкалы, которые разработаны сотрудниками Горьковского медицинского института по результатам углубленных медицинских осмотров здоровых школьников. Центильные шкалы составлены по 10 признакам, характеризующим морфофункциональное состояние организма: длина, масса тела, окружность грудной клетки, жировая складка живота, жизненная емкость легких, мышечная сила правой и левой кисти, максимальное и минимальное артериальное давление, частота сердечных сокращений. В шкалах указаны максимальные и минимальные значения каждого из 10 признаков и диапазон колебаний каждого признака по центильным интервалам. Шкалы позволяют детально охарактеризовать морфологический статус, определить гармоничность физического развития, выявить детей, склонных к ожирению, оценить функциональное состояние организма, выявить детей с изменением сосудистого тонуса.

282
Центильные шкалы разработаны для определенных возрастно-половых групп: для мальчиков и девочек школьного возраста от 7 до 17 лет.

Оценка индивидуальных показателей как обычно проводится после определения точного возраста ребенка и принадлежности его к определенной возрастной группе (см. табл. 73).

Оценка показателей по центильным интервалам

После установления точного возраста школьника определяют положение каждого его показателя в одном из 8 центильных интервалов, пользуясь одномерными центильными шкалами, и дают им соответствующую оценку (табл. 76 и 77).

Оценка гармоничности физического развития

По центильным шкалам можно судить о гармоничности развития массы тела по отношению к длине тела. Если значения рассматриваемых показателей оказываются в одном или соседних центильных интервалах, то физическое развитие оценивают как гармоничное. Если значения изучаемых показателей выходят за границы соседнего интервала, то физическое развитие ребенка считают дисгармоничным. Если разница в оценке составляет более двух интервалов, то физическое развитие оценивается как резко дисгармоничное.

Оценка избыточного жироотложения

Оценивая гармоничность физического развития, следует учитывать, что основными компонентами, определяющими массу тела, являются костная, мышечная и жировая ткани. Для определения жировой массы необходимо оценить толщину жировой складки. Если её величина оценивается по 6-му или более высоким центильным интервалам, это свидетельствует об избытке жировой ткани у ребенка. При нормальной толщине жировой складки и общей большой массе тела избыток её обусловлен костно-мышечным компонентом. Дифференцированный подход к оценке массы тела позволяет выявить детей с различной степенью ожирения.

Оценка жизненной емкости легких (ЖЕЛ) и мышечной силы рук

Оценка ЖЕЛ и мышечной силы рук проводится по следующей схеме:

отличное — ЖЕЛ и мышечная сила рук оценивается не ниже, чем по 6-му центильному интервалу;
В таблице 76 приведены одномерные центильные шкалы для оценки морфофункционального развития мальчиков 13 лет.

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Максимум - минимум</th>
<th>Очень низкая</th>
<th>Низкая</th>
<th>Пониженная</th>
<th>Средняя</th>
<th>Средняя</th>
<th>Повышенная</th>
<th>Высокая</th>
<th>Очень высокая</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Длина тела, см</td>
<td>136,0-177,0</td>
<td>138,0</td>
<td>138,5-143,0</td>
<td>143,5-148,0</td>
<td>148,5-153,0</td>
<td>153,5-160,0</td>
<td>160,5-163,0</td>
<td>163,5-168,0</td>
<td>168,5</td>
</tr>
<tr>
<td>2. Масса тела, кг</td>
<td>30,0-70,2</td>
<td>30,9</td>
<td>31,0-33,2</td>
<td>33,3-38,0</td>
<td>38,1-43,1</td>
<td>43,2-48,4</td>
<td>48,5-54,3</td>
<td>54,4-60,9</td>
<td>61,0</td>
</tr>
<tr>
<td>3. Окр. грудной клетки, см</td>
<td>61-90</td>
<td>64</td>
<td>64,5-65,0</td>
<td>65,5-68,0</td>
<td>68,5-71,0</td>
<td>71,5-75,0</td>
<td>75,5-79,0</td>
<td>79,5-82,0</td>
<td>82,5</td>
</tr>
<tr>
<td>4. Жировая складка живота, см</td>
<td>0,3-3,4</td>
<td>0,4</td>
<td>0,5</td>
<td>0,6</td>
<td>0,7-0,8</td>
<td>0,9-1,0</td>
<td>1,1-1,8</td>
<td>1,9-2,3</td>
<td>2,4</td>
</tr>
<tr>
<td>5. ЖЕЛ, мл</td>
<td>1100-3850</td>
<td>1696</td>
<td>1697-1921</td>
<td>1922-2108</td>
<td>2109-2303</td>
<td>2304-2668</td>
<td>2669-3015</td>
<td>3016-3320</td>
<td>3321</td>
</tr>
<tr>
<td>8. Частота сердечных сокр., уд/мин</td>
<td>54-112</td>
<td>60</td>
<td>61-69</td>
<td>70-76</td>
<td>77-80</td>
<td>81-88</td>
<td>89-93</td>
<td>94-99</td>
<td>100</td>
</tr>
<tr>
<td>9. Макс. давл., мм рт.ст.</td>
<td>70-128</td>
<td>86</td>
<td>87-90</td>
<td>91-98</td>
<td>99-100</td>
<td>101-110</td>
<td>111-118</td>
<td>119</td>
<td>120</td>
</tr>
<tr>
<td>10. Миним. давл., мм рт.ст.</td>
<td>30-90</td>
<td>38</td>
<td>39-50</td>
<td>51-54</td>
<td>55-60</td>
<td>61-65</td>
<td>66-70</td>
<td>71-74</td>
<td>75</td>
</tr>
</tbody>
</table>

Одномерные центильные шкалы рассчитаны для каждого показателя без учета их взаимосвязи.
Таблица 77
Одномерные центильные шкалы для оценки морфофункционального развития девочек 13 лет

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Максимум - минимум</th>
<th>Очень низкая</th>
<th>Низкая</th>
<th>Пониженная</th>
<th>Средняя</th>
<th>Средняя</th>
<th>Повышенная</th>
<th>Высокая</th>
<th>Очень высокая</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Длина тела, см</td>
<td>133,0-174,0</td>
<td>143,0</td>
<td>143,5-148,0</td>
<td>148,5-152,0</td>
<td>152,5-156,0</td>
<td>156,5-160,0</td>
<td>160,5-164,0</td>
<td>164,5-166,5</td>
<td>167,0</td>
</tr>
<tr>
<td>2. Масса тела, кг</td>
<td>27,9-71,5</td>
<td>32,3</td>
<td>32,4-36,8</td>
<td>36,9-40,0</td>
<td>40,1-45,3</td>
<td>45,4-50,4</td>
<td>50,5-57,0</td>
<td>57,1-63,1</td>
<td>63,2</td>
</tr>
<tr>
<td>3. Окр. грудной клетки, см</td>
<td>60,0-88,0</td>
<td>63,0</td>
<td>63,5-67,0</td>
<td>67,5-70,0</td>
<td>70,5-73,0</td>
<td>73,5-77,0</td>
<td>77,5-81,0</td>
<td>81,5-83,5</td>
<td>84,0</td>
</tr>
<tr>
<td>4. Жировая складка живота, см</td>
<td>0,4-4,1</td>
<td>0,5</td>
<td>0,6-0,7</td>
<td>0,8-0,9</td>
<td>1,0-1,4</td>
<td>1,5-2,0</td>
<td>2,1-2,5</td>
<td>2,6-2,9</td>
<td>3,0</td>
</tr>
<tr>
<td>5. ЖЕЛ, мл</td>
<td>1000-3600</td>
<td>1572</td>
<td>1573-1907</td>
<td>1908-2106</td>
<td>2107-2381</td>
<td>2382-2544</td>
<td>2545-2820</td>
<td>2821-3095</td>
<td>3096</td>
</tr>
<tr>
<td>8. Частота сердечных сокр., уд/мин</td>
<td>60-112</td>
<td>64</td>
<td>65-72</td>
<td>73-80</td>
<td>81-84</td>
<td>85-89</td>
<td>90-100</td>
<td>101-103</td>
<td>104</td>
</tr>
<tr>
<td>9. Макс. давл., мм рт.ст.</td>
<td>75-138</td>
<td>80</td>
<td>81-90</td>
<td>91-100</td>
<td>101-108</td>
<td>109-112</td>
<td>113-120</td>
<td>121-124</td>
<td>125</td>
</tr>
<tr>
<td>10. Миним. давл., мм рт.ст.</td>
<td>35-80</td>
<td>40</td>
<td>41-50</td>
<td>51-55</td>
<td>56-60</td>
<td>61-69</td>
<td>70</td>
<td>71-77</td>
<td>78</td>
</tr>
</tbody>
</table>

Одномерные центильные шкалы рассчитаны для каждого показателя без учета их взаимосвязи.
хорошее — не ниже, чем по 4-5-му центильным интервалам;
удовлетворительное — не ниже, чем по 2-3-му центильным интервалам;
неудовлетворительное — по 1-му центильному интервалу.
Высокие значения ЖЕЛ и мышечной силы рук всегда указывают на хороший уровень физической дееспособности школьника.

Оценка функционального состояния сердечно-сосудистой системы
За средние показатели уровня артериального давления (АД) принимают его значения в диапазоне 4-5-го центильных интервалов при допустимых границах отклонений в пределах 3-6-го центильных интервалов. Если АД соответствует 7-8-му или 1-2-му центильным интервалам, то такой ребенок нуждается в тщательном медицинском обследовании и постоянном контроле за динамикой АД.
Частота сердечных сокращений соответствует возрастной норме, если её показатели лежат в пределах 3-6-го центильных интервалов (лучше в 4-5-го). Если показатели пульса оказываются в диапазоне 7-8-го центильных интервалов, то это свидетельствует о тахикардии, а в диапазоне 1-2-го центильных интервалов — о брадикардии. Подобные случаи также требуют консультации специалистов и контроля за динамикой сердечных сокращений.
Оценив с помощью центильных шкал всю группу показателей, характеризующих физическое развитие, составляют развернутое заключение на каждого ребенка.

Примеры:
Мальчик 13 лет.

<table>
<thead>
<tr>
<th>Признак</th>
<th>Величина признака</th>
<th>Центильный интервал</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела</td>
<td>162 см</td>
<td>6</td>
</tr>
<tr>
<td>Масса тела</td>
<td>61,5 кг</td>
<td>8</td>
</tr>
<tr>
<td>Окружность грудной клетки</td>
<td>83 см</td>
<td>8</td>
</tr>
<tr>
<td>Жировая складка живота</td>
<td>2,5 см</td>
<td>8</td>
</tr>
<tr>
<td>ЖЕЛ</td>
<td>3 000 мл</td>
<td>6</td>
</tr>
<tr>
<td>Мышечная сила правой руки</td>
<td>40 кг</td>
<td>8</td>
</tr>
<tr>
<td>Мышечная сила левой руки</td>
<td>31 кг</td>
<td>6</td>
</tr>
<tr>
<td>Частота сердечных сокращений</td>
<td>90 уд./мин.</td>
<td>6</td>
</tr>
<tr>
<td>Максимальное АД</td>
<td>125 мм рт.ст.</td>
<td>8</td>
</tr>
<tr>
<td>Минимальное АД</td>
<td>70 мм рт.ст.</td>
<td>6</td>
</tr>
</tbody>
</table>
Заключение: мальчик имеет повышенный показатель длины тела, очень высокие значения массы тела и окружности грудной клетки. Физическое развитие дисгармоничное за счет избыточного жироотложения. ЖЕЛ и мышечная сила рук развиты отлично. Отмечено повышение максимального АД, минимальное давление и частота сердечных сокращений в пределах возрастной нормы. Необходимо осуществлять контроль за уровнем АД, а также консультация эндокринолога.

Девочка 13 лет.

<table>
<thead>
<tr>
<th></th>
<th>Величина признака</th>
<th>Центильный интервал</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела</td>
<td>154 см</td>
<td>4</td>
</tr>
<tr>
<td>Масса тела</td>
<td>46 кг</td>
<td>5</td>
</tr>
<tr>
<td>Окружность грудной клетки</td>
<td>73 см</td>
<td>4</td>
</tr>
<tr>
<td>Жировая складка живота</td>
<td>1 см</td>
<td>4</td>
</tr>
<tr>
<td>ЖЕЛ</td>
<td>2500 мл</td>
<td>5</td>
</tr>
<tr>
<td>Мышечная сила правой руки</td>
<td>26,5 кг</td>
<td>5</td>
</tr>
<tr>
<td>Мышечная сила левой руки</td>
<td>22,0 кг</td>
<td>4</td>
</tr>
<tr>
<td>Частота сердечных сокращений</td>
<td>83 уд./мин.</td>
<td>4</td>
</tr>
<tr>
<td>Максимальное АД</td>
<td>110 мм рт.ст.</td>
<td>5</td>
</tr>
<tr>
<td>Минимальное АД</td>
<td>60 мм рт.ст.</td>
<td>4</td>
</tr>
</tbody>
</table>

Заключение: Физическое развитие девочки среднее, гармоничное, ЖЕЛ и мышечная сила рук развиты хорошо. Показатели гемодинамики (АД, частота пульса) в пределах возрастной нормы.

Комплексная оценка физического развития

В практике оценки физического развития детей с начала 80-х годов используется комплексный метод, учитывающий как морфофункциональное состояние организма, так и соответствие паспортного возраста ребенка уровню биологического развития. Метод позволяет выделить детей, имеющих соответствующее возрасту и гармоничное физическое развитие, а также детей с различными отклонениями в физическом развитии. Схема комплексной оценки физического развития представлена на рис. 27.
Рис. 27. Схема комплексной оценки физического развития.

5.1.4. Определение уровня биологического развития детей и подростков

Для определения биологического возраста можно использовать различные показатели (морфологические, нейрофизиологические, гематологические, гормональные и др.), которые отражают зрелость разных систем организма. В практической деятельности педиатра наиболее пригодны и достаточно информативны морфологические критерии (длина тела, погодовые прибавки длины тела). Биологический возраст детей старшего дошкольного и младшего школьного возраста можно определять по длине тела, массе тела и числу постоянных зубов.

Начиная с 10-11 лет у мальчиков и с 9-10 лет у девочек при определении биологического возраста необходимо учитывать степень полового созревания.

1. Оценка уровня биологической зрелости по срокам прорезывания постоянных зубов

Общее количество постоянных зубов подсчитывается на верхней и нижней челюстях, суммарно учитываются зубы всех стадий прорезывания — от четкого выступания режущего края зуба над
ной до зуба, полностью сформировавшегося. Возрастные нормативы дают представление о диапазоне наличия постоянных зубов (±σ) детей, развитие которых соответствует календарному возр

tу ребенка (табл. 78).

Таблица 78

Возрастные нормативы прорезывания постоянных зубов (М±σ)

<table>
<thead>
<tr>
<th>Возраст в годах</th>
<th>Мальчики</th>
<th>Девочки</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,5</td>
<td>от 0 до 3</td>
<td>от 0 до 5</td>
</tr>
<tr>
<td>6,0</td>
<td>от 1 до 5</td>
<td>от 1 до 6</td>
</tr>
<tr>
<td>6,5</td>
<td>от 3 до 8</td>
<td>от 3 до 9</td>
</tr>
<tr>
<td>7,0</td>
<td>от 5 до 10</td>
<td>от 6 до 11</td>
</tr>
<tr>
<td>7,5</td>
<td>от 8 до 12</td>
<td>от 8 до 13</td>
</tr>
<tr>
<td>8,0</td>
<td>от 8 до 14</td>
<td>от 11 до 14</td>
</tr>
<tr>
<td>8,5</td>
<td>от 11 до 17</td>
<td>от 12 до 17</td>
</tr>
<tr>
<td>9,0</td>
<td>от 12 до 17</td>
<td>от 12 до 18</td>
</tr>
<tr>
<td>9,5</td>
<td>от 12 до 18</td>
<td>от 13 до 19</td>
</tr>
<tr>
<td>10,0</td>
<td>от 14 до 21</td>
<td>от 15 до 22</td>
</tr>
<tr>
<td>10,5</td>
<td>от 15 до 22</td>
<td>от 16 до 24</td>
</tr>
<tr>
<td>11,0</td>
<td>от 16 до 24</td>
<td>от 18 до 25</td>
</tr>
<tr>
<td>11,5</td>
<td>от 18 до 26</td>
<td>от 21 до 27</td>
</tr>
<tr>
<td>12,0</td>
<td>от 21 до 27</td>
<td>от 22 до 28</td>
</tr>
<tr>
<td>12,5</td>
<td>от 25 до 29</td>
<td>от 26 до 29</td>
</tr>
</tbody>
</table>

*) Дети с замедленным и ускоренным темпом развития постоянных зубов направляются на консультацию к детскому эндокринологу.

Меньшее количество зубов (менее М-1σ) говорит о замедленном развитии, большее (более М+1σ) — об ускоренном. Дети с замедленным и ускоренным темпом развития постоянных зубов должны направляться на консультацию к детскому эндокринологу.

2. Оценка уровня биологической зрелости по вторичным половым признакам

При осмотре устанавливается выраженность волосяного покрова на лобке (Р) и в подмышечных впадинах (Ах), а у девочек, кроме того, — развитие грудных желез (Ма). Наибольшее внимание следует обращать на развитие показателей Ма и Р; Ах — наиболее вариабельный и потому менее надежный показатель. Возрастные нормативы развития вторичных половых признаков у детей приведены в таблице 71.
С 11-летнего возраста у девочек к формуле полового созревания добавляются данные о наличии (Ме+ или Ме-) регул, у мальчиков по показаниям может проводиться оценка полового развития.

По возрастным нормативам устанавливают следующие варианты возрастного развития биологической зрелости:

1. Развитие соответствует календарному возрасту (выраженность вторичных половых признаков соответствует возрастному нормативу).

2. Развитие ускоренное (опережение по выраженности вторичных половых признаков составляет 1 год и более).

3. Развитие замедленное (отставание по выраженности вторичных половых признаков составляет 1 год и более).

Дети с замедленным и ускоренным развитием направляются на консультацию к эндокринологу.

Примеры комплексной оценки физического развития с использованием одномерных центильных шкал.

Примеры.

Мальчик 13 лет

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Величина признака</th>
<th>Центильный интервал</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела</td>
<td>163 см</td>
<td>6</td>
</tr>
<tr>
<td>Масса тела</td>
<td>61,5 кг</td>
<td>8</td>
</tr>
<tr>
<td>Окружность грудной клетки</td>
<td>84 см</td>
<td>8</td>
</tr>
<tr>
<td>Жировая складка живота</td>
<td>2,5 см</td>
<td>8</td>
</tr>
<tr>
<td>ЖЕЛ</td>
<td>3000 мл</td>
<td>6</td>
</tr>
<tr>
<td>Мышечная сила правой руки</td>
<td>42 кг</td>
<td>8</td>
</tr>
<tr>
<td>Мышечная сила левой руки</td>
<td>32 кг</td>
<td>6</td>
</tr>
<tr>
<td>Частота сердечных сокращений</td>
<td>90 уд./мин</td>
<td>6</td>
</tr>
<tr>
<td>Максимальное АД</td>
<td>125 мм рт.ст.</td>
<td>8</td>
</tr>
<tr>
<td>Минимальное АД</td>
<td>75 мм рт.ст.</td>
<td>8</td>
</tr>
<tr>
<td>Число постоянных зубов</td>
<td>30</td>
<td>опережает</td>
</tr>
<tr>
<td>Половая формула</td>
<td>(P_3 \times A_2)</td>
<td>опережает</td>
</tr>
</tbody>
</table>

Заключение: Биологический возраст мальчика опережает паспортный. Физическое развитие повышенное, дисгармоничное за счет избыточного жироотложения. ЖЕЛ и мышечная сила рук развиты отлично. Пульс в пределах возрастной нормы. Отмечается повышение максимального и минимального АД. Мальчик нуждается в постоянном медицинском наблюдении, консультации специалистов, стационарном обследовании и лечении.
Мальчик 13 лет.

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Величина признака</th>
<th>Центильный интервал</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела</td>
<td>155 см</td>
<td>5</td>
</tr>
<tr>
<td>Масса тела</td>
<td>43,1 кг</td>
<td>4</td>
</tr>
<tr>
<td>Окружность грудной клетки</td>
<td>70 см</td>
<td>4</td>
</tr>
<tr>
<td>Жировая складка живота</td>
<td>0,9 см</td>
<td>5</td>
</tr>
<tr>
<td>ЖЕЛ</td>
<td>2 200 мл</td>
<td>4</td>
</tr>
<tr>
<td>Мышечная сила правой руки</td>
<td>30 кг</td>
<td>5</td>
</tr>
<tr>
<td>Мышечная сила левой руки</td>
<td>28 кг</td>
<td>5</td>
</tr>
<tr>
<td>Частота сердечных сокращений</td>
<td>84 уд./мин.</td>
<td>4</td>
</tr>
<tr>
<td>Максимальное АД</td>
<td>104 мм рт.ст.</td>
<td>5</td>
</tr>
<tr>
<td>Минимальное АД</td>
<td>56 мм рт.ст.</td>
<td>4</td>
</tr>
<tr>
<td>Число постоянных зубов</td>
<td>28</td>
<td>Соответствует</td>
</tr>
<tr>
<td>Половая формула</td>
<td>$P_1 A_{x_0}$</td>
<td>Соответствует</td>
</tr>
</tbody>
</table>

Заключение: Биологический возраст мальчика соответствует паспортному, физическое развитие среднее, гармоничное. ЖЕЛ и мышечная сила рук развиты хорошо, гемодинамические показатели в пределах возрастных норм.

Девочка 13 лет.

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Величина признака</th>
<th>Центильный интервал</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина тела</td>
<td>148 см</td>
<td>2</td>
</tr>
<tr>
<td>Масса тела</td>
<td>37,3 кг</td>
<td>3</td>
</tr>
<tr>
<td>Окружность грудной клетки</td>
<td>66 см</td>
<td>2</td>
</tr>
<tr>
<td>Жировая складка живота</td>
<td>0,8 см</td>
<td>3</td>
</tr>
<tr>
<td>ЖЕЛ</td>
<td>1 950 мл</td>
<td>3</td>
</tr>
<tr>
<td>Мышечная сила правой руки</td>
<td>20 кг</td>
<td>2</td>
</tr>
<tr>
<td>Мышечная сила левой руки</td>
<td>17 кг</td>
<td>2</td>
</tr>
<tr>
<td>Частота сердечных сокращений</td>
<td>81 уд./мин.</td>
<td>4</td>
</tr>
<tr>
<td>Максимальное АД</td>
<td>95 мм рт.ст.</td>
<td>3</td>
</tr>
<tr>
<td>Минимальное АД</td>
<td>55 мм рт.ст.</td>
<td>3</td>
</tr>
<tr>
<td>Число постоянных зубов</td>
<td>24</td>
<td>Отстает</td>
</tr>
<tr>
<td>Половая формула</td>
<td>$M_{a_1} P_{1 A_{x_0} M_{e}}$</td>
<td>Отстает</td>
</tr>
</tbody>
</table>

Заключение: Биологический возраст девочки отстает от паспортного, физическое развитие низкое, гармоничное. ЖЕЛ и мышечная сила рук развиты удовлетворительно. Гемодинамические показатели в пределах возрастной нормы. Нуждается в консультации эндокринолога.

Скрининг-тест для оценки физического развития

При массовых медицинских обследованиях детей школьного и дошкольного возраста получают все большее применение массовые диагностические тесты "просева" — скрининг-тесты. Они позволяют выделить в детских коллективах из условно здорового контингента 10-

291
детей группы детей и подростков, у которых наиболее вероятны отклонения со стороны той или иной системы.

Для выявления отклонений в физическом развитии детей и подростков предложен скрининг-тест с использованием центильных номограмм, разработанных на основе центильного метода. Скрининг-тест может применяться в практической деятельности педиатра при массовых медицинских осмотрах детей, когда необходимо быстро оценить физическое развитие лишь по двум ведущим морфологическим показателям — длине и массе тела.

Центильные номограммы представляют собой центильные показатели массы тела, рассчитанные на каждый сантиметр длины тела ребенка (рис. 28 и 29). Центильные номограммы позволяют быстро и точно оценить самую существенную сторону развития — его гармоничность и выявить детей с отклонениями в физическом развитии за счет избытка или дефицита массы тела.

При оценке физического развития, его гармоничности на осиах координат находим величины длины и массы тела. Из данных точек восстанавливаем перпендикуляры. Пересечение их в одном из центильных интервалов позволяет дать оценку гармоничности, т.е. соразмерности развития массы тела и его длины. 4-5-й интервалы характеризуют гармоничное физическое развитие, 2-3-й и 6-7-й — дисгармоничное, 1-й и 8-й — резко дисгармоничное за счет дефицита или избытка массы тела.

Для оценки длины тела справа от номограммы нанесены в графическом изображении одномерные центильные шкалы длины тела. Оценив по центильным шкалам длину тела (для этого необходимо спроектировать её на колонку "возраст в годах"), а по центильным номограммам — гармоничность развития, врач определяет группу физического развития.

С помощью скрининг-теста в детских коллективах можно выделить 3 группы детей (рис. 30):

дети, имеющие нормальное физическое развитие;
дети, отнесенные к группе риска по физическому развитию;
дети, имеющие отклонения в физическом развитии.

Дети, отнесенные к группе риска, нуждаются в индивидуальном анализе причин выявленных отклонений и динамическом наблюдении педиатра. Дети, имеющие отклонения в физическом развитии, подлежат диспансерному наблюдению, дополнительному обследованию и направляются на консультацию к специалистам.
Рис. 28. Центильная номограмма для оценки гармоничности физического развития мальчиков 5-15 лет.
Рис. 29. Центильная номограмма для оценки гармоничности физического развития девочек 5-15 лет.
5.2. Оценка состояния здоровья детского населения.
Определение готовности детей к обучению в школе

Цель занятия: ознакомить студентов с методами комплексной оценки состояния здоровья детей и подростков, а также с порядком группировки их в зависимости от полученных данных; познакомить студентов с медицинскими и психо-физиологическими критериями определения готовности детей к началу обучения в школе.
Практические навыки: студенты должны научиться определять группу здоровья детей по результатам врачебных осмотров; на основании оценки состояния здоровья детей и уровня развития школьно-необходимых функций решить вопрос о готовности к обучению в школе.

Задание студентам:
1. По результатам углубленного медицинского обследования (карте медицинского обследования ребенка) определить группу здоровья, оценить уровень биологического развития ребенка, острую заболеваемость, наличие медицинских показаний к отсрочке поступления в школу.
2. Оценить результаты выполнения теста Керна-Ирасека, качество звукопроизношения.

5.2.1. Комплексная оценка состояния здоровья детей и подростков

Здоровье человека формируется в период его роста и развития под влиянием сложного комплекса внутренних факторов и внешних воздействий. Извечение показателей, характеризующих здоровье детского населения, является одной из основных задач гигиены детей и подростков.

В настоящее время установлено, что здоровье детей определяется не только наличием или отсутствием заболеваний, но и гармоничным и соответствующим возрасту развитием, нормальным уровнем основных функциональных показателей. В связи с этим в настоящее время широко используется комплексная оценка состояния здоровья, предложенная Институтом гигиены детей и подростков МЗ СССР и основанная на учете следующих критериев:
- наличие или отсутствие в момент обследования хронических заболеваний;
- уровень функционального состояния основных систем организма;
- степень сопротивляемости организма неблагоприятным воздействиям;
- уровень достигнутого развития и степень его гармоничности.

Наличие или отсутствие заболеваний определяется в ходе систематических плановых медицинских осмотров, проводимых в детских поликлиниках и подростковых кабинетах, с участием врачей-специалистов (окулист, отоларинголог, ревматолог и др.). Функциональное состояние органов и систем выявляется клиническими
методами с использованием в необходимых случаях функциональных проб.

О степени сопротивляемости организма судят по количеству острых заболеваний (в том числе и обострений хронических заболеваний) в предыдущем году. Часто болеющими считают тех детей, которые в течение года болели 4 раза и более.

Уровень достигнутого психического развития обычно устанавливается детским психоневрологом, принимающим участие в осмотре.

Степень физического развития определяется путем сравнения индивидуальных показателей со средними показателями физического развития для данного возраста, а степень гармоничности — по оценочным таблицам (шкалам регрессии).

Комплексная оценка состояния здоровья каждого ребенка или подростка с отнесением его к одной из "групп здоровья" дается с обязательным участием всех перечисленных выше критериев. Эта группировка позволяет проводить сопоставительную оценку состояния здоровья различных контингентов как на момент обследования, так и при динамических наблюдениях для проверки эффективности проводимых оздоровительных (или других) мероприятий.

Выделены следующие группы здоровья:

I. Здоровые, с нормальным уровнем развития и нормальным уровнем функций.

II. Здоровые, но имеющие функциональные и некоторые морфологические отклонения, а также сниженную сопротивляемость к острым и хроническим заболеваниям (часто болеющие — 4 и более раз в году).

III. Дети, больные хроническими заболеваниями в состоянии компенсации, с сохраненными функциональными возможностями организма.

IV. Дети, больные хроническими заболеваниями в состоянии субкомпенсации, со сниженными функциональными возможностями организма.

V. Дети, больные хроническими заболеваниями в состоянии декомпенсации, со значительно сниженными функциональными возможностями организма. Как правило, дети данной группы не посещают детские учреждения общего профиля и массовыми осмотрами не охвачены.

Во избежание ошибок и для максимально возможной унификации полученных в разных учреждениях данных в оценке состояния здоровья приводится "схема определения группы здоровья при массовых врачебных осмотрах детей в зависимости от характера и
выраженности некоторых распространенных отклонений в состоянии здоровья" (табл. 79).

В этой схеме указан также ряд функциональных отклонений, не являющихся ещё болезнью, но подлежащих обязательной фиксации со стороны врача и требующих лечебно-оздоровительных воздействий.

Желательно, чтобы группу здоровья определял по своей специальности каждый участвующий в осмотре врач.

Окончательную оценку состояния здоровья и определения группы здоровья на основании заключений специалистов дает педиатр или заведующий дошкольно-школьным отделением поликлиники, возглавляющий массовые медицинские осмотры или диспансеризацию.

При наличии нескольких заболеваний окончательная оценка ставится по наиболее тяжелому из них.

При совокупности нескольких заболеваний, каждое из которых служит основанием для отнесения больного к III группе и снижает функциональные возможности организма, больного следует отнести к IV группе. В истории болезни записывается полный диагноз и ставится группа здоровья.

Схема определения группы здоровья при массовых врачебных осмотрах в зависимости от характера и степени выраженности некоторых распространенных отклонений в состоянии здоровья

<table>
<thead>
<tr>
<th>Наименование отклонения</th>
<th>Группы здоровья</th>
<th>Клинические критерии</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Сердечно-сосудистой системы:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Функциональный шум в сердце.</td>
<td>II</td>
<td>При отсутствии заболеваний сердца.</td>
</tr>
<tr>
<td>Юношеская гипертрофия сердца, митральная форма сердца, малое (висячее) сердце.</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Тахикардия, брадикардия, синусовая аритмия, экстрасистолия.</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Понижение артериального давления</td>
<td>II</td>
<td>При снижении систолического артериального давления у детей 8-12 лет до 80-85 мм рт.ст., 13-16 лет — до 90-95 мм рт.ст.</td>
</tr>
</tbody>
</table>

Таблица 79
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вегето-сосудистая дисфункция по гипотоническому типу</td>
<td>III</td>
<td>Снижение систолического артериального давления у детей 8-12 лет до 80-85 мм рт.ст. и 13-16 лет до 90-95 мм рт.ст. при наличии повышенной утомляемости, головных болей, бессонницы, пульса, потливости и др.</td>
</tr>
<tr>
<td>Вегетососудистая дисфункция по гипертоническому типу (гипертоническая болезнь I стадии по А.Л.Мясникову)</td>
<td>III</td>
<td>Транзиторные подъемы систолического артериального давления до 135-140 мм рт.ст. (редко до 150) при наличии вегетативной дисфункции — потливости, тахикардии, субфебрилитета, отсутствие изменений в сосудах глазного дна и на ЭКГ.</td>
</tr>
<tr>
<td>Гипертоническая болезнь I стадии (IV стадия по А.Л. Мясникову)</td>
<td>IV</td>
<td>Продолжительные подъемы систолического давления до 150-160 мм рт.ст. уровень лабильный. Диастолическое артериальное давление иногда повышается до 85-90 мм рт.ст.</td>
</tr>
<tr>
<td>Миокардит неревматической этиологии</td>
<td>III-IV</td>
<td>При полной клинической ремиссии — III гр.; при неполной клинической ремиссии — IV гр.</td>
</tr>
<tr>
<td>Ревматизм</td>
<td>III-IV</td>
<td>Без порока сердца или с пороком без признаков недостаточности кровообращения, при отсутствии признаков ревматического процесса от 1 года до 5 лет после ревматической атаки — III гр. Без порока сердца или с пороком сердца без признаков недостаточности кровообращения в период стихания активности ревматического процесса (от 6 мес. до 1 года) — IV гр. С пороком сердца и признаками недостаточности кровообращения I степени при отсутствии признаков активности ревматического процесса (от 1 года и более после атаки) — IV группа.</td>
</tr>
<tr>
<td>Врожденный порок сердца</td>
<td>III-IV</td>
<td>Открытый боталлов проток, дефект межжелудочковой перегородки, без признаков нарушения кровообращения — III гр. с недостаточностью кровообращения — IV гр.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Органов дыхания:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Хронический бронхит</td>
<td>III-IV</td>
<td>При отсутствии клинических и функциональных изменений со стороны органов дыхания и др. систем - III гр., при их наличии - IV гр.</td>
</tr>
<tr>
<td>Хроническая пневмония</td>
<td>III-IV</td>
<td>При отсутствии клинических и функциональных изменений со стороны органов дыхания и др. систем - III гр., при их наличии - IV гр.</td>
</tr>
<tr>
<td>Бронхиальная астма</td>
<td>III-IV</td>
<td>В межприступном периоде при отсутствии функциональных нарушений различных систем, органов и физического развития - III гр., при их наличии - IV гр.</td>
</tr>
<tr>
<td>Пищеварительной системы:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Карие зубов</td>
<td>III-III</td>
<td>Карие с нейтральной активности - II гр., высокой активности - III гр.</td>
</tr>
<tr>
<td>Аномалии прикуса</td>
<td>III-III</td>
<td>Начальные формы аномалии прикуса - II гр., значительно выраженные аномалии прикуса - III гр.</td>
</tr>
<tr>
<td>Дискинезия желчевыводящих путей</td>
<td>III-III</td>
<td>В стадии стойкой ремиссии - II гр. Кратковременные, схваткообразные боли в правом подреберье или области пупка, возникающие после еды или не связанные с приемом пищи, при мало нарушенном общем состоянии и слабо выраженных объективных данных - III гр.</td>
</tr>
<tr>
<td>Хронический холецистит</td>
<td>III-IV</td>
<td>В стадии стойкой ремиссии - III гр., в стадии неполной ремиссии - IV гр.</td>
</tr>
<tr>
<td>Хронический гастрит</td>
<td>III-IV</td>
<td>В стадии стойкой ремиссии - III гр., в стадии неполной ремиссии - IV гр.</td>
</tr>
<tr>
<td>Хронический гастроэоденит</td>
<td>III-IV</td>
<td>В стадии полной ремиссии - III гр., в стадии неполной ремиссии (незначительные боли в эпигастральной и пупочной области, голодные или спустя 2 часа и более после приема пищи) при наличии болезненной пальпации пилородуоденальной области - IV гр.</td>
</tr>
<tr>
<td>№</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>Язвенная болезнь желудка и двенадцатиперстной кишки</td>
<td>III-IV</td>
</tr>
<tr>
<td></td>
<td>Хронический колит, энтероколит</td>
<td>III-IV</td>
</tr>
<tr>
<td></td>
<td>Гельминтоз</td>
<td>II-III</td>
</tr>
<tr>
<td>2</td>
<td>Мочеполовой система:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Доброкачественная протеинурия при отсутствии заболеваний почек</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Пиелонефрит хронический</td>
<td>III-IV</td>
</tr>
<tr>
<td></td>
<td>Крипторхизм</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Нарушение менструального цикла в период становления менструальной функции</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Дисменорея</td>
<td>III</td>
</tr>
<tr>
<td>3</td>
<td>Эндокринной системы и обмена веществ:</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Гипертрофия вилочковой железы</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Увеличение щитовидной железы I и II степени</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Зоб</td>
<td>III</td>
<td>Увеличение щитовидной железы III степени и более без нарушений функций</td>
</tr>
<tr>
<td>Избыточная масса тела (за счет жировотложения)</td>
<td>II</td>
<td>Превышение массы тела на 10-19% в связи с избыточным жировотложением</td>
</tr>
<tr>
<td>Ожирение (экзогенно-конституциональное)</td>
<td>III-IV</td>
<td>Ожирение I степени - превышение массы тела на 20-29% за счет жировотложения и II степени - превышение массы тела на 30-49% за счет жировотложения – III гр. Ожирение III степени - превышение массы тела на 50% и более за счет жировотложения – IV гр.</td>
</tr>
<tr>
<td>Кожи:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Аллергические реакции</td>
<td>II</td>
<td>Повторяющиеся кожно-аллергические реакции на пищевые вещества, лекарства и др.</td>
</tr>
<tr>
<td>Экссудативный катаральный диатез без явлений экземы</td>
<td>II</td>
<td>При ограниченной локализации – III гр., при распространенных кожных изменениях с явлениями общей интоксикации – IV гр.</td>
</tr>
<tr>
<td>Экзема, дерматит, нейродермит</td>
<td>III-IV</td>
<td></td>
</tr>
<tr>
<td>Системы крови:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Преданемические состояния (анемизация)</td>
<td>II</td>
<td>Содержание гемоглобина 11,5-11,1 г/л или 115-111 г/л</td>
</tr>
<tr>
<td>Анемия</td>
<td>III-IV</td>
<td>Содержание гемоглобина 11,0-10,8 г/л или 110-108 г/л – III гр., 10,7-8,0 или 107-80 г/л – IV гр.</td>
</tr>
<tr>
<td>Нервной системы:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Астенические проявления</td>
<td>II</td>
<td>Легкие астенические проявления (утомляемость, головные боли, раздражительность, плаксивость, обидчивость, поверхностный сон и др.), исчезающие после непродолжительного отдыха, нормализации режима и отдыха</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Патологические привычки</td>
<td>II</td>
<td>Привычка грызть ногти, ручки, воротнички, кусать и облизывать губы, дергать волосы и др., не понижающие функциональные возможности организма</td>
</tr>
<tr>
<td>Речевые нарушения (косноязычие)</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Вегетативная (вегетативно-сосудистая) лабильность</td>
<td>II</td>
<td>Соматовегетативные и вегетососудистые нарушения (повышенная потливость, акроцианоз, красный дермографизм, склонность к тахикардии, непереносимость жары и холода, игра вазомоторов, характерные для пре- и пубертатного периодов и не нарушающие работоспособности)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Невротические и неврозоподобные расстройства, выражаемыеся перманентными и кризоподобными вегетативными и соматовегетативными нарушениями. При слабо выраженной соматике — III гр., при выраженных клинических проявлениях и снижении работоспособности — IV гр.</td>
</tr>
<tr>
<td>Невропатия (врожденная детская нервность)</td>
<td>III</td>
<td>Расстройства сна (трудности засыпания, ночные страхи, прерывистый сон), аппетита, эмоциональная неустойчивость, психомоторная расторможенность</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Раздражительность, головные боли, нарушение сна и аппетита. При умеренных клинических проявлениях — III гр., при выраженных — IV гр.</td>
</tr>
<tr>
<td>Астено-невротический и церебральный синдром</td>
<td>III-IV</td>
<td></td>
</tr>
<tr>
<td>Невроз (астенический, истерический невроз, невроз навязчивых состояний)</td>
<td>III-IV</td>
<td>При кратковременных проявлениях — III гр., при длительных — IV гр.</td>
</tr>
<tr>
<td>Логоневроз, энурез, тики, моторная навязчивость</td>
<td>III-IV</td>
<td>При умеренных проявлениях, не снижающих социальную адаптацию — III гр., при более выраженных — IV гр.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Патологическое развитие личности, психопатологический синдром, невротическое развитие личности</td>
<td>III-IV</td>
<td>Неправильные формы поведения, квалифицированные детским психоневрологом; группа здоровья — в зависимости от выраженности клинических проявлений</td>
</tr>
<tr>
<td>Последствия органического заболевания центральной и периферической нервной системы</td>
<td>III-IV</td>
<td>Двигательные, чувствительные и координационные нарушения без снижения функциональных возможностей — III гр., при их снижении — IV гр.</td>
</tr>
<tr>
<td>Гипертензионно-гидроцефальный синдром (врожденный или приобретенный)</td>
<td>III-IV</td>
<td>В стадии устойчивой компенсации и отсутствии клинических проявлений — III гр., при их наличии — IV гр.</td>
</tr>
<tr>
<td>Эпилепсия, эпилептиформный синдром на фоне резидуальных органических поражений головного мозга</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Задержка психического развития</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Умственная отсталость (легкая степень)</td>
<td>IV</td>
<td></td>
</tr>
</tbody>
</table>

Органа зрения:

Органа зрения:	II	Миопическая рефракция от 0,5 до 3,0 D или гиперметропическая рефракция от 3,25 до 6,0 D в меридиане наивысшей метропии на лучшем глазу при остроте зрения с коррекцией не менее 1,0 на каждый глаз
Миопия слабой степени, астигматизм, гиперметропия средней степени	III-IV	Миопическая рефракция от 3,25 D до 6,0 D, в меридиане наивысшей метропии при остроте зрения с коррекцией от 0,5 до 0,9 на лучшем глазу — III гр.
Миопия средней и высокой степени, астигматизм		Миопическая рефракция от 6,25 D и выше на лучшем глазу в меридиане наивысшей аметропии при остроте зрения с коррекцией на лучшем глазу не менее 0,5 — IV гр.
Аккомодационное косоглазие	III-IV	Без амблиопии при остроте зрения с коррекцией на оба глаза не менее 1,0 без нарушений бинокулярного зрения
Неаккомодационное косоглазие	III-IV	С учетом степени аномалии рефракции

304
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Уха, горла, носа:</td>
<td>Аденоидные вегетации</td>
<td>Небольшие аденоидные вегетации, слегка прикрывающие верхний край хоан и не препятствующие носовому дыханию — II гр. Аденоиды II степени (хоаны прикрыты наполовину) — III гр., аденоиды III степени (хоаны прикрыты полностью) — IV гр.</td>
</tr>
<tr>
<td>Аденоидит хронический</td>
<td>Гипертрофия небных миндалин II степени</td>
<td>Затрудненное носовое дыхание, постоянный насморк, слизистые выделения по задней стенке глотки, длительный субфебрилитет, частые простудные заболевания</td>
</tr>
<tr>
<td>Искривление носовой перегородки</td>
<td>Ларингит хронический</td>
<td>При гипертрофии II степени (миндалины заполняют 2/3 пространства между дужками и языком) — II гр., при гипертрофии III степени (миндалины соприкасаются между собой) — III гр.</td>
</tr>
<tr>
<td>Отит хронический</td>
<td>Ринит хронический</td>
<td>При отсутствии нарушения носового дыхания — II гр., при его нарушении — III гр.</td>
</tr>
<tr>
<td>Синуит хронический</td>
<td>Тонзиллит хронический</td>
<td>Наружный и средний отит — III гр., гнойный эпимезотимпанит — IV гр.</td>
</tr>
<tr>
<td>Тонзиллит хронический</td>
<td>Фарингит хронический</td>
<td>Компенсированная форма (местные изменения небных миндалин и ангины или частые респираторные заболевания в анамнезе без общих патологических проявлений вне обострения) — III гр., декомпенсированная или токсико-аллергическая форма (местные изменения в миндалинах сопровождаются субфебрилитетом, тонзилло-кардиальным синдромом и др.) — IV гр.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Тугоухость</td>
<td>II-III-IV</td>
<td>Односторонняя или двухсторонняя I степень (восприятие шепотной речи от 1 до 5 м) – II гр., односторонняя II степень (восприятие шепотной речи до 1 м) и односторонняя III степень (шепотная речь не воспринимается), а также двухсторонняя II степень – III гр., двухсторонняя III степень – IV гр. Группа здоровья в зависимости от степени нарушения слуха (см. тугоухость)</td>
</tr>
<tr>
<td>Кохлеарный неврит</td>
<td>III-IV</td>
<td></td>
</tr>
<tr>
<td>Физического развития:</td>
<td></td>
<td>Длина тела меньше, чем М-26 по региональным стандартам (таблицам регрессии) без хронической патологии, отставание в уровне возрастного развития по количеству постоянных зубов, степени оссификации скелета, выраженности вторичных половых признаков (по сравнению с региональными стандартами) и при отсутствии эндокринной патологии Масса тела меньше, чем М-26 по региональным стандартам (таблицам регрессии) без хронической патологии</td>
</tr>
<tr>
<td>Общая задержка физического развития</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Значительный дефицит массы тела</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Уплощение стопы</td>
<td>Уп</td>
<td>Нарушение опорной поверхности: перешеек стопы, соединяющий об-</td>
</tr>
<tr>
<td></td>
<td>ло...</td>
<td>ладь область пятки и с передней частью стопы значительно расшир...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>выявлена нарушение уточняется планограммой.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Плоскостопие</td>
<td>Плон</td>
<td>Нарушение опорной поверхности стопы; перешеек, соединяющий облас...</td>
</tr>
<tr>
<td></td>
<td>с</td>
<td>ты пятки и с передней частью стопы, занимает почти всю ширину стопы</td>
</tr>
</tbody>
</table>

5.2.2. Определение готовности детей к обучению в школе

Процесс систематического обучения в школе предъявляет повышенные требования к организму детей младшего школьного возраста. Известно, что семилетние (а особенно шестилетние) дети обладают целым рядом морфологических, физиологических и психологических особенностей, которые определяют их высокую чувствительность и меньшую устойчивость к неблагоприятным внешним воздействиям, более низкий уровень работоспособности и повышенную утомляемость. Чтобы ребенок мог успешно учиться и выполнять свои школьные обязанности, он к моменту поступления в школу должен достигать определенного уровня физического и психического развития ("школьной зрелости").

Специальные исследования показали, что "неготовыми" к школе оказываются дети с некоторыми заболеваниями или функциональными отклонениями в состоянии здоровья, с отставанием биологического возраста или с недостаточным развитием некоторых психофизиологических функций, наиболее тесно связанных с учебной деятельностью (уровень развития психики, речи и моторики - координация движений пальцев рук). Недостаточный уровень готовности к школе детей по психофизиологическим показателям часто сочетается с отклонениями в состоянии здоровья. С другой стороны, чрезмерное напряжение, связанное с выполнением школьных требований, может приводить к переутомлению и ухудшению здо-
ровья детей за счет функциональных нарушений, обострения имеющихся или возникновения новых хронических заболеваний.

Все вышесказанное диктует настоящую необходимость определения готовности детей к обучению в школе.

Разработаны "Методические рекомендации по определению степени функциональной готовности детей к поступлению в школу" (1979 г.). Оценка готовности к обучению проводится комплексно и предусматривает тщательное медицинское обследование (в сентябре-октябре года, предшествующего поступлению в школу) с проведением психофизиологического исследования для определения функциональной готовности детей. Все дети должны быть осмотрены педиатром, невропатологом, офтальмологом, отоларингохирургом (ортопедом) и по показаниям — другими специалистами. Результаты медицинского обследования заносятся в форму 026/у.

Медицинское обследование позволяет выделить группу риска неготовности к обучению в школе по состоянию здоровья.

В неё входят дети с отставанием биологического развития, с функциональными отклонениями (невротические реакции, логоневроз, гипертрофия небных миндалин), часто болеющие — более 4 раз в год, длиительно болеющие дети — 25 и более дней, дети с хроническими заболеваниями. Этим детям назначают оздоровительные и лечебные мероприятия и повторно (в феврале-марте) обследуют. Заключение о степени готовности ребенка к школе дается по совокупности данных медико-педагогической комиссии при детской поликлинике (педиатр, врач школы, педагог, логопед).

В первые классы школы принимаются дети 8-го и 7-го года жизни по усмотрению родителей и на основании заключения психолого-медико-педагогической комиссии о готовности ребенка к обучению. Прием в школу детей 7-го года жизни осуществляется при достижении ими к 1 сентября текущего учебного года возраста не менее 6 лет 6 месяцев. Обучение детей не достигших 6,5 лет следует проводить в условиях школы, учебно-воспитательного комплекса (УВК) или детского сада с соблюдением всех гигиенических требований по организации обучения детей с 6-летнего возраста (СанПиН 2.4.2.782-99).

Медицинские критерии

1. Уровень биологического развития.
2. Состояние здоровья перед поступлением в школу.
3. Острая заболеваемость за предшествующий год.
Психофизиологические критерии

1. Результаты выполнения теста Керна-Ирасека.
2. Качество звукопроизношения.

Психофизиологическое обследование детей проводится с целью выявления у них отставания в развитии школьно-необходимых функций: моторики, аналитических и синтетических функций коры головного мозга (тест Керна-Ирасека) и речи (качество звукопроизношения).

Не готовыми к обучению считаются дети, имеющие отклонения в состоянии здоровья, указанные в перечне медицинских показаний к отсрочке поступления в школу детей 6-летнего возраста; отстающие в биологическом развитии; выполняющие тест Керна-Ирасека с оценкой 9 и более баллов, а также имеющие дефекты звукопроизношения.

Медицинские показания к отсрочке поступления в школу детей 6-летнего возраста

I. Следующие заболевания, перенесенные на протяжении последнего года:
1) Инфекционный гепатит.
2) Пиелонефрит.
3) Миокардит нерваматический.
4) Менингит эпидемический, менингоэнцефалит.
5) Туберкулез.
6) Ревматизм в активной форме.
7) Болезни крови.
8) Острые респираторные вирусные заболевания 4 и более раз.

II. Следующие хронические заболевания в стадии суб- и декомпенсации:
1) Вегетососудистая дистония: по гипотоническому (АД = 80 мм рт.ст.) или гипертоническому (АД = 115 мм рт.ст.) типу.
2) Порок сердца ревматический или врожденный.
3) Хронический бронхит, бронхиальная астма, хроническая пневмония (при обострении или отсутствии стойкой ремиссии в течение года).
4) Язвенная болезнь желудка и 12-перстной кишки, хронический гастрит, хронический гастроудооценит (в стадии обострения, с частыми рецидивами и неполной ремиссией).
5) Анемия (при содержании гемоглобина в крови 10,7-8,0 г%).

309
6) Гипертрофия небных миндалин III степени.
7) Аденoidные вегетации III степени, хронический аденOIDит.
8) Тонзиллит хронический (токсико-аллергическая форма).
9) Эндокринопатия (зоб, сахарный диабет и пр.).
10) Неврозы (неврастения, истерия, логоневроз и пр.).
11) Задержка психического развития.
12) Детский церебральный паралич.
13) Травма черепа, перенесенная в текущем году.
14) Эпилепсия, эпилептиформный синдром.
15) Энурез.
16) Экзема, нейродермит (при распространении кожных изменений).
17) Миопия с наклонностью прогрессирования (более 2,0 диоптр).

Методические рекомендации к проведению теста Керна-Ирасека

Тест Керна-Ирасека — ориентировочный тест "школьной зрелости" — может проводиться индивидуально или одновременно у группы из 10-15 детей.

Каждому ребенку дается чистый лист нелинованной бумаги. В правом верхнем углу исследователь указывает имя, фамилию, возраст ребенка и дату исследования. Под рабочий лист подкладывается лист плотной бумаги. Карандаш кладется так, чтобы ребенку было одинаково удобно взять его и правой, и левой рукой.

Тест состоит из 3 заданий:
1) рисунок человека (рис. 31),
2) срисовывание короткой фразы из 3 слов ("он ел суп") (рис. 32),
3) срисовывание группы точек (рис. 33).

Лицевая сторона листа отводится для выполнения первого задания. **К первому заданию** дается следующая инструкция: здесь (каждому показывается, где) нарисуй какого-нибудь мужчину (дядю) так, как сумеешь.

Дальнейшее объяснение, помощь или предупреждение по поводу ошибок и недостатков рисунков запрещаются. На любой встречный вопрос ребенка нужно отвечать: "Рисуй так, как ты умеешь." Разрешается ребенку подбодрить, если он не может начать работу, следующим образом: "Видишь, как ты хорошо начал, рисуй дальше".

310
На вопрос, можно ли нарисовать тетю, необходимо объяснить, что все рисуют "дядю". Если же ребенок начал рисовать женскую фигуру, можно разрешить ему ее нарисовать, а затем попросить, чтобы он рядом нарисовал мужскую фигуру.

После того, как ребенок закончит рисунок, рабочий лист пересорачивается. Обратная сторона делится горизонтальной линией примерно пополам (это можно сделать заранее).

Для выполнения второго задания необходимо приготовить карточки размером 7-8 см на 13-14 см, на которой пишется рукописная фраза "Он ел суп", вертикальный размер букв — 1 см, заглавный — 1,5 см (см. рис. 32). Карточка с фразой кладется перед ребенком чуть выше рабочего листа.

Задание второе формулируется следующим образом: "Посмотри, здесь что-то написано. Ты еще не умеешь писать, поэтому попробуй это переписать. Хорошенько посмотри, как это написано, и в верхней части листа (показать, где) напиши так же." Если кто-нибудь из детей не рассчитывает длину строки, и третье слово у него не будет помещаться на строке, то нужно ребенку подсказать, что нужно написать его выше или ниже.

Карточки указанного выше размера следует приготовить и для выполнения третьего задания. После выполнения ребенком второго задания, первая карточка у него отбирается, и на ее место кладется вторая, на которой изображено 10 точек, расположенных таким образом, чтобы острий угол пятиугольника, образованного точками, был направлен вниз (см. рис. 33). Расстояние между точками по вертикали и горизонтали — 1 см, диаметр точек — 2 мм.

К третьему заданию дается следующая инструкция: "Здесь нарисованы точки. Попробуй сам (сама) нарисовать такие же в нижней части листа" (показать, где).

Оценка результатов теста Керна-Ирасека

Каждое задание оценивается баллами от 1 (наилучшая оценка) до 5 (наихудшая оценка). Примерные критерии оценки каждого задания по 5 балловой системе показаны на рис. 31,32,33.
Рис. 31. Тест Керна-Ирасека (задание №1).

1 балл — у нарисованной фигуры (мужчины) должны быть голова, туловище, конечности. Голову с туловищем соединяет шея. Она должна быть не больше, чем туловище. На голове должны быть волосы (возможна шапка или шляпа), уши, на лице — глаза, нос, рот. Верхние конечности заканчиваются рукой с пятью пальцами. Признаки мужской одежды.

2 балла — выполнение всех требований, как при оценке 1 балл. Возможны три отсутствующие части: шея, волосы, один палец руки, но не должна отсутствовать какая-либо часть лица.

3 балла — у фигуры на рисунке должна быть голова, туловище, конечности. Руки, ноги должны быть нарисованы двумя линиями. Отсутствует шея, уши, волосы, одежда, пальца на руках, ступни ног.

4 балла — примитивный рисунок головы с конечностями. Каждая конечность (достаточно лишь одной пары) изображена одной линией.

5 баллов — отсутствует ясное изображение туловища и конечностей. Каракули.
Он ей суп

Он ей суп 1
Он ей суп 2
Он ей суп 3
Он ей суп 4

Рис. 32. Тест Керна–Ирасека (задание №2).

1 балл — срисованную ребенком фразу можно прочитать. Буквы больше образца не более, чем в два раза. Буквы образуют три слова. Строка отклоняется от прямой линии не более, чем на 30°.

2 балла — предложение можно прочитать. Буквы по величине близки к образцу, их стройность не обязательна.

3 балла — буквы должны быть разделены не менее, чем на две группы. Можно прочитать хотя бы четыре буквы.

4 балла — с образцом схоже хотя бы две буквы. Вся группа букв имеет еще видимость письма.

5 баллов — каракули.
Рис. 33. Тест Керна–Ирасека (задание №3).

1 балл – точное воспроизведение образца. Нарисованы точки, а не кружки. Соблюдена симметрия фигуры по горизонтали и вер-
тикал. Может быть любое уменьшение фигуры. Увеличение возможно не более, чем вдвое.

2 балла — возможно незначительное уменьшение симметрии: одна точка может выходить за рамки столбца или строки. Допустимо изображение кружков вместо точек.

3 балла — группа точек похожа на образец. Возможно нарушение симметрии всей фигуры. Сохраняется подобие пятиугольника, повернутого вверх или вниз вершиной. Возможно меньшее или большее количество точек (не менее 7, но не более 20).

4 балла — точки расположены кучно, их группа может напомнить любую геометрическую фигуру. Величина и количество точек не существенны. Другие изображения — например, линии — недопустимы.

5 баллов — каракули.

Сумма баллов при выполнении трех заданий представляет общий результат исследований.

Исследование качества звукопроизношения (наличие или отсутствие дефектов звукопроизношения)

Ребенку предлагается по картинкам последовательно перечислить вслух предметы, в названии которых встречаются звуки Р, Л, С, З, Ц, Ж, Ч, Ш в начале, середине и конце слова, например:

рак — ведро — топор
лопата — белка — стул
заяц — коза — воз
цапля — яйцо — огурец
жуку — лыжи — нож
шипка — кошка — мышь
чай — бабочка — ключ
щетка — ящерица — плащ

Наличие дефектов в произношении хотя бы одного из исследуемых звуков указывает на невыполнение задания.

5.3. Гигиена учебных занятий в школе

Цель занятия: ознакомить студентов с наиболее доступными в практике работы школьного врача методиками исследования работоспособности и функционального состояния центральной нервной системы (ЦНС) детей, усвоить гигиенические требования к составлению школьного расписания и к школьной мебели.
Практические навыки: научить производить определение и оценку степени утомления ЦНС детей в процессе учебных занятий, правильно подбирать мебель и рассаживать учащихся в классе.

Задание студентам:
1. Освоить некоторые физиологические методики, применяемые для оценки функционального состояния ЦНС и работоспособности детей и подростков.
2. Оценить функциональное состояние ЦНС и работоспособность школьника по предлагаемым задачам.
3. Дать оценку школьного расписания (по ранговой шкале трудности) в соответствии с динамикой дневной и недельной работоспособности учащихся.
4. Оценить динамику работоспособности студентов на занятии с помощью корректурной пробы.
5. Решить задачу по подбору мебели для учащихся и правильному рассаживанию учеников в классе.
6. Дать оценку правильности компоновки в классе персональных компьютеров, их расположения, установки, режима использования.

Обучение в школе связано с напряженной и сложной умственной работой, в процессе выполнения которой постепенно развивается утомление, снижающее качество усвоения преподаваемого материала. Утомление — естественное следствие любой работы, особенно однообразной и монотонной. Объективно оно характеризуется снижением работоспособности (главным образом, со стороны органов и систем, несущих основную нагрузку во время занятий), субъективно проявляется усталостью. В детском возрасте в ЦНС преобладают процессы возбуждения над процессами активного торможения, имеет место повышенная подвижность нервных процессов (быстрая смена очагов возбуждения и торможения), склонность процессов возбуждения к иррадиации, большая выраженность ориентировочного рефлекса "что такое?". Все эти особенности ЦНС выражены более четко у детей младшего школьного возраста, и они должны обязательно учитываться при организации учебных занятий с целью профилактики переутомления учащихся.

Поддержанию работоспособности на высоком уровне в течение недели способствуют соответствие величины учебной нагрузки возрасту ребенка, правильный режим занятий (построение расписания на учебный день и неделю), методика проведения уроков и перемен. Обусловленная особенностями высшей нервной деятельности недостаточная длительность активного внимания у детей младшего
школьного возраста (15-20 мин) вызывает необходимость использования разнообразных методик преподавания и включения пауз, заполненных физическими упражнениями (физкультминутки, активный отдых на переменах), которые способствуют перемещению очагов возбуждения в коре головного мозга и отдыху первично возбужденных центров. Преобладание у младших школьников первой сигнальной системы (восприятие с помощью органов чувств) требует применения в учебном процессе различных наглядных способов.

На состояние работоспособности учащихся влияют также микроклиматические условия в классе и рекреационных помещениях, уровень освещенности рабочего места школьника, правильный подбор мебели, посадка учащегося и т.д.

Для обеспечения благоприятного микроклимата (температура воздуха 18-20°C, относительная влажность 40-60%, скорость движения воздуха 0,2-0,4 м/сек) необходимо производить интенсивное проветривание классов и рекреационных помещений до занятий и на переменах. В осенне и зимнее время окна должны быть надежно закрыты, чтобы исключить излишнее охлаждение детей на занятиях, приводящее к снижению резистентности детского организма и повышению заболеваемости.

Зрительная работа при недостаточном или нерациональном освещении снижает умственную работоспособность, вызывает перенапряжение органа зрения и способствует развитию близорукости. Поэтому во всех школьных помещениях для учебных занятий должно быть обеспечено достаточно интенсивное, равномерное освещение, не оказывающее слепящего действия и не дающее резких теней. В средних и южных широтах наилучшие условия естественной освещенности классов, кабинетов, лабораторий создаются при южной или юго-восточной ориентации. Для создания более равномерного освещения и исключения слепящего действия прямых солнечных лучей кабинеты черчения и рисования рекомендуется ориентировать на север. Световой коэффициент в помещениях для учебных занятий должен быть в пределах 1:4 – 1:6, а коэффициент естественной освещенности не ниже 1,5% (на расстоянии 1 м от стены, противоположной световым проемам). В то же время значение КЕО для выполнения более точных работ должны быть выше 2% (чертежные работы, рисование), для спортивных и актовых залов, рекреационных помещений допускается КЕО не менее 1%.

Уровень искусственного освещения рабочих поверхностей в классах, аудиториях, учебных кабинетах, лабораториях должен быть не менее 150 лк (лампы накаливания) или 300 лк (люминес-
центные лампы). Для кабинетов черчения и рисования уровень освещенности должен составлять 300 лк или 500 лк, а в швейных мастерских 200 лк и 400 лк в зависимости от способа освещения. При этом предпочтение отдается люминесцентному освещению, в наибольшей степени отвечающему гигиеническим требованиям к искусственному освещению. Для создания достаточной освещенности в типовом классе устанавливают 12 люминесцентных светильников ШОД 2 х 40 (в 2 ряда по 6 светильников) или 8 светильников ШОД 2 х 80 (по 4 светильника в ряду). Классная доска дополнительно освещается двумя зеркальными светильниками, установленными параллельно ей. Вертикальная освещенность на середине доски нормируется на уровне 500 лк. При использовании ламп накаливания достаточная освещенность достигается за счет 7-8 светильников СК (светильники кольцевые с мощностью 300 вт), размещаемых в 2 ряда вдоль класса, а также над доской.

В последние годы важной задачей обучения школьников является приобретение учащимися основ компьютерной грамотности. Компьютеры становятся привычным явлением в школьных классах и даже в детских садах. Занимаясь с компьютером, учащиеся могут регулировать темп работы в соответствии с индивидуальными возможностями усвоения учебного материала, при необходимости вновь обращаться к тому или иному разделу программы.

В школах наряду с кабинетами химии, биологии за последние годы появились компьютерные классы, где школьники изучают основы программирования и информатики. Работа школьников на компьютере меняет привычный характер их учебной деятельности. Работа на компьютере не только расширяет возможности умственного развития детей и подростков, но и является фактором, влияющим на здоровье ребенка при необходиности санитарно-гигиенических правил работы.

В детском возрасте отмечаются резкие колебания возбудимости и лабильности нервно-мышечного аппарата, связанные с функциональной неустойчивостью нервной системы, особенно в период половозрелости. Мышечная сила (особенно выносливость) не достигает совершенства. Отмечается слабость кистей рук у детей до 10 летнего возраста, в связи с этим физическая нагрузка должна быть строго дозированной.

Развитие моторики у детей и подростков происходит неравномерно, в возрасте 8-12 лет иногда отмечается отсутствие необходимой ловкости и согласованности мышечных сокращений. Только к концу половозрелого развития двигательного аппарата заканчивается, и подросток легко усваивает трудовой процесс и хо-
рошо владеет инструментом. Указанные особенности развития мускулатуры и моторики у детей и подростков определяют ряд гигиенических требований, направленных на охрану их мышечной системы, её развитие и укрепление.

Постоянная статическая нагрузка во время занятий за монитором может быть причиной усталости, появления болей в мышцах рук, шеи, плеч, спины. Длительная работа на дисплее требует большой умственной нагрузки и нервно-эмоционального напряжения. У учащихся отмечаются жалобы на постоянную головную боль после работы на дисплее, боль в глазах, головокружение, обусловленное зрительной нагрузкой.

Основное развитие оптической системы глаз происходит весьма быстрыми темпами и к 3-5 годам почти завершается. Формирование глазницы в основном завершается к 10-14 годам. К 7-10 годам у большинства детей рефракция глаз становится соразмерной функции глаза, совершенствуется на основе жизненного опыта по мере роста и развития детского организма, но темпы увеличения остроты зрения существенно различаются у детей даже одного возраста.

Восприятие знаков на экране дисплея, которые чередуются с переводом взора на клавиатуру и текст, может вызвать напряжение аккомодационного аппарата глаз, зрительное утомление и снижение работоспособности глаз. В результате однообразных повторяющихся действий естественная подвижность глаз оказывается резко ограниченной, что приводит к напряжению глазодвигательных мышц, их работоспособность снижается и общее состояние зрения ухудшается.

Человеческий глаз обладает различной световой чувствительностью к разным длинам волн монохроматических излучений в диапазоне 380-700 нм. Инфракрасные и ультрафиолетовые лучи человеческий глаз не видит. Наибольшая чувствительность глаза днем в спектре (555 нм). Светотехнические параметры дисплея (цветовые параметры, скорость смены информации, яркость экрана дисплея и частота смены кадров), размеры экрана и символов, и общая освещенность в помещении влияют на состояние органа зрения. Низкий уровень освещенности экрана ухудшает восприятие информации, а слишком высокий приводит к уменьшению контраста изображения знаков на экране, что вызывает утомление глаз.

Основным осложнением при длительной работе на компьютере является утомление и переутомление, снижение работоспособности (утомление зрения) и возникновение головной боли.
Работа на близком расстоянии (менее 50 см) вызывает покраснение глаз, слезотечение, резь и ощущение ирритации в глазах, что может привести к сухости глаз, светобоязненности, плохой видимости в темноте (в некоторых случаях заболевание катарактой) из-за постоянных электромагнитных излучений дисплея. Быстрая переменя световой и цветовой гаммы (красная и белая), оказывает влияние на ЦНС (случаи психических нарушений и эпилепсии у детей в Японии после просмотра компьютерных фильмов).

Кроме того во время работы в компьютерном классе меняются показатели микроклимата (повышается температура воздуха, относительная влажность и концентрация углекислого газа), что влияет отрицательно на здоровье школьников. Рабочая мебель, высота стола, высота сиденья, посадка школьника за экраном влияют на статическое напряжение мышц и на работу органов брюшной полости. Длительная работа на компьютере (более 20-25 мин) приводит к снижению внимания, ухудшению обработки информации и утомлению. Недостаточная освещенность при напряженной зрительной работе является одним из основных неблагоприятных факторов внешней среды, способствующих развитию и прогрессированию миопии.

Правила работы школьников на компьютере
1. Длительность непрерывной работы учащихся не должна превышать 25 минут.
2. При сдвоенных уроках по информатике время урока не должно превышать 40 мин (по 20 мин на каждый урок с переменой между уроками продолжительностью 10 минут).
3. При появлении первых признаков усталости глаз следует проводить комплекс упражнений для улучшения их функционального состояния.
4. Для искусственного освещения помещения лучше использовать люминесцентные лампы дневного света.
5. Размеры мебели должны соответствовать росту школьника, с регулировкой высоты сидения и угла наклона спинки стула; поза перед компьютером не должна вызывать напряжение мышц спины и ног, локти согнуты под прямым углом.
6. Для снятия статического напряжения туловище должно быть слегка наклоненным вперед, руки свободно лежать на столе, а поясничная часть спины опираться на спинку стула.
7. Изображение на экране дисплея должно быть четким, контрастным, не иметь отражений от окружающих предметов.
8. При работе с текстовой информацией наиболее физиологическими являются черные знаки на светлом (белом) фоне.

9. Оптимальная температура воздуха в классе (помещении) при работе на компьютере не выше 20-21°C, относительная влажность воздуха 40-60%.

10. Необходимо проветривать помещение перед началом занятий и во время перемен.

11. Для школьников всех возрастных групп обязательно выполнять релаксационные упражнения (для глаз, мышц шеи, плеч и ладоней рук).

Замечание: все выше перечисленные правила необходимо соблюдать при работе и на домашнем компьютере.

5.3.1. Физиологические методики, используемые для оценки работоспособности и функционального состояния ЦНС школьников

Особенности высшей нервной деятельности в совокупности с перечисленными внешними факторами создают возможность для быстрого утомления детей и снижения их работоспособности. В связи с этим большое значение приобретают объективные методы определения функционального состояния ЦНС, которые могут быть использованы в качестве критериев правильной организации учебного процесса. Среди них широко используются: а) исследование устойчивости ясного видения; б) исследование и оценка зрительно-моторной и слухо-моторной реакций; в) исследование тонкой координации движений; г) изучение работоспособности путем дозированных заданий; д) изучение поведения детей на уроке.

Следует помнить, что отчетливые результаты о состоянии ЦНС и степени утомления можно получить только при проведении исследований в динамике (в начале и в конце урока, перемене, дня, недели, четверти, года) и в одинаковых условиях, дающих возможную сравнения полученных данных (одинаковое количество учащихся в классе, одно и то же помещение, микроклиматические условия, освещенность и т.д.). Кроме того, методика должна быть адекватна исследуемой функции (хронорефлексометрия при нагрузке на зрительный и слуховой анализатор, тремометрия после значительной физической нагрузки и др.) и проводиться в оптимальных условиях.
Исследование устойчивости ясного видения

Устойчивость ясного видения при стабильных условиях освещения зависит от состояния зрительного анализатора и общего состояния организма.

При длительном рассматривании предмета теряется способность четко различать его, и две близко расположенные точки воспринимаются как одна через некоторое время. Способность четко воспринимать очертания предметов или букв, между которыми имеется небольшое расстояние, вновь восстанавливается, затем снова исчезает и т.д. При утомлении время ясного видения предмета уменьшается. Показателем устойчивости ясного видения является выраженное в процентах отношение ясного видения к общему времени наблюдения.

При проведении этой методики используют вычерченное на белом листе и заштрихованное кольцо с разрывом одной стороны (кольцо Ландольта). Кольцо имеет наружный диаметр 7 мм, разрыв и толщина заштрихованной части 1,5 мм. Обследуемый рассматривает кольцо Ландольта с расстояния, равного 5 м, причем подбородок должен фиксироваться специальной подставкой, линия взора должна быть параллельна полу. Продолжительность исследования 3 мин, в течение которых обследуемый, не отрываясь, смотрит на разрыв в кольце Ландольта и сообщает исследователю моменты, когда он видит и когда не видит разрыв.

Пример записи в протоколе.

<table>
<thead>
<tr>
<th>Показания обследуемого</th>
<th>Показания секундомера, с</th>
</tr>
</thead>
<tbody>
<tr>
<td>Видит разрыв</td>
<td>0 25 45 10 45</td>
</tr>
<tr>
<td>Не видит разрыв</td>
<td>10 35 05 30 60 и т.д.</td>
</tr>
</tbody>
</table>

Время ясного видения составляет 10+10+20+20+15=75 с.
Устойчивость ясного видения равна:
\[
\frac{75 \cdot 100\%}{120} = 62,5\%
\]

Оценка результатов: например, до занятий время ясного видения составляло 75 с, после занятий — 60 с. Приняв исходное время за 100%, можно определить, сколько процентов составляет повторно определенный результат.
Исследование и оценка зрительно-моторной и слухо-моторной реакции

Данная методика (хронорефлексометрия) позволяет определить изменение соотношения основных нервных процессов (возбуждения и торможения). В основе её лежит установление времени реакции обследуемого на световой и звуковой раздражители. Для этой цели используют специальные приборы типа хронорефлексометра, позволяющие определить латентный период реакции с точностью до тысячных долей секунды (рис. 34).

Рис. 34. Хронорефлексометр.

Исследование начинают с инструктирования обследуемого, суть которого сводится к просьбе нажать кнопку аппарата и при поступлении светового сигнала на панели прибора (или звукового) быстро отпустить палец. Такой прием позволяет определить время простой реакции, которая характеризует состояние возбудительных процессов. Для изучения активного внутреннего торможения надо...
выработать у обследуемого дифференцировку на определенный (тормозной) сигнал. Для этого обследуемому предлагают, например, отпускать кнопку только при появлении светового сигнала определенного цвета. В протоколе фиксируют время простой реакции, время реакции с дифференцировкой, количество ошибок. В процессе каждого исследования делают 5 измерений. Средняя величина характеризует время скрытого периода условного рефлекса. Необходимо проводить определения в динамике (до и после воздействия изучаемого фактора). Увеличение латентного периода хотя бы одной реакции следует рассматривать, как нарушение равновесия между процессами возбуждения и торможения. Оценку полученных данных можно производить, руководствуясь данными таблицы 80.

Сведения для оценки данных хронорефлексометрии

<table>
<thead>
<tr>
<th>Характер взаимоотношения процессов возбуждения и торможения</th>
<th>Время скрытого периода</th>
<th>Количество ошибок</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Простой реакции</td>
<td>Реакции с дифференцировкой</td>
</tr>
<tr>
<td>Оптимальное соотношение</td>
<td>Уменьшается</td>
<td>Уменьшается</td>
</tr>
<tr>
<td>Ослабление активного торможения</td>
<td>Уменьшается</td>
<td>Увеличивается или остается без изменения</td>
</tr>
<tr>
<td>Нарастание охранительного торможения</td>
<td>Увеличивается</td>
<td>Увеличивается</td>
</tr>
</tbody>
</table>

Пример. У обследуемого Н. до занятий время простой реакции 0,2 с, реакции с дифференцировкой 0,3 с, одна ошибка. После занятий время простой реакции 0,1 с, время реакции с дифференцировкой не изменилось, 3 ошибки.

Вывод. Имеют место превалирование процессов возбуждения и ослабление активного внутреннего торможения.

Исследование тонкой координации движений

Методика позволяет определить изменения точности движения рук под влиянием трудовой деятельности учащихся. Для исследования используют тремометр, главной частью которого является металлическая пластина с вырезанными на ней геометрическими
фигурами и металлическая игла. Обследуемому дается задание с помощью иглы обвести ряд фигур в течение определенного времени, стараясь не касаться панели прибора. Каждое касание фиксируется электросчетчиком.

Оценку результатов проводят по количеству касаний. Повышение точности движений свидетельствует об уравновешенности нервных процессов, понижение – о наступлении утомления.

Определение и оценка работоспособности и состояния ЦНС путем дозированных заданий

Снижение работоспособности идет по линии количественных и качественных изменений в работе. В первом случае изменяется темп работы, во втором – снижается качество её выполнения.

В условиях детских учреждений наиболее приемлемой методикой является определение работоспособности при выполнении в течение строго ограниченного времени специальных заданий, близких по характеру к учебным. К ним относятся решение арифметических примеров, написание пробных диктантов (соответствующих по уровню трудности возможностям обследуемых), а также специальные корректирующие пробы.

Решение арифметических примеров

Задача состоит из 10-15 примеров, по сложности соответствующих возрасту и подготовленности учащихся с тем, чтобы большинство обследуемых могли решить их за 3-5 мин. К решению примеров учащиеся должны приступить одновременно, время работы отмечается по секундомеру. Решение может быть письменным или устным. При обработке материала определяют следующие показатели:

1) n – число учеников, принимающих участие в выполнении задания;
2) t – время выполнения задания, мин.;
3) V – общее число предложенных для решений заданий;
4) V_1 – число решенных примеров;
5) V_2 – число правильно решенных примеров.

Показатели, характеризующие работоспособность:

$K = \frac{V_1}{V} \cdot 100$
\[t_1 = \frac{t \cdot n \cdot 60}{V_1} \]

Для оценки полученных результатов рекомендуется использовать сведения, представленные в табл. 81.

Таблица 81

<table>
<thead>
<tr>
<th>Показатели</th>
<th>(K_1) %</th>
<th>(t_1), секунды</th>
<th>Оценка работоспособности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уменьшается</td>
<td>Без изменения</td>
<td>Увеличивается</td>
<td>Скорость работы уменьшается; качество сохраняется</td>
</tr>
<tr>
<td>Увеличивается</td>
<td>Уменьшается</td>
<td>Уменьшается</td>
<td>Скорость работы увеличивается за счет снижения качества (превалируют процессы возбуждения)</td>
</tr>
<tr>
<td>Уменьшается</td>
<td>Уменьшается</td>
<td>Увеличивается</td>
<td>Нарастает торможение, снижаются скорость и качество работы</td>
</tr>
</tbody>
</table>

Пробные диктанты также позволяют определить изменения работоспособности по количеству и качеству выполнения заданий. Данный методический прием, однако, имеет недостаток, заключающийся в трудности определения причин ошибок: связаны ли они с понижением работоспособности или с нетвердым знанием учащимися грамматики. Порядок оценки исследования аналогичен описанному выше. При обработке материала учитывают среднее количество ошибок, приходящееся на одного учащегося, количество работ без ошибок и число работ, содержащих от одной до трех, от 4 до 5 и более ошибок.

Коррекционные пробы выполняются на специальных таблицах, представляющих собой набор различных букв (таблицы Анфимова) или их сочетаний, лишенных смыслового значения (таблицы Иванова-Смоленского). Для дошкольников имеются таблицы, в которых буквы заменены разнообразными геометрическими фигурами.
Задания, предлагаемые испытуемым, могут быть разных вариантов, но все они сводятся в общем к вычеркиванию или подчеркиванию тех или иных букв или их сочетаний.

В соответствии с модификацией Л.И.Кабанова с помощью корректурных таблиц В.Я.Анфимова учащиеся выполняют два задания. В первом задании учащиеся получают инструкцию вычеркивать какую-либо одну букву (например, "X") по команде "Начали" и закончить вычеркивание строго по команде "Закончили". После этой просмотренную букву необходимо обвести в кружок. Задание выполняется в течение одной минуты. Затем учащиеся отдыхают 1 минуту и в то же время прослушивают следующее задание – продолжать вычеркивать эту же букву, но в том случае, если перед буквой "X" стоит буква "В" данную букву не вычеркивать, а сочетание "BX" следует подчеркнуть. На выполнение второго задания отводится такой же отрезок времени (1 минута), как и на первое, и с использованием тех же команд. При необходимости проводить исследования в течение дня, недели следует менять "сигнальные" буквы, не меняя сложности заданий, т.е. новые буквы должны быть равноценными исходной букве.

Критерии оценки: при оптимальном функциональном состоянии ЦНС количество просмотренных знаков увеличивается к концу деятельности; введение условного торможения во втором задании не сказывается на темпе работы; общее количество ошибок и ошибок на дифференцировку уменьшается или остается без изменений. Подобные результаты теста заслуживают положительной оценки.

Отрицательные результаты: уменьшение количества просмотренных знаков, снижение скорости работы после введения условного раздражителя на торможение, увеличение количества ошибок, уменьшение числа просмотренных знаков, свидетельствующие о снижении подвижности первых процессов, о развитии последовательного торможения (табл. 82).

Наряду с определением общей умственной работоспособности в гигиенических исследованиях используют методики изучения таких психических функций, как способность к запоминанию (кратковременная память) и внимание.

Для определения объема кратковременной памяти исследуемому предъявляется в течение определенного времени несколько цифр, слов (не имеющих смысловой связи) или изображений предметов, которые он должен запомнить, а затем воспроизвести в письменном виде. Число правильно названных элементов отражает степень запоминания, которая выражается в процентах от общего их числа.
Таблица 82
Оценки динамики работоспособности
по результатам корректурной пробы

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Варианты оценки результатов выполнения заданий</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Количество просмотренных знаков</td>
<td>0</td>
</tr>
<tr>
<td>Количество допущенных ошибок в перерасчете на 500 знаков</td>
<td>0</td>
</tr>
<tr>
<td>Оценка функционального состояния</td>
<td>Без изменений</td>
</tr>
</tbody>
</table>

*"0" — без изменений; "+" — увеличение показателя

Внимание исследуют с помощью специальных заданий, например, отыскание чисел с "переключением" по черно-красной табличе Платонова. Задание состоит в том, чтобы без ошибок в минимально короткий срок найти, показать и назвать в возрастающем (от 1 до 24) или убывающем (от 24 до 1) порядке цифры красного или черного цвета, расположенные в таблице без определенной системы.

Исследование поведения детей на уроке. Существуют методики, позволяющие изучать поведение детей и изменение их работоспособности в обычных условиях, не мешая при этом их деятельности. Это методики наблюдения с помощью хронометра. К ним относятся: 1) фиксирование отвлечений; 2) хронометраж; 3) фотохронометраж.

Фиксирование отвлечений дает возможность выявить состояние внимания детей и подростков, степень их отвлекаемости, но не позволяет определить продолжительность отвлечений. Наблюдение можно вести за несколькими детьми одновременно, каждое отвлечение фиксируют в протоколе. Фиксировать отвлечения удобнее каждые 5 минут.

Хронометраж позволяет регистрировать основные моменты в поведении наблюдаемых: а) занятость основной работой; б) выслушивание объяснений преподавателя; в) организация рабочего места; г) отвлечения.

328
Исследователь наблюдает за группой детей одновременно и каждую минуту отмечает в протоколе, чем занят данный ребенок: работает, слушает, отвлекается. Анализируя результаты хронометражей, можно получить данные о соотношении отдельных частей урока, его плотности (для каждого ребенка и для всей группы в целом). Для получения сравнимых результатов абсолютную продолжительность каждого вида деятельности выражают в процентах к продолжительности занятий.

Фотохронометраж. Под фотохронометражем понимается фиксирование с помощью секундомера начала и конца всех наблюдаемых видов деятельности, как в процессе отдельных занятий, так и на протяжении более длительного отрезка времени. Такой прием позволяет как бы "сфотографировать" всю деятельность детей с точки зрения её чередования и длительности. В этом случае под наблюдением может находиться только один человек.

5.3.2. Гигиеническая оценка школьной мебели

Существенную часть общей школьной нагрузки детей составляет статическое напряжение, которое возникает в результате выполненного неподвижного положения тела на протяжении большей части урока. Длительное статическое напряжение является одним из факторов, способствующих более быстрому утомлению во время учебных занятий. Это прежде всего относится к учащимся младших классов в связи с перечисленными выше особенностями ЦНС и несовершенством костно-мышечного аппарата детей. Уменьшение статического напряжения во время сидения за партой может быть достигнуто за счет сохранения правильной рабочей позы, которая, в свою очередь, зависит от соответствующего подбора школьной мебели.

Главный показатель, используемый при подборе мебели — рост учащихся. Для оборудования классов общеобразовательных школ и учебно-воспитательных учреждений ранее использовали школьные парты с №6 по 12 (ГОСТ 5994-72), которые выполняли одно-местными или двухместными. Ростовой интервал для каждого последующего номера парт составлял 10 см. Существовали партии постоянных размеров и партии универсальные с изменяющейся высотой стола, сиденья и угла наклона крышки.

В связи с введением кабинетной системы обучения с 1977 года были приняты ГОСТы 11015-77 "Столы ученические" и ГОСТ 11016-77 "Стулья ученические", согласно которым школьная мебель
распределялась на 5 групп в зависимости от роста учащихся (с интервалом 15 см) и имела буквенно обозначение (от А до Д).

В настоящее время при рассаживании детей руководствуются ГОСТами 11015-93 и 11016-93 (табл.83)

Таблица 83

Размеры мебели и ее маркировка по ГОСТам "Столы ученические" и "Стулья ученические"

<table>
<thead>
<tr>
<th>Номер (ГОСТ 11015-93; ГОСТ 11016-93)</th>
<th>Рост учащихся (мм)</th>
<th>Основные параметры ученической мебели</th>
<th>Цвет маркировки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Высота рабочей плоскости стола (мм)</td>
<td>Высота сидения (мм)</td>
</tr>
<tr>
<td>1</td>
<td>1000-1150</td>
<td>460</td>
<td>260</td>
</tr>
<tr>
<td>2</td>
<td>1150-1300</td>
<td>520</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>1300-1450</td>
<td>580</td>
<td>340</td>
</tr>
<tr>
<td>4</td>
<td>1450-1600</td>
<td>640</td>
<td>380</td>
</tr>
<tr>
<td>5</td>
<td>1600-1750</td>
<td>700</td>
<td>420</td>
</tr>
<tr>
<td>6</td>
<td>Выше 1750</td>
<td>760</td>
<td>460</td>
</tr>
</tbody>
</table>

Группы мебели имеют фабричную маркировку: цифровое обозначение и соответствующее цветовое обозначение. Эту маркировку наносят на нижнюю поверхность крышки стола и сиденья стула. Номер столя или стула стоит в числите, а рост детей, для которых предназначена данная мебель — в знаменателе дроби. Например, \(\frac{3}{130-145}\). Кроме того, с обеих внешних сторон стола наносят дополнительную цветовую маркировку в виде круга диаметром 15-20 мм или прямоугольника.

Несоответствие мебели росту детей, изменение взаимоотношений между столом и стулом могут привести к неравномерной нагрузке и неодновременному утомлению различных мышечных групп, вследствие чего возникает мышечная асимметрия, которая является одной из причин различных рода нарушений осанки. Неправильная посадка вызывает более быстрое утомление учащихся, понижение внимания и работоспособности. Кроме того, она является одним из ведущих факторов, способствующих развитию близорукости в результате несоблюдения оптимального расстояния от книги до глаз.

Правильной считается такая посадка, когда школьник сидит прямо с легким наклоном вперед. Тетрадь или книга находится на расстоянии 25-35 см от глаз. Между грудью и столом свободно проходит кисть руки. Спина опирается на спинку стула или скамьи.
на уровне поясицы. Ноги согнуты в тазобедренном и коленном суставах под прямым или тупым углом и опираются всей ступней о подставку или пол.

Обе руки свободно лежат на столе, плечи находятся на одной высоте, параллельно краю стола.

При правильной посадке органы грудной и брюшной полости не стеснены, дыхание свободное. Нагрузка на костно-мышечный аппарат минимальная, зрение не напряжено (рис. 35).

Рис. 35. Правильная посадка.

Правильная посадка возможна при соответствии мебели росту и размерам тела ребенка. Высота сиденья должна соответствовать длине голени вместе со стопой с добавлением 1,5-2 см на высоту каблука. Рельеф сиденья должен соответствовать форме бедра и ягодиц, сиденье должно иметь небольшой наклон назад. При такой форме сиденья учащийся не соскальзывает вперед. Глубина (передне-задний размер) сиденья должен равняться приблизительно 3/4 длины бедра. При меньшей глубине сиденья уменьшается площадь опоры, и посадка учащегося становится менее устойчивой и более утомительной. При глубине сиденья более 3/4 бедра край сиденья славливает сосудисто-нервный пучок в подколенной ямке.
Правильная посадка школьников обеспечивается также рациональным устройством стола и определенным соотношением между столом и сиденьем. Крышка стола состоит из горизонтальной и наклонной частей. Наклонное положение крышки стола облегчает также аккомодационную работу глаз при письме и чтении, так как при этом расстояние между глазом и любой строкой книги почти одинаково и степень аккомодации глаз при чтении постоянная. Соотношение между столом и сиденьем определяется дистанциями спинки и сиденья, а также дифференцией.

Дистанция спинки – расстояние по горизонтали от края стола, обращенного к ученику, до спинки сиденья. Эта величина должна быть не меньше 3-5 см больше передне-заднего размера туловища. При большой дистанции создается возможность для излишнего наклона туловища, при меньшей величине дистанции ребенок зажат между краем стола и спинкой стула, в результате чего затрудняется экскурсия грудной клетки.

Дистанция сиденья – расстояние от переднего края сиденья до вертикальной линии, опущенной от края стола, обращенного к ученику. Дистанция сиденья может быть отрицательной, положительной и нулевой. При отрицательной дистанции край стола заходит за край скамьи на 3-5 см, при нулевой дистанции край стола и стула расположены на одной вертикали. При положительной дистанции – вертикальная линия проходит впереди края скамьи. Положительная дистанция необходима учащемуся при ответе с места, при усаживании за парту и при выходе из-за неё. Она создается наличием откидной крышки или в отводящем стуле. При письме и чтении наиболее благоприятна отрицательная дистанция.

Дифференция – расстояние по вертикали от поверхности стола до плоскости сиденья.

Различают нормальную, большую и малую дифференцию.

Так, при низком столе и высоком стуле (малая дифференция) ученик вынужден сильно наклоняться вперед и опираться на стол, что приводит к сдавливанию органов грудной клетки и брюшной полости. Правое плечо опускается, что способствует появлению левостороннего сколиоза.

При высоком столе и низком стуле создается большая дифференция, которая также приводит к неправильной посадке учащихся – правое плечо поднято, мышцы плечевого пояса напряжены, что способствует образованию правостороннего сколиоза.

Для определения высоты стола и сиденья для учащегося следует руководствоваться данными таблицы 83.
К началу учебного года медицинский персонал школы совместно с классным руководителем должен позаботиться об укомплектовании каждого класса соответствующей мебелью. Практика показывает, что для этого необходимо иметь в каждом классе столы или пары различных размеров. Двухместные пары расставляются в классе в 3 ряда, одноместные — в 5 рядов. Впереди ставят столы или пары меньших размеров, дальше от доски — больших размеров. Проход между рядами столов или парт должен составлять 0,7 м, а расстояние от стен до крайних рядов от 0,5 до 0,6 м.

Контроль за правильностью рассаживания детей должен осуществляться медицинским персоналом школы. При рассаживании следует обратить особое внимание на детей с нарушенным здоровьем. Дети с пониженным зрением должны сидеть за передними партами или столами, стоящими у окна. Школьников с пониженным слухом также нужно рассаживать на передние парты, ближе к стене (явление резонанса). Учащихся, страдающих ревматизмом и склонных к простудным заболеваниям, не рекомендуется сажать за пары и столы, расположенные у наружной стены класса. Школьников размещают за партами или столами в строгом соответствии с их ростом. В целях профилактики нарушений осанки и развития косоглазия рекомендуется два-три раза в год менять местами учащихся, сидящих в крайнем левом и правом рядах, соблюдая соответствие их росту номера парты.

При двухсменной работе школы в одной и той же классной комнате следует размещать параллельные или смежные по годам обучения классы (1-й и 2-й, 3-й и 4-й, 5-й и 6-й и т.д.).

Для кабинетов черчения и рисования, кабинетов иностранного языка (языковых лабораторий) и лабораторий разработаны специальные столы. Для кабинетов черчения и рисования в соответствии с ГОСТом 19549-74 должны изготавливаться одноместные столы двух типов: с постоянным (I тип) и переменным (II тип) расположением края крышки, обращенного к учителю. Для этих кабинетов предусмотрены столы размеров В, Г и Д. Для кабинетов иностранного языка (языковых лабораторий) ГОСТом 19550-74 также предусмотрены столы двух типов: I тип — с акустическими полукабинами (закрытые) и II тип — без акустических полукабин (открытые). Для лабораторий ГОСТом 18314-73 предусмотрены учебно-направленные трехместные лабораторные столы 3-х типов: физические, химические и биологические для ростовых групп В, Г и Д.
5.3.3. Оценка школьного расписания

Гигиенические требования к составлению расписания уроков в школе должны обязательно учитывать динамику изменения работоспособности и физиологических функций учащихся на протяжении учебного дня и недели. Основная задача рациональной организации учебных занятий заключается в том, чтобы, используя сочетания разнообразных видов деятельности, обеспечить сохранение работоспособности учащихся к концу занятий на довольно высоком уровне.

В соответствии со статьей 28 Федерального закона "О санитарно-эпидемиологическом благополучии населения" программы, методики и режимы воспитания и обучения допускаются к использованию при наличии санитарно-эпидемиологического заключения о соответствии их санитарным правилам (СанПиН 2.4.2.782-99).

Таблица 84
Гигиенические требования к максимальным величинам воздействия на школьника учебно-воспитательного процесса

<table>
<thead>
<tr>
<th>Классы</th>
<th>Максимальная допустимая недельная нагрузка, в часах</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>При 6-дневной неделе</td>
</tr>
<tr>
<td></td>
<td>3-х летняя начальная школа</td>
</tr>
<tr>
<td>1-3</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>2-4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
</tr>
<tr>
<td>8-9</td>
<td>35</td>
</tr>
<tr>
<td>10-11</td>
<td>36</td>
</tr>
</tbody>
</table>

В составлении школьного расписания необходимо учитывать трудность предметов и преобладание статического или динамического компонентов во время занятий. Динамический компонент преобладает на уроках физкультуры, труда, производственной практики и пения. Это наименее утомительные уроки, и они, при правильной организации занятий, снимают утомление, возникшее на предшествующих занятиях. В качестве одного из возможных способов оценки можно использовать ранговую шкалу трудности, предложенную И.Г.Сивковым в 1975 году (табл. 85).
<table>
<thead>
<tr>
<th>Предмет трудности</th>
<th>Оценка (в баллах)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Математика, русский язык (для национальных школ)</td>
<td>11</td>
</tr>
<tr>
<td>Иностранный язык</td>
<td>10</td>
</tr>
<tr>
<td>Физика, химия</td>
<td>9</td>
</tr>
<tr>
<td>История</td>
<td>8</td>
</tr>
<tr>
<td>Родной язык, литература</td>
<td>7</td>
</tr>
<tr>
<td>Естествознание, география</td>
<td>6</td>
</tr>
<tr>
<td>Физкультура</td>
<td>5</td>
</tr>
<tr>
<td>Труд</td>
<td>4</td>
</tr>
<tr>
<td>Чертежение</td>
<td>3</td>
</tr>
<tr>
<td>Рисование</td>
<td>2</td>
</tr>
<tr>
<td>Пение</td>
<td>1</td>
</tr>
</tbody>
</table>

Найболее трудные предметы следует включать в расписание для начальных классов первыми и вторыми, а в средних и старших классах – вторыми или третьими уроками, т.е. вводить их в период наиболее высокой работоспособности учащихся. Не рекомендуется сочетание двух или трех трудных уроков подряд (например: физика, математика, иностранный язык); лучше чередовать их с менее трудными предметами (например: история, математика, география).

Рационально чередование предметов естественно-математического и гуманитарного направлений с уроками физкультуры, труда, пения и рисования, что даёт учащимся возможность переключаться с умственной деятельности на физическую. Такое переключение служит активным отдыхом и обеспечивает высокую работоспособность как в течение всей учебной недели.

Шкалу трудности уроков используют и для гигиенической оценки школьного расписания. С этой целью подсчитывают сумму баллов по дням недели в отдельных классах, затем нагрузку изображают графически (по оси абсцисс – дни недели, по оси ординат – нагрузка в баллах) и сравнивают её с динамикой недельной работоспособности учащихся. Школьное расписание оценивается положительно в том случае, если получается кривая с двумя подъемами во вторник и пятницу (вариант 1 – для учащихся младшего и среднего возраста) или с одним подъемом – в среду (вариант 2 – для старших школьников) (рис. 36). Расписание оценивается как нерациональное, если наибольшая сумма баллов приходится на начало или конец недели, а также при равномерном распределении нагрузки в недельном цикле.
Вариант 1. Для учащихся младшего и среднего возраста.

Вариант 2. Для старших школьников.

Рис. 36. Графическое изображение рационального распределения недельной учебной нагрузки (по Сивкову).

В последние годы осуществлен переход большого числа школ на 5-дневную неделю. Два выходных дня обеспечивают более благоприятные условия для динамики работоспособности детей, т.к. исключается один из дней с пониженной работоспособностью (суббота), более продолжительный отдых дает также возможность активно использовать их для занятий физкультурой и спортом. Од-
нано гигиенисты считают, что недопустимо сокращение учебной недели за счет увеличения ежедневной нагрузки, т.е. продолжительность занятий в оставшиеся учебные дни не должна увеличиваться. Кроме того, в связи с большим периодом врабатываемости после двух выходных дней в расписании необходимо предусмотреть облегчение занятий в понедельник.

5.4. Санитарно-гигиеническая экспертиза проектов школ и школ-интернатов

Цель занятия: ознакомить студентов с гигиеническими принципами планировки, благоустройства и оборудования школ и школ-интернатов.

Практические навыки: научить студентов разбираться в проектах школьных зданий и производить гигиеническую оценку архитектурно-планировочных решений этих проектов.

Задание студентам:
1. Провести санитарно-гигиеническую экспертизу проекта школы и школы-интерната.
2. Дать письменное заключение по рассмотренным проектам.

В системе профилактических мероприятий, направленных на укрепление и сохранение здоровья школьников, важная роль принадлежит строительству школ. Гигиенические требования, предъявляемые к школьной обстановке, основываются на физиологических данных взаимодействия организма и среды с учетом возраста учащихся. Проектирование, строительство и благоустройство школ находятся под врачебным контролем, который проводится в порядке предупредительного санитарного надзора. Все нормативные положения по устройству и оборудованию школ следуют принимать в соответствии с Санитарными правилами — СП 2.4.2.782-99. "Гигиенические требования к условиям обучения школьников в различных видах современных общеобразовательных учреждений".

При оценке проекта вначале следует прочитать пояснительную записку, установить тип школы, число детей, на которое она рассчитана, радиус обслуживания. Затем переходят к анализу генерального плана школьного участка и внутренней планировки школьного здания. При рассмотрении генерального плана необходимо выяснить следующие вопросы:
1. Размещение земельного участка (внутриквартальное, смежное с несколькими кварталами).
2. Конфигурация, общая площадь земельного участка и площадь на одного ребенка.
3. Составные элементы участка (защитная зона, спортивная зона, биологический уголок, зона отдыха, хозяйственный двор).
4. Процент застройки участка.
5. Процент озеленения.
6. Входы и проезды на земельный участок, наличие отдельного проезда на хозяйственный двор.
7. Расположение здания школы на участке.
 При анализе проекта здания школы оценивают:
 1. Композицию школьного здания (централизованная, блочная, павильонная).
 2. Этажность здания.
 3. Основные помещения школы:
 а) классные комнаты (их число на каждом этаже, площадь, длина и глубина каждой классной комнаты, площадь на одного человека); естественное освещение (ориентация, световой коэффициент, коэффициент заглубления, с какой стороны по отношению к ученикам падает свет);
 б) лаборатории (физическая, химическая, биологическая) и кабинеты (истории, географии, литературы, математики, черчения), их размещение, площадь каждого помещения и площадь на одного учащегося, естественное освещение, наличие лаборантских комнат при лабораториях химии, физики, уголка живой природы при биологической лаборатории;
 в) гимнастический зал (расположение, общая площадь, площадь на одного учащегося, высота, естественное освещение и возможность проветривания, наличие раздевалки, душевых, снарядной, комнаты для преподавателей, туалетов);
 г) помещения для политехнического обучения (столярная и слесарная мастерские – расположение, общая площадь на одного работающего, естественное освещение; кабинеты машиноведения и электротехники, комнаты ручного труда – площадь и естественное освещение);
 д) помещение для организации продленного дня.
4. Вспомогательные помещения:
 а) рекреационные залы и коридоры (площадь, одно- или двухсторонняя застройка коридоров, естественное освещение);
 б) вестибюль с гардеробом (размещение), столовая-буфет (размещение, площадь, наличие подсобных помещений, отдельного входа);
в) актовый зал, комнаты общественных организаций, библиотека (их расположение);
g) туалет (размещение на этажах, количество умывальников, унитазов, соответствие их санитарным нормам).
5. Служебные помещения:
a) кабинет директора и канцелярия (расположение по отношению к входу в здание);
b) кабинет врача (размещение, площадь, глубина);
v) учительская (расположение, площадь).
При экспертизе проекта школы-интерната, кроме вышеназванных вопросов, необходимо рассмотреть набор помещений жилого корпуса:
1. Спальные комнаты – расположение, площадь общая и площадь на одного воспитанника.
2. Туалет при спальных – площадь на одного учащегося, число умывальников и унитазов с учетом количества учащихся.
3. Душевые комнаты – площадь, количество душек.
4. Комната для чистки одежды и обуви – расположение и площадь.
5. Сушилки для одежды – расположение и площадь.
7. Медицинский пункт – расположение, набор помещений, площадь.
8. Пищеблок – складские и производственные помещения, обеденный зал, площадь на одно место.
Оценку каждого из рассматриваемых вопросов производят путем сопоставления с нормами проектирования школ. Результаты рассмотрения проектной документации оформляются в виде заключения.
Письменное заключение по экспертизе проекта должно состоять из двух частей. В первой части перечисляют все санитарные недочеты или замечания, обосновывая их ссылкой на СНиП. Во второй части студент, предварительно оценивая серьезность санитарных недочетов, должен принять решение о согласовании или отклонении проекта. Вторая часть заключения формулируется четко, конкретно, например: "Проект согласовывается" или "Проект возвращается для доработки с учетом вышеприведенных замечаний".
5.4.1. Нормы проектирования школ и школ-интернатов

Школа должна иметь самостоятельный земельный участок, изолированный и, как правило, удаленный от транспортных магистралей, промышленных и других предприятий, которые могут служить источниками шума и загрязнения воздуха. Земельные участки ограждаются зелеными насаждениями, а примыкающие к улицам и проездам — ограждениями высотой 1,2 м. Площадь озеленения участка составляет 40-50%.

На территории участка выделяются зоны: спортивная, отдыха, учебно-опытная и хозяйственная.

Спортивная зона занимает 35-40% площади земельного участка, включает площадки для спортивных игр (футбольную — 45 × 20 м; волейбольную — 9 × 18 м; баскетбольную — 15 × 24 м). Спортивную зону не допускается размещать со стороны окон учебных помещений.

Зона отдыха включает отдельные площадки для подвижных игр 1-2-х, 3-4-х, 5-9-х и 10-11-х классов, а также площадки для тихого отдыха.

Хозяйственный двор располагают вдали от спортивных и игровых площадок, он должен иметь отдельный въезд с улицы.

Новые виды общеобразовательных учреждений (лицен, гимназии, частные школы и т.д.) размешаются либо в отдельных зданиях, либо в отдельных отсеках с изолированным входом.

Этажность зданий школ, как правило, не должна превышать 3 этажей. Допускается в условиях плотной застройки городов строительство школ высотой в 4 этажа.

Набор помещений должен создавать условия для изучения обязательных учебных дисциплин, а также дополнительных предметов по выбору учащихся в соответствии с их интересами и дифференциацией по направлениям углубленного изучения одного, двух или трех предметов.

Здания школ должны иметь следующие группы помещений:
- учебные секции для первой ступени (1-3(4) классы);
- учебные секции для второй и третьей ступени (4-10 (11) классы);
- для трудового обучения;
- учебно-спортивная и культурно-массового назначения;
- для организации продленного дня;
- общешкольного назначения — столовая, библиотека, административно-хозяйственного, медицинского обеспечения.
В школах-интернатах, школах с продленным днем предусматриваются секции спальных помещений.

Основные помещения. Классная комната должна иметь площадь 50 м², на одного учащегося - 1,25 м², при глубине 6,0-6,3 м, длине 8,0-8,4 м, высоте - 3 м.

Учебные комнаты имеют те же самые габариты, что и классные комнаты, исключение составляет кабинет черчения и рисования: его площадь 66 м².

Площадь кабинетов планируется из расчета 2,5 м² на 1 учащегося. При кабинетах физики, химии, биологии и при компьютерном классе должны быть лаборантские площадью 15-24 м².

Военный кабинет имеет площадь 72 м².

Мастерские по обработке дерева и металла предусматриваются площадью 66 м², на одного учащегося - не менее 3,3 м². При мастерской проектируется инструментальная 16 м².

Кабинет домоводства - 50-53 м².

Помещения для трудового обучения необходимо располагать на первом этаже и размещать в торцах зданий, причем мастерская по обработке древесины должна иметь дополнительный выход из здания.

Спортивный зал в неполных средних школах и средних школах на 10-16 классов имеет площадь 162 м² (9 х 18) при высоте 5,4 м. Школы большей вместимости должны иметь зал площадью 288 м² (12 х 24), высотой 6 м. В школах на 40-50 классов проектируют по два зала: 144 и 288 м² или 144 и 450 м² соответственно. Малые залы используют для занятий младших классов. При спортивном зале предусматриваются: снарядная площадь 16-32 м², две раздевални для девочек и мальчиков (по 10,5 м² каждая) с душевыми (по 10,5 м²) и уборными (8 м²), а также комната для инструктора (тренерская), площадью 9 м².

Помещения для организации продленного дня. В школах на 8-12 классов предусматривается одна комната площадью 60 м² и инвентарная 5 м². В школах на 16-20 классов проектируются две комнаты по 52 м² или 60 и 30 м² с инвентарными. Далее на каждые 10 классов добавляется по одному помещению площадью 50 м².

Вспомогательные помещения. Гардероб проектируется централизованный при вестибюле и децентрализованный по учебным секциям вблизи входов и лестниц. Площадь гардероба в вестибюле на одного учащегося не менее 0,25-0,35 м².

Рекреационные помещения проектируют или в виде односторонне застроенных коридоров шириной не менее 2,8 м, или в виде
залов, куда выходят 3-6 классных комнат. На каждого учащегося в рекреационном помещении должно приходиться не менее 0,6 м².

Столовая должна иметь обеденный зал (от 0,65 до 1 м² на одно посадочное место; при посадке не более чем в 4 очереди).

Актовый зал рассчитывают по 0,6 м² на одного учащегося при одновременном размещении не менее 60% от общего числа школьников.

Тип библиотеки зависит от вида общеобразовательного учреждения и его вместимости. В школах нового типа библиотеку следует использовать в качестве справочно-информационного центра, оснащенного всеми видами технических средств обучения. Площадь библиотеки-информационного центра необходимо устанавливать из расчета не менее 0,6 м² на одного ученика.

Туалетные комнаты размещают на каждом этаже, их площадь должна составлять не менее 0,1 м² на одного учащегося. Для персонала школы предусматривают отдельный туалет.

Служебные помещения. Учительская рассчитывается по 2-2,5 м² на одну классную комнату.

Комната общественных организаций — 15-17 м².

Медицинский пункт общеобразовательного учреждения включает следующие помещения: кабинет врача длиной не менее 7 м (для определения остроты слуха и зрения учащихся), площадью не менее 14 м²; кабинет зубного врача аналогичного размера и кабинет психолога, площадью 10 м².

Школа-интернат. Неполные средние школы-интернаты проектируются на 280 и 560 учащихся, средние — на 340 учащихся. Общая площадь земельного участка должна быть не менее 2,0-2,2 га при озеленении территории на 40-50%.

Помещения школы-интерната объединяют в комплексы в зависимости от их назначения: помещения учебного корпуса, помещения спального корпуса. Классные комнаты и кабинеты планируют площадью 50 м², что составляет на одного воспитанника 1,4-1,5 м². Актовый зал рассчитывается на 50 учащихся (по 0,6 м² на одно место).

Спальные комнаты для младших школьников должны быть рассчитаны не более чем на 8-10 человек, а для учащихся 5-10 классов не более чем на 6 человек. На одно спальное место должно приходиться не менее 1,5 м². Спальни не должны размещаться в проходных комнатах.

Пищеблок состоит из складских, производственных, административно-хозяйственных помещений и обеденного зала. Обеденный зал рассчитан на питание в две смены. На одно посадочное место
приходится 0,6-1 м². Перед обеденным залом должны быть установлены умывальники. Пищеблок должен быть удобно связан как с жилыми, так и с учебными помещениями.

Медицинский пункт-изолятр размещается изолированно от остальных помещений и должен иметь отдельный вход. Он состоит из кабинета врача (12 м²), процедурной (15 м²), палат (по 6 м² на койку), боксированных палат (по 9 м²), буфетной, ванной комнаты, умывальни и туалета.

Гардероб в школе-интернате должен быть обязательно децентрализованным. Площадь некоторых подсобных помещений в школах-интернатах показана в табл. 86.

<table>
<thead>
<tr>
<th>Помещения</th>
<th>На 280 человек</th>
<th>На 460 человек</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гостинная</td>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td>Комната для чистки одежды и обуви</td>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td>Туалет</td>
<td>9,8</td>
<td>19,6</td>
</tr>
<tr>
<td>Кабинет личной гигиены девочек</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Душевая с ванной и раздевальной:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>для девочек</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>для мальчиков</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>

5.5. Санитарно-гигиеническая экспертиза проектов объединенных дошкольных учреждений

Цель занятия: ознакомить студентов с гигиеническими принципами планировки, благоустройства и оборудования детских объединенных дошкольных учреждений.

Практические навыки: освоить методику рассмотрения и оценки проектов детских дошкольных учреждений.

Задание студентам:
1. Произвести санитарно-гигиеническую экспертизу проекта объединенного дошкольного учреждения.
2. Дать письменное заключение по рассмотренному проекту.

В нашей стране строительство детских учреждений осуществляется на основе действующих норм проектирования.

Строительные нормы и правила (СНиП) лимитируют вместимость детских учреждений, определяют требования к земельным участкам, объемно-планировочным решениям зданий и к отделке
помещений, к санитарно-техническим устройствам и сооружениям (водоснабжение и канализация, отопление и вентиляция, освещение); в них изложены также противопожарные требования. От соблюдения гигиенических требований при составлении проектов во многом зависит состояние здоровья и физическое развитие детей, находящихся в этих учреждениях.

5.5.1. Оценка проекта дошкольного учреждения

Выполнение задания следует начинать с изучения пояснительной записи. Затем последовательно рассматривают генеральный план, поэтажные планы здания и планы расстановки оборудования. Выясняют тип детского учреждения, число детей, на которое оно рассчитано, композицию здания, (централизованная, блочная, павильонная).

Генеральный план

1. Размещение земельного участка.
2. Разрывы между земельным участком и окружающими строениями.
3. Конфигурация, общая площадь земельного участка и площадь на одного ребенка.
4. Составные элементы участка: зеленые насаждения, игровые площадки, хозяйственный двор. Процент застройки и озеленения.
5. Соблюдение принципа групповой изоляции на участке.
6. Входы и проезды на земельный участок, наличие отдельного проезда на хозяйственный двор.

Здание

Здание детского учреждения состоит из трех групп помещений: 1) помещение для детей дошкольного возраста; 2) для детей дошкольного возраста; 3) административно-хозяйственные и обслуживающие помещения. Детские учреждения проектируют как в одном, так и в нескольких одно-двухэтажных зданиях, соединенных между собой закрытыми переходами. Расположение группы может быть: поэтажное, торцовое, павильонное. На первом этаже здания рекомендуется размещать помещения для детей ясельного возраста, кухню, изолятор, медицинскую комнату, комнату для заболевшего ребенка, кабинет заведующего, прачечную, сушильню.
Основу планировки здания детского дошкольного учреждения составляет принцип групповой изоляции. Каждая группа должна иметь полный набор необходимых помещений и размещаться изолированно от других групповых ячеек и пользоваться отдельным входом. При расположении групповых ячеек для детей ясельного возраста на втором этаже допускается устройство общего входа в две групповые ячейки. Для детей дошкольного возраста следует предусматривать общий вход не более чем на три групповых ячейки. В корпусах комплексов допускается проектирование общего входа на четыре групповые ячейки дошкольного возраста.

1. Расположение здания на земельном участке (в глубине или на красной линии). Число этажей, групп, входов, которыми пользуются дети, другие входы.

2. Соблюдение принципа групповой изоляции. Набор помещений групповой ячейки (для ясельной и дошкольной).

3. Групповая-игровая: длина, глубина, общая площадь и площадь на одного ребенка, естественное освещение (ориентация, одностороннее или двустороннее, световой коэффициент, коэффициент заглубления).

4. Спальни: наличие при групповых комнатах; общая площадь и площадь на одного ребенка; наличие помещений для хранения постельных принадлежностей и спальных мешков.

5. Приемная-раздевальная: наличие при каждой групповой комнате, площадь на одного ребенка, естественное освещение, соблюдение индивидуальной изоляции.

6. Туалетная: площадь на одного ребенка, количество детских умывальников и унитазов.

7. Буфетная: расположение, площадь.

8. Пищевой блок: складские и производственные помещения: моенная, раздаточная; наличие отдельного входа на пищеблок.

9. Музыкальная комната: расположение, площадь и ориентация.

10. Медицинская комната: расположение, площадь.

11. Комната для заболевшего ребенка или изолятор: расположение, площадь, наличие отдельного входа.

Результаты рассмотрения проектной документации оформляют в виде заключения: обеспечивает ли планировка здания и участка соблюдение принципа групповой изоляции, условия для двигательной активности детей и полноценного их сна; создает ли проект условия для поддержания благоприятного воздушно-температурого режима и обеспечения достаточного естественного освещения и изоляции, а также обеспечивает ли условия для организации рацис
нального питания. Для оценки проектов при составлении заключения используют нормативные данные, приведенные ниже.

5.5.2. Нормы проектирования детских дошкольных учреждений

Все нормативные положения по устройству и оборудованию детских дошкольных учреждений (детских яслей, детских садов и детских яслей-садов) следует принимать в соответствии с требованиями СНиП 11-64-80 "Детские дошкольные учреждения. Нормы проектирования".

Детские дошкольные учреждения организуются для детей в возрасте от 2-х месяцев до 7-ми лет и комплектуются в группы с учетом возраста (табл. 87).

Таблица 87

<table>
<thead>
<tr>
<th>Группы</th>
<th>Возраст</th>
<th>Количество мест в группе</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ясельные:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- первая группа раннего возраста</td>
<td>От 2-х мес. до 1 года</td>
<td>15</td>
</tr>
<tr>
<td>- вторая группа раннего возраста</td>
<td>От 1 года до 2-х лет</td>
<td>20</td>
</tr>
<tr>
<td>- первая младшая группа</td>
<td>От 2-х до 3-х лет</td>
<td>20</td>
</tr>
<tr>
<td>2. Дошкольные:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- вторая младшая группа</td>
<td>От 3-х до 4-х лет</td>
<td>25</td>
</tr>
<tr>
<td>- средняя группа</td>
<td>От 4-х до 5 лет</td>
<td>25</td>
</tr>
<tr>
<td>- старшая группа</td>
<td>От 5 до 6 лет</td>
<td>25</td>
</tr>
<tr>
<td>3. Подготовительная к школе группа</td>
<td>От 6 до 7 лет</td>
<td>25</td>
</tr>
</tbody>
</table>

В зависимости от длительности обслуживания детские дошкольные учреждения могут быть с 9, 10 и 12-часовым и круглосуточным пребыванием детей.

Детские ясли-сады проектируют на одну, две, четыре, шесть, восемь, двенадцать, двадцать четыре и более групп с количеством мест 25, 50, 95, 140, 190, 280, 330, 560, 660.

Размеры земельных участков следует принимать из расчета на одно место: в детских яслей-садах до 95 мест — 40 м², на 140-320 мест — 55 м², на 560-660 мест — 30 м².

На земельных участках детских дошкольных учреждений следует предусматривать групповые площадки, общую физкультурную площадку, огород-ягодник, хозяйственную площадку и зеленые
насаждения. Площадь озеленения участка должна составлять не менее 50%.

Площадь групповых площадок определяется из расчета 5 м² на 1 ребенка в I и II группах раннего возраста; 7,5 м² в I младшей группе; 7,2 м² — в дошкольных. Групповые площадки следует ограждать кустарником. Каждая группа должна иметь на площадке теневой навес, площадью 40 м², для защиты от солнца и осадков. Групповые площадки для детей дошкольного возраста соединяются колыцевой дорожкой шириной 1,5 м.

Физкультурную площадку следует предусматривать площадью 150 м² на 50-75 и 250 м² на 100 и более детей в дошкольных группах.

Допускается организовывать на участке плавательный бассейн площадью 21 м², глубиной не более 0,25 м.

Для огородно-ягодника при каждой групповой площадке выделяют по 15 м² (допускается для дошкольных групп общий).

Хозяйственная площадка должна быть изолирована от остальных, располагаться вблизи пышеблока.

Групповая ячейка для детей ясенного возраста включает: приемную (15 м²); игрушечную (50 м²); спальню (50 м²); туалет (12 м²); буфетную (3 м²). В групповую ячейку для детей дошкольного возраста входят: раздевальная (16 м²); групповая (50-62,5 м²); спальня (15 м²); туалет (12 м²); буфетная (3 м²).

Комната для музыкальных занятий площадью 75-100 м².

В зданиях детских дошкольных учреждений, а также в составе комплексов детских ясля-садов допускается проектирование плавательного бассейна с ванной 3 × 7 и переменной глубиной от 0,6 до 0,8 м.

В состав медицинских помещений входят медицинская комната (6-10 м²) и комната для заболевших детей (6-8 м²).

В крупных детских учреждениях устраивают две комнаты. В детских учреждениях на 140-280 мест с круглосуточным пребыванием детей предусматривают изолятор, состоящий из приемной (4-6 м²), 2-4 палат (по 9 м²), туалета (2-4 м²).

Пышеблок состоит из производственных помещений (кухня с мойкой, заготовочной, раздаточной площадью 24, 32, 46, 64 м² в зависимости от мощности) и складских помещений (кладовые для хранения овощей 4-6 м² и сухих продуктов — 7-8 м²).
5.6. Закаливание детей и подростков

Цель занятия:
а) изучить закаливающие процедуры, проводимые в детских учреждениях;
б) ознакомиться с биологическим действием УФ-излучения, методами применения УФ-излучения с целью закаливания (см. Применение искусственных УФ-источников).

Практические навыки:
1. Овладеть методикой проведения закаливающих мероприятий: воздушные, солнечные ванны, водные процедуры.
2. Освоить обязанности врача по организации и контролю за закаливанием детей и подростков.

Задание студентам:
Решить ситуационную задачу по выбору схемы и условий проведения закаливающих процедур для детей в зависимости от возраста и состояния здоровья.

Под закаливанием понимают систему различных мероприятий, направленных на повышение сопротивляемости организма вредным влияниям, прежде всего, метеорологических факторов с помощью использования естественных сил природы: солнца, воздуха и воды.

Особенно велика роль закаливания в профилактике простудных заболеваний. Вместе с тем закаливание оказывает общекрепляющее воздействие на организм, повышает тонус центральной нервной системы, мышц, нормализует обмен веществ, активизируются окислительные процессы, улучшается работа сердечно-сосудистой системы и органов дыхания.

В основе закаливания лежат механизмы адаптации организма ребенка к действию физических факторов внешней среды, — таких как меняющаяся температура воздуха, влажность и подвижность воздуха, солнечная радиация, — путем тренировки процессов терморегуляции. При повторном, многократном воздействии холодовых, тепловых и др. раздражителей развиваются функциональные и морфологические изменения приспособительного характера, повышается общая сопротивляемость организма.

Закаливание строго специфично — то есть повышается устойчивость организма только к тому фактору, к которому мы тренируем организм (например — только к холоду, только к теплу и т.д.).

Положительный эффект от закаливания наступает лишь при соблюдении основных принципов закаливания:
1. Учет индивидуальных особенностей ребенка при выборе метода закаливания (группа здоровья, состояние ЦНС).

2. Строгая систематичность закаливания (проводится круглогодично с изменением лишь видов и методов в зависимости от погодных условий, сезона, санитарно-гигиенической обстановки внутри детского учреждения). При прекращении закаливания через 2-3 месяца выработанная устойчивость к холоду снижается и затем исчезает полностью.

3. Комплексное использование всех природных факторов и закаливающих процедур.

4. Постепенность в увеличении силы воздействия природного фактора.

5. Эффект от закаливания наступает при чередующемся воздействии холодовых раздражителей на различные участки тела (торс, нижние конечности, туловище, руки).

6. Активное растирание кожи после воздействия холодового раздражителя снижает его тренировочное воздействие на кожу, сосуды. Легкое растирание, не приводящее к увеличению температуры кожи, допустимо.

7. Эмоциональная лабильность, плохое настроение ребенка во время процедур по закаливанию снижают закаливающий эффект.

8. Необходим постоянный контроль за влиянием процедур на организм.

Нерациональное применение закаливающих процедур отрицательно влияет на нервную систему детей и может привести к тяжелым расстройствам здоровья. Особенно неблагоприятно для организма детей чрезмерное пользование таким сильнодействующим биологическим фактором, как лучистая энергия (солнечные ванны, искусственные УФ-облучения).

Медицинских отводов от закаливания не должно быть. Закаливающие процедуры полезны не только здоровым детям, но и ослабленным. Исключение составляют лишь острые заболевания. Сразу же после неосложненных острых заболеваний (ОРВИ, грипп, ангина) следует возобновлять закаливание.

Особая осторожность должна проявляться при проведении закаливающих процедур ослабленным детям, страдающим затяжными или хроническими заболеваниями, недоношенным, детям с врожденными пороками развития, находящимся на искусственном вскармливании, часто длительно болеющим ОРВИ. Эта категория детей при правильном индивидуальном подходе дает положительную реакцию на закаливающие процедуры: общее состояние их
улучшается, повышается эмоциональный тонус, они быстрее рас-
тут.

Все специальные меры закаливания различаются: по силе воз-
действия
- местные (обтирания, обливания рук, ног, туловища), ножные
ванн;
- общие (обтирание, обливания, ванны, купание в бассейне).

5.6.1. Закаливание в повседневной жизни детей

Первым требованием для проведения закаливания детей в до-
школьном учреждении является создание гигиенических условий
жизни детей. Это прежде всего - обеспечение чистого воздуха и
рациональное сочетание температуры воздуха и одежды ребенка.

Бактериальная и химическая чистота в помещении достигается
сквозным проветриванием.

Специальные меры закаливания

При организации закаливающих мероприятий детей делят на 3
группы:

I - здоровые, ранее закаливаемые;
II - здоровые, впервые приступающие к закаливанию или
имеющие функциональные отклонения в состоянии здоровья;
III - имеющие хронические заболевания или после длительного
заболевания.

Дети могут быть переведены в другую группу, но не ранее,
чем через 2 месяца.

Для детей I группы конечную температуру воздуха и воды для
закаливания рекомендуется на 2-4° ниже, чем II группе, а для де-
tей III группы на 2° выше. Температуру действующего фактора
следует снижать более медленно - через 3-4 дня при местном воз-
действии и через 5-6 дней - при общем.

Начинают закаливание с местных закаливающих воздействий.
Закаливание воздухом должно предшествовать закаливанию водой
и солнцем.

Воздушные ванны

При проведении местных и общих воздушных ванн рекоменду-
eyется следующая температура воздуха в помещении (для II группы
dетей):
<table>
<thead>
<tr>
<th>Возраст</th>
<th>Местные воздействия температура, °C</th>
<th>Общие воздействия температура, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>началальная</td>
<td>конечная</td>
</tr>
<tr>
<td>до 2 лет</td>
<td>+23</td>
<td>+20 + 18</td>
</tr>
<tr>
<td>2-3 года</td>
<td>+22</td>
<td>+18 + 16</td>
</tr>
<tr>
<td>4-7 лет</td>
<td>+22</td>
<td>+16 + 14</td>
</tr>
<tr>
<td>При организованных формах двигательной активности</td>
<td>С 3-5 мин до 10-15 мин</td>
<td></td>
</tr>
</tbody>
</table>

Дети 1 года жизни получают воздушную ванну при каждой смене белья (3-4 раза в день) и при проведении массажа и гимнастики. Продолжительность её увеличивается с 2-3 мин до 5-8 минут.

В летнее время (если позволяют метеоусловия), при температуре воздуха не менее 22°С и безветренной погоде рекомендуется детям проводить воздушные ванны, раздевая их постепенно до трусиков, начиная с экспозиции 1-2 мин (ясельный возраст) и 3-8 мин (дети от 3 до 6 лет), увеличивая сеанс на 30-60 сек ежедневно до 30-40 мин (но не более) — 1-2 раза в день. Принимаются воздушные ванны в тени. Лучшее время приема воздушных ванн 8-10 часов утра.

Солнечные ванны

В летнее время года совместно с воздушными можно применять и солнечные ванны. Начинают со свето-воздушных ванн в тени деревьев, потом переходят к местным солнечным ваннам, для чего детям оголяют руки и ноги, на голове при этом светлая шапочка.

Солнечные ванны принимаются в возрасте старше 1,5 лет, после 10-15 разового курса воздушных ванн, полученных в тени. Вначале одномоментное пребывание под прямыми лучами солнца допускается в течение 1,5-3 мин для детей 1-3 лет и 3-5 мин для детей 4-6 лет с последующим постепенным увеличением в течение 15-20 дней продолжительности солнечной ванны до 15-20 мин детям ясельного возраста и 25-30 мин детям в возрасте от 3 до 6 лет.

Местное обливание ног

Расход воды — 0,5л, продолжительность — 15-20 с, температура воздуха в помещении не ниже + 20°С. Вода льётся на теплые ноги (нижняя половина голени и стопа). Затем растирание сухим полотенцем до легкого порозовения кожи.
<table>
<thead>
<tr>
<th>Возраст</th>
<th>Температура воды, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>начальная</td>
</tr>
<tr>
<td>2-3 года</td>
<td>+ 30</td>
</tr>
<tr>
<td>4-7 лет</td>
<td>+ 30</td>
</tr>
</tbody>
</table>

Температура воды снижается через 1-2 дня на 2°С.

Влажное обтирание

Режим влажных обтираний для здоровых детей: в течение 30 дней температура воды снижается каждые 1-2 дня на 2°С с 334°С до 23-22°С. Затем в течение 10 дней соблюдается режим холодовой устойчивости, при котором температура воды 23-20°С, экспозиция 70-80 с. Все последующие дни температура воды поддерживается 20-21°С, экспозиция 60-70 с.

Обтирания проводят в следующей последовательности: руки, грудь, живот, спина, ноги. После чего ребенка вытирают полотенцем.

Контрастное обливание ног

<table>
<thead>
<tr>
<th>Температура воды, °C</th>
<th>Режим обливания</th>
</tr>
</thead>
<tbody>
<tr>
<td>начальная</td>
<td>конечная</td>
</tr>
<tr>
<td></td>
<td>общих (I и II группы)</td>
</tr>
<tr>
<td>+ 35 теплая</td>
<td>+ 40</td>
</tr>
<tr>
<td>+ 25 холодная</td>
<td>+ 18</td>
</tr>
<tr>
<td>изменяется</td>
<td>через 1-2 дня</td>
</tr>
<tr>
<td>все</td>
<td></td>
</tr>
</tbody>
</table>

Воду льют на теплые ноги: летом после мытья, перед сном; зимой — после сна.

Обливание всего тела

Расход воды — 1,5-2 л; продолжительность процедуры — начиная с 15 секунд до 35. Воду льют из лейки на плечи, грудь и спину. Температура воздуха не ниже + 23°С.
Снижается на 2°С через 3-4 дня; достигнув конечных температур, продолжается в течение 2-х мес., затем увеличивается время действия.

Купание в открытом водоеме разрешается детям старше 3-х лет при температуре воздуха не менее + 25°С и воды не менее + 23°С. Продолжительность купания от 3 до 5-8 мин.

Рижский метод
1. В умывальной комнате расстилается резиновый коврик, на него помещают ткань, смоченную раствором поваренной соли (1 кг на 10 л) комнатной температуры (18°С). После сна дети босиком "топчутся" по коврику 3 мин. Выверев ноги полотенцем, одевают сухие носочки, обувь.
2. После этого проводится полоскание горла в течение 1 мин солевым раствором комнатной температуры. Раствор готовят: 1 столовая ложка поваренной соли на 1 л воды и 5 капель йода. На 1 ребенка расходуется 50 г раствора.
3. Затем проводится обливание всего тела (расход воды 1,5 л, длительность процедуры от 15 до 35 с). Либо умывание лица, шеи, рук под краном (1 мин.).

<table>
<thead>
<tr>
<th>Возраст</th>
<th>Температура, °С</th>
<th>Температура воды снижается 3-4 дня (3 группа - 5-6 дней) на 2°С. Температура воды не ниже + 23°С</th>
</tr>
</thead>
<tbody>
<tr>
<td>do 3-х лет</td>
<td>начальная: + 35</td>
<td>конечная: + 28 + 26</td>
</tr>
<tr>
<td>3-4 года</td>
<td>начальная: + 34 + 35</td>
<td>конечная: + 24</td>
</tr>
<tr>
<td>5-7 лет</td>
<td>начальная: + 34 + 35</td>
<td>конечная: + 22</td>
</tr>
</tbody>
</table>

Противопоказаний к закаливанию по "Рижскому методу" нет. Проводится с 2,5 лет.
Особенности закаливания часто и длительно болеющих (ЧДБ) детей в условиях дошкольного учреждения и дома

Выписка из методических рекомендаций "Реабилитация часто болеющих детей и профилактика респираторных заболеваний в детских дошкольных учреждениях" (Минск, 1986).

1. Закаливание воздухом. Продолжительность воздушной ванны в первые дни 1,5-3 мин. Ежедневно экспозиция увеличивается на 30-40 с, доводя пребывание раздетым на воздухе до 15-20 мин. В холодное время года воздушные ванны рекомендуется проводить в помещении, начиная с температуры воздуха 22-20°С (для детей 1-3 лет) и 20-21°С (для детей 4-6 лет).

2. В зимнее время детей надо приучать ходить босиком в помещении при температуре 18-20°С, сначала в носках (в течение 3-5 дней), затем без них. Время хождения 3-5 мин, затем постепенно увеличивают (по 1 минуте через 2-3-4 дня), доводя до 15-20 мин в день. После хождения стопы следует обмыть водой (температура воды 37°С).

3. В летнее время года детям старше 1,5 лет рекомендуется назначать солнечные ванны после курса воздушных ванн (10-15 сеансов). Вначале одномоментное пребывание под прямыми солнечными лучами для детей 1-3 лет должно составлять 1,5-3 мин, для детей 4-6 лет - 3-5 мин, с постепенным увеличением экспозиции в течение 15-20 дней до 15-20 мин для детей ясельного возраста и 25-30 мин - старшего (4-6 лет) возраста. По мере появления загара можно использовать общую солнечную ванну (раздеть до трусов и майки).

В зимнее время с целью повышения резистентности организма к инфекциям показано облучение ультрафиолетовыми лучами.

4. Закаливание водой начинают с предельно слабых воздействий. Обычно это систематическое полоскание рта и горла водой комнатной температуры. Детей с 2-3 лет приучают чистить зубы, полоскать рот, а с 4-5 лет - горло 2 раза в день. Температура воды 36-37°С с последующим снижением каждые 3-4-5 дней на 1°С вплоть до 10°С. В последующем следует приучать пить детей холодную воду постоянно.

После того, как дети получили курс воздушных ванн (в течение 2-3 недель) можно приступить к местным влажным обтираниям. Это самая мягкая закаливающая процедура (ее назначают детям, пришедшим после болезни).
Вначале применяют сухую (махровую) варежку (8-12 дней), затем влажную. Исходная температура воды 37-36°С.

Для ЧДБ детей, посещающих общие группы, влажные обтирания проводятся либо отдельно (сформировать группы в 3-4 человека), либо вместе с другими детьми, но с учетом теплового водного режима. Температура воды снижается гораздо медленнее (каждые 3-4 дня), чем для здоровых детей.

Через 2-2,5 мес., когда воспиталась холодовая устойчивость к влажным обтираниям (отсутствует появление "гусявой кожи", хорошо самочувствие) можно приступить к контрастному щадящему обливанию стоп и голеней.

5. Контрастные обливания. Теплые ноги обливают сначала теплой водой (35-36°С), затем прохладной (24-23°С), затем вновь теплой. Постепенно, каждые 3-4 дня температуру теплой воды повышают до 40°С, а холодной снижают до 18°С.

При перерыве в 3-5 дней температуру воды повышают на 3° выше той, что применяли в последний день закаливания. При более длительном перерыве процедуры начинают с исходной (37-36°С) температуры.

5.6.2. Работа персонала детского учреждения по организации закаливания

Заведующая детским садом обеспечивает оборудование и все необходимые условия для осуществления комплекса мероприятий по закаливанию детей. Проверяет, как выполняются указания врача. Устанавливает контакт с родителями, добиваясь единой системы закаливания детей дома и в дошкольных учреждениях.

Врач детского сада разрабатывает мероприятие по закаливанию в разные сезоны года, на основе данных обследования каждого ребенка. Обучает медицинский, педагогический и обслуживающий персонал методикам выполнения закаливающих процедур в каждой возрастной группе. Осуществляет контроль за работой персонала по закаливанию детей. Обеспечивает учет наблюдений за реакцией каждого ребенка на процедуру закаливания и своевременно вносит изменения в комплексы закаливания. Проводит санитарно-просветительскую работу среди родителей, разъясняет значение закаливания и методики его проведения.

Медицинская сестра участвует в организации работы по закаливанию детей. Составляет режим проветривания и уборки помещений, график закаливающих процедур. Помогает воспитателю и нянь овладеть методиками закаливания. Следит за самочувствием
и реакцией детей, информирует врача о ходе и результатах закаливания.

Воспитатели осуществляют весь комплекс мероприятий по закаливанию детей в своей группе. Ведут табель учета проведения закаливающих процедур.

Задание студентам

Задача

Укажите схему и условия проведения воздушных ванн для детей ясельной группы, возраст (2 года). Закаливание ранее не проводилось.

Пример решения:

Начальная температура воздуха +22°C, конечная — +18°C. Время 1-го сеанса 3-5 мин, через каждые 2 дня время увеличивается на 2 мин. до 15 мин. Во время проведения воздушной ванны следует за эмоциональным состоянием ребенка.
Раздел 6.
ГИГИЕНА ЭКСТРЕМАЛЬНЫХ СИТУАЦИЙ И КАТАСТРОФ

Раздел гигиены экстремальных ситуаций и катастроф является актуальным для будущих врачей, так как сохранение здоровья человека в чрезвычайных ситуациях и в полевых условиях требует особого внимания со стороны медицинских работников, особенно в определении факторов риска, отрицательно влияющих на здоровье населения в этих условиях; организации мероприятий по ликвидации проблем, возникающих в последствии чрезвычайных ситуаций; сохранении жизни и здоровья населения.

В обязанности врача входит:
1) оценка факторов окружающей среды,
2) содержание и организация санитарного надзора в местах размещения,
3) выявление причин и механизма изменения состояния здоровья человека,
4) обследование источников водоснабжения и пунктов питания,
5) осуществление профилактических мероприятий,
6) предупреждение и ликвидация очагов инфекции.
7) гигиеническое обеспечение населения комплексом мероприятий, направленных на укрепление и сохранение его здоровья в различных условиях или ограничение неблагоприятного воздействия на организм факторов внешней среды.

В настоящее время, когда происходит активное освоение среды, существует опасность столкновения с новыми социальными, антропогенными (техногенными) экстремальными факторами, представляющими большую угрозу для здоровья человека и будущего поколения; они одновременно влияют на среду обитания человека и развитие экстремальных состояний у жителей различных регионов земного шара. Их влияние ведет к развитию состояний, обусловленных изменениями в организме человека, приводящими к нарушению его здоровья.

Одной из характерных особенностей настоящего времени является массовый травматизм среди населения вследствие катастроф, вызванных силами природы или технологической деятельностью человека.

Общими признаками в определении понятия экстремальной ситуации являются такие, как непредвиденная, неожиданная си-
туация, возникающая внезапно или несколько растянутая во времени, сопровождающаяся серьезной угрозой для здоровья и жизни отдельных групп населения, а также нарушением привычного уклада жизни, целостности окружающей среды.

Каждое экстренное состояние обусловлено определенными внешними условиями, которые предрасполагают или устраняют опасность воздействия на человека. Например, в условиях затруднения теплопотдачи даже небольшое повышение температуры может привести к перегреванию организма.

Характер потерь (величина и структура) среди населения в экстремальных ситуациях, степень выхода из строя местных сил и средств здравоохранения влияют на методы работы этих органов по ликвидации последствий катастроф, так как жизнь и работа человека в экстремальных условиях невозможно без создания надежных средств жизнеобеспечения, позволяющих в необходимой степени сократить неблагоприятные влияния внешней среды на организм.

Строго спланированный систематический контроль за гигиеническим обеспечением населения, проводящийся медицинскими работниками, позволяет врачу оперативно получать объективную информацию. На основании такой информации он даёт гигиеническую оценку проводимых на территории мероприятий по профилактике инфекционных и других заболеваний, по укреплению здоровья людей, делает заключение о состоянии условий их ежедневной жизни и разрабатывает конкретные профилактические мероприятия и рекомендации.

Роль медицинской службы в таких ситуациях заключается в контроле за соблюдением гигиенических норм и рекомендаций; проведении санитарно-просветительской работы среди населения; наблюдении за их здоровьем; обучении правилам и навыкам здорового образа жизни; оценке санитарно-эпидемического состояния в районе; предупреждении заноса инфекции в места размещения; медицинском контроле за питанием и участием в разработке режима питания; медицинском обеспечении полевого водоснабжения; осуществлении санитарно-бактериологических исследований; проведении оценки отравляющих веществ и санитарно-токсикологических исследований; изучении факторов внешней среды и их влияния на здоровье людей. Одновременно медицинская служба принимает активное участие в решении проблем удаления и утилизации твердых и жидких отходов, как источника распространения заболеваний.
Медицина катастроф тесно связана с военной медициной. С одной стороны, медицина катастроф использует огромный опыт, накопленный военными медиками, особенно в области организации оказания помощи в условиях возникновения массовых потерь; с другой стороны, для военной медицины весьма ценным является опыт ликвидации последствий стихийных бедствий и катастроф.

Эти две отрасли медицины имеют много общего в подготовке кадров, материальном оснащении, обеспечении постоянной готовности к оказанию медицинской помощи, принципах её организации в полевых условиях, особенно при выполнении комплекса санитарно-гигиенических и противоэпидемических мероприятий.

В этом разделе студенты знакомятся с проблемами, возникающими при временном проживании и нахождении человека в определенных полевых условиях, которые могут отрицательно влиять на его нормальную жизнедеятельность, на характер его деятельности и на санитарные условия его жизни; изучают действие экологических и других внешних факторов на здоровье человека и разрабатывают соответствующие правила, рекомендации или требования по защите человека от неблагоприятного влияния внешних факторов.

В задачи студентов входит:
1. Знание характера влияния основных физических и химических факторов внешней среды на организм человека в полевых и экстремальных условиях.
2. Ознакомление с санитарно-эпидемиологическими и экологогигиеническими проблемами, возникающими в результате катастроф и в экстремальных ситуациях.
3. Знание вопросов санитарно-гигиенического контроля за организацией водоснабжения в полевых условиях в мирное время и в экстремальных условиях.
4. Организация питания групп населения в полевых и в экстремальных ситуациях.
5. Определение роли врача в решении выше названных проблем.

Для решения и ликвидации проблем, возникающих в экстремальных ситуациях и для успешной реализации задач, стоящих перед медицинской службой, здравоохранение использует имевшиеся и дополнительно созданные на базе действующих учреждений здравоохранения силы службы экстремальной медицинской помощи. К ним относятся медицинские бригады, санитарно-эпидемические отряды, состоящие из бригад санитарно-профилактической помощи. Результат работы здравоохранения определяется уровнем подготов-
ленности врача и медицинского персонала к работе в полевых и экстремальных условиях, их готовности выполнить необходимые мероприятия с учетом сложившейся обстановки.

6.1. Санитарно-гигиенические проблемы медицины катастроф

Задачи занятия: ознакомить студентов с санитарно-эпидемиологическими и эколого-гигиеническими проблемами, возникающими в результате катастроф и в экстремальных ситуациях.

Практические навыки: освоить методы оценки опасности гигиенических и экологических проблем для здоровья населения.

Задания студентам:
1. Дать на основании ситуационной задачи характеристику санитарно-эпидемиологических ситуаций в местах катастроф и в экстремальных условиях.
2. Перечислить принципы первичной профилактики при ликвидации факторов риска, отрицательно влияющих на здоровье населения.
3. Определить роль врача, врача-гигиениста и санитарного врача в случаях катастроф.

Катастрофа — любое происшествие, влекущее за собой разрушения, подрыв экономики, гибель людей или ущерб, нанесенный их здоровью. Это любое происшествие, при котором:
1 — пострадавших более 10-15 человек,
2 — погибших более 2-4 человек,
3 — групповые заболевания у 50 и более человек одновременно.

Медицина катастроф — система преодоления последствий катастроф и оказание всесторонней лечебной, санитарно-гигиенической помощи людям, находящимся в зоне катастрофы.

Гигиена катастроф — наука, изучающая санитарно-гигиенические последствия катастроф и разрабатывающая пути ликвидации последствий и защиты населения.

Последствия катастроф зависят от: 1) особенностей поражающего фактора; 2) характера местной промышленности; 3) климатогеографических особенностей; 4) биологического характера населения (процент детей, женщин, пожилых людей); 5) социальных факторов; 6) иммиграционных процессов; 7) параметров населенного пункта, сезона года и времени суток.
Неблагоприятные санитарно-гигиенические условия в зонах бедствий, особенно при землетрясении и сильном наводнении, приводят к резкому осложнению санитарно-эпидемической обстановки.
Потери среди населения могут возрастать с увеличением возможности возникновения и распространения инфекционных болезней, экологическими и другими проблемами, отрицательно влияющими на здоровье населения в районах бедствия.

Таблица 88

<table>
<thead>
<tr>
<th>Природные катастрофы</th>
<th>Катастрофы, связанные с деятельностью человека</th>
<th>Социальные, специфические катастрофы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Землетрясения, наводнения, ураганы, смерчи, извержения вулканов, снежные обвалы, засуха, морозы</td>
<td>Взрывы, разрушения, пожары, утечка сильнодействующих ядовитых веществ, обвалы на шахтах, рудниках, обвалы зданий, транспортные крупные аварии на воде и на суше</td>
<td>Эпидемии, голод, беспорядки, война</td>
</tr>
</tbody>
</table>

Санитарно-эпидемиологические проблемы

1. Проблема водоснабжения
2. Проблемы обеспечения населения продуктами питания (хранение, приготовление и раздача).
3. Проблемы загрязнения окружающей среды (почва, воздух, водоемы):
 а) проблемы утилизации пищевых и бытовых отходов;
 б) проблемы временных туалетов и канализации.
4. Проблемы временного размещения пострадавших.
5. Проблемы психических расстройств пострадавших.
6. Проблемы обеспечения лекарствами и медицинским оборудованием.
7. Вопросы санитарного просвещения и информации.

Профилактические мероприятия в районе катастрофы:

1. Окружающая среда:
 а) решение проблем загрязнения почвы и воздуха,
 б) удаление твердых отходов,
 в) захоронение трупов.
2. Питьевая вода:
 а) защита коммунальных систем водоснабжения,
 б) очистка воды.
3. Сточные воды: для бытовых сточных вод допускается вре-
 менное использование поглощающих колодцев, которые одновре-
 менно являются и резервуарами жидких отходов.
4. Бытовые твердые отходы:
 а) свалки должны быть расположены на расстоянии не ме-
 нее 1 км от жилых районов,
 б) в полевых условиях твердые отходы в идеале следует
 сжигать.
5. Жилище: места размещения пострадавших должны быть
 отдалены от зоны загрязнения.

Обязанности медицинских работников

1. Проведение медико-санитарной разведки.
2. Контроль за состоянием внешней среды и решение экологи-
 ческих проблем.
3. Предотвращение опасности возникновения и распростране-
 ния инфекционных заболеваний.
4. Предотвращение микробиологического заражения воды и
 пищи.
5. Определение необходимости вакцинации населения.
6. Решение проблем обработки и обеззараживания воды.
7. Контроль за гигиеническим состоянием временного жилья
 пострадавших.
8. Проведение санитарно-просветительной работы среди насе-
 ления.
9. Решение проблем хранения и раздачи пищевых продуктов.
10. Оказание первичной медико-санитарной помощи пострадав-
 шим в местах катастроф.

**Факторы опасности для населения при возникновении
экстремальных условий**

1. Механические факторы: а) механическая травма, б) электро-
 травма.
2. Физические факторы: а) ионизирующая радиация, б) шум,
 в) вибрация, г) баротравма.
3. Химические факторы.
4. Термические факторы: а) высокая и низкая температура, б) инфракрасное излучение.
5. Биологические факторы: патогенные бактерии, вирусы, гельминты, простейшие.
7. Социальные факторы: безработица, голод, общественные конфликты.

Сточные воды и жидкие отходы

Сточные воды — воды, которые были использованы для тех или иных нужд и получили при этом дополнительное загрязнение и примеси, изменившие их первоначальный состав.

Бытовые хозяйственные сточные воды могут вызвать следующие изменения: а) ухудшение органолептических свойств воды (изменение цвета и запаха), б) значительное бактериальное загрязнение водных источников (увеличение количества возбудителей кишечных заболеваний и яиц гельминтов).

Производственные сточные воды, кроме того, изменяют химический состав и РН воды, увеличивают количество вредных примесей в ней.

Источники:
1) бытовые жидкие отходы; вода, поступающая от жилых, общественных и лечебных зданий;
2) производственные и промышленные жидкие отходы; вода, которая была использована в технологическом процессе;
3) атмосферные воды, образующиеся в результате выпадения атмосферных осадков.

Состав:
1) пищевые отходы;
2) химические вещества;
3) патогенные и непатогенные микроорганизмы.

Цель и задачи обработки сточных вод:
1) уменьшение действия неприятных запахов;
2) защита почвы и водных источников от загрязнения.

На самоочищение сточных вод оказывает влияние степень разбавления и скорость движения жидкости, в результате которой повышается процесс аэрации и ускоряется БПК.

Способы решения проблемы жидких отходов:
1) сбор и удаление;
2) очистка и обеззараживание.
Методы очистки:
1) отделение тяжелых примесей;
2) осаждение более легких взвешенных веществ;
3) биологическая переработка (освобождение сточной воды от органических загрязнений), которая основана на использовании микробиологических процессов окисления органических веществ; естественная биологическая очистка в природных условиях (почвенный метод очистки); искусственная биологическая очистка.

При экстремальных ситуациях можно использовать почвенные методы очистки (естественные), где процесс происходит в верхнем слое почвы (толщиной до 40 см). В этом слое происходит задержка основного количества микробов (99,9%) и полная очистка от яиц гельминтов.

Для обеззараживания сточной воды можно использовать хлор (после механической очистки в специальных отстойниках). Доза хлора (30-50 мг/л/час) для сточных вод. Промышленные сточные воды обрабатываются только механическими методами. В экстремальных ситуациях временно можно использовать поглощающие колодцы.

Метод подземной фильтрации следует использовать при наличии следующих условий: если общее количество сточных вод, поступающих на очистные сооружения, не превышает 25 м/сутки; если почва обладает достаточной фильтрационной способностью (мелко- и среднезернистые пески).

Твердые отходы

Состав: бытовой мусор, пищевые отходы, промышленные отходы. В среднем на одного человека накапливается от 0,5 кг до 2 кг мусора в день. С гигиенической точки зрения большое значение имеют отбросы с содержанием органических веществ.

Отрицательное влияние твердых отходов на здоровье в основном зависит от концентрации органических веществ, способных загнивать: они являются хорошей средой для существования патогенных микроорганизмов и яиц гельминтов, вследствие чего представляют серьезную эпидемиологическую опасность (распространение инфекций), загрязняют почву и подземные воды и являются средой для размножения насекомых и грызунов.

Факторы, влияющие на характер и состав отходов:
1) климатические и географические условия,
2) экономический характер населенного пункта.
Методы обработки твердых отходов:
1) сбор и перевозка мусора в назначенные места (на расстояние не менее, чем 500 м от жилой зоны);
2) обеззараживание твердых отходов с помощью следующих методов: биотермический метод — основан на способности твердых отбросов самопагреваться за счет деятельности термофильных бактерий, что приводит к гибели микрофлоры. Участок для свалок должен быть удален от жилого участка не менее, чем на 1 км, уровень грунтовых вод должен находиться на глубине 1 м от поверхности земли;
3) сжигание мусора — процесс быстрого обезвреживания мусяра.

Защита окружающей среды:
1) контроль санитарного состояния территории вокруг столовых, рынков, больниц;
2) контроль чистоты и состояния почвы, воздуха и воды.

Почва

Оценку санитарного состояния почвы в местах временного размещения производят по общему содержанию числа бактерий в 1 г почвы, титра кишечной палочки и санитарному числу (табл. 89).

Санитарным числом называется отношение почвенного белкового азота к общему количеству органического азота в почве (в мг на 100 г абсолютно сухой почвы).

Титр кишечной палочки — это наименьшее количество почвы (в граммах), из которого можно вырастить кишечную палочку.

Размещение проводится в загородной зоне, т.е. территория вне предела зоны катастроф вблизи зеленого массива или открытого водоема с учетом расстояния от временных свалок и мест сбора мусора.

Таблица 89

<table>
<thead>
<tr>
<th>Санитарное состояние почвы</th>
<th>(грамм почвы) коли-титр</th>
<th>Санитарное число (азот)</th>
<th>Общее число бактерий в 1 г почвы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чистая</td>
<td>1 и выше</td>
<td>0,98-1,0</td>
<td>До 2,5 млн</td>
</tr>
<tr>
<td>Слабо загрязненная</td>
<td>1,0-0,1</td>
<td>0,85-0,98</td>
<td></td>
</tr>
<tr>
<td>Умеренно загрязненная</td>
<td>0,01-0,001</td>
<td>0,75-0,85</td>
<td>Свыше 3 млн</td>
</tr>
<tr>
<td>Сильно загрязненная</td>
<td>0,001 и ниже</td>
<td>Меньше 0,70</td>
<td></td>
</tr>
</tbody>
</table>
Пример типовой задачи:
Населенный пункт Н. расположен в труднодоступном горном районе, численность населения около 150 000 человек. Местные жители используют подземные источники водоснабжения, основное их занятие — скотоводство и сельское хозяйство. В пункте функционирует сельская больница на 50 мест. В этом районе произошло землетрясение.
Вопросы:
1. Какие санитарно-эпидемиологические и экологические проблемы могут возникнуть?
2. Назовите те заболевания, которые могут распространиться среди населения.
3. Задачи врача в таких экстремальных ситуациях.
4. Определите экстренные и стационарные методы обработки питьевой воды.

Задача 2.
1. Перечислите противоэпидемические и профилактические мероприятия, направленные на предотвращение возможных инфекций, связанных с резким ухудшением качества воды, пищевых продуктов, жилища и почвы.
2. Перечислите основные профилактические мероприятия, направленные на уменьшение потерь среди местного населения.

6.2. Гигиенические вопросы размещения людей при чрезвычайных ситуациях

Гигиенические требования к условиям размещения людей при чрезвычайных ситуациях наиболее хорошо разработаны применительно к размещению личного состава армии, поэтому наиболее целесообразно изучать эти вопросы на примере решения их в войсках.

Цель занятия: ознакомить студентов с гигиеническими требованиями при размещении людей при чрезвычайных ситуациях в стационарных и полевых условиях. Дать представление о табельных и подручных средствах при размещении людей в полевых условиях.

Практические навыки: научить студентов давать комплексную оценку состояния воздушной среды в помещениях при размещении людей и производить расчеты воздухоснабжения помещений.
Задание студентам:
1. Ознакомиться с гигиеническими правилами и нормами при размещении личного состава армии в стационарных и полевых условиях (по настоящему руководству).
2. Решить ситуационные задачи по оценке среды обитания личного состава армии и дать рекомендации по улучшению микроклимата этих помещений.
3. Произвести расчеты воздушоснабжения герметизированных помещений (убежища) различного назначения.

Значительная часть жизни и деятельности личного состава ВВС сопряжена с пребыванием в условиях замкнутого пространства (в помещениях), от которых в значительной степени зависят самочувствие, работоспособность и состояние здоровья военнослужащих.

Личный состав армии может размещаться в стационарных и в полевых условиях.

В стационарных условиях размещение производится в военных городах, планировка и застройка которых производится в соответствии с определенной схемой (рис. 37).

Основными помещениями, служащими для размещения рядового и сержантского состава, являются казармы, расположенные в казарменно-учебной зоне. Офицерский состав размещается в домах квартирного типа (или офицерских гостиницах), расположенных в жилой зоне города.

Рис. 37. Схема планировки военного городка.

В казармах личный состав размещается поротно. Каждая рота (эскадрилья) имеет определенный стандартный набор помещений: спальную комнату (4 м² на каждого солдата при однорярусном расположении коек и 2,5 м² – при двухъярусном), ленинскую комнату
(класс), комнату для хранения и чистки оружия, кладовую для хранения личных вещей солдат, ротную канцелярию, комнату для чистки одежды и обуви (она же курительная), санитарный узел (проходная умывальная и за проходной туалет), бытовую комнату, сушилку (для сушки обмундирования и обуви).

При размещении в полевых условиях планировку лагеря производят по линейной системе: вся территория лагеря разделяется на прямоугольные участки продольными и поперечными линейками (пешеходными дорожками) (рис. 38).

Для размещения личного состава армии в полевых условиях могут быть использованы табельные и подручные средства. К табельным средствам относятся палатки (лагерная, УСТ, УСБ, УЛ, УЗ), утепленные домики — автоприцепы, утепленные разборные щитовые домики.

Из подручных средств можно соорудить заслоны, шалаш, землянки, снежные норы, ледяные дома и др.

К специальным средствам для размещения личного состава армии следует отнести герметизированные убежища, которые могут быть использованы как в стационарных, так и в полевых условиях (в обороне).

Учебные поля

<table>
<thead>
<tr>
<th>Передняя линейка</th>
<th>Жилая зона</th>
<th>Жилая зона</th>
</tr>
</thead>
<tbody>
<tr>
<td>Средняя линейка</td>
<td>Зона общественных помещений</td>
<td>Зона общественных помещений</td>
</tr>
<tr>
<td>Задняя линейка</td>
<td>Зона подсобных помещений</td>
<td>Зона подсобных помещений</td>
</tr>
<tr>
<td></td>
<td>Тыловая дорога</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 38. Планировка военного лагеря.

Воздушная среда в помещениях характеризуется, прежде всего, микроклиматическими условиями, которые складываются из сочетания метеорологических факторов (температуры, влажности, скорости движения воздуха), а также загрязнения воздуха продуктами
жизнедеятельности человеческого организма и другими вредными веществами, поступающими в помещение в результате служебной деятельности военнослужащих.

Самочувствие и работоспособность людей в значительной степени зависят от величины атмосферного давления и особенно от величины и скорости изменения его. Особенно остро ощущаются человеком резкие колебания атмосферного давления. Даже у здоровых людей при этом возникают некоторые нарушения самочувствия и настроения, а у больных эти изменения ощутимы в значительно более тяжелой степени.

Особенно большим колебаниям атмосферного давления подвергается летный состав ВВС при подъемах на большие высоты, а также при разгерметизации кабины самолета, во время которых могут произойти декомпрессионные расстройства различного рода (высотный летометризм, высотная декомпрессионная болезнь, аэродинамические повреждения барабанной перепонки, легких, кишечника и т.д.). Однако даже при отсутствии резких расстройств состояния здоровья у летчиков изменения барометрического давления могут привести к ухудшению самочувствия и настроения летчиков, что может в значительной степени повлиять на качество выполнения боевого задания (у летчика может снизиться скорость реакции, координация движений и т.д.). Поэтому в войсках ВВС контроль за величиной атмосферного давления приобретает особо важное значение. Например, при подъеме самолета до 6 км скорость изменения давления в кабине не должна превышать 1,6 мм рт.ст./с, а до 13 км – 2,1 мм рт.ст./с. Регламентируется также и абсолютная величина атмосферного давления в кабинах самолетов в зависимости от высоты полета. Кроме того, в условиях пониженного атмосферного давления может наступить личный состав армии, размещенный в высокогорной местности, резким перепадам атмосферного давления подвергаются также водолазы и военнослужащие, проводящие работы в кессонах.

Существенным образом сказывается на самочувствии человека и температура окружающего воздуха.

В силу боевых и учебных обстоятельств военнослужащие наиболее часто подвергаются воздействию низких или высоких температур, что может привести к переохлаждению или перегреванию их. Кроме того, всякое отклонение температуры воздуха от комфортной приводит к напряжению терморегуляционных механизмов в организме, в результате чего может произойти изменение функциональных способностей его.
Особенно важно соблюдение комфортных температурных условий для летного состава ВВС, от самочувствия которого часто зависит исход выполняемых заданий.

В помещениях имеют значение не только средние значения температуры воздуха, но и перепады её по горизонтали и вертикали, а также суточные колебания.

Согласно гигиеническим нормативам, средняя температура воздуха в спальных комнатах казарм, а также в служебных и учебных помещениях (ленинских комнатах, классах) должна поддерживаться на уровне 18-20°C. Изменения её по горизонтали (от наружной стены до внутренней) не должны превышать 2°C, по вертикали – 2,5°C на каждый метр высоты. В течение суток колебания температуры при центральном отоплении не должны превышать 3°C, при местном – 6°C.

В кабинах самолетов температура воздуха поддерживается на заданном уровне (20-22°C) автоматически. Перепады её в вертикальном направлении не должны превышать 3°C, в горизонтальном – 6°C.

Оптимальный температурный режим в помещениях обеспечивается путем создания соответствующих систем отопления и теплоизоляции, а в кабинах самолетов – за счет подачи теплого воздуха от компрессоров.

Большое значение для терморегуляции организма имеет также влажность воздуха. Высокая насыщенность воздуха водяными парами в сочетании с высокой температурой способствует снижению теплоотдачи (в результате затруднения испарения), в сочетании с низкой – способствует увеличению теплоотдачи (путем лучшего проведения тепла). Степень влажности воздуха имеет значение также при образовании сырости. При высокой влажности водяные пары из воздуха конденсируются на поверхностях, имеющих температуру на 6°C и более ниже температуры воздуха. Сухой воздух более благоприятен для терморегуляции организма, однако при слишком низкой влажности происходит высыхание слизистых оболочек дыхательных путей, что неблагоприятно сказывается на их функциональном состоянии.

Высокая степень влажности воздуха может иметь место в оборонительных сооружениях (окопах, траншеях, блиндажах), а также в плохо вентилируемых помещениях для размещения личного состава войск (землянки, убежища и др.). Определение влажности воздуха в этих случаях имеет большое гигиеническое значение.
Для характеристики влажности воздуха существуют следующие понятия: абсолютная, максимальная и относительная влажность, дефицит насыщения и точка росы.

Абсолютная влажность — количество водяных паров (в граммах), содержащееся в данное время в 1 м³ воздуха.

Максимальная влажность — количество водяных паров (в граммах), которое содержится в 1 м³ воздуха в момент насыщения.

Относительная влажность — отношение абсолютной влажности к максимальной, выраженное в процентах.

Дефицитом насыщения называется разность между максимальной и абсолютной влажностью.

Точка росы — это температура, при которой величина абсолютной влажности равна максимальной (при этой температуре начинается конденсация водяных паров).

При оценке влажности воздуха с гигиенической точки зрения наибольшее значение имеет величина относительной влажности. Оптимальная величина относительной влажности воздуха в помещениях равна 40-60%, допустимая — 30-70%.

Движение воздуха имеет значение для перемешивания его и создания более равномерных условий воздушной среды (температуры, влажности, различных примесей), а также для терморегуляции организма и вентиляции помещений. Как правило, увеличение скорости движения воздуха способствует теплоотдаче с поверхности тела человека (путем проведения и испарения) и усилению воздухообмена в помещении. Особое значение приобретает вентиляция при скоплении в помещениях большого количества людей (казармы, клубы), а также в помещениях с резко ограниченным объемом или герметизированных (танки, блиндажи, убежища, кабины самолетов).

В таких случаях определение скорости движения воздуха в вентиляционных отверстиях (каналах) имеет большое значение для расчетов интенсивности вентиляции помещений.

Оптимальной велличной скорости движения воздуха в помещениях считается 0,2-0,4 м/с.

Гигиеническое значение микроклиматических показателей заключается, главным образом, в их влиянии на теплое равновесие организма. Отдача тепла организмом в обычных условиях происходит в основном за счет теплоизлучения, теплопроведения и испарения пота с поверхности кожи. Высокая температура воздуха в сочетании с повышенной относительной влажностью затрудняет отдачу тепла путем проведения и испарения, вследствие чего может произойти перегревание организма. При низкой температуре высо-
кая влажность воздуха (сырост), наоборот, способствует охлаждению организма, так как при этом увеличивается отдача тепла путем проведения (вода имеет значительно большую по сравнению с воздухом теплопроводность и теплоемкость). Увеличение скорости движения воздуха, как правило, способствует теплоотдаче за счет проводения и испарения, за исключением случаев, когда воздух насыщен водяными парами и имеет температуру выше температуры человека. При гигиенической оценке влияния факторов микроклимата на организм человека необходимо учитывать весь комплекс физических свойств воздуха.

При длительном пребывании личного состава в помещениях в воздухе накапливаются продукты жизнедеятельности организма, резко ухудшающие гигиенические свойства воздуха (увеличивается концентрация углекислоты, продуктов разложения кожного жира и пота, количество пыли и микроорганизмов, снижается количество кислорода и т.д.) При этом у людей, пребывающих в атмосфере такого душного ("жилого") воздуха, ухудшается самочувствие, снижается умственная и физическая работоспособность, ухудшаются координация движений и скорость реакции, что в условиях боевых действий, особенно в авиации, имеет очень большое значение.

Микроклиматические условия и загрязнение воздуха являются одними из основных факторов, определяющих обитаемость тех или иных помещений (объектов).

С изменением свойств воздуха связана возможность и длительность пребывания людей в помещениях с резко ограниченным объемом и вентиляцией (герметизированные убежища, подводные лодки, кабины самолетов и космических кораблей), а также в сооружениях с возможным значительным загрязнением воздушной среды, происходящим в результате боевых действий (интенсивной стрельбы из орудий и пулеметов, работы двигателей внутреннего сгорания и др.): в блиндажах, других оборонительных сооружениях, танках, бронемашинах, самолетах и т.д.

В связи с этим большое значение приобретает определение микроклиматических условий пребывания людей в данном помещении, а также расчеты необходимой вентиляции и воздухоснабжения.

Основным критерием для оценки степени загрязнения воздуха в помещении и расчетов вентиляции является концентрация углекислоты в воздухе.

Количество углекислоты (CO₂) в воздухе помещений увеличивается в результате дыхания находящихся там людей, а также при процессах горения, брожения, гниения. При обычных условиях в
жилых и общественных помещениях концентрация СО₂, как правило, не превышает 0,1%. Эта величина и принята за предельно допустимую. Однако в герметизированных помещениях (герметизированных убежищах, подводных лодках, космических кораблях) во время пребывания там людей концентрация СО₂ довольно быстро могут достигнуть величин, опасных для жизни людей (порядка 5-10% и более). Нарушение самочувствия, работоспособности и других физиологических процессов в организме происходит и при более низких значениях содержания СО₂. Поэтому предельно допустимые концентрации этого газа для герметизированных помещений установлены в пределах 0,5-3,0% в зависимости от типа и назначения помещений (табл. 90).

Таблица 90

Предельно допустимые концентрации углекислоты в воздухе герметизированных убежищ, %

<table>
<thead>
<tr>
<th>Тип убежища</th>
<th>Режим воздухоснабжения</th>
<th>Вентиляция</th>
<th>Полная изоляция</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общевойсковые</td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Специальные</td>
<td></td>
<td>0,5</td>
<td>2</td>
</tr>
</tbody>
</table>

Примечание: к специальным относятся убежища, предназначенные для размещения штабов, командных пунктов, узлов связи, медицинских учреждений и др.

Вентирируемые убежища оснащены специальными фильтрационно-вентиляционными установками (ФВУ), при использовании которых необходимо производить расчеты интенсивности вентиляции и кратности воздухообмена в помещениях. В полноту изолированных от внешней среды помещениях (без вентиляции) люди могут находиться лишь в течение определенного времени, пока концентрации углекислоты в воздухе не достигнут указанных в табл. 89 предельных величин. В таких случаях следует рассчитывать время пребывания людей в помещениях в зависимости от их количества и объема помещения.

В случае необходимости продления срока пребывания людей в герметизированных помещениях без вентиляции может быть произведена регенерация воздуха в них путем использования химических реагентов, поглощающих углекислоту и влагу из воздуха и выделяющих кислород (поглотители ХПИ, регенераторы на основе Na₂O₂ и др.). Обогащение воздуха этих помещений кислородом
чаще производится из баллонов с кислородом (один стандартный баллон с кислородом обеспечивает дыхание около 120 чел. в час).

Самостоятельная работа студентов:
1. Гигиеническая оценка среды обитания людей в различных помещениях (производится с использованием данных по оценке микроклимата помещений).
2. Расчет воздухоснабжения герметизированных помещений.

Определение кратности воздухообмена в помещении

Определив скорость движения воздуха анемометром в вентиляционном отверстии, можно вычислить кратность воздухообмена в помещении.

Кратность воздухообмена — это частное от деления количества поступающего за час воздуха на кубатуре помещения. Количества поступающего воздуха за час определяют путем умножения площади вентиляционного отверстия (а) на скорость движения воздуха (в) и время проветривания (с).

\[K = \frac{(a \cdot b \cdot c)}{V} \] \hspace{1cm} (1)

где \(K \) — кратность воздухообмена;
\(a \) — площадь вентиляционного отверстия, м²;
\(b \) — скорость движения воздуха, м/с;
\(c \) — время проветривания, с;
\(V \) — объем помещения, м³.

Для оценки полученной кратности воздухообмена определяют объем вентиляции, необходимой для данного помещения. Этот объем зависит от количества людей в помещении и рассчитывается с учетом максимально допустимого содержания углекислоты в воздухе.

Расчет объема необходимой вентиляции и кратности воздухообмена по углекислote производят по формуле:

\[L = \frac{k \cdot n}{P - P_i} \] \hspace{1cm} (2)

где \(L \) — объем вентиляции, м³/ч;
\(k \) — количество углекислоты, выдыхаемое одним человеком в час (24 л);
\(n \) — количество людей в помещении;
\(P \) — максимально допустимое содержание углекислоты в помещении (в жилых и общественных помещениях — 1,0 л/м³, что соответствует 0,1%, в герметизированных помещениях — 5-30 л/м³; 0,5-3,0%; см.табл.1);

\(P_t \) — содержание углекислоты в атмосферном воздухе (0,4 л/м³), что соответствует 0,04%.

При делении полученного объема вентиляции на кубатуру данного помещения определяют необходимую для данного помещения кратность воздухообмена в час.

Пример 1. В общевойсковом убежище с кубатурой 60 м³, где находится 10 чел., производится вентиляция со скоростью движения воздуха в вентиляционном канале 1 м/с. Площадь вентиляционного отверстия 0,05 м². Дать оценку вентиляции помещения.

За 1 с в комнату поступает 1·0,05 м³ воздуха, а за 1 час — 180 м³ (0,05·3600=180). Кратность воздухообмена равна 180 м³ : 60 м³ = 3 раза/ч; (формула 1).

Необходимый объем вентиляции рассчитывается по формуле 2:

\[L = \frac{24 \cdot 10}{10 - 0,4} = 400 \text{ м}^3/ч \]

Необходимая кратность воздухообмена составляет:

400 м³ : 60 м³ = 6,7 раз/ч.

Следовательно, в данном помещении интенсивность вентиляции необходимо увеличить в 2,2 раза (6,7:3=2,2).

Время пребывания людей в помещениях, находящихся на режиме полной изоляции, рассчитывают по формуле:

\[T = \frac{(V \cdot B \cdot 10)}{\Pi \cdot K} \] \hspace{1cm} (3)

где \(T \) — допустимое время пребывания людей в помещении, ч;
\(V \) — объем помещения, м³;
\(B \) — допустимая концентрация CO₂ в воздухе (определяется по табл.1);
10 — коэффициент для перевода процентного содержания углекислоты в литры на 1 м³ воздуха;
\(\Pi \) — количество людей в помещении;
\(K \) — количество углекислоты, выдыхаемое одним человеком в час, л (24 л).
Пример 2. В герметизированном убежище объемом 100 м³, находящемся на режиме полной изоляции, размещен узел связи, в котором работают 5 чел. Сколько времени смогут они работать в таких условиях?
По формуле (3) находим:

\[T = \frac{100 \cdot 2 \cdot 10}{5 \cdot 24} = 17 \text{ч} \]

6.3. Гигиена водоснабжения организованных коллективов в экстремальных условиях

Цель занятия: 1. Ознакомить студентов с вопросами санитарно-гигиенического контроля за организацией водоснабжения в экстремальных условиях в мирное время и в случаях преднамеренного загрязнения воды биологическими средствами.
2. Обучить методам улучшения качества воды табельными и подручными средствами в полевых условиях.
Практические навыки: осуществление обработки питьевой воды в полевых условиях.
Задание студентам:
1. Определить содержание активного хлора в хлорной извести.
2. Произвести гиперхлорирование воды и осветление её методом коагуляции.
3. Определить дозу тиосульфата натрия для дехлорирования воды.
4. Решить задачи по обеззараживанию воды в шахтных колодцах с помощью дозирующих патронов.

6.3.1. Особенности водоснабжения в экстремальных условиях

Обеспечение больших групп людей доброкачественной водой и в достаточном количестве является важным условием их жизнеобеспечения, особенно в полосе жаркого климата. Разрушение водоисточников при землетрясениях, взрывах, авариях на станциях водоснабжения и употребление недоброкачественной воды приводит к эпидемиям. Концентрация большого количества людей на небольшой территории вызывает сильное загрязнение почвы и воды нечистотами, микроорганизмами, в том числе и патогенными, а также химическими веществами.
Кроме естественного загрязнения воды, особенно при ведении военных действий, можно ожидать намеренного заражения воды бактериальными средствами (БС), отравляющими веществами (ОВ) и радиоактивными веществами (РВ), что ещё больше усложнит водоснабжение.

Наиболее вероятно применение бактериологического оружия именно для заражения воды, при этом возможно заражение её такими микроорганизмами, которые не характерны для водных инфекций — возбудителями чумы, натуральной оспы, сибирской язвы, туляремии, Ку-лихорадки, токсина ботулизма, возбудителей губоких микозов — кокцидиофедоза и меллиофедоза.

Бактериальные средства могут быть применены самостоятельно или в сочетании с отравляющими веществами (V-газы, иприт, зорин, зоман и др.), или с радиоактивными веществами, попадающими в водоисточники во время аварии, или при ядерном взрыве, или при вымывании радиоактивных веществ с заражённых территорий. Степень заражения воды бактериологическими средствами может достигать более чем 100 000 – 1 000 000 в 1 л, (10^5-10^6 микробных клеток в 1 л воды). Проведение бактериологического контроля за обеззараживанием воды в полевых условиях затруднено и требует длительного исследования — 1-3 суток.

Распространённый метод определения коли-индекса в условиях намеренного заражения воды бактериальными средствами теряет своё значение. Обеззараживание воды нормальными дозами в этих условиях неэффективно. Средства и методы обеззараживания воды от бактериальных средств должны гарантировать безопасность воды в наиболее жестких условиях, т.е. при заражении её самыми стойкими агентами — бактериальными спорами.

6.3.2. Пункты водоснабжения

Снабжение питьевой водой осуществляется только через пункт водоснабжения. Пунктом водоснабжения называется место, где производят добычу, очистку, хранение и выдачу воды.

При выборе места для развертывания пункта водоснабжения учитывают санитарно-эпидемиологическое состояние территории, возможность заражения воды бактериальными средствами и степень загрязнения её отравляющими веществами и радиоактивными веществами.

Для защиты источника водоснабжения от возможного загрязнения и заражения в радиусе 50-100 м от пункта создается зона санитарной охраны, где запрещается свалка мусора, устройство
отхожих мест и выгребных ям, место для рабочей площадки выбирают в 25-30 м от места забора воды. Загрязненная вода отводится в водосборные колодцы.

В состав пункта водоснабжения входит рабочая площадка, разделенная на "чистую" и "грязную" половины.

На "грязной" половине размещают водоочистные установки, запас химических реагентов и резервуары для обработки воды.

На "чистой" половине устанавливают емкости для хранения чистой воды и организуют место выдачи чистой воды в вымытые и обеззараженные емкости (цистерны), в которых воду доставляют в подразделения.

В состав пункта водоснабжения входят таромоечная площадка для мытья цистерн, резервуаров и фляжек, а также полевая лаборатория для проведения контроля за качеством воды. Определение ОВ и РВ осуществляется на месте, а для бактериологического контроля отбирают 2 пробы по 1 л и направляют на исследование в микробиологическую лабораторию.

6.3.3. Количество нормы водопотребления

Потребность в воде зависит от характера работы или военных и климатических условий. Отсутствие воды человеком переносится более тяжело, чем отсутствие пищи. Если голод человек может переносить в течение от 40 до 60 дней, то лишение воды — не более 10-12 дней. Физиологические потребности человека в воде составляют примерно 3 л в сутки, при тяжелой работе — 5-6 л, а в особо трудных условиях — до 10-12 л. Минимальная норма для питания (2,5 л в средней полосе, 4 л в условиях жаркого климата) вводится только в исключительных случаях в пустынях, маловодных местностях и при массовом заражении источников водоснабжения. При усиленной работе обеспечение водой по минимальной норме допускается в умеренном пояса не более 5 суток, а в жарком — не более 3 суток.

На медицинскую службу возложена ответственность за водопотреблением. Минимальные нормы потребления воды при первой же возможности должны быть увеличены.
Нормы полевого водоснабжения

<table>
<thead>
<tr>
<th>Условия водопотребления</th>
<th>Количество на 1 человека в л/сутки</th>
<th>Чай и запас в флягах</th>
<th>Приготовление пищи</th>
<th>Мытье индивидуальной посуды</th>
<th>Умывание</th>
</tr>
</thead>
<tbody>
<tr>
<td>В умеренном и холодном климате</td>
<td>10</td>
<td>2,5</td>
<td>3,5</td>
<td>1,5</td>
<td>3,0</td>
</tr>
<tr>
<td>В жарком климате</td>
<td>15</td>
<td>4,0</td>
<td>3,8</td>
<td>1,2</td>
<td>6,0</td>
</tr>
<tr>
<td>В тяжелых условиях водоснабжения в умеренном и холодном климате на срок не более 5 суток</td>
<td>2,5</td>
<td>2,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>То же в жарком климате на срок не более 3 суток</td>
<td>4,0</td>
<td>4,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

6.3.4. Требования к качеству питьевой воды в полевых условиях

В полевых условиях вода должна быть такого качества, чтобы употребление её в течение времени, определяемого реальной боевой обстановкой, не вызывало снижения боеспособности военнослужащих.

Способы обеззараживания воды в полевых условиях должны обеспечивать безопасность воды по основным критериям:

1. Безопасность воды в эпидемиологическом отношении — полное уничтожение патогенных микроорганизмов и их токсинов.

2. Безвредность воды по химическому составу. Предельно допустимые концентрации химических веществ, нормируемых по токсикологическому признаку, должны соответствовать СанПиН 2.1.4.559-96 "Вода питьевая". Остаточное содержание ОВ не должно превышать установленных ПДК:
 - V-газы — 0,005 мг/л
 - зоман — 0,05 мг/л
 - зарин — 0,1 мг/л
 - иприт — 2,0 мг/л

379
Остаточное содержание РВ: минимальная предельно допустимая концентрация, равная 3×10^{-11} Кн/л, определена для тория-232, а максимальная — для технеция-96, равная 10^{-5} Кн/л. ПДК остальных 241 изотопов располагаются между этими величинами.

3. Вода должна иметь благоприятные органолептические свойства, однако для полевых условий военного времени допускается употребление воды, имеющей общее содержание солей до 1500 мг/л, с содержанием сульфатов — до 1000 мг/л, имеющей цветность до 40°, прозрачность — до 30 см, запах и привкус — до 3 баллов.

Допускается использование воды с остаточным хлором до 2 мг/л и для разового употребления — до 10 мг/л.

6.3.5. Гигиеническая экспертиза воды в полевых условиях

Цель экспертизы — выдача разрешения на употребление воды.

Особо важное значение приобретает экспертиза при подозрении на предполагаемое заражение воды био (бактериальными средствами), ОВ (отправляющими веществами) и РВ (radioактивными веществами).

В экспертизе принимают участие бактериолог, вирусолог, эпидемиолог, токсиколог, химик, инженер-радиометрист, радиолог, гигиенист и др. При проведении гигиенической экспертизы специалист медицинской службы руководствуется допустимыми концентрациями токсических и радиоактивных веществ в воде, используемой личным составом.

Гигиеническая экспертиза проводится в 4 этапа:
1) исследование на месте;
2) отбор проб;
3) лабораторное исследование;
4) составление экспертного заключения.

При обнаружении патогенных микроорганизмов или вирусов пробы воды направляют в вирусологическую или бактериологическую лабораторию для проведения анализов по полной схеме.

Санитарные исследования химического состава и физических свойств могут проводиться с использованием гигиенической лаборатории (ЛГ), имеющейся в СПЭВ МСБ.

Для санитарно-токсикологической экспертизы применяют прибор химической разведки ПХР-МВ, представляющий собой металлический ящик с откидывающейся крышкой. В комплекте прибора имеются индикаторные трубки и ампульный набор реактивов для определения ОВ. Для измерения радиоактивного заражения воды
применяют полевой дозиметрический прибор рентгенометр-радиометр ДП-5а.

6.3.6. Табельные средства очистки и обеззараживания воды в полевых условиях

В экстремальных условиях для очистки и обеззараживания воды, как правило, используют табельные (штатные) средства армии.

При выборе водоисточников предпочтение отдается подземным водам, для чего в распоряжении начальника инженерной службы имеются табельные технические средства подъема воды путем устройства скважин глубиной 7-15 м (мелкий трубчатый колодец МТК-2м – скважина вручную 7 м и механизированный шнековый колодец МШК-15 – скважина вручную 15 м). Погружной насос КПП-5 позволяет пробурить скважину до 45 м и проводить подъем воды с указанной глубины.

В случае отсутствия пресной воды в арсенал табельных средств входят опреснительные установки – ПОУ-4 (передвижная опреснительная установка) и передвижная опреснительная станция ОПС. Установка ПОУ смонтирована на шасси автомобиля ЗИЛ и состоит из теплообменных испарителей и насосно-компенсаторной группы, коммуникаций и аппаратуры.

Станция ОПС смонтирована на шасси КРАЗ и имеет передвижную электростанцию. Следует отметить, что при опреснении воды происходит удаление из воды большинства радиоактивных веществ.

При использовании воды поверхностных водоисточников предусмотрены следующие табельные средства очистки и обеззараживания воды: МАФС-3 (модернизированная автомобильная фильтровальная станция, производительность станции 7-8 м³/ч); ВФС-2,5 (войсковая фильтровальная станция, производительность – 2,5 м³/ч); ТУФ-200 (тканево-угольный фильтр, производительность 200 л/ч) и другие.

Все табельные средства предназначены для очистки и обеззараживания воды как от естественных загрязнений, так и от преднамеренно внесенных в воду бактериологических средств (БС), отравляющих (ОВ) и радиоактивных веществ (РВ).

МАФС-3 смонтирована на шасси автомобиля ЗИЛ и двухосном прицепе. Станцию развертывают на рабочей площадке пункта водоснабжения при удалении от источника не более 50 м. Работает станция МАФС-3 в периодическом режиме, т.е. химические реаген-
ты-коагулянты и хлорсодержащие препараты периодически вносят в открытые резервуары одновременно с заполнением их исходной водой из открытого водоисточника.

В качестве коагулянта применяют сернокислый глинозем AL₂(SO₄)₃, хлорное железо FeCl₃ и др. Табельные хлорсодержащие реагенты — двутретьосновная соль гипохлорита кальция (DTCTK) и нейтральный гипохлорит кальция — НТК. В основу обеззараживания табельными средствами положен метод гиперхлорирования.

Воду в резервуарах выдерживают с целью осветления и обеззараживания летом в течение 0,5-1 часа, а зимой от 2 до 5 часов. По истечении требуемого по режиму времени воду подают на ско́рый фильтр с антрацитовой крошкой для осветления, а затем через фильтры с БАУ (березовым активированным углем) для дехлорирования. Очищенную и обеззараженную воду собирают в чистые резервуары, размещенные на чистой половине пункта водоснабже́ния.

В случае отсутствия в воде остаточного хлора и при длительном её хранении в неё дополнительно вносят 0,8-1,2 мг/л активно́го хлора.

ВФС-2,5 смонтирована на шасси автомобиля ЗИЛ и работает в непрерывном режиме обработки воды. С этой целью на шасси автомобиля установлен резервуар (осветитель) — емкость на 1 м³ воды. Вода из поверхностного водоема поступает в указанный осветитель вместе с непрерывно дозируемыми реагентами (AL₂(SO₄)₃ и DTCTK и др.). В осветителе происходит предварительное осветление и обеззараживание воды с последующей дочистой путем фильтрации через фильтр с антрацитовой крошкой и обеззараживание её ультрафиолетовыми лучами. Дехлорирование проводят фильтрованием через березовый активированный уголь или карбоферрогель-М.

6.3.7. Обеззараживание индивидуальных запасов воды

В мелких подразделениях и группах, выполняющих индивидуальные задачи, обезвреживание воды обеспечивается силами личного состава или каждым военнослужащим в отдельности. Для обеззараживания и улучшения качества индивидуальных и групповых запасов воды применяются табельные и, в зависимости от обстановки, те или иные подручные средства.
В качестве таблетных средств для обеззараживания индивидуальных запасов воды имеются таблетки "Пантоцид". В последние годы приняты таблетки "Аквасепт".

Пантоцид — препарат из группы органических хлораминов, растворимость 15-30 минут, выделяет 3 мг активного хлора. Практически вода пригодна для питья через 30 минут или 1 часа после внесения 1-2 таблеток.

Аквасепт — таблетка, изготовленная на основе дихлоризоциануровой кислоты, растворяется в течение 2-3 минут, выделяет 4 мг активного хлора, что достаточно для обеззараживания 1 л воды от возбудителей кишечных инфекций. Для инактивации вирусов необходимо внести 2 таблетки на 1 л воды при экспозиции 30 минут. Для гиперхлорирования вносят 3-4 таблетки на 1 флягу (750 мл) воды. Через 30-60 минут воду дехлорируют гипосульфитом натрия.

Подручные средства обеззараживания воды

Кроме табельных инженерных средств армии в полевых условиях можно использовать для очистки воды так называемые подручные средства — это технические средства продовольственной службы, отдельные реагенты химической и медицинской службы. Во время Великой Отечественной войны часто использовали самодельные фильтры из бочки, металлического бака или ебтого ящика.

В тех случаях, когда исключается возможность заражения воды бактериальными средствами, а также при отсутствии табельных средств воду можно обеззараживать непосредственно в колоде. Для этого нужно вначале обеззаразить рубец холодца. Колодец и окружающий участок местности очищают и проводят дезинфекцию рубца холодца 3% осветленным раствором хлорной извести (300 г хлорной извести на ведро воды перемешивают и после отстаивания сливают осветленный раствор) из расчета 300-500 мл на 1 м² рубца. Для обеззараживания подводной части рубца в колодец заливают раствор хлорной извести, приготовленной из расчета 1 кг на 1 м³ воды, закрывают крышкой и оставляют на 6-8 часов. Брать воду из колодца в это время нельзя. Через 6-8 часов воду откачивают до тех пор, пока не исчезнет запах хлора. После этого можно проводить обеззараживание воды в колоде, используя как метод хлорирования нормальными дозами, так и метод гиперхлорирования.

В настоящее время в сельском водоснабжении для хлорирования воды в колодах применяют дозирующие керамические патроны, которые обеспечивают непрерывное хлорирование воды по мере её поступления в колодец из водоносных горизонтов.
Керамические дозирующие патроны выпускаются цилиндрической формы емкостью 250, 500 и 1000 см³. Для обеззараживания патроны заполняют сухим хлорсодержащим реагентом (хлорная известь, ДТСГК, НГК).

Для обеззараживания **индивидуальных запасов** воды при отсутствии таблеток могут применяться подручные средства из аптечки или индивидуального химического пакета: 5% настойка йода, 3% раствор перекиси водорода, перманганат калия и др. Настойку йода и раствор перекиси водорода вносят из расчета 10-20 мг/л активнодействующего вещества.

Самостоятельная работа студентов

Определение содержания активного хлора в хлорной извести. Для определения содержания активного хлора в хлорной извести студент получает 1% осветленный раствор хлорной извести в пробирке. Определение активного хлора в хлорной извести в полевых условиях производят капельным способом. В стакан (колбу) наливают 100 мл дистилированной воды, добавляют 0,4 мг приготовленного 1% раствора хлорной извести, подкисляют 1 мл разбавленной соляной кислоты (1:5), добавляют 1 мл 5% йодида калия и 1 мл 1% свежеприготовленного раствора крахмала. Перемешивают и титруют по каплям из специально подобранной пипетки (1 мл которой соответствует 25 каплям) 0,7% раствором тиосульфата натрия до обесцвечивания. Повторное посинение через некоторое время после обесцвечивания значения не имеет. Содержание активного хлора в хлорной извести в процентах равно количеству капель тиосульфата натрия, расходованного на титрование (1 капля 0,7% тиосульфата натрия связывает 0,04 мг хлора, что составляет сотую часть взятого для определения количества хлорной извести ~ 4 мг, т.е. 1%).

Гиперхлорирование и коагуляция воды. 2 мл 10% раствора сернокислого алюминия выливают в колбу, содержащую 1 л воды повышенной мутности, перемешивают и вносят 20-30 мг активного хлора, используя для этого 1% раствор хлорной извести (или 0,5% раствор нейтрального гипохлорита кальция).

Пример расчета: Допустим, что для гиперхлорирования воды выбрана доза хлора 20 мг/л, так как вода имеет признаки значительного загрязнения. Хлорная известь, как было ранее определено, содержит 25% активного хлора. Зная, что в 100 мг данной хлорной извести содержится 25 мг активного хлора, легко рассчи-
тать, в каком количестве известит будет содержаться выбранная до-
за в 20 мг:

В 100 мг хлорной извести

\[
X = \frac{20 \cdot 100}{25} = 80 \text{ мг}
\]

Для обеззараживания 1 л воды потребуется, таким образом, внести 80 мг сухой хлорной извести. Так как мы применяем для хлорирования 1% раствор, то в 1 мл раствора содержится 10 мг хлорной извести. Рассчитываем, сколько мл 1% раствора следует внести для хлорирования 1 л воды:

В 1 мл 1% раствора

\[
X \text{ мл} = \frac{80 \cdot 1}{10} = 8 \text{ мл}
\]

т.е. для хлорирования 1 л воды следует внести 8 мл 1% рас-
твора хлорной извести.

Количество миллилитров в 1% раствора хлорной извести должно быть рассчитано с учетом ранее определенного в ней ак-
тивного хлора.

После внесения в воду активного хлора воду ещё раз переме-
шивают и оставляют для отстаивания и соблюдения времени обез-
зараживания на 30-40 минут.

Через указанный промежуток времени 100 мл отстоявшейся воды осторожно (не взбалтывая) сливуют в цилиндр и определяют количество тиосульфата натрия для дехлорирования воды.

Дехлорирование воды. Непосредственно после гиперхло-
рирования вода для питья не пригодна, так как содержит избыточ-
ное количество остаточного хлора, которое должно быть устранено путем дехлорирования. Дехлорирование воды проводится при со-
держании в воде более 0,5 мг/л остаточного хлора, что может быть обнаружено органолептически по выраженному запаху хлора.

Для определения количества тиосульфата натрия, необходимо-
го для дехлорирования, через 30 минут после внесения хлора отли-
вают в колбу 100 мл воды, добавляют 2,0 мл соляной кислоты
(1:5), 2 мл 5% раствора йодида калия, 1 мл 1% раствора крахмала
и титруют 1% раствором тиосульфата натрия до обесцвечивания.

Пример: Допустим, что на дехлорирование 100 мл воды пошло
0,5 мл 1% раствора тиосульфата натрия, которое содержит 5 мг
сухого тиосульфата натрия (1 мл 1% раствора содержит 10 мг вещества). Следовательно, потребное количество тиосульфата натрия для дехлорирования 1 л воды составит 50 мг.

Обеззараживание воды в колодце с помощью дозирующих патронов. При расчете количества препарата, необходимого для заполнения патрона, определяют:

- объем воды в колодце;
- дебит воды в колодце;
- количество разбираемой воды в сутки в м³;
- хлоропоглощаемость воды.

Количество хлора, выделяемого в течение часа дозирующими патронами, заполненными хлорной известью или ДТСГК, приведено в табл. 92.

<table>
<thead>
<tr>
<th>Название препарата</th>
<th>Содержание активного хлора в сухом препарате %</th>
<th>Емкость патрона, см³</th>
<th>Вместимость патрона в граммах вещества</th>
<th>Количество активного хлора, выделяемое патроном за 1 час мг/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>ДТСГК</td>
<td>52</td>
<td>1000</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>ДТСГК</td>
<td>52</td>
<td>500</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>ДТСГК</td>
<td>52</td>
<td>250</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Хлорная известь</td>
<td>25</td>
<td>1000</td>
<td>600</td>
<td>100</td>
</tr>
<tr>
<td>Хлорная известь</td>
<td>25</td>
<td>500</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>Хлорная известь</td>
<td>25</td>
<td>250</td>
<td>150</td>
<td>25</td>
</tr>
</tbody>
</table>

Для определения объема воды в колодце нужно умножить площадь зеркала воды на высоту столба воды, которую замеряют, опустив в колодец шест или веревку с грузом. По длине смоченного конца устанавливают высоту столба воды.

Расчет объема воды: глубина воды в колодце 3 м, а ширина каждой из сторон 1 м, следовательно, площадь зеркала воды составляет 3 м². Получим объем воды в колодце 3 м³.

Для определения дебита воды в колодце измеряют глубину водяного столба в колодце, затем быстро откачивают воду в течение определенного времени (например, 10 минут) и замечают время, в течение которого восстанавливается уровень воды до первоначального.

Дебит рассчитывается по формуле:
\[D = \frac{V_x \cdot 60}{T + T_i}, \]

где: \(V_x \) — объем выкачанной воды; \(D \) — дебит воды в колодце; \(60 \) — числовой коэффициент; \(T_i \) — время в минутах, за которое восстанавливается уровень воды в колодце; \(T \) — время, в течение которого откачивали воду.

Пример. За 10 минут откачали 18 ведер воды (180 л), за 20 минут уровень воды восстановился.

\[D = \frac{180 \cdot 60}{20 + 10} \text{ 360 л/ч} \]

Пример: при откачивании 18 ведер воды за 10 минут уровень воды в колодце не изменился

\[D = \frac{180 \cdot 60}{10} = 1080 \text{ л/ч} \]

Пользуясь полученными данными, рассчитывают необходимую для обеззараживания воды в колодце дозу ДТСГК по эмпирической формуле:

\[X = 0,07a + 0,086 + 0,02v + 0,14g, \]

где \(X \) — количество хлорного реагента (ДТСГК) для загрузки патрона, кг; \(a \) — объем воды в колодце, м³; \(b \) — дебит воды в колодце, м³/ч; \(v \) — водозабор в сутки, м³; \(g \) — хлорпоглощаемость, мг/л.

Пример: Объем воды в колодце 8 м³, дебит — 1,5 м³/ч, хлорпоглощаемость — 0,3 мг/л, водозабор — 15 м³/сутки.

Необходимая доза ДТСГК будет равна:

\[X = 0,07 \cdot 8 + 0,08 \cdot 1,5 + 0,02 \cdot 15 + 0,14 \cdot 0,3 = 1,022 \text{ кг} \]

\[X = 1,022 \text{ кг} \]

Необходимое количество ДТСГК для загрузки патрона составит 1,022 кг. При перерасчете на хлорную известь полученное количество увеличивается в 2 раза. Для хлорирования нормальными дозами патрон оставляют в колодце в течение 30-35 дней. Для хлорирования повышенными дозами количество загруженных патронов может быть увеличено в 2 и 3 раза.
6.4. Медицинский контроль за питанием организованных групп населения в особых условиях

Цель занятия: ознакомить студентов с организацией питания организованных групп населения на примере питания личного состава российской армии.

Практические навыки: обучить студентов составлять заключение об адекватности питания личного состава нормам довольствия и давать рекомендации по коррекции меню-раскладки.

Задание студентам:

1. Оценить питание солдат по представленной раскладке продуктов питания, выявив соответствие набора пищевых продуктов норме довольствия по общевойсковому пайку.

2. Оценить соответствие этого набора продуктов "Нормам физиологических потребностей в пищевых веществах и энергии", отнеся труд солдата к 4-й профессиональной группе по интенсивности труда.

3. Провести оценку общевойскового пайка с точки зрения требований к рациональному питанию.

В условиях воинской части организация питания личного состава и контроль за ним осуществляются командиром части, его заместителем по тылу, начальником медицинской службы, начальником продовольственной службы, начальником столовой, дежурным по части.

Командир части рассматривает и утверждает раскладку продуктов на неделю, контролирует полноту выдачи пищи и проверяет её качество ежедневно.

Заместитель командира части по тылу организует доброкачественное питание, контролирует доведение положенных норм до каждого военнослужащего.

Начальник продовольственной службы отвечает за обеспечение части продовольствием, за его хранение, за санитарное состояние складов, кухонь, столовых, средств транспортировки продуктов.

Начальник столовой непосредственно отвечает за своевременное и доброкачественное приготовление пищи, за санитарное состояние столовой, контролирует получение продуктов со склада и правильность их обработки, еженедельно представляет на медицинский осмотр лиц, постоянно работающих в столовых, буфетах, проделкахах, ведет журнал осмотра.
Дежурный по части совместно с дежурным медицинским работником перед каждой раздачей пищи проверяет её качество, а также санитарное состояние пищеблока, зала для приема пищи и всего оборудования и посуды. Если возникает сомнение относительно качества пищи или отмечается неудовлетворительное санитарное состояние пищеблока, дежурный по части немедленно докладывает об этом командиру части.

Начальник медицинской службы участвует в разработке режима питания, организует и осуществляет систематический контроль за качеством питания, условиями хранения и транспортировки пищевых продуктов, санитарным состоянием пищевых объектов, состоянием здоровья и личной гигиены персонала довольственной службы.

Гигиенический контроль за качественной и количественной адекватностью питания осуществляется в несколько этапов.

1. Питание личного состава российской армии организуется согласно соответствующему приказу Министра обороны "О продовольственном обеспечении военнослужащих Министерства обороны, Комитета государственной безопасности и Министерства внутренних дел Российской Федерации в мирное время". Этим постановлением утверждены и внедрены в действие нормы продовольственных пайков. Эти нормы суточного довольствия определены с учетом "Норм физиологических потребностей в пищевых веществах и энергии для различных групп населения", разработанных под руководством института питания РАМН.

В дифференцированных нормах довольствия учтены особенности военного труда, возраст военнослужащих, условия пребывания. Всего утверждено 6 основных норм довольствия: норма № 1 — общеевойской пакет, норма № 2 — летний пакет, норма № 3 — морской пакет, норма № 4 — подводный пакет, норма № 5 — лечебный пакет, норма № 6 — пакет для суворовцев, нахимовцев и воспитанников военно-музыкальных училищ.

Лица, занятые на работах с особо вредными условиями труда, имеют право на получение бесплатного лечебно-профилактического питания согласно норме № 7, где приведены 5 рационов.

Питание военнослужащих срочной службы сухопутных войск производится в соответствии с набором продуктов суточного довольствия по общевойсковому пайку (табл. 93). Нормы замены продуктов при выдаче продовольственных пайков утверждены этим же постановлением Министра обороны. Дополнительные пайки включены в примечания к основным нормам довольствия, унифицированные пайки и рационы питания.
Состав общевойскового пайка

Белки - 130,9 г (в том числе животные белки - 51,5 г)
Жиры - 99,5 г (в том числе растительные жиры - 30,1 г)
Углеводы - 589,6 г
Калорийность - 4780,1 ккал
Кальций - 651,8 мг
Фосфор - 2807,3 мг
Витамины: А - 0,41 мг; каротин - 4,43 мг; В₁ - 3,192 мг; В₂ - 1,428 мг; С - 107,85 мг

Таблица 93

Набор продуктов суточного довольствия по общевойсковому пайку

<table>
<thead>
<tr>
<th>Наименование продуктов</th>
<th>Количество в г на 1 человека в сутки</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Хлеб из муки ржаной или пшеничной обойной</td>
<td>350</td>
</tr>
<tr>
<td>2. Хлеб из муки пшеничной 1 сорта</td>
<td>400</td>
</tr>
<tr>
<td>3. Мука пшеничная 3 сорта</td>
<td>10</td>
</tr>
<tr>
<td>4. Крупа разная</td>
<td>120</td>
</tr>
<tr>
<td>5. Макаронные изделия</td>
<td>40</td>
</tr>
<tr>
<td>6. Мясо</td>
<td>200</td>
</tr>
<tr>
<td>7. Рыба, сельдь</td>
<td>120</td>
</tr>
<tr>
<td>8. Комбижир, сало, маргарин</td>
<td>20</td>
</tr>
<tr>
<td>9. Масло коровье</td>
<td>30</td>
</tr>
<tr>
<td>10. Молоко коровье</td>
<td>100</td>
</tr>
<tr>
<td>11. Масло растительное</td>
<td>20</td>
</tr>
<tr>
<td>12. Сахар</td>
<td>70</td>
</tr>
<tr>
<td>13. Чай</td>
<td>1,2</td>
</tr>
<tr>
<td>14. Сухой кисель или сухофрукты</td>
<td>30 / 20</td>
</tr>
<tr>
<td>15. Соль</td>
<td>20</td>
</tr>
<tr>
<td>16. Овощи:</td>
<td>900</td>
</tr>
<tr>
<td>- картофель</td>
<td>600</td>
</tr>
<tr>
<td>- капуста свежая или квашеная</td>
<td>130</td>
</tr>
<tr>
<td>- свекла</td>
<td>30</td>
</tr>
<tr>
<td>- морковь</td>
<td>50</td>
</tr>
<tr>
<td>- лук репчатый</td>
<td>50</td>
</tr>
<tr>
<td>- коренья, зелень, огурцы, помидоры</td>
<td>40</td>
</tr>
<tr>
<td>17. томат-паста</td>
<td>6</td>
</tr>
<tr>
<td>18. Лавровый лист</td>
<td>0,2</td>
</tr>
<tr>
<td>19. Перец</td>
<td>0,3</td>
</tr>
<tr>
<td>20. Уксус</td>
<td>2</td>
</tr>
<tr>
<td>21. Горчиčный порошок</td>
<td>0,3</td>
</tr>
<tr>
<td>22. Яйца (шт.)</td>
<td>4 шт. в неделю</td>
</tr>
<tr>
<td>23. Соки плодовые или ягодные</td>
<td>50</td>
</tr>
</tbody>
</table>

Гексавит с 15.04 по 15.06 - 1 драже в день
Раскладка продуктов составляется на недели начальником продовольственного снабжения совместно с начальником медицинской службы, начальником столовой и поваром-инструктором. Раскладка продуктов утверждается командиром части. По данному документу можно судить о количестве, ассортименте и биологической ценности продуктов, входящих в дневной рацион военнослужащих.

Обращается внимание на повторяемость блюд в течение недели. Недопустимо, чтобы одно блюдо повторялось в неделю более двух раз.

В условиях воинской части составляетя 3 вида раскладки продуктов:

1) для основной части личного состава;
2) для лиц, страдающих заболеваниями желудочно-кишечного тракта, — диетическое питание;
3) для лиц, находящихся на излечении в лазарете.

Раскладка продуктов составляется в 3 экземплярах: один экземпляр остается в делопроизводстве; второй — вывешивается в столовой; третий — поступает на кухню, им пользуется шеф-повар для приготовления пищи.

II. Проверка количества питательных веществ, содержащихся в дневном рационе (белки, жиры, углеводы, минеральные соли, витамины, калорийность). Такую проверку производят по графику и в случае замены части продуктов на другие. Нередко практикуется замена свежих овощей крупами или сушенными овощами, натуральных продуктов — консервами и концентратами: хлеба — сухарями, свежей рыбы — мясом или соленой сельдью. Такие замены допускаются в соответствии со специальной таблицей замен, допущенной приказом Министра обороны. Анализ меню и раскладки продуктов позволяет составить очень близкое к действительности представление о фактическом питании в части. Если продукты выдаются строго по норме и нет никаких вынужденных замен, то ограничиваются сравнением содержания питательных веществ фактического рациона с нормальным содержанием этих веществ в соответствующих нормах довольствия.

III. Опробование пищи проводят командир части или его заместитель, дежурный медицинский работник и дежурный по части. При этом оценивают её готовность, внешний вид, консистенцию, запах и вкус. Контролируют правильность нарезки порций мяса, рыбы, после чего разрешают выдачу личному составу. Результаты опробования записывают в журнал. При контроле за процессом ку-
линиарной обработки обращают внимание на потерю за счет отходов, вымачивания, а возможно, и излишней тепловой обработки.

IV. Контрольно-показательная варка организуется начальником продовольственными службы части с участием начальника медицинской службы. Цель этого мероприятия — оказать поварскому составу методическую помощь в более полном доведении норм продуктов до военнослужащих при хорошем качестве приготовления пищи. Результаты проведения контрольно-показательных варок сравнивают с расчетными данными и данными лабораторного исследования проб (рациона), проводимых при обычных методах приготовления пищи. Пробы отбирают непосредственно со столов во время приема пищи. Расхождения между расчетными и лабораторными данными по калорийности и по качественному составу не должны превышать 10%.

Лабораторное исследование рациона может быть сокращенным (определяется только калорийность) или полным (определяется также количество белков, жиров, углеводов, минеральных солей и витаминов).

V. Определение содержания витамина С в готовой пище, свежих и квашенных овощах производят ежемесячно. Если при исследовании обнаруживается дефицит витамина С, то проводят витаминизацию пищи из расчета 50 мг на человека в день (в основном третьих блюд).

VI. Определение статуса питания (физического состояния военнослужащих, обусловленного питанием).

Определяется статус питания у военнослужащих при углубленных медицинских осмотрах, характеризуется обычно у лиц срочной службы динамикой веса.

Различают обычный, оптимальный, недостаточный и избыточный статусы питания:

а) обычный статус питания характеризуется отсутствием нарушений структуры и функций организма в результате питания. Вес тела имеет тенденцию к увеличению;

б) оптимальный статус питания — идеальное состояние структуры и функций организма и хорошие адаптационные резервы. Такой статус наблюдается при питании по специальным нормам. Вес тела на уровне максимальных величин возрастной нормы;

в) избыточный статус питания (ожирение);

г) недостаточный статус питания. Вес тела между двумя медиоосмотрами не изменился или даже снизился.

При двух последних статусах питания (при избытке и недостатке питательных веществ) нарушается структура и функции ор-
ганизма, снижаются адаптационные резервы. Степень нарушения структуры, ухудшения функций организма, снижения адаптационных резервов характеризуется комплексом соматометрических, функциональных, клинических, биохимических и социально-демографических показателей. Выявление преобладающего статуса питания может в какой-то степени характеризовать организацию питания.

VII. Профилактика пищевых токсикоинфекций и бактериальных токсинов.

Достигается комплексом санитарных мероприятий, обеспечивающих защиту продовольствия и готовой пищи от инфицирования, предупреждение размножения микроорганизмов, попавших в пищевые продукты, готовые блюда, уничтожение возбудителей и их токсинов тепловой обработкой пищи. В комплексе мероприятий по предупреждению пищевых токсикоинфекций существенное значение имеют специальная санитарная подготовка поваров, медицинский осмотр лиц, постоянно работающих на кухне и продовольственных складах (еженедельно), рентгеноскопия (2 раза в год), обследование на бациллоносительство (1 раз в квартал). Суточный наряд, назначаемый на кухню, ежедневно перед заступлением на дежурство осматривается врачом или фельдшером на предмет выявления заболеваний вообще и кишечных в частности. Повара и обслуживающий персонал столовой, работники продовольственных складов должны строго соблюдать правила личной гигиены.

Самостоятельная работа студентов

1. Студент получает от преподавателя раскладку суточного набора продуктов с указанием их количества и проводит подсчет его химического состава в соответствии с заданием. Для подсчета необходимо пользоваться официальными таблицами химического состава продуктов, при этом из таблиц следует брать весовые данные продукта.

Подсчет калорийности и химического состава продуктов, входящих в рацион, производится по схеме (табл. 94).

2. На основании полученных данных по калорийности и химическому составу рациона необходимо составить заключение о полноценности рациона, исходя при этом из норм физиологических потребностей в пищевых веществах и энергии для соответствующей профессиональной или возрастной группы. В заключении должны быть отражены следующие вопросы:

1. Калорийность рациона и ее соответствие энерготратам.
2. Качественный состав:
 а) общее количество белков, их соответствие нормам; количество белков животного происхождения, выраженное в процентах к общему количеству белка (рекомендуемая норма - 55%);
 б) общее количество жиров, их соответствие нормам; количество жиров растительного происхождения в процентах к общему количеству жиров (рекомендуемая норма - 25%);
 в) количество углеводов, их соответствие нормам;
 г) соотношение белков, жиров и углеводов (оптимальное соотношение 1:1,2:5,2);
 д) количество солей кальция и фосфора, их соответствие нормам (оптимальное соотношение 1:1,5);
 е) содержание витаминов A, B₁, B₂ и C, их соответствие нормам. При подсчете содержания витамина C из полученного количества нужно учитывать только 50%, так как он разрушается при приготовлении пищи.

3. Режим питания: а) кратность приемов пищи, б) распределение калорийности по отдельным приемам пищи.

Заключение должно заканчиваться соответствующими рекомендациями, направленными на устранение выявленных недостатков.

Питание военнослужащих летнего состава и экипажей подводных лодок в период плавания обеспечивается в соответствии с нормами № 2 и № 4. Лётный и подводный пайки включают в себя большой набор продуктов, так как в них включены мясо птицы, колбасные изделия, сельдь, балычные изделия, сметана, творог, сыр, свежие фрукты. Изменён и количественный состав рациона, т.к. уменьшено количество хлеба, круп и увеличено количество мяса, корового масла, яиц.

Такой большой ассортимент высокоценных продуктов обеспечивает ежедневное четырехразовое питание горячей пищей и приготовление разнообразных блюд даже с учётом индивидуальных особенностей вкуса военнослужащих.

Изменение в наборе продуктов привело к тому, что лётный и подводный пайки обеспечивают сбалансированность рациона по качественному составу.

Военнослужащие, проходящие службу на надводных кораблях Военно-Морского флота, обеспечиваются питанием в соответствии с нормой № 3. Набор продуктов по своему ассортименту не отличается от нормы № 1 и незначительно изменен его количественный состав: на 25 г больше мяса и на 20 г больше корового масла.
Схема для подсчета качественного состава и калорийности питания

<table>
<thead>
<tr>
<th>Наименование продуктов</th>
<th>Масса продуктов</th>
<th>Белки, в г</th>
<th>Жиры, в г</th>
<th>Углеводы, в г</th>
<th>Килокалории</th>
<th>Минеральные соли, в мг Ca</th>
<th>Витамины, в мг</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>животные</td>
<td>растительные</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Завтрак</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Перечень продуктов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Обед</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Перечень продуктов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ужин</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Перечень продуктов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Итого за сутки</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Лечебный паёк используется для организации питания больных, находящихся на излечении или обследовании в военно-медицинских и медицинских учреждениях Министерства обороны Р.Ф. (госпиталях, клиниках, стационарах), медицинских батальонах, ротах, отрядах, лазаретах. Набор продуктов предусматривает уменьшение количества хлеба, круп, мяса, масла коровьего, так как больному военнослужащему не нужна большая калорийность рациона. В то же время увеличено количество молока, включены творог и сыр.

В лечебных учреждениях питание больных с определённой патологией осуществляется в соответствии с номерами дiets лечебного питания.

Норма № 6 — это паёк для суворовцев, нахимовцев и воспитанников военно-музыкальных училищ, учитывает возрастные особенности данного контингента.
Глава 7.
УЧЕБНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА СТУДЕНТОВ

Проводится по основным разделам изучаемого курса и может осуществляться в виде:
1. Дипломных работ (для выпускников медико-биологического факультета).
2. Рефератов (для российских студентов лечебного и педиатрического факультетов).
3. Курсовых работ (для студентов-иностранных лечебного и педиатрического факультетов).

Написание рефератов и курсовых работ будет развивать у студентов навыки самостоятельной работы с литературой, умение собирать и анализировать научный материал. Всё это должно способствовать расширению и углублению знаний студентов по курсу гигиены и основ экологии человека, изучаемому на кафедре в ходе лекций и практических занятий.

В связи с этим учебно-исследовательская работа студентов является обязательным компонентом учебного процесса на кафедре и качество её написания учитывается при окончательной оценке знаний студента по гигиене. Каждый студент готовит реферат или курсовую работу на заданную тему, используя приведенный план.

Рекомендуемые пособии темы рефератов касаются наиболее активных вопросов гигиены труда и гигиены детей и подростков.

При выполнении рефератов студенты используют необходимую доступную литературу как отечественных, так и зарубежных авторов.

Тематика курсовых работ охватывает широкий круг вопросов, имеющих наибольшее важное значение для успешного предупреждения возможного отрицательного воздействия различных факторов окружающей среды, включая питание и производственные факторы на организм человека в регионах развивающихся стран Азии, Африки и Латинской Америки. Курсовая работа должна быть сдана на кафедру при завершении курса гигиены, т.е. для написания отводится большой срок, включающий и летние каникулы, с целью использования студентами-иностранными всех источников информации, в том числе и материалов, которые они могут получить в своих странах в период их посещения в каникулярный период.
7.1. Темы рефератов по разделу "Гигиена труда"

Каждый студент готовит реферативный доклад на заданную тему, используя приведенный примерный план. Реферативные доклады заслушиваются на каждом практическом занятии данного раздела в соответствии с их тематикой. Ниже представлены темы докладов и их планы.

Профессиональные пылевые болезни и меры их профилактики
1. Основные отрасли производства, где возможен контакт с пылью.
2. Гигиеническая характеристика промышленной пыли (дисперсность, задержка в дыхательных путях, химический состав, растворимость).
3. Заболевания, возникающие при воздействии промышленной пыли (пневмонокониозы, их классификация; хронические пылевые бронхиты и другие заболевания верхних дыхательных путей; пылевые заболевания глаз, пылевые заболевания кожи).
4. Меры профилактики (предельно допустимые концентрации пыли в воздухе рабочих помещений, технические и санитарно-технические мероприятия; борьба с пылеобразованием и пылераспространением; индивидуальные средства защиты, лечебно-профилактические мероприятия).

Силикоз и меры его профилактики
1. Основные отрасли производства и профессии, где наиболее часто встречается силикоз.
2. Характеристика пыли, опасной в отношении развития силикоза.
3. Патогенез заболевания.
4. Клиника и диагностика заболевания (силикоз I, II и III стадий).
5. Осложнения силикоза. Силикотуберкулез.
6. Течение заболевания и прогноз.
7. Меры профилактики.

Силикатозы и меры их профилактики
1. Характеристика промышленной пыли, опасной в отношении развития силикатозов.
2. Основные отрасли производства и профессии, где наиболее часто встречаются силикатозы.
3. Виды силикатозов: асбестоз, талькоз, цементный силикатоз, силикатоз в парфюмерной промышленности.
4. Патогенез силикатозов. Морфологические особенности.
5. Особенности клинических проявлений и течения асбестоза и талькоза.
6. Прогноз при силикатозах.
7. Меры профилактики.

Общие закономерности действия промышленных ядов
1. Понятие о промышленных ядах.
2. Зависимость токсического действия от химической структуры и физико-химических свойств.
3. Пути поступления и выделения ядов из организма.
4. Распределение и превращение ядов в организме.
5. Зависимость токсического действия от концентрации, дозы, времени воздействия, температурных условий, интенсивности физической работы, условий питания.
6. Комбинированное действие ядов.
7. Профессиональные отравления: острые, подострые и хронические.
8. Привыкание к ядам.
9. Общие меры предупреждения профессиональных отравлений (замена ядовитых веществ; рационализация технологического процесса, аппаратуры и оборудования; производственная вентиляция; средства индивидуальной защиты; лечебно-профилактические мероприятия; предварительные и периодические медицинские осмотры, расследование причин отравлений, систематический контроль за состоянием воздушной среды, диетическое питание).

Профессиональные отравления и меры их профилактики
(свинец, тетраэтилсвинец, ртуть, марганец, бериллий, бензол, мышьяк, угарный газ)
1. Основные отрасли применения токсического вещества.
2. Характеристика токсического вещества (зависимость токсического действия от химического строения; пути поступления в организм; распределение и превращение, способность к кумуляции в организме; пути выводения из организма).
3. Возможный характер заболевания (острый, подострый, хронический).
4. Клинические проявления каждого из возможных видов заболевания (основные системы, поражаемые токсическим веществом; симптоматика каждой стадии заболевания при хроническом течении).
5. Меры профилактики (ПДК в воздухе рабочих помещений, общие меры профилактики, индивидуальные средства защиты).
Вибриация, ее влияние на организм.
Вибрационная болезнь и ее предупреждение
1. Производственные источники вибрации.
2. Физическая характеристика вибрации.
3. Патогенез вибрационной болезни.
4. Клиника вибрационной болезни, связанной с локальной или общей вибрацией, а также с комбинированным воздействием локальной и общей вибрации.
5. Меры профилактики.

Шум и его влияние на организм.
Предупреждение вредного действия шума на производстве
1. Физическая характеристика шума, его частотная характеристика.
2. Патогенез шумовой болезни.
3. Клинические проявления шумовой болезни.
4. Предельно допустимые уровни шума.
5. Меры по предупреждению вредного воздействия шума.

Микроклимат горячих цехов и его влияние на организм.
Меры профилактики перегревания
1. Характеристика микроклиматических условий в горячих цехах.
2. Теплообмен между организмом и средой.
3. Влияние микроклимата горячих цехов на организм работающих.
Формы перегревания.
4. Нормирование микроклимата горячих цехов.
5. Мероприятия, предупреждающие перегревание организма.

Электромагнитные волны диапазона радиочастот и их влияние на организм работающих.
Меры профилактики их вредного воздействия
1. Классификация электромагнитных радиоволн в зависимости от длины волны.
2. Использование радиоволн в народном хозяйстве.
3. Краткая характеристика источников излучения.
4. Единицы измерения.
5. Взаимодействие электромагнитных волн диапазона радиочастот на организм работающих.
6. Предельно допустимые величины интенсивности облучения.
7. Мероприятия по защите работающих от воздействия радиоволн.
Защита от внешнего излучения при работе с радиоактивными веществами и источниками ионизирующих излучений в лечебно-профилактических учреждениях
1. Особенности использования радиоактивных веществ в закрытом виде. Характеристика основных видов радиоактивных излучений и степень опасности при внешнем облучении.
2. Применение закрытых источников ионизирующей радиации в медицине.
3. Принципы нормирования при внешнем воздействии ионизирующей радиации.
4. Основные принципы защиты при внешнем воздействии ионизирующей радиации.
5. Дозиметрический контроль. Индивидуальные дозиметры.
6. Планировка отделений телегамматерапии.

Защита от внутреннего облучения при работе с радиоактивными веществами в лечебно-профилактических учреждениях
1. Особенности использования радиоактивных веществ в открытом виде.
2. Применение радиоактивных веществ в открытом виде в биологии и медицине.
3. Степень опасности различных видов радиоактивных излучений при использовании веществ в открытом виде. Понятие о радиотоксичности.
4. Принцип нормирования при работе с радиоактивными веществами в открытом виде. Пределы годового поступления и среднегодовые допустимые объемы активности. Допустимые уровни загрязнения поверхностей.
5. Основные принципы защиты от радиоактивных веществ в открытом виде (общие и индивидуальные меры защиты).
6. Планировка лабораторий для работы с радиоактивными веществами в открытом виде.
7. Методы дезактивации и дозиметрический контроль.

Производственный травматизм и его предупреждение
1. Понятие о производственной травме.
2. Механические, химические, термические и электрические травмы.
3. Электротравма. Оказание первой помощи.
4. Основные причины травмы.
5. Оформление и регистрация производственной травмы. Основные показатели учета.
6. Меры по предупреждению производственного травматизма.
Гигиена труда в сельском хозяйстве
1. Основные отрасли сельскохозяйственного производства: полеводство и животноводство.
2. Гигиена труда в полеводстве при работе на сельскохозяйственных машинах (производственные вредности и их влияние на здоровье механизаторов; меры оздоровления при работе на тракторах, комбайнах, молотилках и других сельскохозяйственных машинах).
3. Гигиена труда в животноводстве (основные производственные вредности; профессиональные инфекционные заболевания; меры оздоровления условий труда и профилактика заболеваний).
4. Заболеваемость и травматизм у работающих в сельском хозяйстве (структура заболеваемости и связь с условиями труда отдельных профессиональных групп; сельскохозяйственный травматизм, основные причины, связь с профилем производства; меры профилактики).
5. Вопросы гигиены труда при работе с ядохимикатами в докладе не затрагиваются, так как являются предметом специальных сообщений.

Профилактика отравлений ядохимикатами, применяемыми в сельском хозяйстве (хлор-, фосфор-, ртутьорганические ядохимикаты)
1. Основное назначение и способы применения ядохимиката.
2. Опасность для людей (профессиональные отравления; загрязнение пищевых продуктов и внешней среды).
3. Токсикологическая характеристика группы ядохимикатов (пути поступления в организм; механизм токсического действия; способность к кумуляции).
4. Клиническая картина отравлений (острые отравления; хронические отравления; отдаленные последствия).
5. Первая помощь и лечение (общие мероприяятия; специфическое лечение).
6. Профилактика отравлений. Правила обращения с ядохимикатами при хранении, транспортировке и применении их.

Борьба с загрязнением воздуха на производстве
1. Нормирование загрязнения воздуха в производственных помещениях (ПДК).
2. Усовершенствование технологии производства.
3. Производственная вентиляция.
4. Основные виды вентиляции (естественная — аэрация; механическая: вытяжная и приточная, местная и общеобменная).
5. Особенности устройства вентиляции в горячих цехах.
6. Особенности устройства вентиляции в цехах со значительным газо- и пылевыделением.

Производственное освещение
1. Гигиеническое значение освещения на производстве (влияние на функции зрения; влияние на работоспособность и производительность труда; значение для профилактики травматизма).
2. Требования к производственному освещению.
3. Искусственное освещение (местное, общее, комбинированное).
4. Принципы нормирования искусственного освещения.
5. Типы светильников.
6. Естественное освещение производственных зданий.
7. Нормирование естественного освещения.

7.2. Темы рефератов по разделу "Гигиена детей и подростков"

Профилактика деформаций скелета в связи с анатомо-физиологическими особенностями костно-мышечной системы у детей и подростков
1. Особенности костно-мышечной системы у детей и подростков.
2. Профилактика деформаций скелета (подбор мебели, физическое воспитание, закаливание, питание, режим дня и др.).

Профилактика заболеваний сердечно-сосудистой системы в связи с анатомо-физиологическими особенностями ее у детей и подростков
1. Анатомо-физиологические особенности сердечно-сосудистой системы у детей и подростков.
2. Профилактика заболеваний сердечно-сосудистой системы.

Профилактика заболеваний органов дыхания в связи с анатомо-физиологическими особенностями их у детей и подростков
1. Анатомо-физиологические особенности органов дыхания у детей и подростков.
2. Профилактика заболеваний органов дыхания.
Профилактика нарушений нормальной деятельности органов пищеварения в связи с особенностями их у детей и подростков
1. Анатомо-физиологические особенности органов пищеварения у детей и подростков.
2. Профилактика нарушений нормальной деятельности органов пищеварения.

Профилактика близорукости у детей и подростков
1. Анатомо-физиологические особенности органа зрения у детей и подростков.
2. Профилактика близорукости (значение освещенности рабочего места, позы учащегося и т.д.).
3. Гигиенические требования к естественному и искусственному освещению в детских учреждениях.

Профилактика переутомления детей и подростков в связи с анатомо-физиологическими особенностями ЦНС
1. Особенности высшей нервной деятельности у детей и подростков.
2. Физиологические методы исследования утомляемости.
3. Факторы, способствующие развитию утомления.
4. Профилактика переутомления у школьников (режим дня, организация учебных занятий и т.д.).

Физическое развитие детей и подростков
1. Физическое развитие и состояние здоровья детей и подростков.
2. Основные закономерности физического развития. Акселерация.
3. Показатели и методы оценки физического развития (метод сигма-мальных отклонений, регрессионный метод, комплексная оценка физического развития, определение соответствия биологического возраста календарному).

Закаливание детей и подростков
1. Физиологическая сущность закаливания.
2. Основные требования к проведению закаливания.
3. Методы закаливания детей и подростков воздухом, водой и солнцем.

Профилактика УФ-недостаточности у детей и подростков
1. Биологическое действие УФ-радиации.
2. Искусственные источники УФ-радиации.
3. Показания и противопоказания к проведению УФ-облучения детей и подростков.
4. Методы профилактики УФ-недостаточности (использование солнечной радиации, светооблучательных установок, облучение в фотариях различных типов).

Гигиенические требования к микроклимату детских учреждений
1. Комплексное воздействие микроклиматических факторов. Особенности терморегуляции детского организма.
2. Требования к температуре, влажности, скорости движения воздуха в основных помещениях детских учреждений.
3. Методы поддержания нормальных микроклиматических условий в детских учреждениях.
4. Методы поддержания чистоты и санации воздуха в детских учреждениях.

Гигиенические требования к планировке детских дошкольных учреждений
1. Расположение в плане населенного пункта, радиус обслуживания.
2. Принцип групповой изоляции.
3. Планировка и оборудование участка.
4. Планировка ячеек для детей преддошкольного возраста и дошкольного возраста (состав и взаимное размещение помещений, гигиенические требования к их планировке и оборудованию).
5. Общие помещения дошкольного учреждения.

Организация воспитательного режима в детском саду
1. Режим дня.
2. Гигиенические требования к организации учебных занятий.
3. Физическое воспитание (утренняя гимнастика, подвижные игры, прогулки).
4. Закаливание (воздушные ванны, солнечные ванны, водные процедуры).

Гигиенические требования к мебели, оборудованию и игрушкам в дошкольных учреждениях
1. Основные гигиенические требования к мебели в дошкольных детских учреждениях.
2. Правила подбора мебели детям.
3. Гигиенические требования к игрушкам (материалу, форме, окраске, массе и т.д.).
Гигиенические требования к детской одежде и обуви
1. Гигиенические требования к одежде.
2. Гигиенические требования к обуви.
3. Особенности моделирования одежды и обуви для детей разных возрастных групп.

Профилактика инфекционных заболеваний
в детских дошкольных учреждениях
1. Принцип групповой изоляции.
2. Оздоровительные мероприятия.
3. Противоэпидемические мероприятия.
4. Гигиеническое воспитание в дошкольных учреждениях.

Гигиенические требования к планировке школ и школ-интернатов
1. Гигиенические требования к планировке участка для строительства школ и школ-интернатов (размещение в плане населенного пункта, радиус обслуживания, планировка участка, оборудование территории).
2. Гигиенические требования к внутренней планировке школ (состав помещений, их размещение и гигиенические требования к ним, планировка класса, учебной лаборатории, гимнастического зала, учебных мастерских).
3. Особенности планировки школ-интернатов.

Гигиенические требования к планировке и оборудованию пионерских лагерей
1. Выбор участка и его площадь.
2. Зонирование территории.
3. Выбор водоисточника, организация водозабора и требования к качеству воды.
4. Внутренняя планировка помещений пионерского лагеря.

Гигиенические требования к школьной мебели и учебникам
1. Гигиенические обоснования требований к конструкции мебели. Правильное положение тела ребенка при чтении и письме.
2. Основные показатели для оценки размеров школьной мебели.
3. Правила подбора парт и столов.
4. Маркировка школьной учебной мебели.
5. Гигиенические требования к школьным учебникам (внешний вид, бумага, шрифт, требования к набору, рисункам).
Гигиенические требования к организации учебных занятий в школе
1. Гигиенические требования к организации и проведению урока в связи с особенностями ЦНС у детей.
2. Гигиенические требования к организации учебного дня, недели.
3. Гигиенические требования к организации отдыха учащихся.

Режим дня школьника
1. Физиологические основы режима дня.
2. Учебный режим школьника.
3. Режим дня школьника в семье (гигиенические требования к организации приготовления уроков, питания, прогулок, ночного сна).
4. Режим дня школьника в выходной день, во время каникул. Значение физической активности во внешкольное время.
5. Режим дня школьника во время экзаменов.

Медицинский контроль за физическим воспитанием школьников
1. Основные принципы физического воспитания детей и подростков.
2. Влияние физического воспитания на физическое развитие и состояние здоровья.
3. Медицинский контроль за физическим воспитанием.
4. Гигиенические требования к условиям проведения физического воспитания (гимнастические залы).

Гигиена политехнического и производственного обучения школьников
1. Гигиена ручного труда в 1-3-х классах.
2. Гигиена политехнического обучения в 4-8-х классах.
3. Производственное обучение в 9-10-х классах.
4. Гигиенические требования к устройству и оборудованию школьных мастерских.

Гигиенические требования к организации обучения подростков в профессионально-технических училищах (ПТУ)
1. Гигиенические требования к земельному участку ПТУ (размещение, размер, плотность застройки, зонирование территории).
2. Здание ПТУ. Размещение учебных, учебно-производственных, спортивных помещений, помещений культурно-массового назначения, пищеблока, медицинского пункта.
3. Гигиенические требования к планировке и оборудованию основных помещений ПТУ, их освещению и микроклимату.
4. Организация учебного процесса по общеобразовательным и специальным предметам; физического воспитания; отдыха и питания учащихся.
5. Режим дня учащихся ПТУ.

Врачебно-профессиональная консультация в школе
1. Задачи врачебно-профессиональной консультации.
2. Сроки и порядок проведения врачебно-профессиональной консультации.
3. Врачебно-профессиональная консультация подростков с заболеваниями органов зрения и слуха, внутренних органов (сердечно-сосудистой системы, печени, почек) и опорно-двигательного аппарата.

Содержание работы школьного врача
1. Основной принцип медицинского обслуживания детей.
2. Профилактическая работа врача.
3. Санитарно-просветительная работа.

7.3. Темы курсовых работ для студентов-иностранцев

Недостаточность питания, проблемы, решение
1. Проблемы питания и пищевых продуктов в разных странах.
2. Оценить количественный и качественный характер питания.
3. Составить рекомендации к устранению выявленных недостатков в питании.

Проблемы питьевой воды в сельских районах разных стран мира
1. Проблемы водоснабжения в сельской местности.
2. Оценка качества питьевой воды в этих районах.
3. Пути решения этой проблемы.

Проблемы охраны здоровья детей и подростков
1. Физическое развитие и состояние здоровья детей и подростков в разных странах.
2. Проблемы здоровья детей и подростков в разных странах.
3. Показатели и методы оценки физического развития.

Профилактика инфекционных заболеваний в детских дошкольных учреждениях
1. Проблемы детских инфекционных заболеваний в разных странах.
2. Принцип групповой изоляции.
3. Оздоровительные мероприятия.
4. Противоэпидемические мероприятия.
Гигиена труда в сельских районах развивающихся стран и здоровье населения
1. Заболеваемость и травматизм у работающих в сельском хозяйстве (структура заболеваемости, основные причины).
2. Ядохимикаты, их опасность для людей.
3. Профилактика отравления пестицидами.
4. Пути решений и профилактические мероприятия.

Профилактика, мероприятия против случаев пищевых отравлений в большом городе
1. Современная классификация пищевых отравлений.
2. Особенности и причины пищевых отравлений в разных странах.
3. Методы профилактики.

Безопасная питьевая вода для населения города или района
1. Проблемы водоснабжения в развивающихся странах.
2. Влияние химического состава воды на здоровье человека.
3. Эпидемическое значение воды.
4. Пути решения проблемы водоснабжения в городах.

Проблемы окружающей среды в городе, профилактика
1. Общая характеристика проблемы.
2. Основные источники загрязнения окружающей среды в городах, их характеристика.
3. Заболевания, возникающие в результате загрязнения окружающей среды в городах.
4. Меры профилактики и пути решения этой проблемы, роль медицинских работников.

Акселерация физического развития как социально-гигиеническая проблема
1. Понятие об акселерации физического развития.
2. Влияние акселерации на здоровье.
3. Предполагаемые причины акселерации.
4. Прогноз динамики акселерации в развивающихся странах.

Гигиена жилищ в сельских районах и здоровье
1. Влияние жилищных условий в сельских районах развивающихся стран на здоровье населения.
2. Жилищные условия и инфекционные болезни (особенно передаваемые животными и переносчиками).
Проблемы профессиональной гигиены в развивающихся странах
1. Основные профессиональные болезни.
2. Состояние здоровья работающих на предприятиях в различных странах.
3. Общие меры профилактики профессиональных заболеваний.

Компьютер и здоровье человека
1. Основные негативные влияния компьютера на здоровье оператора.
2. Санитарно-гигиенические рекомендации, защищающие здоровье при работе на компьютере.
КРАТКИЙ СЛОВАРЬ ЭКОЛОГИЧЕСКИХ ТЕРМИНОВ

Абиотические факторы среды — совокупность условий неорганической среды, влияющих на организм.

Авторегуляция в природе — взаимодействие в природной среде, основанное на прямых и обратных функциональных связях, ведущее к динамическому равновесию или саморазвитию системы.

Адаптационный синдром — совокупность общих защитных реакций организма человека или животных, способствующих восстановлению нарушенных равновесий.

Антропогенная нагрузка — степень прямого и косвенного воздействия людей и их хозяйственной деятельности на природу в целом или на ее отдельные экологические компоненты.

Антропогенные факторы — совокупность факторов окружающей среды, обусловленных случайной или преднамеренной деятельностью человечества.

Ареал — область распространения любой систематической группы организмов — популяции, вида, семейства и т.п. Ареал экологический — регион, где может обитать вид при наличии подходящих для него условий.

Аутоэкология — раздел экологии, изучающий взаимодействие отдельной особи (вида) с окружающей средой.

Баланс экологических компонентов — количественное сочетание экологических компонентов, обеспечивающих экологическое равновесие.

Бедствие экологическое — любое изменение природной среды, ведущее к ухудшению здоровья населения или к затруднениям в ведении хозяйства.

Биосфера — область существования и функционирования ныне живущих организмов.

Валэколожия — наука о здоровье биосферы, о нормальных взаимоотношениях человека с окружающей средой.

Воздействие антропогенное — сумма прямых и опосредованных влияний человечества на окружающую среду.

Воспитание экологическое — воздействие на сознание людей с целью выработки социально-психологических установок и активной гражданской позиции по отношению к природе.
Воспроизводство среды, окружающей человека — комплекс мероприятий, направленных на поддержание параметров среды в пределах, благоприятных для существования человека.

Геогигиена — научная дисциплина, исследующая медицинские аспекты глобальных последствий деятельности человека; прямые воздействия на его здоровье и опосредованные — через изменение экосистем.

Геоэкология — практический раздел экологии, исследующий экосистемы иерархических уровней.

Гигиена — часть профилактической медицины, изучающая влияние внешней среды на здоровье человека, его работоспособность и продолжительность жизни, разрабатывающая мероприятия, направленные на предупреждение возникающих болезней и создание условий, обеспечивающих сохранение здоровья.

Емкость экологическая — количественно выраженная способность среды обитания существовать без ущерба для ее компонентов под влиянием антропогенной или техногенной нагрузки.

Живучесть экосистемы — способность экосистемы выдерживать резкие изменения абиотической среды, массовые размножения или исчезновение отдельных видов, антропогенные нагрузки.

Жизнеобеспечение — совокупность мероприятий, необходимых для создания условий сохранения жизни, здоровья и работоспособности людей в определенных обстоятельствах.

“Законы” экологии Б. Коммонера — 1) все связано со всем, 2) все должно куда-то деваться, 3) природа “знает” лучше, 4) ничто не дается даром.

Иерархия экосистем — функциональное соподчинение экосистем различного уровня организации.

Изменение среды необратимое — перемена в средообразующих компонентах или в их сочетаниях, которая не компенсируется в ходе природных восстановительных процессов.

Индикация загрязнения — выявление загрязнителей в природной среде или в отдельных ее компонентах и установление их количественного или качественного состава.

Картографирование экологическое — раздел экологии, основная задача которого — отражение на карте результатов специальных
съемок по оценке состояния компонентов природной среды и хозяйственного освоения территорий.

Катастрофа экологическая — аномалия, возникающая в природе и приводящая к особо неблагоприятным экономическим последствиям или массовым болезням населения определенного региона, а также авария технического устройства, в результате которой происходят крайне неблагоприятные изменения в среде.

Кризис экосистемы — ситуация, возникающая в окружающей среде в результате действия катастрофических природных или антропогенных факторов.

Кризисные экологические ситуации — пространственно значительные и глубокие нарушения экологического равновесия, приводящие экосистемы в критическое состояние с возможной последующей гибелью.

Критерий экологический — признак, на основании которого производится оценка, определение или классификация экологических систем, процессов и явлений.

Мониторинг — система долгосрочных наблюдений, оценки, контроля и прогноза состояния и изменения объектов.

Нарушение окружающей среды — любое изменение природных, природно-антропогенных или социальных условий, превышающее или не превышающее биологические или социально-экономические способности человека к адаптации.

Оптимум экологический — наиболее благоприятные условия для существования определенного вида.

Оружие экологическое — любое физическое, химическое или биологическое средство, наносящее материальный урон, снижающее оборонно-способность и приводящее к ухудшению здоровья противника через изменение природной среды.

Охрана окружающей среды — комплекс международных, государственных, региональных и локальных мероприятий по обеспечению социально-экономического, культурно-исторического, физического, химического и биологического комфорта, необходимого для сохранения здоровья человека.

Оценка экологическая — определение состояния среды или степени воздействия на нее каких-то факторов.

Пластичность экологическая — степень выносливости организмов или их сообществ к воздействиям факторов среды.
Преступление экологическое — преднамеренное злостное нарушение окружающей человека природной среды, противоречащее государственным законам, национальным интересам или международным соглашениям. Во многих странах относится к уголовным преступлениям.

Прогноз экологический — предсказание поведения экосистем, определяемого естественными процессами и воздействием на них человечества.

Производство экологическое — искусственное, техногенное создание природного окружения с заранее заданными свойствами, целью которого является получение в конечном итоге новой земной среды, наиболее соответствующей потребностям человечества.

Равновесие экологическое — баланс естественных и измененных человеком экологических компонентов и природных процессов, приводящий к длительному существованию экосистемы данного вида.

Скрипинг — биологическая или химическая экпресс-оценка и контроль потенциально вредных промышленных выбросов и отходов; отбор и анализ комплексных проб отходов и выбросов промышленных предприятий для целей мониторинга, а также медико-биологическая оценка состояния здоровья населения, проживающего на потенциально опасной территории и обследование больших групп людей с целью выявления лиц с определенным заболеванием.

Синдром экологического напряжения — комплекс взаимосвязанных симптомов, обусловленных резкими изменениями окружающей среды природного или антропогенного характера. Наблюдается в регионах экологического бедствия (например, приаральский регион). Характеризуется снижением иммунитета, ускорением развития в пубертатный период и ускорением старения, широким распространением стертых, бессимптомных и хронических форм различных заболеваний, психическими нарушениями (депрессия, апатия), падением моральных и нравственных устоев.

Совместимость экологическая — способность двух или более популяций разных видов обитать в пределах одной или очень близких экологических ниш.

Стабильность экологическая — способность экосистемы противостоять внутренним абиотическим факторам среды и антропогенным воздействиям.

Условия жизни человека — количественное соотношение потребностей человека и социальных, антропогенных и природных факторов и возможность их удовлетворения.
Устойчивость экологическая природных систем — способность популяции, сообщества или экосистемы сохранять свою структуру и функциональные особенности при воздействии внешних факторов.

Ущерб от загрязнения среды — фактические и возможные убытки народного хозяйства, связанные с загрязнением среды, а также потери, обусловленные ухудшением здоровья населения, сокращением длительности трудового периода и жизни людей.

Цена экологическая — цена, возникающая в результате необходимости экономических вложений на нейтрализацию прямых, опосредованных и косвенных экологических последствий данной формы хозяйственной деятельности.

Шок экологический — относительно внезапное осознание обществом стоящих перед ним экологических проблем.

Экологическая валентность — характеристика способности вида существовать в разнообразных условиях среды, диапазон адаптированности вида к тем или иным условиям среды.

Экологическая доктрина — концентрированное выражение системы официальных взглядов и положений, вырабатываемых политическим руководством государства и провозглашающих основные цели, принципы, направления и формы его деятельности по обеспечению рационального взаимодействия между обществом и природой, сохранению надлежащего качества среды обитания живых существ, включая человека.

Экологическая жертва — представитель живой природы (включая человека), деградирующий вплоть до гибели под воздействием факторов экологического кризиса.

Экологическая ниша — совокупность всех факторов среды в ареале, при которых возможно существование определенного вида.

Экологически обусловленные заболевания — специфические и неспецифические заболевания человека, возникающие вследствие неблагоприятного воздействия на организм экологических факторов среды обитания.

Экологическая экспертиза — комплексная оценка проектов хозяйственного строительства и использования природных ресурсов на предмет их соответствия требованиям экологической безопасности и системы рационального природопользования.

Экзопатология — специфические заболевания человека, возникающие под влиянием экологических факторов среды.
Экологически конфликтная ситуация — субъективно, психологически неприемлемая среда жизни при объективной ее неопасности для здоровья населения.

Экологические компоненты — основные материально-энергетические составляющие экологических систем: энергия, газовый состав атмосферы, вода, почва, растения и организмы.

Экологические ситуации опасные — ситуации в природной среде, представляющие угрозу для сохранения экологического равновесия и экологических ресурсов территории, а также для дальнейшего существования эволюционно сформированных биогеоценозов.

Экологический кризис — напряженное состояние взаимоотношений между человечеством и природой, характеризующееся несоответствием развития производительных сил и производственных отношений в человеческом обществе ресурсно-экологическим возможноством биосферы.

Экологическое нарушение — отклонение от обычного состояния экосистемы любого иерархического уровня организации, а также любое временное или постоянное отклонение условий жизни от благоприятных для человека.

Экология — область знаний, изучающая взаимоотношения организмов и их сообществ с окружающей средой и с другими организмами и сообществами.

Экология города — часть экологии человека, изучающая город как искусственно созданную среду обитания человека и других живых существ.

Экология человека — комплексная дисциплина, исследующая общие законы взаимоотношения биосферы и антропосистемы человечества, его групп (популяция) и индивидуумов, влияние природной среды на человека и группы людей.

Экосистема — единый природный или природно-антропогенный комплекс, образованный живыми организмами и средой их обитания, в котором экологические компоненты соединены между собой причинно-следственными связями, обменом веществ и распределением потока энергии.

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В РАДИАЦИОННОЙ ГИГИЕНЕ
(ИЗВЛЕЧЕНИЕ ИЗ НРБ-99 СП 2.6.1.758 – 99)

1. Авария радиационная проектная — авария, для которой проектом определены исходные и конечные состояния радиационной обстановки и предусмотрены системы безопасности.

2. Активность (A) — мера радиоактивности какого-либо количества радионуклида, находящегося в данном энергетическом состоянии в данный момент времени:

\[A = \frac{dN}{dt} \]

где dN — ожидаемое число спонтанных ядерных превращений из данного энергетического состояния, происходящих за промежуток времени dt. Единицей активности является беккерель (Бк).

Используя ранее внесистемную единицу активности кюри (Ки) составляет 3,7x10^{10} Бк.

3. Активность минимально значимая (МЗА) — активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов госсанэпиднадзора на использование этих источников, если при этом также превышено значение минимально значимой удельной активности.

4. Активность минимально значимая удельная (МЗУА) — удельная активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов госсанэпиднадзора на использование этого источника, если при этом также превышено значение минимально значимой активности.

5. Активность удельная (объемная) — отношение активности A радионуклида в веществе к массе m (объему V) вещества:

\[A_m = \frac{A}{m} \quad A_v = \frac{A}{V} \]

Единица удельной активности — беккерель на килограмм, Бк/кг. Единица объемной активности — беккерель на метр кубический, Бк/м³.

6. Активность эквивалентная равновесная объемная (ЭРОА) дочерних продуктов изотопов радона — ²²²Rn и ²²⁰Rn — завешенная сумма объемных активностей короткоживущих дочерних продуктов изотопов радона — ²¹⁰Po (RaA); ²¹⁴Pb (RaB); ²¹⁴Bi (RaC); ²¹²Pb (ThB); ²¹²Bi (ThC) соответственно:
(ЭРОА)$_{Ra}$ = 0,10 A_{RaA} + 0,52 A_{RaB} + 0,38 A_{RaC}
(ЭРОА)$_{Th}$ = 0,91 A_{ThB} + 0,09 A_{ThC},
где A_i - объемные активности дочерних изотопов радона.

7. Вещество радиоактивное — вещество в любом агрегатном состоянии, содержащее радионуcléиды с активностью, на которые распространяются требования настоящих Норм и Правил.

8. Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы (W_R) — используемые в радиационной защите множители поглощенной дозы, учитывающие относительную эффективность различных видов излучения в индуктировании биологических эффектов.

Фотоны любых энергий - 1
Электроны и мюоны любых энергий - 1
Нейтроны с энергией менее 10 кэВ - 5
от 10 кэВ до 100 кэВ - 10
от 100 кэВ до 2 МэВ - 20
от 2 МэВ до 20 МэВ - 10
более 20 МэВ - 5
Протоны с энергией более 2 МэВ, кроме протонов отдачи - 5
Альфа-частицы, осколки деления, тяжелые ядра - 20

Примечание: Все значения относятся к излучению падающему на тело, а в случае внутреннего облучения — испускаемому при ядерном превращении.

9. Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы (W_T) — множители эквивалентной дозы в органах и тканях, используемые в радиационной защите для учета различной чувствительности разных органов и тканей в возникновении стохастических эффектов радиации:

Гонады - 0,20
Костный мозг (красный) - 0,12
Толстый кишечник - 0,12
Легкие - 0,12

Желудок - 0,12
Мочевой пузырь - 0,05
Грудная железа - 0,05
Печень - 0,05
Пищевод - 0,05
Щитовидная железа - 0,05
Кожа - 0,01
Клетки костных поверхностей - 0,01
Остальное - 0,05
10. Вмешательство — действие, направленное на снижение вероятности облучения, либо дозы или неблагоприятных последствий облучения.

11. Группа критическая — группа лиц из населения (не менее 10 человек), однородная по одному или нескольким признакам — полу, возрасту, социальным или профессиональным условиям, месту проживания, рациону питания, которая подвергается наибольшему радиационному воздействию по данному пути облучения от данного источника излучения.

12. Дезактивация — удаление или снижение радиоактивного загрязнения с какой-либо поверхности или из какой-либо среды.

13. Доза поглощения (D) — величина энергии ионизирующего излучения, переданная веществу:

\[D = \frac{de}{dm}, \]

где de — средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме, а dm — масса вещества в этом объеме.

Энергия может быть усреднена по любому определенному объему и в этом случае средняя доза будет равна полной энергии, переданной объему, деленной на массу этого объема. В единицах СИ поглощенная доза измеряется в джоулях, деленных на килограмм (Дж/кг⁻¹), и имеет специальное название — грей (Гр). Использовавшись ранее ненесистемная единица рад равна 0,01 Гр.

14. Доза в органе или ткани (Dₜ) — средняя поглощенная доза в определенном органе или ткани человеческого тела:

\[Dₜ = \frac{1}{mₜ} \int D \times dm, \]

где \(mₜ \) — масса органа или ткани, а \(D \) — поглощенная доза в элементе массы \(dm \).

15. Доза эквивалентная (Hₜ,R) — поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, \(W_R \):

\[H_{t,R} = W_R \times D_{t,R}, \]

где \(D_{t,R} \) — средняя поглощенная доза в органе или ткани \(T \), а \(W_R \) — взвешивающий коэффициент для излучения \(R \).

При воздействии различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения

\[H_t = \frac{\sum H_{t,R}}{R}, \]
Единицей эквивалентной дозы является зиверт (Зв).

16. **Доза эффективная** (\(E\)) — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты:

\[
E = \sum W_T \times H_T,
\]

где \(H_T\) — эквивалентная доза в органе или ткани \(T\), а \(W_T\) — взвешивающий коэффициент для органа или ткани \(T\).

Единица эффективной дозы — зиверт (Зв).

17. **Доза эквивалентная** (\(H_T(\tau)\)) или **эффективная** (\(E(\tau)\)) ожида́емая при внутреннем облучении — доза за время \(\tau\), прошедшее после поступления радиоактивных веществ в организм:

\[
H_T(\tau) = \int_{t_0}^{t_0+\tau} H_T(t) \, dt,
\]

\[
E(\tau) = \sum W_T \times H_T(\tau),
\]

где \(t_0\) — момент поступления, а \(H_T(\tau)\) — мощность эквивалентной дозы к моменту времени \(t\) в органе или ткани \(T\).

Когда \(\tau\) не определено, то его следует принять равным 50 годам для взрослых и (70-\(t_0\)) — для детей.

18. **Доза эффективная (эквивалентная) годовая** — сумма эффективной (эквивалентной) дозы внешнего облучения, полученной за календарный год, и ожидае́мой эффективной (эквивалентной) дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год.

Единица годовой эффективной дозы — зиверт (Зв).

19. **Доза эффективная коллективная** — мера коллективного риска возникновения стохастических эффектов облучения; она равна сумме индивидуальных эффективных доз. Единица эффективной коллективной дозы — человеко-зиверт (чел.-Зв).

20. **Доза предотвращаемая** — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.

21. **Загрязнение радиоактивное** — присутствие радиоактивных веществ на поверхности, внутри материала, в воздухе, в теле человека или в другом месте, в количестве, превышающем уровни, установленные настоящими Нормами и Правилами.
22. Загрязнение поверхности неснимаемое (фиксиранное) — радиоактивные вещества, которые не переносятся при контакте на другие предметы и не удаляются при дезактивации.

23. Загрязнение поверхности снимаемое (нефиксированное) — радиоактивные вещества, которые переносятся при контакте на другие предметы и удаляются при дезактивации.

24. Захоронение отходов радиоактивных — безопасное размещение радиоактивных отходов без намерения последующего их извлечения.

25. Зона наблюдения — территория за пределами санитарно-защитной зоны, на которой проводится радиационный контроль.

26. Зона радиационной аварии — территория, на которой установлен факт радиационной аварии.

27. Источник ионизирующего излучения — (в рамках данного документа — источник излучения) радиоактивное вещество или устройство, испускающее или способное испускать ионизирующее излучение, на которые распространяется действие настоящих Норм и Правил.

28. Источник излучения природный — источник, испускающий природное излучение, на которые распространяется действие настоящих Норм и Правил.

29. Источник излучения техногенный — источник, испускающий излучение специально созданный для его полезного применения или являющийся побочным продуктом этой деятельности.

30. Источник радионуклидный закрытый — источник излучения, устройство которого исключает поступление содержащихся в нем радионуклидов в окружающую среду в условиях применения и износа, на которые он рассчитан.

31. Источник радионуклидный открытый — источник излучения, при использовании которого возможно поступление содержащихся в нем радионуклидов в окружающую среду.

32. Категория объеката радиационного — характеристика объекта по степени потенциальной опасности объекта для населения в условиях его нормальной эксплуатации и при возможной аварии.

33. Квота — часть предела дозы, установленная для ограничения облучения населения от конкретного техногенного источника излучения и пути облучения (внешнее поступление с водой, пищей и воздухом).

34. Класс работ — характеристика работ с открытыми источниками ионизирующего излучения по степени потенциальной
опасности для персонала, определяющая требования по радиационной безопасности в зависимости от радиотоксичности и активности нуклидов.

35. Контроль радиационный — получение информации о радиационной обстановке в организации, в окружающей среде и об уровнях облучения людей (включает в себя дозиметрический и радиометрический контроль).

36. Место рабочее — место постоянного или временного пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излучения в течение более половины рабочего времени или двух часов непрерывно.

37. Мощность дозы — доза излучения за единицу времени (секунду, минуту, час).

38. Население — все лица, включая персонал вне работы с источниками ионизирующего излучения.

39. Облучение — воздействие на человека ионизирующего излучения.

40. Облучение аварийное — облучение в результате радиационной аварии.

41. Облучение медицинское — облучение пациентов в результате медицинского обследования или лечения.

42. Облучение планируемое повышенное — планируемое облучение персонала в дозах, превышающих установленные основные пределы доз, с целью предупреждения развития радиационной аварии или ограничения её последствий.

43. Облучение потенциальное — облучение, которое может возникнуть в результате радиационной аварии.

44. Облучение природное — облучение, которое обусловлено природными источниками излучения.

45. Облучение производственное — облучение работников от всех техногенных и природных источников ионизирующего излучения в процессе производственной деятельности.

46. Облучение профессиональное — облучение персонала в процессе его работы с техногенными источниками ионизирующего излучения.

47. Облучение техногенное — облучение от техногенных источников как в нормальных, так и в аварийных условиях, за исключением медицинского облучения пациентов.

48. Обращение с отходами радиоактивными — все виды деятельности, связанные со сбором, транспортированием, переработкой, хранением и (или) захоронением радиоактивных отходов.

422
49. Объект радиационный — организация, где осуществляется обращение с техногенными источниками ионизирующего излучения.

50. Органы государственного надзора за радиационной безопасностью — органы, которые уполномочены Правительством Российской Федерации или её субъектов осуществлять надзор за радиационной безопасностью.

51. Отходы радиоактивные — не предназначенные для дальнейшего использования вещества в любом агрегатном состоянии, в которых содержание радионуклидов превышает уровни, установленные настоящими Нормами и Правилами.

52. Паспорт радиационно-гигиенический организации — документ, характеризующий состояние радиационной безопасности в организации и содержащий рекомендации по её улучшению.

53. Паспорт радиационно-гигиенический территории — документ, характеризующий состояние радиационной безопасности населения территории и содержащий рекомендации по её улучшению.

54. Паспорт санитарный — документ, разрешающий организацию в течение установленного времени проводить регламентированные работы с источниками ионизирующего излучения в конкретных помещениях, вне помещений или на транспортных средствах.

55. Персонал — лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б).

56. Предел дозы (ПД) — величина годовой эффективной или эквивалентной дозы техногенного обучения, которая не должна превышаться в условиях нормальной работы. Соблюдение предела годовой дозы предотвращает возникновение детерминированных эффектов, а вероятность стохастических эффектов сохраняется при этом на приемлемом уровне.

57. Предел годового поступления (ПГП) — допустимый уровень поступления данного радионуклина в организм в течение года, который при монофакторном воздействии приводит к обслужению условного человека ожидаемой дозой, равной соответствующему пределу годовой дозы.

58. Радиационная авария — потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), случайными бедствиями или иными причинами, которые могли при-
вести или привели к облучению людей выше установленных норм или радиоактивному загрязнению окружающей среды.

59. Радиационная безопасность населения — состояние защищенности настоящего и будущего поколения людей от вредного для их здоровья воздействия ионизирующего излучения.

60. Работа с источником ионизирующего излучения — все виды обращения с источником излучения на рабочем месте, включая радиационный контроль.

61. Работа с радиоактивными веществами — все виды обращения с радиоактивными веществами на рабочем месте, включая радиационный контроль.

62. Риск радиационный — вероятность возникновения у человека или его потомства какого-либо вредного эффекта в результате облучения.

63. Санитарно-защитная зона — территория вокруг источника ионизирующего излучения, на которой уровень облучения людей в условиях нормальной эксплуатации данного источника может превысить установленный предел дозы облучения населения.

64. Санпропускник — комплекс помещений, предназначенных для смены одежды, обувь, санитарной обработки персонала, контроля радиоактивного загрязнения кожных покровов, средств индивидуальной защиты, специальной и личной одежды персонала.

65. Санилиз — помещение между зонами радиационного объекта, предназначенное для предварительной дезактивации и смены дополнительных средств индивидуальной защиты.

66. Средство индивидуальной защиты — средство защиты персонала от внешнего облучения, поступления радиоактивных веществ внутрь организма и радиоактивного загрязнения кожных покровов.

67. Уровень вмешательства (УВ) — уровень радиационного фактора, при превышении которого следует проводить определенные защитные мероприятия.

68. Уровень контрольный — значение контролируемой величины дозы, мощности дозы, радиоактивного загрязнения и т.д., устанавливаемое для оперативного радиационного контроля, с целью закрепления достигнутого уровня радиационной безопасности, обеспечения дальнейшего снижения облучения персонала и населения, радиоактивного загрязнения окружающей среды.

69. Устройство (источник), генерирующее ионизирующее излучение — электрофизическое устройство (рентгеновский аппарат, ускоритель, генератор и т.д.), в котором ионизи-
рующее излучение возникает за счет изменения скорости заряженных частиц, их аннигиляции или ядерных реакций.

70. **Эффекты излучения детерминированные** — клинически выявляемые вредные биологические эффекты, вызванные понизирующим излучением, в отношении которых предполагается существование порога, ниже которого эффект отсутствует, а выше — тяжесть эффекта зависит от дозы.

71. **Эффекты излучения стохастические** — вредные биологические эффекты, вызванные понизирующим излучением, не имеющие дозового порога возникновения, вероятность возникновения которых пропорциональна дозе и для которых тяжесть проявления не зависит от дозы.
Приложение

Таблица для определения относительной влажности воздуха по разности показаний сухого и влажного термометров аспирационного психрометра Ассмана

<table>
<thead>
<tr>
<th>Температура по сухому термометру (°C)</th>
<th>10,0</th>
<th>10,5</th>
<th>11,0</th>
<th>11,5</th>
<th>12,0</th>
<th>12,5</th>
<th>13,0</th>
<th>13,5</th>
<th>14,0</th>
<th>14,5</th>
<th>15,0</th>
<th>15,5</th>
<th>16,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>10,5</td>
<td></td>
<td>94</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>11,0</td>
<td>88</td>
<td></td>
<td>94</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,5</td>
<td>83</td>
<td>89</td>
<td></td>
<td>94</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,0</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td></td>
<td>94</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,5</td>
<td>73</td>
<td>78</td>
<td>84</td>
<td>89</td>
<td>94</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,0</td>
<td>69</td>
<td>74</td>
<td>79</td>
<td>84</td>
<td>89</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,5</td>
<td>64</td>
<td>69</td>
<td>74</td>
<td>79</td>
<td>84</td>
<td>89</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,0</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>79</td>
<td>84</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,5</td>
<td>56</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,0</td>
<td>52</td>
<td>57</td>
<td>61</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,5</td>
<td>49</td>
<td>53</td>
<td>58</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>76</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>16,0</td>
<td>46</td>
<td>50</td>
<td>54</td>
<td>58</td>
<td>63</td>
<td>67</td>
<td>71</td>
<td>76</td>
<td>81</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>16,5</td>
<td>42</td>
<td>46</td>
<td>50</td>
<td>55</td>
<td>59</td>
<td>63</td>
<td>67</td>
<td>72</td>
<td>76</td>
<td>81</td>
<td>86</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>17,0</td>
<td>39</td>
<td>43</td>
<td>47</td>
<td>51</td>
<td>55</td>
<td>59</td>
<td>64</td>
<td>68</td>
<td>72</td>
<td>77</td>
<td>81</td>
<td>86</td>
<td>90</td>
</tr>
<tr>
<td>17,5</td>
<td>35</td>
<td>40</td>
<td>44</td>
<td>48</td>
<td>52</td>
<td>55</td>
<td>60</td>
<td>64</td>
<td>68</td>
<td>73</td>
<td>77</td>
<td>81</td>
<td>86</td>
</tr>
<tr>
<td>18,0</td>
<td>34</td>
<td>37</td>
<td>41</td>
<td>45</td>
<td>49</td>
<td>53</td>
<td>55</td>
<td>61</td>
<td>65</td>
<td>69</td>
<td>73</td>
<td>77</td>
<td>82</td>
</tr>
<tr>
<td>18,5</td>
<td>31</td>
<td>35</td>
<td>38</td>
<td>42</td>
<td>45</td>
<td>49</td>
<td>53</td>
<td>57</td>
<td>61</td>
<td>65</td>
<td>69</td>
<td>73</td>
<td>78</td>
</tr>
<tr>
<td>19,0</td>
<td>29</td>
<td>32</td>
<td>36</td>
<td>39</td>
<td>43</td>
<td>46</td>
<td>50</td>
<td>54</td>
<td>58</td>
<td>62</td>
<td>66</td>
<td>70</td>
<td>74</td>
</tr>
<tr>
<td>19,5</td>
<td>26</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>40</td>
<td>43</td>
<td>47</td>
<td>51</td>
<td>54</td>
<td>58</td>
<td>62</td>
<td>66</td>
<td>70</td>
</tr>
<tr>
<td>20,0</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>34</td>
<td>37</td>
<td>41</td>
<td>44</td>
<td>48</td>
<td>52</td>
<td>55</td>
<td>59</td>
<td>63</td>
<td>66</td>
</tr>
<tr>
<td>Температура по сухому термометру (°C)</td>
<td>10,0</td>
<td>10,5</td>
<td>11,0</td>
<td>11,5</td>
<td>12,0</td>
<td>12,5</td>
<td>13,0</td>
<td>13,5</td>
<td>14,0</td>
<td>14,5</td>
<td>15,0</td>
<td>15,5</td>
<td>16,0</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>20,5</td>
<td>22</td>
<td>25</td>
<td>28</td>
<td>31</td>
<td>35</td>
<td>38</td>
<td>41</td>
<td>45</td>
<td>48</td>
<td>52</td>
<td>56</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td>21,0</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>46</td>
<td>49</td>
<td>53</td>
<td>56</td>
<td>60</td>
</tr>
<tr>
<td>21,5</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td>27</td>
<td>31</td>
<td>34</td>
<td>36</td>
<td>40</td>
<td>43</td>
<td>46</td>
<td>50</td>
<td>53</td>
<td>57</td>
</tr>
<tr>
<td>22,0</td>
<td>16</td>
<td>21</td>
<td>24</td>
<td>25</td>
<td>30</td>
<td>33</td>
<td>34</td>
<td>37</td>
<td>40</td>
<td>44</td>
<td>47</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>22,5</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>35</td>
<td>38</td>
<td>41</td>
<td>44</td>
<td>48</td>
<td>51</td>
</tr>
<tr>
<td>23,0</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>23,5</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>28</td>
<td>31</td>
<td>34</td>
<td>37</td>
<td>40</td>
<td>43</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>24,0</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>23</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>24,5</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>24</td>
<td>29</td>
<td>32</td>
<td>35</td>
<td>38</td>
<td>41</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25,0</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>28</td>
<td>31</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25,5</td>
<td>13</td>
<td>15</td>
<td>18</td>
<td>19</td>
<td>23</td>
<td>26</td>
<td>28</td>
<td>31</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26,0</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26,5</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>27</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27,0</td>
<td>14</td>
<td>14</td>
<td>18</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27,5</td>
<td>12</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>24</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28,0</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28,5</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>21</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29,0</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29,5</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30,0</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Температура по сухому термометру (°C)</td>
<td>16,5</td>
<td>17,0</td>
<td>17,5</td>
<td>18,0</td>
<td>18,5</td>
<td>19,0</td>
<td>19,5</td>
<td>20,0</td>
<td>20,5</td>
<td>21,0</td>
<td>21,5</td>
<td>22,0</td>
<td>21,5</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>16,5</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>17,0</td>
<td>95</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>17,5</td>
<td>91</td>
<td>95</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>18,0</td>
<td>86</td>
<td>92</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,5</td>
<td>82</td>
<td>86</td>
<td>91</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19,0</td>
<td>78</td>
<td>82</td>
<td>86</td>
<td>91</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19,5</td>
<td>74</td>
<td>78</td>
<td>82</td>
<td>87</td>
<td>91</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20,0</td>
<td>70</td>
<td>74</td>
<td>78</td>
<td>83</td>
<td>87</td>
<td>91</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20,5</td>
<td>67</td>
<td>71</td>
<td>75</td>
<td>79</td>
<td>83</td>
<td>87</td>
<td>91</td>
<td>96</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21,0</td>
<td>64</td>
<td>67</td>
<td>71</td>
<td>75</td>
<td>79</td>
<td>83</td>
<td>87</td>
<td>91</td>
<td>96</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21,5</td>
<td>60</td>
<td>64</td>
<td>68</td>
<td>71</td>
<td>75</td>
<td>79</td>
<td>83</td>
<td>87</td>
<td>91</td>
<td>96</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,0</td>
<td>57</td>
<td>61</td>
<td>64</td>
<td>68</td>
<td>72</td>
<td>76</td>
<td>79</td>
<td>83</td>
<td>87</td>
<td>92</td>
<td>96</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>22,5</td>
<td>54</td>
<td>58</td>
<td>61</td>
<td>65</td>
<td>68</td>
<td>72</td>
<td>76</td>
<td>80</td>
<td>84</td>
<td>88</td>
<td>92</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>23,0</td>
<td>51</td>
<td>55</td>
<td>58</td>
<td>62</td>
<td>65</td>
<td>69</td>
<td>72</td>
<td>76</td>
<td>80</td>
<td>84</td>
<td>88</td>
<td>92</td>
<td>95</td>
</tr>
<tr>
<td>23,5</td>
<td>49</td>
<td>52</td>
<td>55</td>
<td>59</td>
<td>62</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>76</td>
<td>80</td>
<td>84</td>
<td>88</td>
<td>92</td>
</tr>
<tr>
<td>24,0</td>
<td>46</td>
<td>49</td>
<td>53</td>
<td>56</td>
<td>59</td>
<td>63</td>
<td>66</td>
<td>70</td>
<td>73</td>
<td>77</td>
<td>80</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>24,5</td>
<td>41</td>
<td>47</td>
<td>50</td>
<td>53</td>
<td>56</td>
<td>60</td>
<td>63</td>
<td>66</td>
<td>69</td>
<td>73</td>
<td>77</td>
<td>81</td>
<td>84</td>
</tr>
<tr>
<td>25,0</td>
<td>39</td>
<td>44</td>
<td>47</td>
<td>50</td>
<td>54</td>
<td>67</td>
<td>60</td>
<td>67</td>
<td>70</td>
<td>74</td>
<td>77</td>
<td>81</td>
<td>84</td>
</tr>
<tr>
<td>25,5</td>
<td>37</td>
<td>42</td>
<td>45</td>
<td>48</td>
<td>51</td>
<td>57</td>
<td>60</td>
<td>63</td>
<td>70</td>
<td>74</td>
<td>77</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>26,0</td>
<td>35</td>
<td>40</td>
<td>43</td>
<td>46</td>
<td>52</td>
<td>55</td>
<td>58</td>
<td>61</td>
<td>64</td>
<td>67</td>
<td>71</td>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>

Продолжение таблицы

Относительная влажность воздуха в процентах
<table>
<thead>
<tr>
<th>Температура по сухому термометру (°С)</th>
<th>21,5</th>
<th>22,0</th>
<th>22,5</th>
<th>23,0</th>
<th>23,5</th>
<th>24,0</th>
<th>24,5</th>
<th>25,0</th>
<th>25,5</th>
<th>26,0</th>
<th>26,5</th>
<th>27,0</th>
<th>27,5</th>
<th>28,0</th>
<th>28,5</th>
<th>29,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>26,5</td>
<td>64</td>
<td>68</td>
<td>71</td>
<td>74</td>
<td>78</td>
<td>81</td>
<td>85</td>
<td>89</td>
<td>92</td>
<td>96</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27,0</td>
<td>62</td>
<td>65</td>
<td>68</td>
<td>71</td>
<td>75</td>
<td>78</td>
<td>81</td>
<td>85</td>
<td>88</td>
<td>92</td>
<td>96</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27,5</td>
<td>59</td>
<td>62</td>
<td>65</td>
<td>68</td>
<td>72</td>
<td>75</td>
<td>78</td>
<td>82</td>
<td>85</td>
<td>89</td>
<td>92</td>
<td>96</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28,0</td>
<td>56</td>
<td>59</td>
<td>62</td>
<td>65</td>
<td>68</td>
<td>72</td>
<td>75</td>
<td>78</td>
<td>82</td>
<td>85</td>
<td>89</td>
<td>93</td>
<td>96</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28,5</td>
<td>54</td>
<td>57</td>
<td>60</td>
<td>63</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>76</td>
<td>79</td>
<td>82</td>
<td>86</td>
<td>89</td>
<td>93</td>
<td>96</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>29,0</td>
<td>51</td>
<td>54</td>
<td>57</td>
<td>60</td>
<td>63</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>76</td>
<td>79</td>
<td>82</td>
<td>86</td>
<td>89</td>
<td>93</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>29,5</td>
<td>49</td>
<td>52</td>
<td>55</td>
<td>57</td>
<td>60</td>
<td>63</td>
<td>66</td>
<td>70</td>
<td>73</td>
<td>76</td>
<td>79</td>
<td>82</td>
<td>86</td>
<td>89</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>30,0</td>
<td>47</td>
<td>50</td>
<td>52</td>
<td>55</td>
<td>58</td>
<td>61</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>73</td>
<td>76</td>
<td>79</td>
<td>83</td>
<td>86</td>
<td>89</td>
<td>93</td>
</tr>
</tbody>
</table>

Продолжение таблицы
ОГЛАВЛЕНИЕ

Предисловие ... 3
Раздел 1. Влияние факторов окружающей среды на жизнедеятельность населения .. 5
 1.1. Гигиеническая оценка среды обитания человека 7
 1.2. Гигиеническая оценка инсоляционного режима, естественного и искусственного освещения (на примере помещений лечебно-профилактических и учебных учреждений) ... 16
 1.3. Гигиеническая оценка питьевой воды и источников водоснабжения ... 27
 1.4. Методы улучшения качества питьевой воды 46
 1.5. Применение искусственного ультрафиолетового излучения в профилактических целях .. 52
 1.6. Санитарная экспертиза объектов окружающей среды на загрязнение радиоактивными веществами 65

Раздел 2. Питание как фактор сохранения и укрепления здоровья ... 72
 2.1. Гигиеническая оценка полноценности питания 74
 2.2. Гигиеническая оценка витаминной ценности питания 90
 2.3. Гигиеническая экспертиза пищевой ценности и доброкачественности продуктов питания 97
 2.4. Пищевые отравления, их расследование и профилактика ... 133
 2.5. Гигиенические требования к планировке и режиму работы пищеблока ... 139

Раздел 3. Гигиена лечебно-профилактических учреждений 154
 3.1. Гигиенические требования к размещению и планировке лечебно-профилактических учреждений 154
 3.2. Гигиеническая оценка микробного загрязнения воздушной среды в лечебных учреждениях 191

Раздел 4. Воздействие вредных производственных факторов на здоровье людей .. 196
 4.1. Производственный шум и его влияние на организм 200
 4.2. Гигиеническая оценка вибрации 207
 4.3. Оценка токсичности промышленных ядов 214
 4.4. Гигиеническая оценка производственной пыли 226
 4.5. Радиационная безопасность при работе с радиоактивными веществами и источниками ионизирующего излучения 235
 4.6. Санитарно-дозиметрический контроль при работе с источниками ионизирующего излучения 245
 4.7. Гигиенические аспекты работы операторов на персональных компьютерах ... 254

430
Раздел 5. Гигиенические основы обеспечения нормального роста и развития ребенка ... 264
 5.1. Исследование и оценка физического развития детей и подростков .. 265
 5.2. Оценка состояния здоровья детского населения. Определение готовности детей к обучению в школе 296
 5.3. Гигиена учебных занятий в школе .. 316
 5.4. Санитарно-гигиеническая экспертиза проектов школ и школ-интернатов ... 338
 5.5. Санитарно-гигиеническая экспертиза проектов объединенных дошкольных учреждений 344
 5.6. Закаливание детей и подростков .. 349

Раздел 6. Гигиена экстремальных ситуаций и катастроф 358
 6.1. Санитарно-гигиенические проблемы медицины катастроф . 361
 6.2. Гигиенические вопросы размещения людей при чрезвычайных ситуациях ... 367
 6.3. Гигиена водоснабжения организованных коллективов в экстремальных условиях 377
 6.4. Медицинский контроль за питанием организованных групп населения в особых условиях 389

Раздел 7. Учебно-исследовательская работа студентов 398
 7.1. Темы рефератов по разделу "Гигиена труда" 399
 7.2. Темы рефератов по разделу "Гигиена детей и подростков" 404
 7.3. Темы курсовых работ для студентов-иностранных 409

Краткий словарь экологических терминов 412

Термины и определения, используемые в радиационной гигиене ... 418

Приложение. Таблица для определения относительной влажности воздуха по разности показаний сухого и влажного термометров аспирационного психрометра Ассмана 426
Юрий Петрович Пивоваров

РУКОВОДСТВО К ЛАБОРАТОРНЫМ ЗАНЯТИЯМ ПО ГИГИЕНЕ И ОСНОВАМ ЭКОЛОГИИ ЧЕЛОВЕКА

(Налоговая льгота в соответствии с Общероссийским классификатором продукции ОК 005-93, Том 2, 95 3000 — книги и брошюры)